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Abstract

Graphical interaction models have become
an important tool for analysing multivariate
time series. In these models, the interrela-
tionships among the components of a time
series are described by undirected graphs in
which the vertices depict the components
while the edges indictate possible dependen-
cies between the components. Current meth-
ods for the identification of the graphical
structure are based on nonparametric spec-
tral estimation, which prevents application
of common model selection strategies. In
this paper, we present a parametric approach
for graphical interaction modelling of multi-
variate stationary time series. The proposed
models generalize covariance selection models
to the time series setting and are formulated
in terms of inverse covariances. We show
that these models correspond to vector au-
toregressive models under conditional inde-
pendence constraints encoded by undirected
graphs. Furthermore, we discuss maximum
likelihood estimation based on Whittle’s ap-
proximation to the log-likelihood function
and propose an iterative method for solving
the resulting likelihood equations. The con-
cepts are illustrated by an example.

1 INTRODUCTION

Graphical models have become an important tool for
analysing multivariate data. While the theory origi-
nally has been developed for variables that are sam-
pled with independent replications, graphical models
recently have been applied also to stationary multivari-
ate time series (e.g., Brillinger 1996, Dahlhaus 2000,
Eichler 1999, 2001, 2006, Dahlhaus and Eichler 2003).

A particularly simple graphical representation is pro-
vided by graphical interaction models, which visual-
ize dependencies by undirected graphs. For time se-
ries, this approach has been discussed by Dahlhaus
(2000), who introduced so-called partial correlation
graphs. These are undirected graphs, in which each
component of the time series is represented by one ver-
tex. The conditional independences encoded by such
graphs can be formulated in terms of the inverse of the
spectral matrix. This has led to nonparametric tests
for the presence of an edge in the partial correlation
graph based on the maximum of the partial spectral
coherence (Dahlhaus et al. 1997) or on the integrated
partial spectral coherence (Eichler 2004). The concept
of partial correlation graphs has been used in many
applications from various scientific fields (e.g., Eichler
et al. 2003, Timmer et al. 2000, Gather et al. 2002,
Fried and Didelez 2003).

The main disadvantage of the current nonparametric
approach to graphical modelling based on partial cor-
relation graphs is the lack of a rigorous theory for
identifying the best fitting graph. An alternative to
the nonparametric approach is the fitting of paramet-
ric graphical models where the parameters are con-
strained with respect to undirected graphs. The prob-
lem of estimating the dependence structure of the pro-
cess now becomes a problem of model selection where
the best approximating model minimizes some chosen
model distance such as the Kullback-Leibler informa-
tion divergence.

In this paper, we propose graphical interaction mod-
els for stationary Gaussian time series that are defined
in terms of inverse covariances. In these models, the
conditional independences encoded by an undirected
graph correspond to zero constraints on the parame-
ters. In Section 2, we review the concept of condi-
tional independence graphs for stationary time series.
For Gaussian processes, these graphs are identical to
partial correlation graphs, which are restricted to lin-
ear dependencies. In Section 3, we introduce para-
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metric graphical interaction models for Gaussian pro-
cesses and discuss their relation to vector autoregres-
sive models. In Section 4, we discuss estimation of the
model parameters based on Whittle’s approximation
to the log-likelihood function; an iterative algorithm
for computing the resulting maximum likelihood es-
timates is presented in Section 5. In Section 6, the
fitting of graphical interaction models for time series
is illustrated by an example with air pollution data,
and Section 7 concludes.

2 UNDIRECTED GRAPHS FOR

TIME SERIES

Let XV =
(

XV (t)
)

t∈
� with XV (t) =

(

Xv(t)
)′

v∈V
be

a stationary Gaussian process with mean zero and co-
variances ΓV V (u) =

�
XV (t)XV (t − u)′. Throughout

the paper, we will make the following assumption.

Assumption 2.1. The spectral density matrix

fV V (λ) =
1

2π

∞
∑

u=−∞
ΓV V (u) e−iλu

exists and its eigenvalues are bounded and bounded
away from zero uniformly for all λ ∈ [−π, π].

