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Abstract. In this paper we present an algorithm to compute all Nash equilibria for generic finite n-person
games in normal form. The algorithm relies on decomposing the game by means of support-sets. For each
support-set, the set of totally mixed equilibria of the support-restricted game can be characterized by a system
of polynomial equations and inequalities. By finding all the solutions to those systems, all equilibria are
found. The algorithm belongs to the class of homotopy-methods and can be easily implemented. Finally,
several techniques to speed up computations are proposed.
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1. Introduction

Noncooperative game theory, while central in analysis of conflict and strategic interaction,
often begs for two things: first, efficient computation and second, if necessary, application
of one or more selection principles. This is especially so if players are many or strategies
are numerous.

For many purposes, having an algorithm to compute a single sample equilibrium
might be insufficient. Even if the algorithm is able to compute an equilibrium that satisfies
perfectness or some other refinement criterion, it cannot be ruled out that there might
exist another equilibrium that is more salient. For some equilibrium selection theories,
for example the one using risk dominance as described in Harsanyi and Selten (1988),
a candidate equilibrium has to be compared with the other equilibria of the game. In
many instances, there exist multiple equilibria with different implications for the original
problem under consideration, and a model builder has therefore an interest in knowing
all the potential equilibria of the game. All are motivations for having an algorithm to
compute all equilibria.

For bimatrix games, efficient and implementable algorithms to compute all equilib-
ria exist. For bimatrix games in which one player has exactly two strategies at his disposal,
an algorithm to compute the complete set of Nash equilibria has been developed in Borm,
Gijsberts, and Tijs (1989). For the general class of bimatrix games, algorithms have been
developed in Kostreva and Kinard (1991) and Dickhaut and Kaplan (1993).
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The algorithm that has been implemented in Gambit allows for finding all Nash
equilibria of an n-person normal form game via the Liapunov function method described
in McKelvey (1996).1 This is a continuously differentiable nonnegative function whose
zeros coincide with the set of Nash equilibria of the game. A standard descent algorithm is
used to find a constrained local minimum of the function. All global minima have function
value zero and are Nash equilibria of the game under consideration. These algorithms
for computing ‘all’ equilibria will only find all equilibria in a weak probabilistic sense:
For any generic game, given any number less than one, there is an amount of time such
that if the algorithm is run for at least that amount of time it will find all solutions with
probability higher than the given number. For a general survey on the computation of
equilibria, see McKelvey and McLennan (1996).

This paper presents a method that computes all Nash equilibria for generic finite
n-person noncooperative games in normal form, i.e. for a set of finite n-person noncoop-
erative games in normal form that has full Lebesgue measure. The set of Nash equilibria
can be represented as the set of solutions to a system of polynomial equations and in-
equalities. We decompose the system by means of all possible carrier structures, which
makes the inequalities disappear. For the computation of the solutions to the resulting
systems of polynomial equations, the homotopy approach is chosen. There exists a large
library of literature on the use of homotopy continuation algorithms to solve systems of
equations of multivariate polynomials.

As is well-known, see for instance McLennan (1999), the number of Nash equilibria
increases exponentially in the size of the game. Therefore, any algorithm that is proposed
is by definition exponentially. Exponential algorithms are often thought to be impractical.
We do not completely share this view. The algorithm proposed here has the property that
it generates more and more Nash equilibria during its execution, so there is no need to
wait until it finally terminates. There is also the flexibility to start searching for particular
equilibria, like Nash equilibria in pure strategies, or Nash equilibria in completely mixed
strategies, before turning to others. Finally, it is possible to efficiently apply parallel
computers to speed up computations.

This paper has been organized as follows. Some notations, definitions and gen-
eral results are given in Section 2. In Section 3 a method to compute all equilibria is
proposed. Section 4 deals in detail with the implementation of the proposed algorithm
and proposes an explicit description of the algorithm. In Section 5 an alternative algo-
rithm is presented in which Gröbner basis theory is applied. The proofs are collected in
Section 6.

2. Number of equilibria

An n-person noncooperative game in normal form is a tuple � = 〈N , {Si }i∈N , {ui }i∈N 〉,
with N = {1, . . . , n} the set of players, Si = {si

1, . . . , si
|Si |} the finite set of pure strategies

of player i and ui : S → R the payoff function of player i which assigns to each pure
strategy combination s ∈ S = ���� i∈N Si a real number.
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A mixed strategy of player i is a probability distribution on Si . Let �i denote
the set of all probability distributions on Si . For σ i ∈ �i , the probability assigned to
pure strategy si

j is given by σ i
j . The strategy space of the game is therefore equal to

� = ���� i∈N�i . Given a mixed strategy combination σ ∈ � and a strategy σ̄ i ∈ �i , we
denote by (σ−i , σ̄ i ) the mixed strategy that results from replacing σ i by σ̄ i . If a mixed
strategy combination σ ∈ � is played, then the probability σ (s) that the pure strategy
combination s = (s1

j1, . . . , sn
jn ) occurs is given by σ (s) = ∏

i∈N σ i
j i and the expected

payoff of player i by ui (σ ) = ∑
s∈S σ (s)ui (s).

A mixed strategy combination σ ∈ � is said to be a Nash equilibrium of the game
� if σ i is a best response against σ−i for all i ∈ N . A mixed strategy combination σ ∈ �

is therefore a Nash equilibrium of the game � if and only if there is no player i ∈ N
having a strategy σ̄ i ∈ �i such that ui (σ−i , σ̄ i ) > ui (σ ). The set of Nash equilibria of
the game � is denoted by NE(�) and is known to be non-empty.

