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Abstract

In this paper, an alternative definition of stable sets, defined by Mertens [Mertens, 1989. Stable
equilibria — a reformulation. Part I. Definitions and basic properties. Mathematics of Operations
Research 14, 575-625], is given where perturbations are interpreted as restrictions on the strategy
space instead of perturbations of the payoffs. This alternative interpretation is then used to compute a
special type of stable sets —called standard stable sets — in the context of bimatrix games, exclusively
using linear optimization techniques and finite enumerations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The first systematic investigation concerning the definition of stability of a normal form
equilibrium was executed bigohlberg and Mertens (1986) heir approach differed from
what had been done before. Up till then usually ad hoc remedies were introduced for
specific shortcomings of Nash equilibrium. Kohlberg and Mertens simply started with the
formulation of a list of desiderata that should be satisfied by any reasonable interpretation
of what a stable equilibrium is. Unfortunately, despite several efforts, they did not find
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a definition of stability of equilibrium that featured all desiderata. Several attempts were
subsequently made to find an interpretation of stability that did satisfy all their requirements.
EventuallyMertens (1989, 1991presented a definition that satisfied all these conditions,
along with a couple of new additions to the list of desiderata.

Original definition We will first briefly explain howMertens (1989)efined stable
sets. Since, for reasons we will explain in a moment, we will restrict ourselves to a
two-person context, we will present the terminology only for bimatrix games. The basic
notion in the definition of stable sets is that of a perturbation. For a bimatrix game, a
perturbation is in fact a pair of non-negative vectors, one for each player. For each player
the number of coordinates of the corresponding perturbation equals the number of pure
strategies of that player. Given such a perturbation, we can define a new game, that is
played as follows. First let the players of the original bimatrix game each choose a strategy.
Given these choices we add to each player’s choice the corresponding perturbation and
normalize the result. Now the payoff to a player in the perturbed game is simply the
payoff he would get in the original game if the perturbed strategies thus constructed were
played.

Thus each perturbation induces a perturbed game. Such a perturbed game will have a
non-empty set of Nash equilibria. The graph of the correspondence that assigns to each
perturbation its set of perturbed Nash equilibria is denoteél. by

Now stable sets are determined with the aid of the notion of an essential germ. Loosely
speaking, a germ is a connected chunk of the g@nd such a germ is called essential
when it satisfies some essentiality condition when considered sufficiently close to the zero
perturbation. In this paper, the essentiality condition itself is phrased in terms of singular
homology groups. It states that the projection from the geéaphto the perturbation space
should induce a homomorphism between homology groups (to be made precise in the
definition) that is not the trivial map. (This is a slight deviation from the definition in
Mertens (1989)but it has the advantage that we need not add a statement concerning
Hausdorff limits of semi-algebraic sets. This way we immediately get a purely topological
notion of an essential germ for arbitrary compact parts of the gfgptow a sefT is called
stable if there is an essential germé&rfior which T is the part of the germ directly above
the zero perturbation.

1.1. Aim of the paper

In Mertens (1989}he author is already concerned with the question of computability
of this type of stability in Remark 1, pp 590-593. In this remark, the author sketches an
algorithm for the computation of semi-algebraic stable sets. This algorithm though will
in general, even for bimatrix games, involve finding solutions to systems of higher-order
polynomial equations. This effect is basically due to the rescaling factor in the defini-
tion of a perturbed game. The algorithm is also based on fairly involved procedures such
as the elimination algorithm of Tarski and the triangulation algorithm for semi-algebraic
sets.

In this paper, we will present an algorithm that is capable of computing a (or all) stable
set(s) exclusively using addition and scalar multiplication. Both the algorithm and the proof
of its validity only use elementary techniques.
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1.2. Two provisos

The above assertion is subject to the following two provisos. First of all, we will only
consider bimatrix games. The reason for this is that, for normal form games with more than
two players, even the inequalities that determine the Nash equilibrium set are in terms of
higher-order polynomials. Thus it cannot be expected that linear techniques will be adequate
tools to solve these games.

Secondly, we will restrict ourselves to a special type of stable sets. If the task is: compute
one stable set, then this proviso is not relevant (one could after all simply compute a stable
set of this special type, and leave it at that). However, for tasks like: compute all stable sets
or, given a set, check whether or not it is stable, we need some restrictions. This is basically
due to the fact that the only a priori restriction for a stable set is that it be compact and
connected. However, the class of all compact and connected sets is way too general to be
handled effectively only by linear computation techniques. For this reason we will restrict
our domain of sets to a specific class that we will specify below in the introduction and in
Section 6

1.3. Contents of the paper

The resultsBasically we will do two things. First, we will show that there is an alternative
definition of stable sets that does not involve rescaling. This makes the alternative definition
more appropriate for being handled by linear computation techniques.

Given this alternative definition we will construct an algorithm that, given the primitive
data of the game (i.e. the bimatrix) and for the special type of sets we consider, decides in
a finite number of linear operations whether or not the set is stable.

Alternative definition The alternative definition is based on a reinterpretation of
perturbations. Algebraically speaking, a perturbation is still a vector like we described
above, but the game induced by a perturbation is going to be different. In the alternative
definition a perturbation is simply a restriction of the strategy space. Given a perturbation,
the players in this new game are only allowed to play strategies that put a minimum
amount of weight on each pure strategy, these minimum amounts being specified by
the perturbation in question. Thus we get a new, perturbed, game with its own set of
equilibria. The graph of the correspondence that assigns its set of equilibria to each
perturbation is denoted b§r. Now we can redefine stable sets by requiring that the
essential germs are supposed to be chunks takenffomtead of. As it turns out, this
new notion of stability yields the same collection of stable sets as the original notion of
Mertens.

STANDARD STABLE SET®he advantage of the alternative definition is that, in the
case of bimatrix games, it preserves the linear structure of the inequalities that define the
collection of Nash equilibria. Thus, given a bimatrix game, the graman be written as
the union of a finite number of chunks of this graph, each of which is determined by a finite
number of a specific type of linear (in)equalities. Such a chunk will be calfexlydedral
chunkof F.

Nevertheless, it cannot be expected taltstable sets of the bimatrix game can be
computed since basically the only ex ante restriction on a candidate-stable set is that it be
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compact and connected (in a strong sense). This still leaves a lot of freedom of choice in
degenerate games like the zero-payoff game in which basiealyycompact and con-
nected set is stable. Thus, the freedom of choice in the selection of (different but essentially
identical) strategies for a stable set leads to a multitude of (different but essentially identical)
stable sets.

Therefore we restrict our attention to a special type of set. We will only consider sets that
are the part above the zero-perturbation of the union of a number of polyhedral chuffiks of
Roughly speaking, we eliminate the choice problem this way and simplalhgadssible
choices of strategies to our stable set. Stable sets of this form are stllethrd stable
sets

It turns out that a candidate-stable set in question is a standard stable set if and only if
the union of the polyhedral chunks involved is an essential germ. We will show that it only
takes a finite number of linear operations to either compute all essential germs of this form
(and thus also all standard stable sets) or, given a number of polyhedral chufiksoof
decide whether or not it is an essential germ.

ComputationThe heart of the algorithm consists of two procedures. The first procedure
checks connectedness of the candidate germ under consideration. This is done by explicitly
constructing a combinatorial graph that is connected if and only if the candidate germ is
connected. Checking connectedness of a graph is of course a finite task.

