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Abstract

In this paper, an alternative definition of stable sets, defined by Mertens [Mertens, 1989. Stable
equilibria – a reformulation. Part I. Definitions and basic properties. Mathematics of Operations
Research 14, 575–625], is given where perturbations are interpreted as restrictions on the strategy
space instead of perturbations of the payoffs. This alternative interpretation is then used to compute a
special type of stable sets –called standard stable sets – in the context of bimatrix games, exclusively
using linear optimization techniques and finite enumerations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The first systematic investigation concerning the definition of stability of a normal form
equilibrium was executed byKohlberg and Mertens (1986). Their approach differed from
what had been done before. Up till then usually ad hoc remedies were introduced for
specific shortcomings of Nash equilibrium. Kohlberg and Mertens simply started with the
formulation of a list of desiderata that should be satisfied by any reasonable interpretation
of what a stable equilibrium is. Unfortunately, despite several efforts, they did not find
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a definition of stability of equilibrium that featured all desiderata. Several attempts were
subsequently made to find an interpretation of stability that did satisfy all their requirements.
EventuallyMertens (1989, 1991)presented a definition that satisfied all these conditions,
along with a couple of new additions to the list of desiderata.
Original definition: We will first briefly explain howMertens (1989)defined stable

sets. Since, for reasons we will explain in a moment, we will restrict ourselves to a
two-person context, we will present the terminology only for bimatrix games. The basic
notion in the definition of stable sets is that of a perturbation. For a bimatrix game, a
perturbation is in fact a pair of non-negative vectors, one for each player. For each player
the number of coordinates of the corresponding perturbation equals the number of pure
strategies of that player. Given such a perturbation, we can define a new game, that is
played as follows. First let the players of the original bimatrix game each choose a strategy.
Given these choices we add to each player’s choice the corresponding perturbation and
normalize the result. Now the payoff to a player in the perturbed game is simply the
payoff he would get in the original game if the perturbed strategies thus constructed were
played.

Thus each perturbation induces a perturbed game. Such a perturbed game will have a
non-empty set of Nash equilibria. The graph of the correspondence that assigns to each
perturbation its set of perturbed Nash equilibria is denoted byE.

Now stable sets are determined with the aid of the notion of an essential germ. Loosely
speaking, a germ is a connected chunk of the graphE, and such a germ is called essential
when it satisfies some essentiality condition when considered sufficiently close to the zero
perturbation. In this paper, the essentiality condition itself is phrased in terms of singular
homology groups. It states that the projection from the graphE onto the perturbation space
should induce a homomorphism between homology groups (to be made precise in the
definition) that is not the trivial map. (This is a slight deviation from the definition in
Mertens (1989), but it has the advantage that we need not add a statement concerning
Hausdorff limits of semi-algebraic sets. This way we immediately get a purely topological
notion of an essential germ for arbitrary compact parts of the graphE.) Now a setT is called
stable if there is an essential germ inE for whichT is the part of the germ directly above
the zero perturbation.

1.1. Aim of the paper

In Mertens (1989)the author is already concerned with the question of computability
of this type of stability in Remark 1, pp 590–593. In this remark, the author sketches an
algorithm for the computation of semi-algebraic stable sets. This algorithm though will
in general, even for bimatrix games, involve finding solutions to systems of higher-order
polynomial equations. This effect is basically due to the rescaling factor in the defini-
tion of a perturbed game. The algorithm is also based on fairly involved procedures such
as the elimination algorithm of Tarski and the triangulation algorithm for semi-algebraic
sets.

In this paper, we will present an algorithm that is capable of computing a (or all) stable
set(s) exclusively using addition and scalar multiplication. Both the algorithm and the proof
of its validity only use elementary techniques.
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1.2. Two provisos

The above assertion is subject to the following two provisos. First of all, we will only
consider bimatrix games. The reason for this is that, for normal form games with more than
two players, even the inequalities that determine the Nash equilibrium set are in terms of
higher-order polynomials. Thus it cannot be expected that linear techniques will be adequate
tools to solve these games.

Secondly, we will restrict ourselves to a special type of stable sets. If the task is: compute
one stable set, then this proviso is not relevant (one could after all simply compute a stable
set of this special type, and leave it at that). However, for tasks like: compute all stable sets
or, given a set, check whether or not it is stable, we need some restrictions. This is basically
due to the fact that the only a priori restriction for a stable set is that it be compact and
connected. However, the class of all compact and connected sets is way too general to be
handled effectively only by linear computation techniques. For this reason we will restrict
our domain of sets to a specific class that we will specify below in the introduction and in
Section 6.

1.3. Contents of the paper

The results: Basically we will do two things. First, we will show that there is an alternative
definition of stable sets that does not involve rescaling. This makes the alternative definition
more appropriate for being handled by linear computation techniques.

Given this alternative definition we will construct an algorithm that, given the primitive
data of the game (i.e. the bimatrix) and for the special type of sets we consider, decides in
a finite number of linear operations whether or not the set is stable.
Alternative definition: The alternative definition is based on a reinterpretation of

perturbations. Algebraically speaking, a perturbation is still a vector like we described
above, but the game induced by a perturbation is going to be different. In the alternative
definition a perturbation is simply a restriction of the strategy space. Given a perturbation,
the players in this new game are only allowed to play strategies that put a minimum
amount of weight on each pure strategy, these minimum amounts being specified by
the perturbation in question. Thus we get a new, perturbed, game with its own set of
equilibria. The graph of the correspondence that assigns its set of equilibria to each
perturbation is denoted byF. Now we can redefine stable sets by requiring that the
essential germs are supposed to be chunks taken fromF instead ofE. As it turns out, this
new notion of stability yields the same collection of stable sets as the original notion of
Mertens.
STANDARD STABLE SETS: The advantage of the alternative definition is that, in the

case of bimatrix games, it preserves the linear structure of the inequalities that define the
collection of Nash equilibria. Thus, given a bimatrix game, the graphF can be written as
the union of a finite number of chunks of this graph, each of which is determined by a finite
number of a specific type of linear (in)equalities. Such a chunk will be called apolyhedral
chunkof F.

Nevertheless, it cannot be expected thatall stable sets of the bimatrix game can be
computed since basically the only ex ante restriction on a candidate-stable set is that it be
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compact and connected (in a strong sense). This still leaves a lot of freedom of choice in
degenerate games like the zero-payoff game in which basicallyeverycompact and con-
nected set is stable. Thus, the freedom of choice in the selection of (different but essentially
identical) strategies for a stable set leads to a multitude of (different but essentially identical)
stable sets.

Therefore we restrict our attention to a special type of set. We will only consider sets that
are the part above the zero-perturbation of the union of a number of polyhedral chunks ofF.
Roughly speaking, we eliminate the choice problem this way and simply addall possible
choices of strategies to our stable set. Stable sets of this form are calledstandard stable
sets.

It turns out that a candidate-stable set in question is a standard stable set if and only if
the union of the polyhedral chunks involved is an essential germ. We will show that it only
takes a finite number of linear operations to either compute all essential germs of this form
(and thus also all standard stable sets) or, given a number of polyhedral chunks ofF, to
decide whether or not it is an essential germ.
Computation: The heart of the algorithm consists of two procedures. The first procedure

checks connectedness of the candidate germ under consideration. This is done by explicitly
constructing a combinatorial graph that is connected if and only if the candidate germ is
connected. Checking connectedness of a graph is of course a finite task.

The second procedure concerns the essentiality condition. We show that, sufficiently
close to the zero perturbation, the homomorphism induced by the projection map from the
graphF to the perturbation space can be determined in a finite number of steps.

Together these two procedures can be used to check whether or not a set in standard
form is an essential germ. Thus, e.g., by a simple enumeration procedure, it is possible to
determine all standard stable sets of the bimatrix game under consideration.