Since Nash equilibria can be shown to exist, it is clear that for any game the number
of equilibria is larger than or equal to one. It can also be shown that the number of Nash
equilibria is generically finite and odd (see Harsanyi, 1973; Rosenmüller, 1971; Wilson,
1971). For normal form games of given size, some more results are known on the number
of its Nash equilibria. For generic games, the maximal number of totally mixed Nash
equilibria is determined in McKelvey and McLennan (1997) and in McLennan (1997) the
maximal number of pure Nash equilibria is determined. In McLennan (1999) a formula
for the expected number of Nash equilibria for a random normal form game for given
(finite and non-empty) sets of players and pure strategies is presented. In table 1, given
the number of players (n) and the common number of strategies (m), an estimation of the
mean number of Nash equilibria is displayed with between brackets the standard error
of the estimation.

From these numbers it is concluded in McLennan (1999) that the average number
of Nash equilibria grows more rapidly than the size of the game, where the size of the
game is measured by the number of pure strategy tuples times the number of players.
The table clearly conveys the impression that the mean number of equilibria increases
faster in the number of players than in the number of pure strategies.

Table 1
Mean number of equilibria.

n\m 2 3 4 5 6

2 1.31 (0.13) 1.52 (0.12) 1.77 (0.18) 2.64 (0.44) 2.61 (0.52)
3 2.15 (0.20) 3.76 (0.33) 12.66 (1.13) 27.23 (2.78) 65.69 (4.19)
4 4.49 (0.40) 18.01 (1.22) 82.49 (3.87) 440.02 (18.86)
5 6.98 (0.43) 81.82 (3.32) 879.24 (32.94)
6 15.75 (0.96) 401.61 (10.77)
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3. Equilibria as solutions to systems of equations

This section reformulates the problem of finding all Nash equilibria of a normal form
game to finding all finite nonnegative real zeros of systems of multivariate polynomials.
First a normal form game is decomposed by means of all possible carriers and secondly
all totally mixed equilibria of the games that result by restricting the players to choose
strategies within the pre-described carriers are characterized.

We define the set S∗ as the set of all pure strategies, i.e. S∗ = ⋃
i∈N Si . Let a

subset D∗ of S∗ be given with the property that for every player i there is at least one
pure strategy si

j in D∗, i.e. Di = D∗ ∩ Si �= ∅ for every player i . Such a set D∗

is called admissible. Admissible subsets D∗ are used to decompose NE(�) in subsets
NE(�, D∗), where NE(�, D∗) contains those elements of NE(�) where only strategies
in D∗ are played with positive probability and all strategies in D∗ are best responses,
i.e.

NE(�, D∗) = {
σ ∈ NE(�)

∣∣ si
j �∈ D∗ ⇒ σ i

j = 0

si
j ∈ D∗ ⇒ si

j ∈ argmaxsi
�∈Si ui

(
σ−i , si

�

)}
.

The situation where a Nash equilibrium σ of the game � is an element of two different
sets NE(�, D∗) is a knife-edge case. It can only occur if some player i has an optimal
strategy that is played with probability zero. It is easily seen that

NE(�) =
⋃
D∗

NE(�, D∗).

An admissible set D∗ determines a support-restricted game �|D∗ = 〈N , {Di }i∈N , {ui }i∈N 〉
with Di = {di

1, . . . , di
|Di |} the set of pure strategies of player i and the payoff functions

restricted to the set D = ���� i∈N Di . A mixed strategy of player i is a probability distribution
on Di . The set of mixed strategies for player i will be denoted by �i , with generic element
δi , and we define � = ���� i∈N�i .

Given an admissible set D∗, define

E(�|D∗) = {
δ ∈ �

∣∣ Di = argmaxdi
�∈Di ui

(
δ−i , di

�

)
for all i ∈ N

}
as the set of all Nash equilibria δ of the support-restricted game �|D∗ with the property
that for all players i ∈ N it holds that all strategies from Di are best responses to δ−i .
The set E(�|D∗) contains all totally mixed equilibria of the game �|D∗ and can be larger
as optimal pure strategies might be played with zero probability.

For all δ ∈ NE(�, D∗) it holds that δ ∈ E(�|D∗), i.e. NE(�, D∗) ⊆ E(�|D∗).2

Elements of E(�|D∗) are not necessarily elements of NE(�, D∗), since there may exist
an si ∈ S∗ \ D∗ with ui (δ−i , si ) > ui (δ). Therefore it holds that NE(�, D∗) = E(�|D∗) ∩
NE(�).
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If δ ∈ E(�|D∗), then

ui
(
δ−i , di

j

) − ui
(
δ−i , di

�

) = 0,
(
di

j , di
� ∈ Di , i ∈ N

)
,∑

di
j ∈Di

δi
j − 1 = 0, (i ∈ N ).

The first line says that for each δ ∈ E(�|D∗) all players i ∈ N are indifferent between
playing the pure strategies from Di when δ−i is played by the opponents. The second
line makes sure that the probabilities by which the players play certain strategies add up
to one.

Fix one element d̃ i ∈ Di for each player i (which is possible because of the
admissibility of the set D∗). The set of solutions to the set of equations above is equivalent
to the set of solutions to the following system of multilinear equations:

ui (δ−i , d̃ i ) − ui (δ−i , di ) = 0, (di ∈ Di \ {d̃ i }, i ∈ N ), (1)∑
di

j ∈Di δ
i
j − 1 = 0, (i ∈ N ). (2)

All together, this system has
∑

i∈N (|Di | − 1) + n = |D∗| equations and |D∗| unknows.
What one expects is a zero-dimensional solution set. To state this differently, one expects
that the set of solutions to the system (1) and (2) consists of a finite number of isolated
points. We proceed now by making this intuition more clear.

A normal form game can be parameterized by the payoffs; any game � is determined
by the set of players, number of actions per player, and a vector u containing the payoffs
of the game. When a property is said to hold for almost every game �, it means that for
any specification of the set of players and the number of pure strategies per player, the
property holds for almost every vector u that parameterizes this game �, i.e. for a set of
vectors u with full Lebesgue measure.