The second procedure concerns the essentiality condition. We show that, sufficiently
close to the zero perturbation, the homomorphism induced by the projection map from the
graphZF to the perturbation space can be determined in a finite number of steps.

Together these two procedures can be used to check whether or not a set in standard
form is an essential germ. Thus, e.g., by a simple enumeration procedure, it is possible to
determine all standard stable sets of the bimatrix game under consideration.

1.4. Organization of the paper

Section 2summarizes the notation used in this paper as well as several elementary
facts about Abelian groups and bimatrix gamesSéction 3the, slightly adapted, original
definition of stable sets frorivlertens (1989)s presented. IiBection 4we present our
alternative definition and prove its equivalence with the original oneSdation 5the
notion of a standard stable set is introduced and the relation with arbitrary stable sets and
maximal stable sets is explained. FinallySaction &he algorithm to compute all standard
stable sets is presented together with a proof of its validity.

Appendix Acontains a review of the definition of simplicial homology groufspendix
B discusses a specific homeomorphism needed in the proof of the validity of our algorithm.

2. Preliminaries

Inthis section we introduce the notation we will use throughoutthis paper. The cardinality
of a finite setM is denoted byM|. For a setX in R”, ext(X) denotes the set of extreme
points ofX. A set is called a polytope if it is the convex hull of a finite number of points.

If the dimension of a polytope is one less than the number of its extreme points it is called
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a simplex. A non-empty subsé&t of P is called a face if for any two points andy in

P and any positive numbeér < 1 the event thatx + (1 — 1)y is an element oF implies
that bothx andy are elements df. If F consists of one single point, this point is called an
extreme point or vertex d®. If F is not equal tdP it is called a proper face d®. A set is
called polyhedral if it is the set of solutions to a finite number of linear inequalities. Given
a topology on a seX and a poinix in X, any set containing an open set that contaiirs
called a neighborhood of X is called connected if it cannot be written as a disjoint union
of two non-empty and closed sets. For a subspao€X, the (topological) boundar§yY

of Yis the collection of pointx in X with the property that each neighborhoodxdias a
non-empty intersection with bothand X \ Y. The closure cK) of Y is the union ofY and

3Y. The setV .= Y \ dY is called the interior o¥.

2.1. Abelian groups

For an elemeng in an Abelian groups and a positive integen the elementgin G
is defined to be the-fold sum ofg. Furthermore, 9 := 0 where the 0 on the right-hand
side of the equality sign denotes the neutral eleme@,@nd forn < —1, the expression
ng denotes the inverse of-@)g. A family B = {g,}4c; Of elements ofs is called a basis
when each elemeigtof G can be written uniquely as a finite sum

8= Z”agoz

where each, is an integer. Given an arbitrary s&the Abelian group generated Bys the
set of all functionsy : S — Z that take values different from zero only on a finite number
of elements of. It is clear that each elemeatin this group can be written uniquely as

@Y= Znalsm

where each,, is an integer andj} is the characteristic function ¢f, }. By abuse of notation
we will identify s, with its characteristic function and write

s = E Ny Sy

Note in particular that, in cas®is finite, the Abelian group generated 8gqualsZ®. Now
suppose we have two Abelian groupsandH. A homomorphism fronG to H is a map
f: G — H such that

fla+b) = f(a)+ f(b)

foralla, b € G. If f has an inverse map it is called an isomorphism. A homomorphism
fis called trivial if f(a) =0 foralla € G.

1 Non-emptiness is not a strict requirement. It is however customary in the definition of homology groups.
Admittance of the empty face would yield reduced homology.
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2.2. Bimatrix games

Throughout this paper we will only concern ourselves with bimatrix games. So, we
assume that there are two players, player | and player Il. Player | has a finhk aad
player Il has a finite sel of pure strategies. The payoff matrices;f;cum, jen Of player |
and §;;)icum, jen Of player Il are denoted b andB, respectively. Furthermore,

AM):={peRY|p; > Oforallie Mand) p; =1
ieM

is the set of mixed strategies of player | and

A(N) = {qeR"|g; > Oforallje N and) ¢;=1
JEN

is the set of mixed strategies of player Il. The payoff for player pAg) and the payoff
for player Il ispBgwhen the strategy paip( ¢) is played. Foi € M theith unit vector is
denoted by; and is interpreted as the situation in which player | is playing pure strategy
with probability one. Similarly a pure strategye N of player Il is identified withe ;. We

will also write A := A(M) x A(N).

Definition 1. A Nash equilibriunof the game 4, B) is a strategy pairg, ¢) such that
pAg > p'Aq forallp’ € A(M)

and
pBg > pBq forallg € A(N).

The collection of equilibria of the gamel( B) is denoted by&(A, B).

3. The definition of stable sets

In this section we will present a slightly modified version of the definition of stable sets
given inMertens (1989)First we will introduce some notation.

A perturbationfor player | is a vectod = (6;)iey With §; > 0 and)_,_,,8; < 1. The
collection of all perturbations is denoted By. Similarly we can define the collectiaP,
of perturbationg = (¢;) jen for player Il. A pair ¢, ) is also called a perturbation. The
collection of all such perturbations B := P; x P,. A perturbation §, ¢) in P is called
completely mixed §; > O for alli ands; > O for allj. For some real numbeyr> 0, write

Py(n) = {8 € Py 8 < n}

ieM
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and P»(n) is similarly defined. Furthermore(n) := P1(n) x P2(n).

3.1. Payoff perturbations

A perturbation§, ¢) defines a perturbed game in the following way. The payoff-perturbed
game associated with the perturbatiéns] is the game 4(3, €), B(S, ¢)) with

A(S, ¢)i,j :=0(e;, 8) - A-1(ej, &)
where

_pté
1+Zi8i

qte

,8) = S
a(p, ) T

and 1t(q,¢) =

The payoff matrixB(3, ¢) is defined analogously. The set of equilibria of the perturbed
game is simplyE(A(S, &), B(6, €)). We write £ for the graph of the correspondence that
assigns the collectioB(A(3, ¢), B(3, €)) of perturbed equilibria to the perturbatios £).
Notice that the choicé = 0 ande = O returns the original bimatrix game ( B). Hence,
E(A(0), B(0)) = E(A, B).

3.2. Stable sets

Let Sbe a closed subset of the product sp&ce A. Forn > 0,

Sm) = {0, &, p,q) € SI(3,¢) € P(n)}

is the part ofSaboveP(n) and

dS(m) = {(5, & p, q) € SM)I(S, &) € 9P(n)}

is the part ofS aboved P(n). Usually d,S(n) is called thevertical boundaryof S(n). Fur-
thermore, lets’(n) be the sefS(n) \ dvS(n). This is the set of pointsi(e, p, ¢) in S(n) for
which (8, €) is completely mixed}_; §; < nand)_;e; < n.

Now notice that the canonical projection that assigns the perturbatios, £) to
(8, &, p, q) is a map fromS(n) to P(n) that mapsd,S(n) into aP(n). So, the projection
7 is a map from the topological paif(n), dyS(n)) to the topological pair B(n), dP(n)).
Hence, as is, e.g., explained Munkres (1984)it induces a homomorphism, from
the relative singular homology groufi;(S(n), dyS(n)) to the relative singular homol-
ogy groupH,(P(n), dP(n)). The question we now ask ourselves is: how might this ho-
momorphismr, look like. And in fact there is not much choice as the next remark
shows.
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Remark. Let C be any convex and compact set of dimengicand letaC be its relative
topological boundary (relative w.r.t. its affine hull, that is). Then it is a well-known fact
that the relative singular homology groufis(C, oC) are all trivial, except wheh = d, in
which case it is isomorphic to the grolpof integers.