1.4. Organization of the paper

Section 2summarizes the notation used in this paper as well as several elementary
facts about Abelian groups and bimatrix games. InSection 3the, slightly adapted, original
definition of stable sets fromMertens (1989)is presented. InSection 4we present our
alternative definition and prove its equivalence with the original one. InSection 5the
notion of a standard stable set is introduced and the relation with arbitrary stable sets and
maximal stable sets is explained. Finally, inSection 6the algorithm to compute all standard
stable sets is presented together with a proof of its validity.

Appendix Acontains a review of the definition of simplicial homology groups.Appendix
B discusses a specific homeomorphism needed in the proof of the validity of our algorithm.

2. Preliminaries

In this section we introduce the notation we will use throughout this paper. The cardinality
of a finite setM is denoted by|M|. For a setX in R

n, ext(X) denotes the set of extreme
points ofX. A set is called a polytope if it is the convex hull of a finite number of points.
If the dimension of a polytope is one less than the number of its extreme points it is called
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a simplex. A non-empty subsetF1 of P is called a face if for any two pointsx andy in
P and any positive numberλ < 1 the event thatλx+ (1 − λ)y is an element ofF implies
that bothx andy are elements ofF. If F consists of one single point, this point is called an
extreme point or vertex ofP. If F is not equal toP it is called a proper face ofP. A set is
called polyhedral if it is the set of solutions to a finite number of linear inequalities. Given
a topology on a setX and a pointx in X, any set containing an open set that containsx is
called a neighborhood ofx. X is called connected if it cannot be written as a disjoint union
of two non-empty and closed sets. For a subspaceY of X, the (topological) boundary∂Y
of Y is the collection of pointsx in X with the property that each neighborhood ofx has a
non-empty intersection with bothYandX \ Y . The closure cl(Y) of Y is the union ofYand
∂Y . The setY̊ := Y \ ∂Y is called the interior ofY.

2.1. Abelian groups

For an elementg in an Abelian groupG and a positive integern the elementng in G
is defined to be then-fold sum ofg. Furthermore, 0g := 0 where the 0 on the right-hand
side of the equality sign denotes the neutral element ofG, and forn ≤ −1, the expression
ngdenotes the inverse of (−n)g. A family B = {gα}α∈I of elements ofG is called a basis
when each elementg of G can be written uniquely as a finite sum

g =
∑

nαgα

where eachnα is an integer. Given an arbitrary setS, the Abelian group generated bySis the
set of all functionsϕ : S → Z that take values different from zero only on a finite number
of elements ofS. It is clear that each elementϕ in this group can be written uniquely as

ϕ =
∑

nα1lsα

where eachnα is an integer and 1lsα is the characteristic function of{sα}. By abuse of notation
we will identify sα with its characteristic function and write

s =
∑

nαsα

Note in particular that, in caseSis finite, the Abelian group generated bySequalsZS . Now
suppose we have two Abelian groupsG andH. A homomorphism fromG to H is a map
f : G → H such that

f (a+ b) = f (a) + f (b)

for all a, b ∈ G. If f has an inverse mapf−1 it is called an isomorphism. A homomorphism
f is called trivial iff (a) = 0 for all a ∈ G.

1 Non-emptiness is not a strict requirement. It is however customary in the definition of homology groups.
Admittance of the empty face would yield reduced homology.
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2.2. Bimatrix games

Throughout this paper we will only concern ourselves with bimatrix games. So, we
assume that there are two players, player I and player II. Player I has a finite setM and
player II has a finite setN of pure strategies. The payoff matrices (aij)i∈M,j∈N of player I
and (bij)i∈M,j∈N of player II are denoted byA andB, respectively. Furthermore,

�(M) :=
{
p ∈ R

M |pi ≥ 0 for all i ∈ M and
∑
i∈M

pi = 1

}

is the set of mixed strategies of player I and

�(N) :=

q ∈ R

N |qj ≥ 0 for allj ∈ N and
∑
j∈N

qj = 1




is the set of mixed strategies of player II. The payoff for player I ispAqand the payoff
for player II ispBqwhen the strategy pair (p, q) is played. Fori ∈ M theith unit vector is
denoted byei and is interpreted as the situation in which player I is playing pure strategyi
with probability one. Similarly a pure strategyj ∈ N of player II is identified withej. We
will also write� := �(M) ×�(N).

Definition 1. A Nash equilibriumof the game (A,B) is a strategy pair (p, q) such that

pAq ≥ p′Aq for allp′ ∈ �(M)

and

pBq ≥ pBq′ for all q′ ∈ �(N).

The collection of equilibria of the game (A,B) is denoted byE(A,B).

3. The definition of stable sets

In this section we will present a slightly modified version of the definition of stable sets
given inMertens (1989). First we will introduce some notation.

A perturbationfor player I is a vectorδ = (δi)i∈M with δi ≥ 0 and
∑
i∈M δi ≤ 1. The

collection of all perturbations is denoted byP1. Similarly we can define the collectionP2
of perturbationsε = (εj)j∈N for player II. A pair (δ, ε) is also called a perturbation. The
collection of all such perturbations isP := P1 × P2. A perturbation (δ, ε) in P is called
completely mixedif δi > 0 for all i andεj > 0 for all j. For some real numberη > 0, write

P1(η) :=
{
δ ∈ P1|

∑
i∈M

δi ≤ η

}
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andP2(η) is similarly defined. Furthermore,P(η) := P1(η) × P2(η).

3.1. Payoff perturbations

A perturbation (δ, ε) defines a perturbed game in the following way. The payoff-perturbed
game associated with the perturbation (δ, ε) is the game (A(δ, ε), B(δ, ε)) with

A(δ, ε)i,j := σ(ei, δ) · A · τ(ej, ε)

where

σ(p, δ) := p+ δ

1 + ∑
i δi

and τ(q, ε) := q+ ε

1 + ∑
j εj

.

The payoff matrixB(δ, ε) is defined analogously. The set of equilibria of the perturbed
game is simplyE(A(δ, ε), B(δ, ε)). We writeE for the graph of the correspondence that
assigns the collectionE(A(δ, ε), B(δ, ε)) of perturbed equilibria to the perturbation (δ, ε).
Notice that the choiceδ = 0 andε = 0 returns the original bimatrix game (A,B). Hence,
E(A(0), B(0)) = E(A,B).

3.2. Stable sets

LetSbe a closed subset of the product spaceP ×�. Forη > 0,

S(η) = {(δ, ε, p, q) ∈ S|(δ, ε) ∈ P(η)}

is the part ofSaboveP(η) and

∂vS(η) = {(δ, ε, p, q) ∈ S(η)|(δ, ε) ∈ ∂P(η)}

is the part ofSabove∂P(η). Usually∂vS(η) is called thevertical boundaryof S(η). Fur-
thermore, letSi(η) be the setS(η) \ ∂vS(η). This is the set of points (δ, ε, p, q) in S(η) for
which (δ, ε) is completely mixed,

∑
i δi < η and

∑
j εj < η.

Now notice that the canonical projectionπ that assigns the perturbation (δ, ε) to
(δ, ε, p, q) is a map fromS(η) to P(η) that maps∂vS(η) into ∂P(η). So, the projection
π is a map from the topological pair (S(η), ∂vS(η)) to the topological pair (P(η), ∂P(η)).
Hence, as is, e.g., explained inMunkres (1984), it induces a homomorphismπ∗ from
the relative singular homology groupHd(S(η), ∂vS(η)) to the relative singular homol-
ogy groupHd(P(η), ∂P(η)). The question we now ask ourselves is: how might this ho-
momorphismπ∗ look like. And in fact there is not much choice as the next remark
shows.
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Remark. Let C be any convex and compact set of dimensiond and let∂C be its relative
topological boundary (relative w.r.t. its affine hull, that is). Then it is a well-known fact
that the relative singular homology groupsHk(C, ∂C) are all trivial, except whenk = d, in
which case it is isomorphic to the groupZ of integers.