For every vector u ∈ R
n|S| and admissible subset D∗, define the function F D∗,u :

R
|D∗| → R

|D∗| by the left-hand side of (1) and (2), i.e.

F D∗,u(δ) =
(

ui (δ−i , d̃ i ) − ui (δ−i , di ) (di ∈ Di \ {d̃ i }, i ∈ N )∑
di

j ∈Di δ
i
j − 1 (i ∈ N )

)
.

The set of solutions E(�|D∗) to the system (1) and (2) is a subset of the set of solutions to
F D∗,u(δ) = 0. In fact, if δ ∈ E(�|D∗), then δ is a nonnegative real solution to F D∗,u(δ) = 0.

An element δ ∈ C
|D∗|, the set of |D∗|-dimensional complex vectors, is an element

of E(�|D∗) if and only if it solves (1) and (2) and

δi
j ∈ R+, (di

j ∈ Di , i ∈ N ). (a)

Moreover, δ ∈ C
|D∗| is an element of NE(�, D∗), and therefore a Nash equilibrium of

the game �, if and only if it solves (1) and (2), (a), and

ui (δ) − ui (δ−i , si ) ≥ 0, (si ∈ Si \ Di , i ∈ N ). (b)
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Since (1) consists of |D∗|−n polynomials of degree n−1 and (2) consists of n polynomials
of degree 1, the total degree of the system (1) and (2) is (n −1)|D

∗|−n as being the product
of the degrees of the individual equations. The theorem of Bezout says that the number
of solutions and solutions at infinity, counting multiplicities, is equal to the total degree
of the system (see Section 4.1).

Theorem 1. When the number of solutions in C
|D∗| to F D∗,u = 0 is finite, it equals

(n − 1)|D
∗|−n , where solutions are counted by multiplicity and infinite solutions are

counted.

The reason that the analysis is done in complex space is because the number of complex
solutions to F D∗,u(δ) = 0 is known when the solution set consists only of a finite number
of isolated points. This enables us to make sure that all solutions have been found.

Although it is known that for a set of games with full Lebesgue measure the number
of Nash equilibria is finite, it cannot be guaranteed that for the same set of games the set
of complex solutions to F D∗,u(δ) = 0 is finite for all admissible subsets D∗. Theorem 2
states that this set of solutions is typically finite when the vector u is allowed to be chosen
from the complex space. Subsequently Theorem 3 extends this property for vectors u to
be chosen from the reals.

Theorem 2. For all admissible subsets D∗, there is a set of vectors u ∈ C
n|D| with

full Lebesgue measure such that the set of solutions to F D∗,u(δ) = 0 is a compact
zero-dimensional manifold.

Proof. The proof of Theorem 3 is spelled out in Section 6 and exploits techniques as
introduced in Herings (1997) and Herings and Peeters (2001). �

Theorem 3. For all admissible subsets D∗, there is a set of vectors u ∈ R
n|D| with

full Lebesgue measure such that the set of solutions to F D∗,u(δ) = 0 is a compact
zero-dimensional manifold.

Proof. We first homogenize the system of polynomials, so that solutions are elements
of the complex projective space CP

|D∗|.3 Let V be the set of pairs (δ̄, ū) ∈ CP
|D∗| ×C

n|D|

such that δ̄ ∈ CP
|D∗| is a singular solution of the system of equations given by ū ∈ C

n|D|.
The set V is defined by polynomials that are homogeneous in δ̄. Let π : CP

|D∗| ×
C

n|D| → C
n|D| be the projection on the final coordinates, i.e. π : (δ̄, ū) �→ ū. Now

the set π (V ) is the set of all coefficient-vectors u for which the resulting system of
polynomial equations contains a singular solution. According to the Projective Extension
Theorem (see page 389 of Cox, Little, and O’Shea (1996)) the set π (V ) is a complex
affine variety. Consequently, a finite system of polynomials (with coefficients in C)
g1, . . . , gk : C

n|D| → C exists such that g1(u) = · · · = gk(u) = 0 if and only if
u ∈ π (V ).

We have shown the result once we prove the claim that the intersection of π (V )
with the space of real coefficient vectors does not contain an open set. Suppose to the
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contrary it does, i.e. there exists an open subset U of π (V )∩R
n|D|. Then all coefficients of

g1, . . . , gk would be zero, as U is an open subset of the reals that vanishes on g1, . . . , gk .
But, then π (V ) should be the whole of C

n|D| which is in contradiction with Theorem 2.
So, the intersection of π (V ) with the space of real coefficient vectors does not contain
an open set. �

The set of vectors u for which Theorem 3 holds for all admissible subsets equals the
intersection of the separate sets over the admissible subsets. Since the number of ad-
missible subsets is finite, it concerns a finite intersection. More precisely, it is a finite
intersection of sets with full Lebesgue measure.

Theorem 4. There is a set of vectors u ∈ R
n|S| with full Lebesgue measure such that

for all admissible subsets D∗ the set of solutions to F D∗,u(δ) = 0 is a compact zero-
dimensional manifold.

Proof. For an admissible subset D∗, let U(D∗) denote the set of full Lebesgue measure
from Theorem 3. Define U = ⋂

D∗ Ū(D∗), where Ū(D∗) is the class of vectors u ∈ R
n|S|

for which the projection to R
n|D|, u|D∗ , is inU(D∗). Being a finite intersection of sets with

full Lebesgue measure, it is obvious that the set U is a set with full Lebesgue measure. �

In the following, we call a game generic if its payoff vector u belongs to the set with full
Lebesgue measure of Theorem 4. When a game with payoff-vector u in real numbers
is considered which is not in the generic set of the theorem, a small perturbation of
the payoff-vector suffices to obtain a payoff-vector which is. For this newly obtained
payoff-vector it is possible to compute all candidate equilibria. Since the equilibrium
correspondence is upper hemi-continuous, the candidate equilibria found are close to—
and therefore good approximations of—the candidate equilibria for the original game
defined by the payoff-vector u.