In particular we see thail;(P(n), dP(n)) is the trivial group, except whet# = |M| +
|N|, in which case the group is isomorphic with So, for each dimension the induced
homomorphismr, is necessarily trivial, except perhaps in cdse |M| + |N]|.

These observations are the main motivation for the following definitions.

Definition 2. non-empty, closed s&in P x A is called agermif for sufficiently small
n>0:

(1) the setSi(n) is connected, and
(2) S(n) = cl(S'(m)).
When for sufficiently smalh > 0 it even holds that
(3) fordimensiond = |M| + |N| the homomorphism, induced by the projectiof from
the topological pair{(n), ovS(n)) to (P(n), dP(n)) is not the trivial map,

we say that the gerr8is essential

Even though essentiality of a germ, based on a homomorphism between homology
groups, is a rather abstract notion, it has very intuitive geometrical implications. For ex-
ample, when a gerrg is essential, then, for sufficiently smay] there does not exist a
continuous homotopy frorfi(n) to P(n) that constantly maps the vertical boundary @)
into the boundary oP(n). Roughly speaking this means that, when the germ is viewed as a
plastic foil above the perturbation space that is glued to the vertical boundary, it cannot be
moved to the vertical boundary without either tearing the material apart or unglueing the
germ above the boundary.

Definition 3. A closed sefl in A is calledstableif there exists an essential genc £
such that

T ={(p. 90,0, p,q) € S}.

The above definition of stable sets differs slightly from the definition in Mertens in sev-
eral aspects. First of all, Mertens based his definition on simplicial instead of singular
homology groups. However, simplicial homology is only defined for triangulable sets. As

a consequence of this, Mertens initially uses the above definition, but with the additional
requirement that the germ involved is semi-algebraic (and therefore triangulable). Subse-
guently he also considers the Hausdorff limits of the stable sets thus obtained to be stable
sets. The advantage of using singular homology is that the above definition can be used
directly for arbitrary closed sets. This does not make much difference, because for semi-
algebraic (and more generally triangulable) sets both types of homology groups coincide
by Theorem 34.3 iMunkres (1984)and the topological invariance of homology groups.
Finally, another difference is that Mertens considers different coefficient modules, but that
can also be done in singular homology.
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Nevertheless, the above definition preserves all major results of the original definition,
such as existence, perfection, backward induction and ordinality. Existence easily follows
from the observation that any semi-algebraic set that is stable in the sévisgefs (1989)
is also stable according to our definitidviertens (1989has shown the existence of such a
set. Perfection is fairly straightforward. Backward induction follows from the observation
that the proof oHillas et al. (2001)xan be applied directly to our definition to show that
stable sets in the sense used here are also stable in the sktilfesdfL990) Ordinality can
be shown by proving that our definition satisfies both invariance and admissible-best-reply
invariance. These conditions are sufficient for ordinality as is showfeirtens (2004and
Vermeulen and Jansen (2000)

4. An alternative definition of stable sets

Even though one can obtain results on computability using the original definition
(see, e.gMertens, 1989, Remark 1, pp. 590-%98is definition is not suited for our
purposes. The problem is that, even for bimatrix games, the linear structure of the
inequalities that characterize the equilibrium set is lost when payoffs are perturbed.
This is basically due to the rescaling factor in the denominator of the perturbation
map. However, there is an alternative way to interpret perturbations in terms of re-
strictions of the strategy spaces. We will first show that the resulting notion of stable
sets under this interpretation is equivalent with the original one. In the next section
we will also show that the linear structure of the equilibrium correspondence is pre-
served under this interpretation, and how this fact can be exploited for computational
purposes.

4.1. Strategy perturbations

We will first give a reinterpretation of a perturbation. More precisely, given a per-
turbation, we will construct an alternative way to associate a perturbed game with this
perturbation. So, lets( ) be a perturbation. The perturbed gamde B, §, ) is played as
follows. The players are only allowed to play strategy pairs; in the restricted strategy
spaceA(s) x A(e) where

AB):={pe AM)|p; = ¢ forallie M}

andA(e) is similarly defined. The payoffs in this game rempi#kgandpBg An equilibrium
of the perturbed gameA( B, 6, ¢) is a strategy pairg, ¢) in the restricted strategy space
such that
pAg > p'Aq forall p’ € A(S)
and

pBq > pBq' forallg’ € A(e).
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The collection of equilibria of the perturbed gamg (B, 3, ¢) is denoted byE(A, B, 3, ¢).
We write F for the graph of the correspondence that assigns the colleEfidnB, 3, ¢) of
perturbed equilibria to the perturbatioh £).2

Definition 4. A closed sefl in A is calledstrategy-stabléf there exists an essential germ
S C Fsuch that

T = {(pv Q)|(O’ 0’ P, Q) € S}

Remark. So, the only difference with the previous definition is that in this case we require
the germ to be a subset &finstead of€.

The remainder of this section is devoted to the proof that the above definition of stability
is equivalent to Mertens’ definition presented in the previous section. The proof is based
on the existence of a particular homeomorphism fgbta F. We will start with a descrip-
tion of this homeomorphism. Consider the séts= C; x C2 andD := D; x D2 defined

by

C1:= {(p, 8) e RM x RM|5; > OandZBi < 1}
ieM

and

Cr:=11(q,¢) € RN x Rle‘/ > OandZej <1
JEN

Dy = {(p, 8) e RM x RM|5; > 0and) 8 <
ieM

A
NI =
[——

and

Do :={(q,¢) € RN x RN|8/' > OandZsj <
JEN

A
N =

Define the functiong; : C1 — Dj andJi1 : D1 — C1 by

1
I(p.8) i= —=—-(p+438 and Ji(p,9) .=

(p—35,9).
1555 -+ (p )

1
-y

2 For reasons that will become clear in a moment we restrict this correspondence to those pertughajions (
for which ", &; < 3 andy";¢; < 3.
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It is straightforward to show tha is the inverse map af.2 Similarly we can define the
map 1> from C> to D2 with inverse mapl,. So,1 = (11, I2) is a continuous map froif to
D with inverse map/ ;= (J1, J2).

Lemma 1. The restriction of | ta€ is a homeomorphism froéto F and the restriction of
Jto Fis its inverse.

Proof. Sincel is clearly continuous with inversg it is sufficient to show that maps&
into F and vice versa. So, leb (e, p, g) be an element of. In other words, g, ¢) is an
equilibrium of the perturbed gamd (s, ¢), B(3, ¢)). Write

)
p* :ZL and q* :zq——{—g
1+26 1+ ;¢
as well as
1) e
5 =—o-—— and &= ———
1426 1+ ;¢

We want to show that(*, ¢*) is an equilibrium of the gameA(, B, §*, £*). First notice that
p*isindeed an element @f(5*) andg™ is an element oA (¢*). Now take any other strategy
P’ in A(5*). Define the strategy ()" by

"o__ P/ — "

Thenp' = o(p”, d), p* = o(p, 8) andg™* = (g, ¢). So,

PAG  =o(p".8) - A-t(g.e) =Y _ p{ > q;AQG. e)i,
i J

<Y pi)_qjAG.e)ij=0(p.8)- A (g, ¢) = p*Aq*
P

where the inequality follows from the fact that,(g) is an equilibrium of A (6, €), B(S, €)).
This shows thap™* is a best reply againgt within A(5*). In the same way we find that
is a best reply againgt* within A(¢*). Hence, p*, ¢*) is an equilibrium of 4, B, §*, £*).
Conversely, letq, ¢, p, q) be an element af. In other words, §, ¢) is an equilibrium
of the perturbed gameA( B, §, ). We have to show thal(s, ¢, p, g) is an element of.
This though follows from an analogous line of reasoning.
Now that we have this homeomorphism fréhto F the proof of the equivalence of the
two definitions of stability presented previously is elementary and discussed belo.