In particular we see thatHd(P(η), ∂P(η)) is the trivial group, except whend = |M| +
|N|, in which case the group is isomorphic withZ. So, for each dimension the induced
homomorphismπ∗ is necessarily trivial, except perhaps in cased = |M| + |N|.

These observations are the main motivation for the following definitions.

Definition 2. non-empty, closed setS in P ×� is called agerm if for sufficiently small
η > 0:

(1) the setSi(η) is connected, and
(2) S(η) = cl(Si(η)).

When for sufficiently smallη > 0 it even holds that
(3) for dimensiond = |M| + |N| the homomorphismπ∗ induced by the projectionπ from

the topological pair (S(η), ∂vS(η)) to (P(η), ∂P(η)) is not the trivial map,

we say that the germS is essential.

Even though essentiality of a germ, based on a homomorphism between homology
groups, is a rather abstract notion, it has very intuitive geometrical implications. For ex-
ample, when a germS is essential, then, for sufficiently smallη, there does not exist a
continuous homotopy fromS(η) toP(η) that constantly maps the vertical boundary ofS(η)
into the boundary ofP(η). Roughly speaking this means that, when the germ is viewed as a
plastic foil above the perturbation space that is glued to the vertical boundary, it cannot be
moved to the vertical boundary without either tearing the material apart or unglueing the
germ above the boundary.

Definition 3. A closed setT in � is calledstableif there exists an essential germS ⊂ E
such that

T = {(p, q)|(0,0, p, q) ∈ S}.

The above definition of stable sets differs slightly from the definition in Mertens in sev-
eral aspects. First of all, Mertens based his definition on simplicial instead of singular
homology groups. However, simplicial homology is only defined for triangulable sets. As
a consequence of this, Mertens initially uses the above definition, but with the additional
requirement that the germ involved is semi-algebraic (and therefore triangulable). Subse-
quently he also considers the Hausdorff limits of the stable sets thus obtained to be stable
sets. The advantage of using singular homology is that the above definition can be used
directly for arbitrary closed sets. This does not make much difference, because for semi-
algebraic (and more generally triangulable) sets both types of homology groups coincide
by Theorem 34.3 inMunkres (1984)and the topological invariance of homology groups.
Finally, another difference is that Mertens considers different coefficient modules, but that
can also be done in singular homology.
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Nevertheless, the above definition preserves all major results of the original definition,
such as existence, perfection, backward induction and ordinality. Existence easily follows
from the observation that any semi-algebraic set that is stable in the sense ofMertens (1989)
is also stable according to our definition.Mertens (1989)has shown the existence of such a
set. Perfection is fairly straightforward. Backward induction follows from the observation
that the proof ofHillas et al. (2001)can be applied directly to our definition to show that
stable sets in the sense used here are also stable in the sense ofHillas (1990). Ordinality can
be shown by proving that our definition satisfies both invariance and admissible-best-reply
invariance. These conditions are sufficient for ordinality as is shown inMertens (2004)and
Vermeulen and Jansen (2000).

4. An alternative definition of stable sets

Even though one can obtain results on computability using the original definition
(see, e.g.Mertens, 1989, Remark 1, pp. 590–593) this definition is not suited for our
purposes. The problem is that, even for bimatrix games, the linear structure of the
inequalities that characterize the equilibrium set is lost when payoffs are perturbed.
This is basically due to the rescaling factor in the denominator of the perturbation
map. However, there is an alternative way to interpret perturbations in terms of re-
strictions of the strategy spaces. We will first show that the resulting notion of stable
sets under this interpretation is equivalent with the original one. In the next section
we will also show that the linear structure of the equilibrium correspondence is pre-
served under this interpretation, and how this fact can be exploited for computational
purposes.

4.1. Strategy perturbations

We will first give a reinterpretation of a perturbation. More precisely, given a per-
turbation, we will construct an alternative way to associate a perturbed game with this
perturbation. So, let (δ, ε) be a perturbation. The perturbed game (A,B, δ, ε) is played as
follows. The players are only allowed to play strategy pairs (p, q) in the restricted strategy
space�(δ) ×�(ε) where

�(δ) := {p ∈ �(M)|pi ≥ δi for all i ∈ M}

and�(ε) is similarly defined. The payoffs in this game remainpAqandpBq. Anequilibrium
of the perturbed game (A,B, δ, ε) is a strategy pair (p, q) in the restricted strategy space
such that

pAq ≥ p′Aq for allp′ ∈ �(δ)

and

pBq ≥ pBq′ for all q′ ∈ �(ε).
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The collection of equilibria of the perturbed game (A,B, δ, ε) is denoted byE(A,B, δ, ε).
We writeF for the graph of the correspondence that assigns the collectionE(A,B, δ, ε) of
perturbed equilibria to the perturbation (δ, ε).2

Definition 4. A closed setT in � is calledstrategy-stableif there exists an essential germ
S ⊂ F such that

T = {(p, q)|(0,0, p, q) ∈ S}

Remark.So, the only difference with the previous definition is that in this case we require
the germ to be a subset ofF instead ofE.

The remainder of this section is devoted to the proof that the above definition of stability
is equivalent to Mertens’ definition presented in the previous section. The proof is based
on the existence of a particular homeomorphism fromE toF. We will start with a descrip-
tion of this homeomorphism. Consider the setsC := C1 × C2 andD := D1 ×D2 defined
by

C1 :=
{

(p, δ) ∈ R
M × R

M |δi ≥ 0 and
∑
i∈M

δi ≤ 1

}

and

C2 :=

(q, ε) ∈ R

N × R
N |εj ≥ 0 and

∑
j∈N

εj ≤ 1




D1 :=
{

(p, δ) ∈ R
M × R

M |δi ≥ 0 and
∑
i∈M

δi ≤ 1

2

}

and

D2 :=

(q, ε) ∈ R

N × R
N |εj ≥ 0 and

∑
j∈N

εj ≤ 1

2


 .

Define the functionsI1 : C1 → D1 andJ1 : D1 → C1 by

I1(p, δ) := 1

1 + ∑
i δi

· (p+ δ, δ) and J1(p, δ) := 1

1 − ∑
i δi

· (p− δ, δ).

2 For reasons that will become clear in a moment we restrict this correspondence to those perturbations (δ, ε)
for which

∑
i δi ≤ 1

2 and
∑
j εj ≤ 1

2 .
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It is straightforward to show thatI1 is the inverse map ofJ1.3 Similarly we can define the
mapI2 from C2 toD2 with inverse mapJ2. So,I := (I1, I2) is a continuous map fromC to
D with inverse mapJ := (J1, J2).

Lemma 1. The restriction of I toE is a homeomorphism fromE toF and the restriction of
J toF is its inverse.

Proof. SinceI is clearly continuous with inverseJ, it is sufficient to show thatI mapsE
into F and vice versa. So, let (δ, ε, p, q) be an element ofE. In other words, (p, q) is an
equilibrium of the perturbed game (A(δ, ε), B(δ, ε)). Write

p∗ := p+ δ

1 + ∑
i δi

and q∗ := q+ ε

1 + ∑
j εj

as well as

δ∗ := δ

1 + ∑
i δi

and ε∗ := ε

1 + ∑
j εj

We want to show that (p∗, q∗) is an equilibrium of the game (A,B, δ∗, ε∗). First notice that
p∗ is indeed an element of�(δ∗) andq∗ is an element of�(ε∗). Now take any other strategy
p′ in �(δ∗). Define the strategy (!)p′′ by

p′′ := p′ − δ∗

1 − ∑
i δ

∗
i

.