4. The algorithm

We present an algorithm to solve the system of equations (1) and (2). The algorithm
belongs to the class of homotopy-based algorithms. First, a general treatment of homotopy
continuation methods to locate the zeros of a polynomial mapping is given. Next, one
specific algorithm is discussed in detail, i.e. the algorithm used in the HOMPACK-routine
POLSYS. Finally, a step-wise description of the algorithm is given.

4.1. Homotopy continuation

Many papers have been devoted to finding all solutions to a system P of n polynomial
equations in n unknowns using homotopy continuation methods on the only premises
that the set of zeros is finite (see Chow, Mallet-Paret, and Yorke, 1979; Drexler, 1977;
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Drexler, 1978; Garcia and Li, 1980; Garcia and Zangwill, 1979; Garcia and Zangwill,
1979; Garcia and Zangwill, 1980; Kojima and Mizuno, 1983; Mizuno, 1981; Morgan,
1983; Morgan and Sommese, 1987; Morgan, Sommese, and Watson, 1989; Wright, 1985;
Zulehner, 1988).4

A map P : C
n → C

n is polynomial if the maps Pk : C
n → C are polynomials for

all k = 1, . . . , n, i.e. Pk(z) is a sum of terms each of which has the form azb1
1 zb2

2 . . . zbn
n

for some a ∈ C and some nonnegative integers b j ( j = 1, . . . , n). The sum of all b j ’s is
the degree of the term, and the maximum of the degrees of the terms, dk , is the degree
of the polynomial Pk . The degree of P is given by d = ∏n

k=1 dk . Consider the system
P(z) = 0 of n equations in n unknowns. If the number of solutions is finite, it follows
by Bezout’s Theorem that there are at most d isolated solutions.

Homotopy continuation methods can be used to find all the geometrically isolated
solutions of P(z) = 0. This works as follows. The system P is embedded in a system of
n polynomial equations in n + 1 unknowns. This new system includes the variables of P
and a new variable, the homotopy parameter. For one value of the homotopy parameter,
the new system can be satisfactorily solved, and for another it is identical to P . The
continuation process solves P(z) = 0 by evolving or ‘continuing’ the full set of known
solutions resulting for one value of the homotopy parameter into the full set of solutions
to P(z) = 0.

The homotopy system is denoted by H (t, z) = 0, where H (1, z) = P(z) for all z
and the solutions to H (0, z) = 0 are known. The homotopy parameter t varies between 0
and 1. The idea is to follow the set of solutions to H (t, z) = 0 that originate at t = 0 and
terminate at t = 1. Assuming sufficient conditions so that H−1({0}) consists of smooth
paths, the continuation towards the solutions becomes a process of path tracking.

Many issues arise in attempting to implement this concept into a reliable and fast al-
gorithm for computing all solutions to polynomial systems. Basically, there are two steps:

(1) Define the homotopy H (t, z).

(2) Choose a numerical method for tracking the paths defined by H (t, z) = 0.

The definition chosen in step (1) has to result in smooth paths in H−1({0}) which link
the known solutions of H (0, z) = 0 to the solutions of P(z) = 0. More precisely, the
homotopy H has to be chosen such that the components of H−1({0}) have the following
properties:

1. A component may be a closed arc which intersects each slice {t} × C
n , t ∈ [0, 1],

once. These components correspond to single roots of the system P(z) = 0.

2. A component may consist of m arcs which meet in a single point of {1} × C
n . This

point is a root of the system P(z) = 0 with multiplicity m. Each slice {t} × C
n ,

t ∈ [0, 1), will intersect such a component in m points.

3. A component may be a half-open arc which intersects each slice {t} × C
n , t ∈ [0, 1),

in a single point which tends to infinity as t → 1. Such a component corresponds to
an infinite root.
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For the treatment of infinite roots there are two basic solutions: (a) define the homotopy
such that for t ∈ [0, 1) the degree of the equations Hk(t, z) = 0 is one higher than the
degree of the equations Pk(z) = 0, and (b) carry out the continuation in the complex
projective space, a compactification of C

n which allows an explicit representation of
infinite roots.

For step (2) there are two fundamental methods of numerically tracing those paths:
predictor-corrector methods, and simplicial methods. Predictor-corrector methods ap-
proximately follow exact solution curves, whereas simplicial methods exactly follow
approximate solution curves. For more theory on path-tracking methods the reader is
referred to Allgower and Georg (1980, 1983, 1990, 1993) and Garcia and Zangwill
(1981).

4.2. Hompack

HOMPACK (see Watson, Billups, and Morgan, 1987) is a suite of codes that is programmed
in FORTRAN and developed for following homotopy-paths numerically in order to com-
pute fixed points or zeros. HOMPACK contains an algorithm, the POLSYS-routine, which
allows to solve completely for systems of polynomial equations on the only premises
that the solution set is finite. Separate routines are provided for dense and sparse ma-
trices. In Morgan, Sommese, and Watson (1989) it is described how the POLSYS rou-
tine of the software package HOMPACK computes all isolated solutions of a polynomial
system.

Consider a polynomial map P : C
n → C

n . Define Q : C
n → C

n by

Qk(z) = βk zdk
k − αk, k = 1, . . . , n, (3)

where αk and βk are non-zero complex numbers, for k = 1, . . . , n. Define the homotopy
map Hα,β : [0, 1] × C

n → C
n by

Hα,β(t, z) = (1 − t)Q(z) + t P(z), (4)

where α = (α1, . . . , αn) ∈ C
n and β = (β1, . . . , βn) ∈ C

n . The following result from
page 124 of Morgan (1987) applies.