Theorem 1. A set T inA is stable if and only if it is strategy-stable.

3 For this particular reason we do not requiréo be a strategy. When we do include this requirement, this
statement is no longer true.
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Proof. Suppose thal is stable. We will show thal is also strategy-stable. To this end, let
S C £ be an essential germ far. Sincel(S) is a subset ofF by the previous lemma, it is
sufficient to show that it is an essential germ Tor

To this end, first notice that, for 2 n > 0, I(S(n)) equals I(S)(n/(1+ n)) and
1(3yS(n)) equalsoyI(S)(n/(L+ n)). So,| is a map between the pairs(§), ayS(n)) and
(I(S)(n/(@+n)), ovI(S)(n/(1+ n))). Furthermore, the mabp from P(n/(1 + n)) to P(n)
defined by

b3, €)= <% 11;)

is a map between pair®(n/(1+ 1)), 9P(n/(1 + n))) and (P(n), dP(n)). Finally, the com-
position of the maps, = andb O

(sm.0.5m) — (1) (). 0.1(8) (7))

| |

(Pa.oP@m) e (P(5).0.P(1))

equals the projectiop from (S(n), dvS(n)) to (P(n), 9P(n)). SO,b, o 4 o I, equalsp, by
Theorem 30.1 oMunkres (1984)Hence, since, is not the trivial map by assumptios,
cannot be the trivial map either. The proof of the converse implication in the statement of
the theorem is virtually identical to the above proof.

Although we only presented the equivalence of both notions of stability in the context
of bimatrix games, the same can be shown for arbitrgpgrson normal form games.

5. Standard stable sets

From a topological perspective stable sets can still take on many forms. Essentially the
only restrictions are compactness and connectedness. Therefore it cannot be expected that,
given an arbitrary (bimatrix) game, all stable sets can be computed. If we consider, e.g., the
2 x 2 bimatrix game in which both players receive zero payoffs regardless of the strategies
chosen, it is easy to check thaty compact and connected set is a stable set. This huge
degree of freedom of choice is mainly due to the high degree of degeneracy of this game: it
does not mattewhich(essentially identical) strategies you choose to be part of your stable
set, and consequentinychoice is indeed allowed!

In this section we will introduce a specific type of stable set, called standard stable set,
that turns out to be sufficiently well-behaved for purposes of computability involving solely
linear optimization techniques. Roughly speaking, standard stable sets avoid the problem
we just discussed by simply selectialy strategies in case we have freedom of choice.

In this section we will show that in the case of bimatrix games the collection of stan-
dard stable sets is fairly large and still captures the spirit of the notion of stability pretty
well.
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5.1. The linear structure of

The structure of standard stable sets derives from the linear structure of the&raph
of the equilibrium correspondence. Lét §) be a perturbation of a bimatrix gama ,(B).
For a strategy of player | in the restricted strategy spatés) the §-carrier Cs(p) of pis
defined as

Cs(p) :=1{i € M|p; > &;}.

Analogously we can define thecarrierC.(q) of a strategy of player Il in the strategy space
restricted by the perturbation For a strategy of player | the setPB,(p) of pure best
repliesof player Il top is defined by

PBy(p) :={j € N|pBej > pBe;foralll € N}.

Again we can do something similar for player | and defftiy (¢). Using this terminology
we have the following key lemma. Its proof can, e.g., be foundemmeulen (1996)

Lemma 2. The strategy pai(p, q) is an equilibrium of the perturbed gantd, B, 3, ¢)
if and only if thes-carrier of p is a subset oPB1(g) and thes-carrier of g is a subset of
PB3(p).

Even though we will not prove this lemma here, we will try to give some intuition for
what it says. Consider the following situation. In the left-hand side picture below, player
I's pure best responses agaigsiree; andes. So, in the unperturbed case his set of best
responses — represented by the fat line — is simply the convex hull of these two pure best
responses. In thé{, 82, 83)-perturbed case on the right, his set of best responses is simply
the convex hull of the “perturbed versions1(1 — 81 — 83, 83) and 1, 82, 1 — 81 — 82)
of e; andes.

€3 €3

Aq Aq
/ /
A(M)

e [ el es

This behavior of best responses of course carries over immediately to perturbed Nash
equilibria, hencdeemma 2 From this geometrical intuition it is also clear that, once the
objectiveAq for optimization is kept fixed, the graph of the best response sets over pertur-
bations is linear.

This insight can be used as follows to decompose the gfajtto a finite number of
polytopes. Letl C M be a set of pure strategies of player | and/et N be a set of pure
strategies of player Il. With these two sets of pure strategies we can associate & &ubi3et
of the collectionD; defined above. This sé(/, J) is formally defined as the collection of
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solutions p, 8) in RY x RM of the system of linear (in)equalities

pBej — pBep > 0 forallj e Jandallk e N

Di = §; foralli e I
pi =36 foralli ¢ I
0<é; forallie M
DiemPi=1

1
ZieM §i < 2

The group of (in)equalities after the blank line are merely added to guarantegithat
strategy inA(8) and that p, §) is indeed an element dp; as soon asy, J) is a solution

of the above system of inequalities. The first group of inequalities states that every pure
strategy inJis a best reply againpt The second and third groups of (in)equalities guarantee
thatp the §-carrier ofp is a subset of. In D, we can analogously define the §4t, J) by

a system of linear (in)equalities. We will frequently encounter sets of the form

S(1,J) x T(1, J)

in the remainder of this paper, and we will therefore give these sets a name.

Definition 5. A set of the form described above is callegpa@yhedral chunlof F. This
name is justified by the following straightforward consequence of the previous lemma.

Lemma 3. Each polyhedral chunk gF is a subset of .

Notice that, since each equilibrium is indeed an element of some polyhedral chunk of
F, this lemma states th&t is the union of the collection of polyhedral chunks.

5.2. Standard stable sets

Now we have done enough preliminary work to be able to define the notion of a standard
stable set. The idea is that, in order to construct a stable set, one first needs to decide
which polyhedral chunks are needed, and secondly one needs to select within each of these
polyhedral chunks a collection of equilibria that is sufficiently robust. For a standard stable
set we leave out the second step and only decide which polyhedral chunks go into the stable
set, and which do not. Thus we get the following definition.

Definition 6. AgermS C Fis said to be irstandard fornif it can be written as the union
of a number of polyhedral chunks. A stable 3e calledstandard stabléf there is an
essential gerns ¢ Ffor T that is in standard form.