Thenp′ = σ(p′′, δ), p∗ = σ(p, δ) andq∗ = τ(q, ε). So,

p′Aq∗ = σ(p′′, δ) · A · τ(q, ε) =
∑
i

p′′
i

∑
j

qjA(δ, ε)i,j

≤
∑
i

pi
∑
j

qjA(δ, ε)i,j = σ(p, δ) · A · τ(q, ε) = p∗Aq∗

where the inequality follows from the fact that (p, q) is an equilibrium of (A(δ, ε), B(δ, ε)).
This shows thatp∗ is a best reply againstq∗ within�(δ∗). In the same way we find thatq∗
is a best reply againstp∗ within �(ε∗). Hence, (p∗, q∗) is an equilibrium of (A,B, δ∗, ε∗).

Conversely, let (δ, ε, p, q) be an element ofF. In other words, (p, q) is an equilibrium
of the perturbed game (A,B, δ, ε). We have to show thatJ(δ, ε, p, q) is an element ofE.
This though follows from an analogous line of reasoning.

Now that we have this homeomorphism fromE toF the proof of the equivalence of the
two definitions of stability presented previously is elementary and discussed below.�
Theorem 1. A set T in� is stable if and only if it is strategy-stable.

3 For this particular reason we do not requirep to be a strategy. When we do include this requirement, this
statement is no longer true.
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Proof. Suppose thatT is stable. We will show thatT is also strategy-stable. To this end, let
S ⊂ E be an essential germ forT. SinceI(S) is a subset ofF by the previous lemma, it is
sufficient to show that it is an essential germ forT.

To this end, first notice that, for 1> η > 0, I(S(η)) equals I(S)(η/(1 + η)) and
I(∂vS(η)) equals∂vI(S)(η/(1 + η)). So, I is a map between the pairs (S(η), ∂vS(η)) and
(I(S)(η/(1 + η)), ∂vI(S)(η/(1 + η))). Furthermore, the mapb from P(η/(1 + η)) to P(η)
defined by

b(δ, ε) :=
(

δ

1 − δ
,

ε

1 − ε

)

is a map between pairs (P(η/(1 + η)), ∂P(η/(1 + η))) and (P(η), ∂P(η)). Finally, the com-
position of the mapsI, π andb �

equals the projectionρ from (S(η), ∂vS(η)) to (P(η), ∂P(η)). So,b∗ ◦ π∗ ◦ I∗ equalsρ∗ by
Theorem 30.1 ofMunkres (1984). Hence, sinceρ∗ is not the trivial map by assumption,π∗
cannot be the trivial map either. The proof of the converse implication in the statement of
the theorem is virtually identical to the above proof.

Although we only presented the equivalence of both notions of stability in the context
of bimatrix games, the same can be shown for arbitraryn-person normal form games.

5. Standard stable sets

From a topological perspective stable sets can still take on many forms. Essentially the
only restrictions are compactness and connectedness. Therefore it cannot be expected that,
given an arbitrary (bimatrix) game, all stable sets can be computed. If we consider, e.g., the
2 × 2 bimatrix game in which both players receive zero payoffs regardless of the strategies
chosen, it is easy to check thatanycompact and connected set is a stable set. This huge
degree of freedom of choice is mainly due to the high degree of degeneracy of this game: it
does not matterwhich(essentially identical) strategies you choose to be part of your stable
set, and consequentlyanychoice is indeed allowed!

In this section we will introduce a specific type of stable set, called standard stable set,
that turns out to be sufficiently well-behaved for purposes of computability involving solely
linear optimization techniques. Roughly speaking, standard stable sets avoid the problem
we just discussed by simply selectingall strategies in case we have freedom of choice.

In this section we will show that in the case of bimatrix games the collection of stan-
dard stable sets is fairly large and still captures the spirit of the notion of stability pretty
well.



D. Vermeulen, M. Jansen / Journal of Mathematical Economics xxx (2004) xxx–xxx 13

5.1. The linear structure ofF

The structure of standard stable sets derives from the linear structure of the graphF
of the equilibrium correspondence. Let (δ, ε) be a perturbation of a bimatrix game (A,B).
For a strategyp of player I in the restricted strategy space�(δ) theδ-carrier Cδ(p) of p is
defined as

Cδ(p) := {i ∈ M|pi > δi}.

Analogously we can define theε-carrierCε(q) of a strategy of player II in the strategy space
restricted by the perturbationε. For a strategyp of player I the setPB2(p) of pure best
repliesof player II top is defined by

PB2(p) := {j ∈ N|pBej ≥ pBel for all l ∈ N}.

Again we can do something similar for player I and definePB1(q). Using this terminology
we have the following key lemma. Its proof can, e.g., be found inVermeulen (1996).

Lemma 2. The strategy pair(p, q) is an equilibrium of the perturbed game(A,B, δ, ε)
if and only if theδ-carrier of p is a subset ofPB1(q) and theε-carrier of q is a subset of
PB2(p).

Even though we will not prove this lemma here, we will try to give some intuition for
what it says. Consider the following situation. In the left-hand side picture below, player
I’s pure best responses againstq aree2 ande3. So, in the unperturbed case his set of best
responses – represented by the fat line – is simply the convex hull of these two pure best
responses. In the (δ1, δ2, δ3)-perturbed case on the right, his set of best responses is simply
the convex hull of the “perturbed versions” (δ1,1 − δ1 − δ3, δ3) and (δ1, δ2,1 − δ1 − δ2)
of e2 ande3.

This behavior of best responses of course carries over immediately to perturbed Nash
equilibria, henceLemma 2. From this geometrical intuition it is also clear that, once the
objectiveAq for optimization is kept fixed, the graph of the best response sets over pertur-
bations is linear.

This insight can be used as follows to decompose the graphF into a finite number of
polytopes. LetI ⊂ M be a set of pure strategies of player I and letJ ⊂ N be a set of pure
strategies of player II. With these two sets of pure strategies we can associate a subsetS(I, J)
of the collectionD1 defined above. This setS(I, J) is formally defined as the collection of
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solutions (p, δ) in R
M × R

M of the system of linear (in)equalities

pBej − pBek ≥ 0 for allj ∈ J and allk ∈ N
pi ≥ δi for all i ∈ I
pi = δi for all i /∈ I.

0 ≤ δi for all i ∈ M∑
i∈M pi = 1∑
i∈M δi ≤ 1

2

The group of (in)equalities after the blank line are merely added to guarantee thatp is a
strategy in�(δ) and that (p, δ) is indeed an element ofD1 as soon as (p, δ) is a solution
of the above system of inequalities. The first group of inequalities states that every pure
strategy inJ is a best reply againstp. The second and third groups of (in)equalities guarantee
thatp theδ-carrier ofp is a subset ofI. InD2 we can analogously define the setT (I, J) by
a system of linear (in)equalities. We will frequently encounter sets of the form

S(I, J) × T (I, J)

in the remainder of this paper, and we will therefore give these sets a name.

Definition 5. A set of the form described above is called apolyhedral chunkof F. This
name is justified by the following straightforward consequence of the previous lemma.

Lemma 3. Each polyhedral chunk ofF is a subset ofF.

Notice that, since each equilibrium is indeed an element of some polyhedral chunk of
F, this lemma states thatF is the union of the collection of polyhedral chunks.

5.2. Standard stable sets

Now we have done enough preliminary work to be able to define the notion of a standard
stable set. The idea is that, in order to construct a stable set, one first needs to decide
which polyhedral chunks are needed, and secondly one needs to select within each of these
polyhedral chunks a collection of equilibria that is sufficiently robust. For a standard stable
set we leave out the second step and only decide which polyhedral chunks go into the stable
set, and which do not. Thus we get the following definition.

Definition 6. A germS ⊂ F is said to be instandard formif it can be written as the union
of a number of polyhedral chunks. A stable setT is calledstandard stableif there is an
essential germS ⊂ F for T that is in standard form.