Theorem 5. For any P , there are sets of measure zero, A and B in C
n such that, for

α �∈ A and β �∈ B, the following holds:

1. The solution set {(t, z) ∈ [0, 1) × C
n | Hα,β(t, z) = 0} is a collection of d non-

overlapping smooth paths;

2. The paths move from t = 0 to t = 1 without backtracking in t ;

3. Each geometrically isolated solution of P(z) = 0 of multiplicity m has exactly m
continuation paths converging to it;
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4. A continuation path can diverge to infinity only as t → 1;

5. If P(z) = 0 has no solutions at infinity, all the paths remain bounded. If P(z) = 0
has a solution at infinity, at least one path will diverge to infinity as t → 1. Each
geometrically isolated solution at infinity of P(z) = 0 of multiplicity m will generate
exactly m diverging continuation paths.

For almost all choices of α and β in C
n , H−1

α,β({0}) consists of d smooth paths emanating
from {0}×C

n , which either diverge to infinity as t approaches 1 or converge to a solution to
P(z) = 0 as t approaches 1. Moreover, each geometrically isolated solution of P(z) = 0
has a path converging to it.

Remark. From Theorem 4 it follows that for almost all games the polynomial map F D∗,u

from section 3 satisfies the properties required for the polynomial map P . Theorem 5
claims that with probability one the homotopy map H defined above satisfies all nice
properties needed for numerical path-tracking. Moreover, due to generic regularity of all
zeroes of F D∗,u item 1. of Theorem 5 can be extended to hold true for all t’s in the closed
unit interval [0, 1] for a set of games with full Lebesgue measure.

In HOMPACK, the algebraic context for generating the full solution list of a polynomial
system is complex projective space rather than real or complex Euclidean space, thereby
immediately providing a treatment for the infinite roots. For HOMPACK therefore the
classical approach from algebraic geometry of homogenizing P and establishing the
continuation process in projective space is followed.

The complex projective space, CP
n , consists of the lines through the origin in C

n+1,
denoted [(z0, . . . , zn)], where (z0, . . . , zn) ∈ C

n+1 \ {0}; that is, [(z0, . . . , zn)] is the line
through the origin that contains (z0, . . . , zn). The complex projective space CP

n can
be seen as the disjoint union of points [(z0, . . . , zn)] with z0 �= 0 identified with the
Euclidean space via [(z0, . . . , zn)] → (z1/z0, . . . , zn/z0) and the ‘points at infinity,’ the
elements [(z0, . . . , zn)] with z0 = 0.

Given Pk(z1, . . . , zn), let P⊥
k (z0, . . . , zn) be defined as follows. Each term of P⊥

k
is obtained from the corresponding term of Pk by multiplying it by the power of z0 to
bring the degree of the term up to dk . Thus, a term of Pk of degree δ is multiplied by
zdk−δ

0 , and consequently each term of P⊥
k has degree dk . Thus, P⊥

k (λz) = λdk P⊥
k (z), and

P⊥
k maps all points of [(z0, . . . , zn)] to the same point. The map P⊥

k : CP
n → C is the

homogenization of the map Pk . Then, P⊥—all n components P⊥
k taken together—is a

map form CP
n to C

n . Note that if P⊥(z) = 0, then P⊥(λz) = 0, for any non-zero complex
scalar λ. Therefore, ‘solutions’ of P⊥(z) = 0 are complex lines through the origin.

The system P⊥(z0, . . . , zn) = 0 reduces to the system P(z) = 0 under the substitu-
tion z0 = 1. Thus, the two systems can be considered to have the same set of roots in C

n .

Theorem 6. There are no more than d isolated solutions to P⊥(y) = 0 in CP
n . If

P⊥(y) = 0 has only a finite number of solutions in CP
n , it has exactly d solutions,

counting multiplicities.
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To avoid dealing with CP
n , a unique point is determined for each solution line. This point

is z ∈ C
n such that either (1, z) is on the solution line, or (0, z) is and the first non-zero

component of z is 1.

4.3. Description of the algorithm

In this subsection the proposed algorithm to compute all equilibria of a generic game in
normal form is comprehensively described in a step-wise manner.5

Step 1. In the first step of the algorithm, the game is decomposed by means of support-
sets. Each decomposition can be seen as a game for which the strategy set of each
player is restricted as to use only strategies that belong to the support-set.

Step 2. If for the support-restricted game one player has a strictly dominated strategy
or one player has too many actions relative to the other players, i.e. |Di | − 1 >∑

k �=i |Dk | − 1 for some i , see McKelvey and McLennan (1997), then it can be con-
cluded that this support-restricted game does not possess a totally mixed Nash equilib-
rium. In such a case, no more computations are needed. When the support-restricted
game has a special structure—in particular, when only two players have more than
one strategy such that the support-restricted game is equivalent to a bimatrix game—it
is possible to use existing algorithms presented in Kostreva and Kinard (1991) and
Dickhaut and Kaplan (1993). In this case we can forward the found candidate equi-
libria to the final step of the algorithm. Otherwise a system of polynomial equations
is formulated for which the set of solutions contains all completely mixed equilibria
of the support-restricted game.

Step 3. In this step the bulk of the computations are done by using a numerical method to
compute all solutions of the system of polynomial equations according to (1)–(4). The
POLSYS-routine of HOMPACK is used to do these computations. The found candidate
equilibria are exported to the next step.

Step 4. It is verified whether the candidate equilibria are equilibria of the original game.
The solutions that are not nonnegative and real are removed as are the solutions for
which there is a player that can obtain a better payoff by using a pure strategy that is
outside the support-set.

In Bubelis (1979) and Datta (2003) it is shown that for each support-restricted game,
there exists a 3-person game such that the sets of completely mixed equilibria of both
are isomorphic. This result may be eventually useful for speeding up computations.

5. An alternative algorithm

This section presents an alternative method to solve the system of polynomial equations
(1) and (2) using Gröbner basis theory. The first subsection presents the Gröbner basis.
The second subsection deals with the application of the Gröbner basis to normal form
games.
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5.1. The Gröbner basis

Let C[z1, . . . , zn] denote the set of all polynomials in n variables with coefficients in
C. For p1, . . . , ps ∈ C[z1, . . . , zn], the variety V (p1, . . . , ps) is defined to be the set of
solutions of the system

p1 =0, . . . , ps =0.