The next theorem shows that the class of standard stable sets is a sufficiently rich class
of stable sets to capture the flavor of stability pretty well. It also immediately implies that
the maximal elements of the (finite) collection of standard stable sets coincide with the
maximal stable sets (w.r.t. set inclusion) define@Gmvindan and Wilson (2002)
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Theorem 2. Each stable set is contained in a standard stable set.

Proof. Suppose that is a stable set and It F be an essential germ for it. Now Igt
be the collection of those sef§/, J) x T(I, J) that have a sequenc& (&, p*, ¢¥)2°, in
common withSfor which %, é¥)°° , is completely mixed and convergent ta (0. LetV
be the union of these sets. We will show thats an essential germ A that containss()
for sufficiently smallp. For if we can prove that, it immediately follows that

W= {(pv Q)|(O’ 0’ P, Q) € V}

is a standard stable set that contdins

First note thatv is a subset ofF by Lemma 3 Next we will show by contradiction
that, for sufficiently small, V containsS(s).* Suppose this is not the case. Then there is a
sequence(, ek, pk, g¥)2 ; in Sfor which (¥, £¥)2° , converges to (00) and none of the
(8%, ¢k, p*, ¢*) are elements of. Moreover, since (i) = cl(S'(n)) for sufficiently small,
we may even assume that alf (¢¥) are completely mixed. Next, by taking a subsequence
if necessary, we can make sure that there is a paif) (such that for alk

Ca(PF)=1 and Cu(d)=J

Then howeveS(1, J) x T(I, J) must be a subset &by the definition ofv. Contradiction.

Now we will show that is an essential germ. Take an- 0 such that the requirements
for an essential germ are fulfilled f6(») and moreoves(n) is a subset of. We will check
the three requirements for an essential germ one by oné(igr

(1) The setVi(n) is connected. To see this, suppose that there are two closed aats
G such thatF N Vi(n) andG N V() are not empty, mutually disjoint and their union
equalsVi(n). We will derive a contradiction.

SinceS(n) is a subset 0¥, alsoF N Si() andG N Si(n) are mutually disjoint and
their union isSi(n). So, it suffices to show that N Si(n) is not empty. Suppose it is
empty. Thersi () must be contained i6. Now take a polytop&® = S(I, J) x T(I, J)
in A. So, by definition of4, there is a sequencé( ¢, p*, ¢¥)2°, in Q N S for which
(8%, €)% | is completely mixed and convergent ta (0. In particular this implies that
the intersection of) and S'(n) is not empty. So, sincéi(n) is contained inG, this
implies thatQ! () must have a non-empty intersection w@éh Therefore, since’ (i)
is a connected seQ’() N F must be empty. Then howeveéX () must be contained
in G. This though, sinc® was chosen arbitrarily inl, implies thatV’(n) has an empty
intersection withF. Contradiction.

(2) V(n) = cl(Vi(n)). This immediately follows from the fact thatis the union of a finite
number of polytope® in A for each of whichQ/ () is not empty.

(3) Fordimensiod = |M| + |N|the homomorphism, induced by the projectiom from
the topological pair¥(n), 9y V(n)) to (P(n), dP(n)) is not the trivial map. To see this,

4 This automatically implies thatl cannot be empty.
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first notice thatS(») is a subset o¥/ by the choice of;. Then the inclusion map

(S, ovS(m) — (V(n), o V(n))

is a map between topological pairs. Furthermarg, := v () o t whererns(,;) and
mv(;) denote the respective restrictions of the projectido S(n) andV (). Thus we
get that fris;))« = (Tv(y))« © t+ @nd frv(;))« cannot be trivial sincen(s(,)s is not
trivial by assumption. O

6. Computability of standard stable sets

All standard stable sets can be computed in finite time. There are several ways to see
this. We will explain one of them. We selected our method of choice not on grounds of
computational speed, but merely for ease of exposition.

First we will show that we can restrict ourselves to germs of a special form. Consider a
fixed pair (, J) of sets of pure strategies for the moment. Let

ext(l, J) :=ext(S(L, J) x T(1, J))
denote the set of extreme points of the associated polyhedral &ank x 7(1, J).

Definition 7. We say that the pair/(J) is admissiblaf

(1) there exists a point (@, p, g) in ext(l, J),
(2) there is no pure strategyn M such that; = 0 for all (3, ¢, p, ¢) in ext(l, J), and
(3) there is no pure strategyn N such that; = 0 for all (8, ¢, p, g) in ext(l, J).

Requirement (1) excludes chunks of the graph of the equilibrium correspondence that
are not present directly above the zero perturbation. Such parts of the graph are clearly not
needed in an essential germ. Thus, this requirementis not really crucial, itis only convenient.
Requirements (2) and (3) are crucial. They guarantee that the associated polyhedral chunk
contains at least one poirtt, ¢, p, g) for which (8, €) is completely mixed. Together these
requirements guarantee, e.g., that

[S(L, J) x T(I, )] (n)

is not empty for allp > 0. It is easy to see that every standard stable set has an essential
germ in standard form that consists entirely of polyhedral chus(sJ) x T(I, J) for
which (7, J) is admissible. Thus, since admissibility is evidently a finitely computable
property, we can from now on assume that only admissible p&iy$ &re used to construct
germs.

Now we have made enough precautions to explain our algorithmJlle¢ a set of
admissible pairs and &t be the union over all chunkS$(Z, J) x T(1, J) for (1, J) in J.
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SinceV is automatically a subset df, the set

W = {(p.9)I0,0, p,q) € V}

is stable if and only il is an essential germ. First notice that, by the admissibility,ahe
requirement

V(i) = cl(Vi(n))

automatically holds for all. We will explain how to test in finite time whether or ngt
features the remaining two requirements for an essential germ. We will basically show that
there exists an* > 0 such that for alh < n*,

(1) Vi(n)is connected if and only if a certain finite grapff, (£) is connected, and
(2) 7(n)« is not trivial & 7(n*). is not trivial (wherer(n) indicates the projection from
the topological pair{(n*), oy V(n*)) to the topological pair®(n*), 3P(n*))).

Given these two results it evidently suffices to check whether the graph) (s connected
and whetherr(n*). is not trivial. Thus, the test itself consists of three different procedures,
namely

(1) aprocedure that computgs > 0,

(2) a procedure that checks in finite time whether the graplx] is connected, and

(3) a procedure that checks in finite time whether the homomorphismduced by the
projectionz from the topological pair¥{(n*), oy V(n*)) to (P(n*), dP(n*)) is not the
trivial map.

We will consider these three procedures one by one. The computatiérisdiirly simple.
First, for a polytopeS(1, J) x T(1, J) with (I, J) in 7, compute the collection ext(J) of
extreme points of this polytope. Next, compute

n(l, J)

=min{ > 8i+> &jl(8. p.q) € ext(, J)forsome p, g) and §, £) # (0. 0)
i J

Notice thaty(Z, J) > 0 becausel( J) is assumed to be admissible. Now take
n* =g min{n(L J)I(L. J) € T}.

This numbemn* will be fixed for the remainder of this paper. The only thing left to do is to
tackle the issues of connectedness and non-triviality.
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6.1. How to check connectedness

Define the undirected graplf{ E) as follows. Its vertex set §. For two distinct elements
(7, J)and (', J') in Jthe edgd(1, J), (I, J')} between these two vertices is an element of
E if and only if the two polyhedral chunks

S(LJYx T(L,J) and S, J") x T(I', J')

have in common both a point,(0, p, ¢g) and a pointd, ¢, p, g) forwhich (8, €) is completely
mixed.