The next theorem shows that the class of standard stable sets is a sufficiently rich class
of stable sets to capture the flavor of stability pretty well. It also immediately implies that
the maximal elements of the (finite) collection of standard stable sets coincide with the
maximal stable sets (w.r.t. set inclusion) defined inGovindan and Wilson (2002).



D. Vermeulen, M. Jansen / Journal of Mathematical Economics xxx (2004) xxx–xxx 15

Theorem 2. Each stable set is contained in a standard stable set.

Proof. Suppose thatT is a stable set and letS ⊂ F be an essential germ for it. Now letA
be the collection of those setsS(I, J) × T (I, J) that have a sequence (δk, εk, pk, qk)∞k=1 in
common withS for which (δk, εk)∞k=1 is completely mixed and convergent to (0,0). LetV
be the union of these sets. We will show thatV is an essential germ inF that containsS(η)
for sufficiently smallη. For if we can prove that, it immediately follows that

W := {(p, q)|(0,0, p, q) ∈ V }

is a standard stable set that containsT.
First note thatV is a subset ofF by Lemma 3. Next we will show by contradiction

that, for sufficiently smallη, V containsS(η).4 Suppose this is not the case. Then there is a
sequence (δk, εk, pk, qk)∞k=1 in S for which (δk, εk)∞k=1 converges to (0,0) and none of the
(δk, εk, pk, qk) are elements ofV. Moreover, sinceS(η) = cl(Si(η)) for sufficiently smallη,
we may even assume that all (δk, εk) are completely mixed. Next, by taking a subsequence
if necessary, we can make sure that there is a pair (I, J) such that for allk

Cδk (p
k) = I and Cεk (q

k) = J

Then howeverS(I, J) × T (I, J) must be a subset ofVby the definition ofV. Contradiction.
Now we will show thatV is an essential germ. Take anη > 0 such that the requirements

for an essential germ are fulfilled forS(η) and moreoverS(η) is a subset ofV. We will check
the three requirements for an essential germ one by one forV (η).

(1) The setV i(η) is connected. To see this, suppose that there are two closed setsF and
G such thatF ∩ V i(η) andG ∩ V i(η) are not empty, mutually disjoint and their union
equalsV i(η). We will derive a contradiction.

SinceS(η) is a subset ofV, alsoF ∩ Si(η) andG ∩ Si(η) are mutually disjoint and
their union isSi(η). So, it suffices to show thatF ∩ Si(η) is not empty. Suppose it is
empty. ThenSi(η) must be contained inG. Now take a polytopeQ = S(I, J) × T (I, J)
inA. So, by definition ofA, there is a sequence (δk, εk, pk, qk)∞k=1 inQ ∩ S for which
(δk, εk)∞k=1 is completely mixed and convergent to (0,0). In particular this implies that
the intersection ofQ andSi(η) is not empty. So, sinceSi(η) is contained inG, this
implies thatQi(η) must have a non-empty intersection withG. Therefore, sinceQi(η)
is a connected set,Qi(η) ∩ F must be empty. Then howeverQi(η) must be contained
inG. This though, sinceQwas chosen arbitrarily inA, implies thatV i(η) has an empty
intersection withF. Contradiction.

(2) V (η) = cl(V i(η)). This immediately follows from the fact thatV is the union of a finite
number of polytopesQ in A for each of whichQi(η) is not empty.

(3) For dimensiond = |M| + |N| the homomorphismπ∗ induced by the projectionπ from
the topological pair (V (η), ∂vV (η)) to (P(η), ∂P(η)) is not the trivial map. To see this,

4 This automatically implies thatA cannot be empty.
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first notice thatS(η) is a subset ofV by the choice ofη. Then the inclusion map

ι : (S(η), ∂vS(η)) → (V (η), ∂vV (η))

is a map between topological pairs. Furthermore,π|S(η) := π|V (η) ◦ ι whereπ|S(η) and
π|V (η) denote the respective restrictions of the projectionπ to S(η) andV (η). Thus we
get that (π|S(η))∗ := (π|V (η))∗ ◦ ι∗ and (π|V (η))∗ cannot be trivial since (π|S(η))∗ is not
trivial by assumption. �

6. Computability of standard stable sets

All standard stable sets can be computed in finite time. There are several ways to see
this. We will explain one of them. We selected our method of choice not on grounds of
computational speed, but merely for ease of exposition.

First we will show that we can restrict ourselves to germs of a special form. Consider a
fixed pair (I, J) of sets of pure strategies for the moment. Let

ext(I, J) := ext(S(I, J) × T (I, J))

denote the set of extreme points of the associated polyhedral chunkS(I, J) × T (I, J).

Definition 7. We say that the pair (I, J) is admissibleif

(1) there exists a point (0,0, p, q) in ext(I, J),
(2) there is no pure strategyi in M such thatδi = 0 for all (δ, ε, p, q) in ext(I, J), and
(3) there is no pure strategyj in N such thatεj = 0 for all (δ, ε, p, q) in ext(I, J).

Requirement (1) excludes chunks of the graph of the equilibrium correspondence that
are not present directly above the zero perturbation. Such parts of the graph are clearly not
needed in an essential germ. Thus, this requirement is not really crucial, it is only convenient.
Requirements (2) and (3) are crucial. They guarantee that the associated polyhedral chunk
contains at least one point (δ, ε, p, q) for which (δ, ε) is completely mixed. Together these
requirements guarantee, e.g., that

[S(I, J) × T (I, J)]i(η)

is not empty for allη > 0. It is easy to see that every standard stable set has an essential
germ in standard form that consists entirely of polyhedral chunksS(I, J) × T (I, J) for
which (I, J) is admissible. Thus, since admissibility is evidently a finitely computable
property, we can from now on assume that only admissible pairs (I, J) are used to construct
germs.

Now we have made enough precautions to explain our algorithm. LetJ be a set of
admissible pairs and letV be the union over all chunksS(I, J) × T (I, J) for (I, J) in J.
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SinceV is automatically a subset ofF, the set

W := {(p, q)|(0,0, p, q) ∈ V }

is stable if and only ifV is an essential germ. First notice that, by the admissibility ofJ, the
requirement

V (η) = cl(V i(η))

automatically holds for allη. We will explain how to test in finite time whether or notV
features the remaining two requirements for an essential germ. We will basically show that
there exists anη∗ > 0 such that for allη ≤ η∗,

(1) V i(η) is connected if and only if a certain finite graph (J, E) is connected, and
(2) π(η)∗ is not trivial ⇔ π(η∗)∗ is not trivial (whereπ(η) indicates the projection from

the topological pair (V (η∗), ∂vV (η∗)) to the topological pair (P(η∗), ∂P(η∗))).

Given these two results it evidently suffices to check whether the graph (J, E) is connected
and whetherπ(η∗)∗ is not trivial. Thus, the test itself consists of three different procedures,
namely

(1) a procedure that computesη∗ > 0,
(2) a procedure that checks in finite time whether the graph (J, E) is connected, and
(3) a procedure that checks in finite time whether the homomorphismπ∗ induced by the

projectionπ from the topological pair (V (η∗), ∂vV (η∗)) to (P(η∗), ∂P(η∗)) is not the
trivial map.

We will consider these three procedures one by one. The computation ofη∗ is fairly simple.
First, for a polytopeS(I, J) × T (I, J) with (I, J) in J, compute the collection ext(I, J) of
extreme points of this polytope. Next, compute

η(I, J)

:= min




∑
i

δi+
∑
j

εj|(δ, ε, p, q) ∈ ext(I, J) for some (p, q) and (δ, ε) �= (0,0)




Notice thatη(I, J) > 0 because (I, J) is assumed to be admissible. Now take

η∗ := 1
4 min{η(I, J)|(I, J) ∈ J }.

