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Necessary and sufficient conditions are given under which a decision maker’s van Neumann-Morgenstern utility function on 

the Cartesian product of two prospect spaces can be expressed as a sum of coordinate utility functions, assuming that all 

preferences are given. A main motivation for this result is an application in axiomatic bargaining theory. 

1. Introduction 

Keeney and Raiffa (1976, p. 231), following Fishburn (1965), give a necessary and sufficient 
condition under which a von Neumann-Morgenstern utility function on the product of two given 
prospect spaces can be written as a scaled sum of coordinate utility functions. We shall extend this 
result to the case where these coordinate utility functions represent given preferences. 

We adopt the following notational conventions. Capital Latin letters will always denote prospect 
spaces. Small Latin letters (possibly with superscipts) denote elements of prospect spaces or their 
lottery sets (see below), e.g., a, a’, u”, ai, . . . E A or E L(A). Small Greek letters denote numbers in 

[O,l]; indexed, they are supposed to sum up to 1. The expression ‘for all . . . ’ is omitted when 
confusion is improbable. 

For a prospect space P, we denote by L(P) the set of finite lotteries on P. A typical element of 
L(P) is denoted Cy_tpip’ which is to be interpreted as the prospect pi resulting with probability CL,. 
The lottery operation is supposed to satisfy the familiar laws of commutativity and associativity. The 
sure prospect p E P will be identified with any lottery resulting in p with probability 1. 

A preference relation > p on L(P) is a complete and transitive binary relation on L(P). By > p 

and =p we denote the corresponding strict (antisymmetric) preference and indifference relations, 
respectively. The meaning of < ,, and < p should be obvious. For any P and > p we assume, in the 
sequel, that p > pp’ for some p, p’ E P. Herstein and Milnor (1953) provide a set of necessary and 
sufficient axioms for 2 p to be representable by a uon Neumann-Morgenstern (vNM) utility function 
u: L(P) -+ R, i.e., u satisfies 

4 P) > 4 P') iff P > pi’, 0) 

u 
i I 

: P,P’ = ,gW( P’). (2) 
r=l 
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Further, the following statements then hold: If u and u both represent 2 ,,. then 

v=ku+l where k,lER, k>O. (3) 

If p, p’, p” E L(P) with p > pp’ > pp” and p > pp”, then there exists a unique p with 

P’=P I*p+(l -PIP”. (4) 

Any preference relation occurring in the sequel is assumed to be representable by a vNM utility 
function. Let A, B, and C := A X B be prospect spaces for a decision maker. Keeney and Raiffa 
(1976, p. 231) show that under the assumption of additive independence (see section 2) on > =, a 
vNM utility function w for > c can be written as k,w, + kSwB where k, and k, are positive 
constants and w, and wB are induced utility functions on L(A) and L(B). In the present note we 
shall extend this result to the case where w, and w, represent given preference relations on L(A) and 
L(B). Section 2 introduces the axioms and section 3 contains the main result. A motivation for this 
result is an application, in section 4, to axiomatic bargaining theory. 

2. The axioms 

Let A, B, and C = A x B be prospect spaces with > A, > R and > c a decision maker’s 
preference relations on the corresponding lottery sets. We start with a weaker version of the udditioe 

independence axiom [cf. Keeney and Raiffa (1976, p. 230)]: 

A.I. For any a, a’, 6, b’we have j(u, b)+ i(u’. b’)=.f(u, b’)+ i(u’, b). 

Notice that, by the natural identification 

wemayput L(A)xL(B)cL(C). 
If 2 c satisfies A.l, then for CT_i ~,(a’, b’) E L(C) we have 

? /-~,(a’, b’)= 5 P,P,((~ b’) +(a’, bJ)) + 2 ~;(a’. b’), 
/=l />I=1 r=l 

bJ) + ;(aJ, b’)) + f pLf(u’, b’), 
r=l 

= 2 pipJ(u’, b’) = F /~,a’, 5 p,b’ , 
I./-1 ! ,=l r=l i 

(5) 

(6) 

where the second step follows, by using (2) from A.l, the last step from (5) and all the other steps 
from properties of lotteries. So (5) and (6) together enable us to identify L(A) X L(B) with L(C) 
if asc satisfies A.l. The obvious interpretation of A.l. is that the decision maker only cares for what 
he gets in L(A) and L(B), and not for the specific combination. 

The second axiom relates > c with > A and > a, and is an axiom of weak monotonicity: 



A.2. There exist a0 and b” with (a’, b) 2 c(a ‘, b’) * h > gb’ and (a, b”) > c( a’, b”) * a 2 Au’ for 

all a, u’ and b, 6’. 