That is,

V (p1, . . . , ps) = {(a1, . . . , an) ∈ C
n | pi (a1, . . . , an) = 0, i = 1, . . . , s}.

The set I = 〈p1, . . . , ps〉 = { ∑s
i=1 ui pi | ui ∈ C[z1, . . . , zn], i = 1, . . . , s } is an ideal

in C[z1, . . . , zn]; that is, if p, q ∈ I , then so is p+q and if p ∈ I and r is any polynomial
in C[z1, . . . , zn], then r p ∈ I . The set {p1, . . . , ps} is called a generating set of the ideal
I . According to page 3 of Adams and Loustaunau (1994) the following holds.

Theorem 7. The variety V (I ) = {(a1, . . . , an) ∈ C
n | p(a1, . . . , an) = 0, p ∈ I } is

equal to the variety V (p1, . . . , ps). Or, stated differently, p =0 (p ∈ I ) is equivalent to
p1 = 0, . . . , ps = 0.

Now, if we have I = 〈p1, . . . , ps〉 = 〈p′
1, . . . , p′

t〉, then V (p1, . . . , ps) = V (I ) =
V (p′

1, . . . , p′
t ). This means that the system p1 = 0, . . . , ps = 0 has the same solutions

as the system p′
1 = 0, . . . , p′

t = 0, and hence a variety is determined by an ideal,
not by a particular set of equations. If we have a ‘better’ generating set for the ideal
I = 〈p1, . . . , ps〉, we will have a ‘better’ representation for the variety V (p1, . . . , ps).
By ‘better’ is meant a set of generators that allows us to understand the algebraic structure
of I = 〈p1, . . . , ps〉 and the geometric structure of V (p1, . . . , ps) better. This ‘better’
generating set for I is called a Gröbner basis for I (see Gröbner, 1949, 1970). In the
case of linear polynomials this ‘better’ generating set is the one obtained from the row
echelon form of the matrix in the system.

Applying Buchberger’s algorithm, see Buchberger (1965), to a zero-dimensional
ideal I , a typical Gröbner basis can be found, namely one in ‘triangular’ form.6 This is
similar to the row echelon form in the linear case. Thus, in order to solve the system of
equations determined by a zero-dimensional ideal I , it suffices to have an algorithm to
find the roots of polynomials in one variable. That is, first the equation in one variable,
q1(z1) = 0, is solved. Subsequently, for each solution α of q1(z1) = 0, the equation
q2(α, z2) = 0 is solved. One continues in this way until qn(α1, . . . , αn−1, zn) = 0 is
solved. The solutions obtained in this way are the only possible solutions. Finally, for the
case t > n, it remains to be verified whether the solutions satisfy qn+1 = 0, . . . , qt = 0.
For a thorough introduction into Gröbner bases, the reader is referred to Adams and
Loustaunau (1994) and Cox, Little, and O’Shea (1996).
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5.2. Applying the Gröbner basis

In the third step of the algorithm proposed in Section 4, HOMPACK was used to compute
all solutions of the system of polynomial equations. In this subsection it is shown how
this third step can be altered by applying Gröbner basis theory. Using the Gröbner
basis the problem of solving a system of multivariate polynomials is transformed to
the problem of subsequently solving single polynomial equations with one unknown.
For the deformation of the system of polynomial equations into one in triangular form,
Buchberger’s algorithm can be used.

An important advantage of having the triangular structure is that the problem of find-
ing all zeros of a system of polynomials can be reduced to repeatedly finding all zeros of a
single polynomial. At each step, the zeros that are not finite, nonnegative and real can be
filtered out, which increases performance of the algorithm in terms of computation time.

A disadvantage of the application of the Gröbner basis is that the degree of the new
system may increase enormously, since the number of polynomials as well as the degree
of each polynomial separately may increase. However, all polynomials except the first
one to solve are linear with probability one. As in Section 3 this statement will be proved
first for vectors u in the complex space and subsequently for vectors u from the reals.

Theorem 8. There is a set of vectors u ∈ C
n|S| with full Lebesgue measure such that

for all admissible subsets D∗ the Gröbner basis of F D∗,u is a system of polynomials that
are all linear, except one.

Proof. See Section 6. �

Theorem 9. There is a set of vectors u ∈ R
n|S| with full Lebesgue measure such that

for all admissible subsets D∗ the Gröbner basis of F D∗,u is a system of polynomials that
are all linear, except one.

Proof. The proof of this theorem is similar to the proof of Theorem 3 and makes use
of the Projective Extension Theorem. �

Towards the application of Gröbner basis theory, a few words of caution. Buchberger’s
algorithm is only well-defined when the computer can do exact arithmetic. If one applies
it to floating point numbers, round-off error may compound quickly, so that the numbers
that are actually zero will fail approximate tests of equality to zero. This means that it
can only be applied when the utilities are rational numbers. In addition, it is restricted
to computational environments in which integers of arbitrary size are allowed, and in
practice the size of the integers describing coefficients in intermediate calculations might
become very large very quickly.
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6. Proofs

To make the proofs as transparent as possible, we need some notations and definitions.
For k ∈ Z+, for r ∈ N, a subset X of C

m is called a k-dimensional Cr manifold
if for every x̄ ∈ X there exists a local Cr coordinate system of C

m around x̄ , i.e. a Cr

diffeomorphism φ : U → V , where U is an open subset of C
m containing x̄ and V

is open in C
m , such that φ(x̄) = 0 and φ(X ∩ U ) = {y ∈ V | yi = 0, (i = 1, . . . ,

m − k)}.
A way to obtain manifolds is by means of regular constraint sets. In general, a

regular constraint set is a system of equalities and inequalities. Here, it is sufficient to
restrict ourselves to systems of equalities only. Let J be a finite index set and let g̃ j for
all j ∈ J be Cr functions defined on some open subset U of C

m . Define

M[g̃] = { x ∈ U | g̃ j (x) = 0, ∀ j ∈ J }.