This numberη∗ will be fixed for the remainder of this paper. The only thing left to do is to
tackle the issues of connectedness and non-triviality.
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6.1. How to check connectedness

Define the undirected graph (J, E) as follows. Its vertex set isJ. For two distinct elements
(I, J) and (I ′, J ′) in J the edge{(I, J), (I ′, J ′)} between these two vertices is an element of
E if and only if the two polyhedral chunks

S(I, J) × T (I, J) and S(I ′, J ′) × T (I ′, J ′)

have in common both a point (0,0, p, q) and a point (δ, ε, p, q) for which (δ, ε) is completely
mixed.

Theorem 3. For η ≤ η∗, the setV i(η) is connected if and only if the graph(J, E) is
connected.

Proof. Suppose that (J, E) is connected. Since each intersection of the two elements in an
edge have a point (δ, ε, p, q) (with (δ, ε) completely mixed) in common, it is easy to show
thatV i(η) is (path-)connected.

Conversely, suppose that (J, E) is not connected. So, we can take write (J, E) as the
disjoint union of two graphs (J1, E1) and (J2, E2). LetF be the union over all setsS(I, J) ×
T (I, J) with (I, J) in J1 andG be the union over all setsS(I, J) × T (I, J) with (I, J) in
J2. ClearlyF andG are closed, non-empty sets andV i(η) is the union ofV i(η) ∩ F and
V i(η) ∩G. So, it is sufficient to show that the intersection ofV i(η) ∩ F andV i(η) ∩G is
empty. Suppose on the contrary that the intersectionV i(η) ∩ F andV i(η) ∩G is not empty.
We will derive a contradiction.

Since the intersection ofV i(η) ∩ F andV i(η) ∩G is not empty there must be sets (I, J) ∈
J1 and (I ′, J ′) ∈ J2 such that the intersectionQ ∩ R of

Q := S(I, J) × T (I, J) and R := S(I ′, J ′) × T (I ′, J ′)

has a point (δ, ε, p, q) in V i(η). Now notice that, since this point is contained in the face
Q ∩ R of Q andR, it must be a convex combination of the points in

ext(I, J) ∩ ext(I ′, J ′)

However, sinceη < η∗, we know that at least one of these points must be of the form
(0,0, p, q). Thus,Q ∩ R contains the point (δ, ε, p, q) with (δ, ε) completely mixed as well
as a point of the form (0,0, p, q). Hence, there is an edge between (I, J) and (I ′, J ′) and
that contradicts the assumption that (J1, E1) and (J2, E2) are disjoint. �

Finally notice that, givenJ, the graph (J, E) can be constructed in a finite number of
operations and that the connectedness of this graph can also be checked in finite time.

6.2. How to check non-triviality

Let π(η)∗ denote the homomorphism that is induced by the projectionπ(η) from the
topological pair (V (η), ∂vV (η)) to the topological pair (P(η), ∂P(η)) between the corre-
sponding singular homology groups. The task is to check whetherπ(η)∗ is not trivial for
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sufficiently smallη. This though is not a finite task because of the clause “for sufficiently
smallη” in the above condition. As said before, in fact we bypass this problem by showing
it is sufficient to merely check thatπ(η∗)∗ is not trivial.

Theorem 4. For all η < η∗, π(η)∗ is not trivial if and only ifπ(η∗)∗ is not trivial.

Proof. We will apply the results fromAppendix B to this situation. TakeRm = R
n =

R
M × R

N . Perturbations (δ, ε) will be interpreted as thex-variable and strategy pairs (p, q)
as they-variable. Notice that this does indeed place our setting within the non-negative
orthant. Take

P := {S(I, J) × T (I, J)|(I, J) ∈ J }.

Notice that indeed each element ofP has an element of the form (0, y) = (0,0, p, q) and
an element (x, y) = (δ, ε, p, q) with x = (δ, ε) �= (0,0). Also, the collection of polytopes
in P together with all their proper faces is a polyhedral complex. Thus fromAppendix B
we get thatη∗ = (1/2)η∗. So, for everyη ≤ η∗, P(η) is a subset ofC(η∗). So we can apply
Proposition B.1of Appendix BtakingD = P(η) and we get homeomorphismsf (η) from
V (η) to U(η∗) andgP(η) from R

M+ × R
N+ to itself such thatf (η)(0,0, p, q) = (0,0, p, q)

and the diagram

commutes. Thus we get that the mapsf := f (η∗)−1 ◦ f (η) andg := (gP(η∗))−1 ◦ gP(η) are
homeomorphisms,f (0,0, p, q) = (0,0, p, q), and the diagram

commutes. Now notice thatg is a homeomorphism fromP(η) toP(η∗). So, it must be a home-
omorphism from the topological pair (P(η), ∂P(η)) to the topological pair (P(η∗), ∂P(η∗)).
Now the commutativity of the above diagram implies that the mapf is a homeomorphism
from the topological pair (V (η), ∂v(V (η))) to the topological pair (V (η∗), ∂v(V (η∗))). Hence,
the diagram

commutes andf∗ andg∗ are isomorphisms. Now the theorem immediately follows.�



20 D. Vermeulen, M. Jansen / Journal of Mathematical Economics xxx (2004) xxx–xxx

6.3. How to check non-triviality ofπ(η∗)∗

The only thing left to verify is whether we can check that the homomorphismπ∗ induced
by the projection mapπ ≡ π(η∗) fromV (η∗) toP(η∗) is trivial or not. In order to do this, we
want to show first that this can in fact be decided using simplicial homology groups, defined
in Appendix A, instead of singular homology groups. To this end we need to introduce some
terminology.

6.4. Polyhedral complexes

Let I be a finite5 set of indices. A (finite) collection

P := {Pi|i ∈ I}

of (non-empty) polytopes is called a polyhedral complex if the faces of eachPi are also
elements ofP and, moreover, each intersectionPi ∩ Pj is a face of bothPi andPj as
soon as this intersection is not empty. A polyhedral complexC whose elements are all sim-
plices is called a simplicial complex. A refinement ofP is a polyhedral complexR such
that each polytope inR is a subset of some polytope inP and, secondly, each polytope
P in P is the union if polytopes inR. The refinementR is called simplicial ifR hap-
pens to be a simplicial complex. The underlying space of the polyhedral complexP is the
set

∪P∈PP.

LetP be a polyhedral complex with underlying spaceX and letQ be a polyhedral complex
with underlying spaceY. A map f from X to Y is said to be polyhedral fromP to Q if f
maps each polytopeP in P linearly 6 onto an element ofQ. Now letP be a polyhedral
complex inR

m × R
n with underlying spaceX. Furthermore, letπ : X → R

m be defined
by π(x, y) := x.

Lemma 4. Using only linear optimization techniques and finite enumerations we can com-
pute a simplicial refinementC ofP together with a simplicial complexD whose underlying
space isπ(X) such thatπ is a polyhedral map fromC toD.

It is essential for our main assertion in this section, the computability of standard stable
sets in finite time using exclusively linear optimization techniques and finite enumerations,
that all manipulations and computations used in the proof of this lemma can indeed be
executed only using linear optimization techniques and finite enumerations. Although
we do not prove that here, the details can be found inVermeulen and Jansen (2004,
Appendix B).

5 In most textbooks finiteness is not required. We however will encounter only finite complexes in this article,
so we will make life a bit easier and develop the required machinery only for finite complexes.

6 The mapf is called linear on a polytopeP if for everyxandy inPandλ in [0,1] we have thatf (λx+ (1 − λ)y) =
λf (x) + (1 − λ)f (y).
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Now we turn back to the main goal in this section. We will explain how the result from
Lemma 4can be used to check in finite time whether or notπ(η∗)∗ is trivial. First we will
explain how one can construct a polyhedral complexP whose underlying space isV (η∗).
SinceV is the union of the setsS(I, J) × T (I, J) where the pairs (I, J) range through the
setJ, it is clear thatV (η∗) is the union over all (I, J) in J of the sets

[S(I, J) × T (I, J)](η∗)

It can easily be checked that such a set is a polytope and that, if not empty, the intersection
of two such sets is a face of both. Given these facts, it is straightforward to check that the
collectionP of all sets

[S(I, J) × T (I, J)](η∗)

with (I, J) in J together with their faces is a polyhedral complex. Also notice that, given
J, this complex can be computed in a finite number of steps.