3. Main result 

Our main result is the following extension of Keeney and Raiffa (1976, Theorem 5.1). 

Theorem 1. Let A, B, C, > A, > n, and > c be us in section 2. The following two statements are 

equivalent: 

(i> ac satisfies A.l, and >, A, > B, and >, c satisfy A.2. 
(ii) There exist vNM representations u, v and w for > A, > B and >, c, respectively, and positive 

constants k, and k,,., with w(a, b) = k,u(u) + k,v(b) for all a, b. 

Proof. The implication (ii) =j (i) is straightforward. For (i) 3 (ii), let u” and b” be as in A.2. Take 
ci E A, 6 E B with ri f Auo and b f r,b”. In view of (3) we can choose vNM representations u and v 
for > A and ;: B such that ~(a’) = v(b’) = 0, and u(G) and v(h) arbitrary [but consistent with (l)]. 
Also, fix w for > c by w(a’, ho) = 0 and ~(2, b”) = u(B), noting that w( ri, b”) and u(a) must have 
the same sign by A.2. Similarly, k, := ~(a’, b)/v(b) > 0. 

By applying A.1 and (2) we have for all a and b: +~(a, b) + $( u”, b”) = +~(a, b”) + iw( u', b), 

hence w( a, b) = w( a, b”) + w( u”, b). The proof is finished (with k, = 1) if we show w( a, b”) = u(a) 
and w( a’, b) = k,,v( b) for all a and b. We only prove the first equality, and distinguish three cases: 

(I) (a. b”) < &a’, 6’) and ( a, bO)< c(ri, b’), (2) (a, b’)>, =(a’, b”) and (a, b’)>, Ja, be), and (3) 
the remaining case in which, by (4) (a, 6’) = cp(ci, b”) + (1 - ~)(a’, b”) for a unique p # 0. 

We only consider the last case, the other ones are similar. In that case, w(u, b”) = pw( 5, b”) = 

pu(ri) = pu(u)/p = u(u). Here, the third equality follows from a =,+,(l - p)u” + @, which again 
follows by A.2 from (a, ho) =c(pLci + (1 - ~)a’, b’), which again, by (6), follows from our starting 
point (a, b’)=.p(ci, b’)+(l - ~)(a’, ho). Q.E.D. 

Remark 1. Suppose, in Theorem 1, that (i) holds, and that there are already given vNM utility 
functions u and v with ~(a’) = v(b”) = 0. Suppose further that ii and 2, as in the above proof exist 
such that u(a)= u(a) and (a, b”) =c(u’, 8). Then k, = k,,, in particular we may set k, = k,, = 1. 

4. An application in axiomatic bargaining theory 

Let P be a prospect space with d, 3 E P, and u and u vNM utility functions on L(P), such that 

u(d)#u(p)=O=v(p)+v(d).Aburguiningsituutionisaset Awith{j,d}cAcP,ofwhichthe 
interpretation is that there are two bargainers with utility functions u and v restricted to L(A), who 
may reach an agreement a E L(A), or get the conflict point p E A. The point d is interpreted as an 
always available alternative. Let G denote the family of all such bargaining situations. Further, we 
assume that for any bargainer and any A, B E G and C = A X B, axioms A.1 and A.2 are satisfied for 

>,,a. anda,., with u” = b” = p, and that moreover ( j, d) = c(d, p). Here C is called the 
simultaneous bargaining situation corresponding to A and B. A solution cp is a map assigning, for all A, 
B~G,elementscp(A)~L(A), T(B)EL(B), cp(AxB)~L(c). 

Profitability of simultaneous bargaining can be expressed by the following axiom for ‘p: 

S.I. For all A, B E G, both bargainers (weakly) prefer ‘p( A x B) to (cp( A), cp( B)). 
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This axiom can be translated into utility space by means of Theorem 1 and especially Remark 1 (with 

ci = 2, = d). It is not difficult to verify, then, that S.l translates into: 

S.2. @(S, + S,)> @(S,) + @(S,) for all A, B E G. 

Here S, := {(u(a), u(a)) : a E L(A)) and +(S,) := (u(q(A)), u(Q$A))), and +(s, + s,) := 

(uJcp(C)), uC(cp(C))) where +(a, 6) = u(a) + u(h) and +(a, b) = u(u) + u(b) for all a and h. 

Axiom S.2 is known in axiomatic bargaining theory as super-udditioity [Peters (1983), Perles and 
Maschler (198l)J. In the present note we hope to have succeeded in giving a foundation, in underlying 
bargaining situations A rather than in bargaining games S, for the use of the super-additivitity 
axiom. 
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