If for every x̄ ∈ M[g̃] it holds that

{ ∂x g̃ j (x̄) | j ∈ J }

is a set of independent vectors, then M[g̃] is called a Cr regular constraint set (RCS).
In Jongen, Jonker, and Twilt (1983) it is shown that every Cr RCS is an (m − |J |)-
dimensional Cr manifold.

To prove Theorem 2, the following lemma is needed.

Lemma 10. For all admissible subsets D∗, there is a set of vectors u ∈ C
n|S| with full

Lebesgue measure such that the Jacobian of F D∗,u has full rank in its zero
points.

Proof. Let an admissible subset D∗ of S∗ and a vector u ∈ C
n|S| be given and let the

function F D∗
: C

|D∗| × C
n|D| → C

|D∗| be defined such that F D∗
(δ, u) = F D∗,u(δ). If

the Jacobian of F D∗
evaluated at (δ̄, ū), ∂(δ,u) F D∗

(δ̄, ū), has full rank for all (δ̄, ū) such
that F D∗

(δ̄, ū) = 0, then it follows by the transversality theorem (see Mas-Colell, 1985,
Theorem I.2.2) that ∂δ F D∗,u(δ̄) has full rank for all δ̄ such that F D∗,u(δ̄) = 0, except for
a set of vectors u with zero Lebesgue measure. So, we have to prove that ∂(δ,u) F D∗

has
full rank in points (δ̄, ū) such that F D∗

(δ̄, ū) = 0.
It is easily seen that

∂δk
�

( ∑
di

j ∈Di

δi
j − 1

)
= 11i=k,

∂uk (d−k ,dk
� )

( ∑
di

j ∈Di

δi
j − 1

)
= 0,
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Figure 1. Jacobian of F D∗
.

where 11 represents the identity function that assigns value one if the condition in the
subscript is satisfied and zero otherwise, and that

∂δk
�

(
ui (δ−i , d̃ i ) − ui

(
δ−i , di

j

)) = (
ui

(
δ−i,k, dk

� , d̃ i
) − ui

(
δ−i,k, dk

� , di
j

)) · 11i �=k,

∂uk (d−k ,dk
� )

(
ui (δ−i , d̃ i ) − ui

(
δ−i , di

j

)) = δ(d−i ) · (
11dk

� =d̃ i − 11dk
� =di

j

)
.

Further we know that ∑
d−i ∈D−i

δ(d−i ) = 1,

and therefore∑
d−i ∈D−i

∂uk (d−k ,dk
� )

(
ui (δ−i , d̃ i ) − ui

(
δ−i , di

j

)) = 11dk
� =d̃ i − 11dk

� =di
j
.

So, for an appropriate ordering of variables and equations, the Jacobian of F D∗
in points

(δ̄, ū) for which it holds that F D∗
(δ̄, ū) = 0 has the form as depicted in figure 1. Note

that all derivatives are with respect to complex variables. In this figure the box containing
the star is not specified, since values in this box are irrelevant for the conclusion that the
matrix has full rank. �

Proof of Theorem 2. From Lemma 10, it follows that for any admissible subset D∗ and
for almost every vector u, the set {δ ∈ C

|D∗| | F D∗,u(δ) = 0} is a regular constraint set. By
counting the number of equations and variables it follows that {δ ∈ C

|D∗| | F D∗,u(δ) = 0}
is a zero-dimensional manifold.

Since F D∗,u is polynomial, the solution to F D∗,u = 0 is a semi-algebraic set. It is
a well-known result in semi-algebraic theory, see for instance Bochnak, Coste, and Roy
(1987) and Blume and Zame (1994), that the solution set has a finite number of compo-
nents. A zero-dimensional manifold with a finite number of components is compact. �
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Proof of Theorem 8. Suppose to the contrary that for some game � and some admissible
subset D∗, the Gröbner basis of F D∗,u(�) has two or more polynomials that are not linear.
Since such a polynomial has at least two solutions, it follows that there are two solutions,
δ and γ , in which a single player i plays one action di

j with the same probability, i.e.
δi

j = γ i
j . Moreover, player i can be chosen such that he has at least two strategies at his

disposal. Indeed, otherwise the polynomial that determines the probability of his pure
strategy has to be linear, specifying the probability to be equal to one. We will show
that this is impossible by constructing a class of games with full Lebesgue measure that
satisfies certain transversality conditions. Next we show these transversality conditions
to be incompatible with the existence of multiple solutions, where one action is played
with the same probability.

Fix a carrier D∗, two different players i1 and i2, a strategy j1 for player i1, and a strat-
egy j2 for player i2. Define the set �̃ = {(δ, γ ) ∈ C

|D∗| × C
|D∗| | δi1

j1 �= γ i1

j1 , δ
i2

j2 �= γ i2

j2 }.
Moreover, fix a player i3 and a strategy of that player, j3, where (i3, j3) �= (i1, j1),
(i3, j3) �= (i2, j2), and player i3 has at least two strategies at his disposal. The function
F D∗,(i1, j1),(i2, j2),(i3, j3) : �̃ × C

n|D| → C
|D∗| × C

|D∗| × C is specified by the following
system of equations:

ui (δ−i , d̃ i ) − ui (δ−i , di ) = 0, (di ∈ Di \ {d̃ i }, i ∈ N ), (5)∑
di

j ∈Di

δi
j − 1 = 0, (i ∈ N ), (6)

ui (γ −i , d̃ i ) − ui (γ −i , di ) = 0, (di ∈ Di \ {d̃ i }, i ∈ N ), (7)∑
di

j ∈Di

γ i
j − 1 = 0, (i ∈ N ), (8)

δi3

j3 − γ i3

j3 = 0. (9)

The Jacobian of the function F D∗,(i1, j1),(i2, j2),(i3, j3) in a point (δ̄, γ̄ , ū) ∈ �̃ × C
n|D| for

which it holds that F D∗,(i1, j1),(i2, j2),(i3, j3)(δ̄, γ̄ , ū) = 0 is depicted in figure 2, where E
stands for a row containing ones only, e(1) is the row with a one in the column belonging
to the pair (i3, j3) and zeros elsewhere, and e(−1) is a row with a −1 in the column
belonging to the pair (i3, j3) and zeros elsewhere. We show that this matrix has full row
rank.