Given the above terminology,Lemma 4applied to the projection mapπ on the underlying
spaceV (η∗) of the polyhedral complexP constructed above states that there is a simplicial
complexC with underlying spaceV (η∗) and a simplicial complexD with underlying space
π(V (η∗)) = P(η∗) such that the projectionπ fromV (η∗) toP(η∗) is a polyhedral map from
C toD.

In order to establish the connection with relative simplicial homology, we also need to
consider the following two subcomplexes.7 LetB be the simplicial subcomplex ofDwhose
underlying space is∂P(η∗) and letA be the simplicial subcomplex ofC whose underlying
space is∂vV (η∗).

Now notice thatπ is automatically a polyhedral map from (C,A) to (D,B), meaning that
it is a polyhedral map fromC toD such that the image underπ of each element ofA is an
element ofB. Thereforeπ induces a homomorphism from the simplicial homology group
Hd(X,A) to the simplicial homology groupHd(Y,B) as follows. Letπ# : Cd(X,A) →
Cd(Y,B) be the homomorphism induced by the map that assigns

π#([v0, . . . , vd ] + Cd(A))

:=
{

[π(v0), . . . , π(vd)] + Cd(B) if all π(v0), . . . , π(vd) are distinct

Cd(B) else

to each element [v0, . . . , vd ] + Cd(A) of Cd(X,A). It can be shown in the diagram
below:

7 A subcomplex of a simplicial complexC is a simplicial complex that is a subset ofC.
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that the homomorphismπ# commutes with the boundary operator. We can therefore define
a mapπ∗sim : Hd(X,A) → Hd(Y,B) by, for all k ∈ Ker(∂d),

π∗sim(k + Im(∂d+1)) := π#(k) + Im(∂d+1)

This map is again a homomorphism. Now Theorem 34.4 ofMunkres (1984)states that there
exist isomorphismsm∗ andn∗ such that the diagram

commutes. Thus the central question in this section, whether we can in some sense check
in finite time whetherπ∗ is the trivial map or not, boils down to the question: can we check
in finite time whether or not the map

Hd(C,A)
π∗sim−→Hd(D,B)

we just defined is trivial. As it turns out, this is indeed possible. First notice that, since there
actually are procedures to compute the complexesC andD, we can also compute bases for
the groupsCd(C,A) andCd(D,B) in finite time. Given these bases we will show how we
can compute a basis for Ker(∂d) and Im(∂d).

To this end, take an enumerationb1, . . . , bk of the finite collection of basis elements
υ + Cd(A) of Cd(C,A), whereυ ranges through the collection of orientedd-simplices
not contained inA. Similarly, letc1, . . . , cm be an enumeration of the finite collection of
basis elementsw+ Cd−1(A) of Cd−1(C,A). Now note that∂d is a homomorphism from
Cd(C,A) toCd−1(C,A). So, the entire map∂d is determined by the images

∂d(b1), . . . , ∂d(bk)

in Cd−1(C,A) of the basisb1, . . . , bk. Furthermore, we can compute in finite time the
representation

∂d(bi) =
m∑
j=1

nijcj

of each∂d(bi) in terms of the basisc1, . . . , cm of Cd−1(C,A). Thus we can represent the
map∂d by the integer-valued matrix

N :=



n11 · · · n1m

...
...

nk1 · · · nkm
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Consider the following elementary operations that we will allow on this integer matrix.

(1) interchange rowi and rowk,
(2) multiply row i by −1, and
(3) replace rowi by row i + row k for k �= i.

Each of these three operations correspond to a transformation of the current basisb1, . . . , bk.
The first operation corresponds to an interchange ofbi andbk. The second operation corre-
sponds to a replacement ofbi by −bi and the third to a replacement ofbi by bi + bk.

Obviously we can define similar operations on the columns that correspond to similar
operations on the current basisc1, . . . , cm. In particular, the replacement of columnj by
columnj + column l corresponds to the replacement ofcl by cl − cj (!). Now fromMunkres
(1984, Section 11, Theorem 11.3), we get the following result.

Proposition 1. Using the above six elementary operations we can construct in a finite
number of steps basesd1, . . . , dk of Cd(C,A) ande1, . . . , ek of Cd−1(C,A) such that the
corresponding matrix of∂d has the diagonal form

D :=



p1

... �
pr

� �




wherep1, . . . , pr are positive integers and each� is a null-matrix of appropriate dimen-
sions.

It can be checked that the change of bases mentioned in the above proposition can be
performed in a finite number of steps, each of which involves only a finite number of
algebraic computations. Thus we get a basise1, . . . , er for Im(∂d) and a basisdr+1, . . . , dk
for Ker(∂d). Now it can easily be seen thatπ∗sim is trivial if and only if

π#(dr+1), . . . , π#(dk)

are all elements of the subgroup Im(∂d+1) of Cd(D,B). This however can be tested in finite
time as follows. As shown above we can useProposition 1to construct a basisg1, . . . , gs
of Im(∂d+1). Once we have computed this basis, note that

π#(dr+1), . . . , π#(dk)

are all elements of Im(∂d+1) if and only if we can find integersnij such that for allr + 1 ≤
i ≤ k:

π#(di) =
s∑
j=1

nij · gj.

However, since allπ#(di) and allgj can be represented as vectors inZ
D\B, this is equivalent

to asking whether a certain integer-valued linear system has an (and in that case automat-
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ically unique) integer-valued solution. This though can easily be tested using Gaussian
elimination.
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Appendix A. Simplicial homology groups

Let σ be a simplex, and let{v0, . . . , vd} be its set of vertices. Then the dimension of this
simplex isd and it is simply called ad-simplex. Anorientationof a simplex is an ordering
of its vertices modulo even permutations. A simplex together with an orientation of this
simplex is called anorientedsimplex. It is generically denoted byυ = [v0, . . . , vd ].

Let C be a simplicial complex. Choose for each simplexσ ∈ C, an (arbitrary) orientation
and denote the collection of all oriented simplices thus constructed byC. Consider the
Abelian groupZC generated byC. We identified an elementυ of C with the characteristic
function 1lυ of {υ} in Z

C. It turns out to be convenient to identify the opposite orientation
of υ with −1lυ and consequently denote it by−υ. Now letd be an integer inZ. A d-chain
is an element

c =
∑

nαυα

in Z
C in whichnα is non-zero only ifυα is an orientedd-simplex. The subgroup ofZC of

all d-chains onC is denoted byCd(C) and is called the group of orientedd-chains ofC. It
is evidently generated by the set ofelementary d-chains [v0, . . . , vd ].

A.1. The boundary operator

Now take an elementaryd-chain [v0, . . . , vd ] in C. Define

∂d([v0, . . . , vd ]) :=
d∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vd ]

where [v0, . . . , v̂i, . . . , vd ] := [v0, . . . , vi−1, vi+1, . . . , vd ]. It can be shown that this is in-
deed a correct definition. Since the collection of elementaryd-chains is a basis forCd(C),
this definition extends uniquely to a homomorphism

∂d : Cd(C) → Cd−1(C).