Theorem 3. For 5 < n*, the setVi(y) is connected if and only if the graply, E) is
connected.

Proof. Suppose thatf, E) is connected. Since each intersection of the two elements in an
edge have a poiné{(e, p, g) (with (3, €) completely mixed) in common, it is easy to show
that Vi(n) is (path-)connected.

Conversely, suppose thaf(E) is not connected. So, we can take writg £) as the
disjoint union of two graphsfi, E£1) and (72, E2). LetF be the union over all se&1, J) x
T(1, J) with (1, J) in J1 andG be the union over all set$(Z, J) x T(I, J) with (1, J) in
J». ClearlyF andG are closed, non-empty sets a¥if(n) is the union ofV(n) N F and
Vi(n) N G. So, it is sufficient to show that the intersection\d{n) N F andVi(n) N G is
empty. Suppose on the contrary that the intersedtign) N F andVi(») N G is not empty.
We will derive a contradiction.

Since the intersection 6f () N F andV(;7) N G is not empty there must be sefs() €
Jiand (', J') € J2 such that the intersectiaf N R of

Q0:=8S(IL,J)xTWJ) and R:=S(UI,J)xT, J)

has a point{, ¢, p, ¢) in V(;). Now notice that, since this point is contained in the face
0 N R of QandR, it must be a convex combination of the points in

ext(l, J) next(l’, J')

However, since; < n*, we know that at least one of these points must be of the form
(0, 0, p, g)- Thus,Q N R contains the points( ¢, p, ¢) with (8, ¢) completely mixed as well

as a point of the form (@, p, ¢). Hence, there is an edge betwedénJ( and (', J') and
that contradicts the assumption that ( £1) and (72, E>) are disjoint. a

Finally notice that, givery, the graph {7, E) can be constructed in a finite number of
operations and that the connectedness of this graph can also be checked in finite time.

6.2. How to check non-triviality

Let (n). denote the homomorphism that is induced by the projectigp) from the
topological pair ¥(n), oy V(n)) to the topological pair #(n), dP(n)) between the corre-
sponding singular homology groups. The task is to check whettgy. is not trivial for
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sufficiently smally. This though is not a finite task because of the clause “for sufficiently
smalln” in the above condition. As said before, in fact we bypass this problem by showing
it is sufficient to merely check that(n*). is not trivial.

Theorem 4. For all n < n*, 7(n) is not trivial if and only ifz(n*), is not trivial.

Proof. We will apply the results fronAppendix Bto this situation. TakéR™ = R" =

RM x RN Perturbationsy ) will be interpreted as the-variable and strategy pairg.(¢)

as they-variable. Notice that this does indeed place our setting within the non-negative
orthant. Take

P = (S J) x T(L, N)|(L, J) € T}.

Notice that indeed each element®@has an element of the form (§) = (0, O, p, ¢) and
an elementX, y) = (3, ¢, p, q) with x = (8, €) # (0, 0). Also, the collection of polytopes
in P together with all their proper faces is a polyhedral complex. Thus f#pmendix B
we get thaty* = (1/2)n.. So, for everyy < n*, P(n) is a subset o (.). So we can apply
Proposition B.1of Appendix Btaking D = P(n) and we get homeomorphisnfgn) from
V(n) to U(n.) andgp(; from RY x RY to itself such thatf(»)(0, 0, p, ¢) = (0,0, p, q)
and the diagram

Vi(n) IR U(n.) S V(n*)
™ T T
RM X IRN IEON IRM x ]RN (gp ()" ]RA{ % mN

commutes. Thus we get that the maps= f(n*)~1 o f(n) andg := (gpp) "L o gp(y) are
homeomorphismsf(0, O, p, q) = (0, 0, p, ¢), and the diagram

vy —L V)
™ ™

]R]\[ x H{N —‘(/> ]R_"\J X ]R,N

commutes. Now notice thgis a homeomorphism fro(n) to P(n*). So, itmustbe a home-
omorphism from the topological paiP(n), 9P(n)) to the topological pair®(n*), 0P(n*)).
Now the commutativity of the above diagram implies that the rinam homeomorphism
from the topological pair¥{ (n), ay(V(n))) to the topological pair¥ (n*), 3y (V(n*))). Hence,
the diagram

Hy (V (n),0,V () —L Ha(V (7), 0,V ("))
(1)« m(1")s

Hq (P (n),0P () —£— Ha(P(n*),0P (n*))

commutes and, andg, are isomorphisms. Now the theorem immediately follows.]
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6.3. How to check non-triviality of (n*).

The only thing left to verify is whether we can check that the homomorphismduced
by the projection map = =(n*) from V(»*) to P(n*) is trivial or not. In order to do this, we
want to show first that this can in fact be decided using simplicial homology groups, defined
in Appendix A instead of singular homology groups. To this end we need to introduce some
terminology.

6.4. Polyhedral complexes
Let | be a finit® set of indices. A (finite) collection
P:={Pliel}

of (non-empty) polytopes is called a polyhedral complex if the faces of Eaelne also
elements ofP and, moreover, each intersecti®hn P; is a face of bothP; and P; as
soon as this intersection is not empty. A polyhedral comglethose elements are all sim-
plices is called a simplicial complex. A refinement®is a polyhedral compleR such
that each polytope ifR is a subset of some polytope #and, secondly, each polytope
P in P is the union if polytopes iR. The refinemen®R is called simplicial if R hap-
pens to be a simplicial complex. The underlying space of the polyhedral coriptethe
set

UpepP.

Let P be a polyhedral complex with underlying spacand letQ be a polyhedral complex
with underlying spacé’. A mapf from X to Y is said to be polyhedral fror® to Q if f
maps each polytopE in P linearly 6 onto an element 0©. Now let P be a polyhedral
complex inR™ x R" with underlying spac&. Furthermore, letr : X — R™ be defined
by 7 (x, y) := x.

Lemma4. Using only linear optimization techniques and finite enumerations we can com-
pute a simplicial refinemeigtof P together with a simplicial comple® whose underlying
space ist(X) such thatr is a polyhedral map fron@ to D.

It is essential for our main assertion in this section, the computability of standard stable
sets in finite time using exclusively linear optimization techniques and finite enumerations,
that all manipulations and computations used in the proof of this lemma can indeed be
executed only using linear optimization techniques and finite enumerations. Although
we do not prove that here, the details can be found&/émrmeulen and Jansen (2004,
Appendix B)

5 In most textbooks finiteness is not required. We however will encounter only finite complexes in this article,
so we will make life a bit easier and develop the required machinery only for finite complexes.
8 The mais called linear on a polytopeif for everyxandyin Pand in [0, 1] we have thay (Ax + (1 — 1)y) =

Af(x) + (1= 2)f()-
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Now we turn back to the main goal in this section. We will explain how the result from
Lemma 4can be used to check in finite time whether or nff*), is trivial. First we will
explain how one can construct a polyhedral comgfewhose underlying space 1&(n*).
SinceV is the union of the setS(Z, J) x T(I, J) where the pairsi( J) range through the
setJ, itis clear thatV(n*) is the union over allf, J) in J of the sets

[S(L 7)< (1 DI(n")

It can easily be checked that such a set is a polytope and that, if not empty, the intersection
of two such sets is a face of both. Given these facts, it is straightforward to check that the
collectionP of all sets

[S(L 7)< (1. D)(n")

with (1, J) in J together with their faces is a polyhedral complex. Also notice that, given
J, this complex can be computed in a finite number of steps.