The derivative with respect to u in (5) has full row rank as has the derivative with
respect to u in (7). The compound of the two blocks has full row rank if there does not
exist a player k and an action dk

� ∈ Dk \ {d̃k} for which the row belonging to dk
� in (5)

depends linearly on the row belonging to dk
� in (7). Because for both rows the sum of the

elements equals 1, the two rows belonging to dk
� can only be linearly dependent if they

are identical.
If k = i1, then at least one of the partial derivatives with respect to uk(dk

� , di2

j2, d−i2,k)
differs in (5) and (7), since δi2

j2 �= γ i2

j2 . If k �= i1, then at least one of the partial derivatives
with respect to uk(dk

� , di1

j1, d−i1,k) differs in (5) and (7), since δi1

j1 �= γ i1

j1 . In both cases it
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Figure 2. Jacobian of F D∗,(i1, j1),(i2, j2),(i3, j3).

holds that the rows in (5) and (7) belonging to dk
� are different. As this holds for all pairs

(k, �) ∈ Dk \ {d̃k} and all k ∈ N , it follows that the derivative with respect to u in (5)
and (7) has full row rank. Since, the derivatives with respect to u in (6), (8) and (9) are
all zero, it is sufficient to show that the matrix of partial derivatives to δ and γ in (6), (8)
and (9) has full row rank.

It is easily seen that the matrix of partial derivatives with respect to δ and γ in (6)
and (8) has full row rank. The only thing left is to show that the row in (9) does not
linearly depend on the rows in (6) and (8). Note that row (9) can only depend linearly on
(6) and (8) if Di3 = {di3

j3}. This is ruled out, since player i3 was chosen to have at least
two pure strategies at his disposal.

Since the Jacobian of F D∗,(i1, j1),(i2, j2),(i3, j3) evaluated at (δ̄, γ̄ , ū) has full rank for
all (δ̄, γ̄ , ū) such that F D∗,(i1, j1),(i2, j2),(i3, j3)(δ̄, γ̄ , ū) = 0, it follows by the transversality
theorem (see Mas-Colell, 1985) that ∂(δ,γ ) F D∗,(i1, j1),(i2, j2),(i3, j3)(δ̄, γ̄ ) has full row rank
for all (δ̄, γ̄ ) such that F D∗,u(δ̄, γ̄ ) = 0, except for a set of vectors u with zero Lebesgue
measure. Denote the set of vectors u for which the full row rank property holds by
U(D∗, (i1, j1), (i2, j2), (i3, j3)). By counting equations and unknowns, it follows that
∂(δ,γ ) F D∗,(i1, j1),(i2, j2),(i3, j3)(δ̄, γ̄ ) cannot have full row rank. It follows that for all u ∈
U(D∗, (i1, j1), (i2, j2), (i3, j3)) there are no solutions to F D∗,(i1, j1),(i2, j2),(i3, j3),u(δ̄, γ̄ ) =
0.
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Define the full measure set U as the intersection of all sets U(D∗, (i1, j1), (i2, j2),
(i3, j3)) and the set of vectors u given in Theorem 4. Fix a vector u in U . We show that
for the game generated by u, there is no D∗ such that F D∗,u has multiple solutions with
the properties as in the first paragraph of the proof.

Suppose there are multiple solutions, δ and γ , in which a single player i3 with at
least two strategies at his disposal plays action di3

j3 with the same probability in both
candidate equilibria, i.e. δi3

j3 = γ i3

j3 .
Suppose first that for some player i ∈ N , δ−i = γ −i . Then it follows from

the multilinearity of F D∗,u that for all linear combinations ρi of δi and γ i , the point
(ρi , δ−i ) = (ρi , γ −i ) is a zero of F D∗,u . So, we have a continuum of zeros, which con-
tradicts the game coming from the generic set of Theorem 4. As a consequence, it is not
possible that δ−i = γ −i for any i ∈ N . We conclude that there are two different players
i1 and i2, a strategy j1 for player i1, and a strategy j2 for player i2 such that δi1

j1 �= γ i1

j1

and δi2

j2 �= γ i2

j2 . Since δi3

j3 = γ i3

j3 , there is a solution to F D∗,(i1, j1),(i2, j2),(i3, j3),u(δ̄, γ̄ ) = 0.
Since u ∈ U , this leads to a contradiction. This completes our proof. �
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Notes

1. Gambit is a library of game theory software and tools for the construction and analysis of finite normal
form and extensive form games. See http://econweb.tamu.edu/gambit.

2. In fact, δ is not an element of �, but from �. When we take δ in � we actually mean σ (δ) from � where
σ (δ) is the trivial extension of δ in �: σ i

j (δ) = δi
j if si

j ∈ D∗ and σ i
j (δ) = 0 otherwise.

3. We provide details on homogenizing the system of polynomials and on the definition of the complex
projective space in Section 4.2

4. Homotopy continuation is also called imbedding, continuation or incremental loading.
5. Unfortunately, when the algorithm is confronted with a non-generic game, it will not recognize this and

therefore will not return a warning message.
6. Since the field of concern is the complex space and given the fact that this space is algebraically closed,

saying that the ideal I is zero-dimensional is equivalent to saying that the variety V (I ) is finite.
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