The resulting map is called theboundary operatorin dimensiond. The kernel of∂d in
Cd(C) is known as the group ofd-cycles and its image inCd−1(C) is called the group of
d − 1-boundaries. It can be shown that∂d ◦ ∂d+1 = 0.
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A.2. Relative homology groups

Now let C be a simplicial complex with associated collectionC of oriented simplices.
Furthermore letC0 be a subcomplex ofC and denote its associated collection of oriented
simplices byC0. The groupCd0 := Cd(C0) of thosed-chains onC that only take non-zero
values on elements ofC0 is a subgroup ofCd(C).8 So, we can define the quotient group
Cd(C,C0) whose elements are the sets of the form

υ + Cd0 := {υ + w|w ∈ Cd0}

whereυ ranges throughCd(C). This Abelian group is called the group ofrelativechains of
dimensiond. Define the map∂d from the groupCd(C,C0) of relatived-chains to the group
Cd−1(C,C0) of relatived − 1-chains by

∂d(υ + Cd0) := ∂d(υ) + Cd−1,0

for all υ + Cd0 in Cd(C,C0). One easily checks that∂d is a homomorphism and that
∂d ◦ ∂d+1 = 0. So, we can define therelative simplicial homology groupHd(C,C0) of
dimensiond by

Hd(C,C0) := Ker(∂d)

Im(∂d+1)

A.3. Some intuition

A convenient setting to see how homology groups look like is the one whereC0 is empty
– so homology groups are defined directly onCd(C) instead ofCd(C,C0) – and where
C only contains zero-dimensional and one-dimensional oriented simplices. In the field of
combinatorial optimization such a setting is called a directed flow network.

This network has four (oriented) verticesa, b, c andd, and four oriented 1-simplices,
namely the arcs [a, b], [b, d], [d, c] and [c, a]. The arcs can be thought of as pipelines
through which water or oil is transported from one node to the other in the direction of the
arrow. Negative amounts correspond to flows in the opposite direction. Now suppose we
transport the amountsα from a to b, β from b to d, γ from d to c, andζ from c to a. This
corresponds to the 1-chain

c = α[a, b] + β[b, d] + γ[d, c] + ζ[c, a]

8 This is a slight abuse of notation. Formally the elements ofCd (C0) are elements ofZC0, not ofZC.
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All that the boundary operator∂1 does is computing the resulting net stock of fluid in the
nodes (vertices) of the network. So, as can be seen in the picture, the net stock in, e.g.,a
is ζ − α and the net stock inc is γ − ζ. In total the resulting 0-chain when we apply the
boundary operator∂1 to the above 1-chain is

∂1(c ) = (ζ − α)a+ (α− β)b+ (β − γ)c + (γ − ζ)d

Now, the 1-chain is called a flow in the network when the resulting net stock in each node
equals zero, that is, when in each node the inflow equals the outflow. This is precisely when
α = β = γ = ζ. In the language of homology groups this means that∂1(c ) = 0, in which
casec is an element of Ker(∂1) and called a cycle. In the above picture it is very clear why
one would like to callc a cycle (or a flow) wheneverα = β = γ = ζ. And it is also clear
that Ker(∂1) is generated by

[a, b] + [b, d] + [d, c] + [c, a]

This is actually a very general principle. Consider, e.g., the disconnected network

Notice that, since there are no 2-simplices, the group Im(∂2) is the trivial group. So, the
one-dimensional homology group is simply Ker(∂1). And along the same line of reasoning
as above we can deduce that the latter group is generated by the three cycles [a, b] + [b, d] +
[d, c] + [c, a], [f, g] + [g, i] + [i, h] + [h, f ] and [f, e] + [e, h] + [h, f ], and must hence
be isomorphic toZ3.

Thus, the one-dimensional homology groups basically counts the number of “elemen-
tary” cycles in a network. Just like in the above network, there may be more cycles, e.g.,
e → h → i → g → f → e, but these cycles can be written as integer combinations of
cycles in the basis, in this casee → h → f → e minusf → g → i → h → f . Notice
that this way the arc [h, f ] is indeed once counted in the direction of the arrow, and once
backwards. The zero-dimensional homology group, even for general simplicial complexes,
simply counts the number of connected components of the complex, and is in this case
isomorphic toZ2.

Appendix B. A homeomorphism

Consider the non-negative orthantR
m+ × R

n+ of the product spaceRm × R
n. A generic

element ofRm × R
n is denoted by (x, y) with x in R

m andy in R
n. Further, let

P := {Pα|α ∈ A}



D. Vermeulen, M. Jansen / Journal of Mathematical Economics xxx (2004) xxx–xxx 27

be a collection of polytopes in this non-negative orthant with the following two additional
properties. First, each polytope in this collection contains at least one element of the form
(0, y) and at least one element of the form (x, y) with x �= 0. Second, the collection of
polytopes inP together with all their proper faces is a polyhedral complex. For each polytope
Pα in P let ext(Pα) be its set of extreme points. Define

η(Pα) := min




m∑
j=1

xj|(x, y) ∈ ext(Pα) andx �= 0


 .

Further define

η∗ := 1
2min{η(Pα)|Pα ∈ P}

For η ≤ η∗, writeC(η) for the collection of pointsx in R
m+ for which x1 + · · · + xm ≤ η.

Let Pα(η) be the collection of points (x, y) in Pα for which x is an element ofC(η). Let
U(η) be the union over all setsPα(η) for Pα in P. LetD ⊂ R

m be a compact and convex
neighborhood of 0 with the additional property thatd is a subset ofC(η∗). Write

V := {(x, y) ∈ U(η∗)|x ∈ D}

and

∂vV := {(x, y) ∈ U(η∗)|x ∈ ∂D}.

Forx in R
m+, write ‖x‖ := ∑m

i=1 xi, and define

η(x) :=
{

max
{
η > 0|η x

‖x‖ ∈ D
}

if x �= 0

1 if x = 0

Obviously,η takes on positive values exclusively. Furthermore,η is continuous everywhere,
except perhaps inx = 0. Also note thatx is an element ofd if and only if‖x‖ ≤ η(x). Define
the mapg from R

m+ to R
m+ 9 by

g(x) := η∗
η(x)

· x

Even thoughη need not be continuous inx = 0, it can easily be verified thatg is a home-
omorphism fromD to C(η∗). Let π be the projection fromR

m × R
n ontoR

m defined by
π(x, y) := x. In this setting the following can be shown.

9 Notice that the mapg actually depends onD.
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PropositionB.1. Thereexistsahomeomorphismf : V → U(η∗)such thatf (0, y) = (0, y)
and the diagram

commutes.

The proof of this proposition takes several pages and can be found inVermeulen and
Jansen (2004). The intuition though behind this construction is fairly clear. Consider a
polytopePα in the collectionP. For the moment we can act as ifPα is the only element ofP.

Let the large triangle that is partially displayed in the picture below be the setC(η∗). So,
the smaller, shaded, triangle depicts the setU(η∗) as can be seen above. It is the projection
of the setPα(η∗) represented by the triangular block. Now let the square displayed below
represent the setd. As one can see, it is indeed a subset ofC(η∗). Now it is clear that one
can mapd homeomorphically ontoC(η∗) by simply rescaling each ray emanating from the
origin by an appropriate scaling factor. This is precisely whatg does. It is also clear that
this wayg induces a homeomorphism from the darker shaded area toU(η∗).

Now the setV is the smaller block displayed below. The proposition states that there
exists a homeomorphism from this smaller blockV to the larger blockPα(η∗) such that the
set above the origin in the ground floor space is mapped identically onto itself and such
that first usingf and then projecting down is the same as first projecting down, and then
applyingg.
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In the situation above it is actually quite clear howf should be chosen. It is simply a
matter of mimickinggat each vertical level. However, whenPα is higher-dimensional, one
may have many ways to choose these “vertical levels” due to the fact that the number of
extreme points ofPα(η∗) counted in a “vertical” direction (this number being 2 in this case)
may be much higher than the dimension of the strategy space (which is taken to be 1 in
the above pictures). All that the proposition is saying is that one can choose a specific way
to do this anyway, and that one can even do it in such a way that the map constructed acts
identically on overlapping parts of different polyhedra ofP.
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