Given the above terminologlyemma Zapplied to the projection mapon the underlying
spaceV (n*) of the polyhedral comple® constructed above states that there is a simplicial
complexC with underlying spac® (»*) and a simplicial comple® with underlying space
7(V(n*)) = P(n*) such that the projectiam from V(*) to P(n*) is a polyhedral map from
CtoD.

In order to establish the connection with relative simplicial homology, we also need to
consider the following two subcomplexétet B be the simplicial subcomplex @ whose
underlying space i8P(n*) and letA be the simplicial subcomplex éfwhose underlying
space isy V(n™*).

Now notice thatr is automatically a polyhedral map from, (4) to (D, B), meaning that
it is a polyhedral map frong to D such that the image underof each element ofl is an
element of3. Thereforer induces a homomorphism from the simplicial homology group
Hy(X, A) to the simplicial homology groupi, (Y, B) as follows. Letry : C4(X, A) —
C4(Y, B) be the homomorphism induced by the map that assigns

m#([vo, . .., va] + Ca(A))

[(vo), ..., w(va)] + C4(B) ifall w(vg), ..., 7w(vy)are distinct
Ca(B) else

to each elementup, ..., vy] + C4(A) of C4(X,A). It can be shown in the diagram
below:

Cap1(X,A) P2, Og(X,8) 22, Cy (X, A)

#
Cay1(Y,B) 21, Cy(Y,B) 2%, Cy 1(Y,B)

7 A subcomplex of a simplicial complexis a simplicial complex that is a subset®f
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that the homomorphismy; commutes with the boundary operator. We can therefore define
a maprm,sim - Ha(X, A) — Hy(Y, B) by, for allk € Ker(d,),

Tisim(k +1M(8441)) 1= m(k) + IM(4+1)

This map is again a homomorphism. Now Theorem 34Murfikres (1984¥tates that there
exist isomorphisms:, andn, such that the diagram

Hy(C,A) — = Hy(V(n*),8,V(n*))

Txsim ‘ t"r*

Hq(D,B) = Ha(P(n*),0P(n"))

commutes. Thus the central question in this section, whether we can in some sense check
in finite time whetherr, is the trivial map or not, boils down to the question: can we check
in finite time whether or not the map

Hy(C, A) =% Hy(D, B)

we just defined is trivial. As it turns out, this is indeed possible. First notice that, since there
actually are procedures to compute the compléxaisdD, we can also compute bases for
the groupsC,(C, A) andC,4(D, B) in finite time. Given these bases we will show how we
can compute a basis for Kég) and Im@y).

To this end, take an enumeratién, . . ., b; of the finite collection of basis elements
v+ Cy4(A) of C4(C, A), wherev ranges through the collection of orientdesimplices
not contained irA. Similarly, letcs, ..., ¢, be an enumeration of the finite collection of
basis elements) + C4_1(A) of C4_1(C, A). Now note thab, is a homomorphism from
C4(C,A)to Cs-1(C, A). So, the entire mafy, is determined by the images

04(b1), - - -, 3a(by)

in C4—1(C, A) of the basishy, ..., b;. Furthermore, we can compute in finite time the
representation

m
da(bi) = Z”ijcj
=

of eachd,(b;) in terms of the basisy, .. ., ¢, of C4—1(C, A). Thus we can represent the
mapad, by the integer-valued matrix



DTD 5

D. Vermeulen, M. Jansen / Journal of Mathematical Economics xxx (2004) XXX—XXX 23

Consider the following elementary operations that we will allow on this integer matrix.

(1) interchange rowand rowk,
(2) multiply rowi by —1, and
(3) replace row by rowi + rowk for k # i.

Each of these three operations correspond to a transformation of the currehi basisby.
The first operation corresponds to an interchange ahdb,. The second operation corre-
sponds to a replacementigfby —b; and the third to a replacementigfby b; + by.

Obviously we can define similar operations on the columns that correspond to similar
operations on the current basis .. ., ¢,. In particular, the replacement of columty
columnj + column | corresponds to the replacement;dfy c; — c; (!). Now from Munkres
(1984, Section 11, Theorem 11,8)e get the following result.

Proposition 1. Using the above six elementary operations we can construct in a finite
number of steps basds, ..., d; of C4(C, A) andes, ..., e; of C4_1(C, A) such that the
corresponding matrix of; has the diagonal form

pr1
D= - ©
pr
© ©
whereps, ..., p, are positive integers and each is a null-matrix of appropriate dimen-

sions.

It can be checked that the change of bases mentioned in the above proposition can be
performed in a finite number of steps, each of which involves only a finite number of
algebraic computations. Thus we get a basis. ., ¢, for Im(d;) and a basig, 1, ..., di
for Ker(d;). Now it can easily be seen thafsim is trivial if and only if

my(dri1), - .., wa(dy)

are all elements of the subgroup Bp(1) of C4(D, B). This however can be tested in finite
time as follows. As shown above we can U&®position 1to construct a basig, .. ., g5
of Im(d4+1). Once we have computed this basis, note that

mu(drya), - ., a(di)

are all elements of Ind(1) if and only if we can find integens;; such that for alk + 1 <
i <k:

N
) =Y nij - gj.
=1

However, since alkx(d;) and allg; can be represented as vectorgiB, this is equivalent
to asking whether a certain integer-valued linear system has an (and in that case automat-
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ically unique) integer-valued solution. This though can easily be tested using Gaussian
elimination.
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Appendix A. Simplicial homology groups

Leto be a simplex, and Idby, .. ., vy} be its set of vertices. Then the dimension of this
simplex isd and it is simply called a-simplex. Anorientationof a simplex is an ordering
of its vertices modulo even permutations. A simplex together with an orientation of this
simplex is called amrientedsimplex. It is generically denoted hy= [vy, ..., v4].

LetC be a simplicial complex. Choose for each simptex C, an (arbitrary) orientation
and denote the collection of all oriented simplices thus constructed. onsider the
Abelian groupZ® generated b{. We identified an element of C with the characteristic
function 1, of {v} in ZC. It turns out to be convenient to identify the opposite orientation
of v with —1,, and consequently denote it byv. Now letd be an integer itZ. A d-chain
is an element

c= E Ny Uy

in ZC in which n,, is non-zero only ifu, is an orientedl-simplex. The subgroup &C of
all d-chains orC is denoted byC,;(C) and is called the group of orienteechains ofC. It
is evidently generated by the setadémentary echains po, .. ., v4].

A.1l. The boundary operator

Now take an elementamchain o, . .., vg] in C. Define

d
34([vo. - ... val) ==Y (=1)¥[vo. ... Di. ... vd]

i=0

where po, ..., i, ..., vq4] :=[vo, ..., Vi1, Vit1, ..., vg]. It can be shown that this is in-
deed a correct definition. Since the collection of elemendaciains is a basis faf;(C),
this definition extends uniquely to a homomorphism

34 : C4(C) — C4-1(C).

The resulting map is called tHeoundary operatoin dimensiond. The kernel ofd; in
C4(C) is known as the group al-cycles and its image i6;_1(C) is called the group of
d — 1-boundaries. It can be shown ttégto 9,11 = 0.
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A.2. Relative homology groups

Now letC be a simplicial complex with associated collecti@rof oriented simplices.
Furthermore let’y be a subcomplex af and denote its associated collection of oriented
simplices byCg. The groupCy,o := C4(Cp) of thosed-chains orC that only take non-zero
values on elements @, is a subgroup of’;(C).2 So, we can define the quotient group
C4(C, Cp) whose elements are the sets of the form

v+ Cqo = {v+ wlw € Cuo}

wherev ranges througld’;(C). This Abelian group is called the group efative chains of
dimensiond. Define the map,; from the groupC,(C, Cp) of relatived-chains to the group
C4-1(C, Cp) of relatived — 1-chains by

3a(v + Ca0) := 34(v) + Ca-1,0

for all v+ Cyo in C4(C, Cp). One easily checks thal; is a homomorphism and that
94 0 94+1 = 0. So, we can define thelative simplicial homology groupH,(C, Co) of
dimensiond by

Ker(ds)

H4C, Co) = IM(34+1)

A.3. Some intuition

A convenient setting to see how homology groups look like is the one wigseempty
— s0 homology groups are defined directly 6p(C) instead ofC,(C, Cp) — and where
C only contains zero-dimensional and one-dimensional oriented simplices. In the field of
combinatorial optimization such a setting is called a directed flow network.

This network has four (oriented) verticash, c andd, and four oriented 1-simplices,
namely the arcsd, b], [b, d], [d, c] and [c, a]. The arcs can be thought of as pipelines
through which water or oil is transported from one node to the other in the direction of the
arrow. Negative amounts correspond to flows in the opposite direction. Now suppose we
transport the amountsfrom ato b, g8 from b to d, y from d to ¢, and¢ from c to a. This
corresponds to the 1-chain

¢ = afa, b] + B[b, d] + y[d, c] + ¢c, d]

8 This is a slight abuse of notation. Formally the element§ 4fCo) are elements gZC0, not of ZC.
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All that the boundary operat@n does is computing the resulting net stock of fluid in the
nodes (vertices) of the network. So, as can be seen in the picture, the net stock a, e.g.,
is ¢ — « and the net stock i is y — ¢. In total the resulting 0-chain when we apply the
boundary operatai; to the above 1-chain is

(€)= —aat(@=pb+(B—-y)c+(r—1)d

Now, the 1-chain is called a flow in the network when the resulting net stock in each node
equals zero, that is, when in each node the inflow equals the outflow. This is precisely when
a = B =y = ¢. In the language of homology groups this means thét) = 0, in which

casec is an element of Ke#) and called a cycle. In the above picture it is very clear why
one would like to calt a cycle (or a flow) whenever = 8 = y = ¢. And it is also clear

that Ker(,) is generated by

[a, b] + [b,d] + [d, c] + [c, a]

This is actually a very general principle. Consider, e.g., the disconnected network

© ® (® ®
. e
© O, () ®

Notice that, since there are no 2-simplices, the grou@d4jri¢ the trivial group. So, the
one-dimensional homology group is simply K&rX. And along the same line of reasoning
as above we can deduce that the latter group is generated by the threecydles[b, d] +
d,c] +[c,al, [ f gl + g i +[i, h] + [h, f] and [f, €] + [e, k] + [h, f], and must hence
be isomorphic t&Z2.

Thus, the one-dimensional homology groups basically counts the number of “elemen-
tary” cycles in a network. Just like in the above network, there may be more cycles, e.g.,
e—h—>i— g— f— e, butthese cycles can be written as integer combinations of
cycles in the basis, in this cage> h — f — e minus f - ¢ — i — h — f. Notice
that this way the arc/], f] is indeed once counted in the direction of the arrow, and once
backwards. The zero-dimensional homology group, even for general simplicial complexes,

simply counts the number of connected components of the complex, and is in this case
isomorphic taZ2.

Appendix B. A homeomorphism

Consider the non-negative orthakt x R’ of the product spacR™ x R". A generic
element ofR” x R" is denoted byX, y) with xin R” andy in R”. Further, let

P = [Pyla € A)
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be a collection of polytopes in this non-negative orthant with the following two additional
properties. First, each polytope in this collection contains at least one element of the form
(0, y) and at least one element of the form {) with x £ 0. Second, the collection of
polytopes inPtogether with all their proper faces is a polyhedral complex. For each polytope
Py in P let ext(P,) be its set of extreme points. Define

m
n(Pa) == min { Y "xj|(x, y) € ext(P,) andx # 0
j=1

Further define

UPRES %min{n(PaNPa e P}
Forn < n., write C(n) for the collection of pointxin R’} for whichxy +--- + x,, <.
Let Py(n) be the collection of pointsx( y) in P, for which x is an element oC(). Let
U(n) be the union over all setB,(n) for P, in P. Let D ¢ R™ be a compact and convex
neighborhood of 0 with the additional property tlldas a subset o€ (1,). Write

Vi={(x,y) € Uns)lx € D}
and

dV = A{(x,y) € U(ns)lx € dD}.
Forxin R, write | x| := Y i~ x;, and define

N .
1) = i max{n > O|r}m € D] ifx#£0
ifx=0

Obviously,n takes on positive values exclusively. Furthermarig,continuous everywhere,

except perhaps in = 0. Also note thakis an element ol if and only if || x|| < n(x). Define
the mapg from R’ to R” © by

g(x) = m Y

T
X

Even thoughy need not be continuous in= 0, it can easily be verified thatis a home-
omorphism fromD to C(#.). Let = be the projection fronR” x R” ontoR” defined by
7(x, y) ;= x. In this setting the following can be shown.

9 Notice that the mag actually depends oB.
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Proposition B.1. There exists ahomeomorphigm V — U(n,) suchthatf (0, y) = (0, y)
and the diagram
v L, U
-k
R™ £, R™

commutes.

The proof of this proposition takes several pages and can be fouvierineulen and
Jansen (2004)The intuition though behind this construction is fairly clear. Consider a
polytopeP, in the collectiorP. For the moment we can act agf is the only element op.

Let the large triangle that is partially displayed in the picture below be th€é(gg}. So,
the smaller, shaded, triangle depicts thelsgt.) as can be seen above. It is the projection
of the setPy(n.) represented by the triangular block. Now let the square displayed below
represent the set As one can see, it is indeed a subse€¢f.). Now it is clear that one
can map homeomorphically ont@€'(r,) by simply rescaling each ray emanating from the
origin by an appropriate scaling factor. This is precisely wihebes. It is also clear that
this wayg induces a homeomorphism from the darker shaded arg&it0.

Now the setV is the smaller block displayed below. The proposition states that there
exists a homeomorphism from this smaller blatto the larger block?, (r.) such that the
set above the origin in the ground floor space is mapped identically onto itself and such
that first usingf and then projecting down is the same as first projecting down, and then

applyingg.
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~

In the situation above it is actually quite clear hdwhould be chosen. It is simply a
matter of mimickingg at each vertical level. However, whe is higher-dimensional, one
may have many ways to choose these “vertical levels” due to the fact that the number of
extreme points oPy(n,) counted in a “vertical” direction (this number being 2 in this case)
may be much higher than the dimension of the strategy space (which is taken to be 1 in
the above pictures). All that the proposition is saying is that one can choose a specific way
to do this anyway, and that one can even do it in such a way that the map constructed acts
identically on overlapping parts of different polyhedraff
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