The structure of the interdependencies among the
components of a multivariate time series XV can be
described in terms of conditional independencies be-
tween complete components of XV . More precisely,
let A, B, and S be disjoint subsets of V . Then the
subprocesses XA and XB are said to be conditionally

independent given XS if
� (

g(XA)h(XB)|XS

)

=
� (

g(XA)|XS

) � (
h(XB)|XS

)

for all real-valued measurable functions g(·) and h(·)
on � A×

�
and � B×

�
, respectively. In this case, we

write XA ⊥⊥XB |XS .

As in the case of ordinary random variables, condi-
tional independence relations of this form can be en-
coded by undirected graphs. Recall that an undirected

graph G is defined as a pair (V, E) where V is a set
of vertices or nodes and E is a collection of undirected

edges a −−− b for distinct nodes a, b ∈ V . Then each
component Xv of a process XV may be represented
by a single vertex v in a graph G = (V, E), while the
edges in E indicate possible dependencies among the
components of XV . This leads to the following defini-
tion of conditional independence graphs.

Definition 2.2. Let XV be a stationary process. The
conditional independence graph associated with XV is
a graph G = (V, E) with vertex set V and edge set E
such that

a −−− b /∈ E ⇔ Xa ⊥⊥Xb |XV \{a,b}

for all distinct a, b ∈ V .

The conditional independence graph encodes the pair-
wise conditional independence relations that hold for
the process XV . Under additional assumptions, more
general conditional independence relations can be de-
rived from it. Such properties that allow to asso-
ciate certain statements about the graph G with corre-
sponding conditional independence statements about
the variables in XV are called graphical Markov prop-
erties. For instance, if XV is a Gaussian process
such that Assumption 2.1 holds, then XV obeys the
so-called global Markov property with respect to its
conditional independence graph G: for disjoint sets
A, B, S ⊆ V , we say that S separates A and B if ev-
ery path between A and B intersects S; this will be
denoted as A on B |S. Then XV satisfies the global
Markov property with respect to G if

A on B |S in G ⇒ XA ⊥⊥XB |XS

for all disjoint subsets A, B, S ⊆ V . We also say that
XV is Markov for the graph G. For details, we refer
to Dahlhaus (2000).

For Gaussian processes XV , inference about condi-
tional independence graphs is commonly based in
the frequency domain (e.g., Dahlhaus 2000, Dahlhaus
et al. 1997, Fried and Didelez 2003). Here, the con-
ditional dependence between components XA and
XB given XS can be described by the partial cross-
spectrum of XA and XB given XS ,

fAB|S(λ) = fAB(λ) − fAS(λ)fSS(λ)−1fSB(λ),

which is the cross-spectrum of the residual processes
εA|S and εB|S obtained by removing the linear effects
of the series XS from the processes XA and XB , re-
spectively (cf Dahlhaus 2000). Equivalently, we can
use the partial spectral coherency RAB|S(λ) of XA

and XB given XS , which is given by

Rab|S(λ) =
fab|S(λ)

p

faa|S(λ)fbb|S(λ)

for a ∈ A and b ∈ B. For Gaussian processes, we have

XA ⊥⊥XB |XS ⇔ RAB|S(λ) = 0 ∀λ ∈ [−π, π]. (1)

For random vectors, the partial correlations can be
obtained from the inverse of the covariance matrix.
Dahlhaus (2000) showed that a similar relationship
holds between the partial spectral coherences and the
inverse of the spectral matrix. More precisely, let
gV V (λ) = fV V (λ)−1 denote the inverse spectral ma-
trix. Then, under Assumption 2.1, we have

Rab|V \{a,b}(λ) = − gab(λ)
√

gaa(λ)gbb(λ)
. (2)



This relation provides an efficient method for com-
puting estimates for the partial spectral coherences
Rab|V \{a,b}(λ) of a process XV : let f̂V V (λ) be an es-
timate of the spectral matrix such as a nonparametric
kernel spectral estimate and let ĝV V (λ) = f̂V V (λ)−1

its inverse; then the partial spectral coherences can
be estimated by substituting the entries of ĝV V (λ) for
the corresponding entries of gV V (λ) in (2). We note
that for non-Gaussian processes, this nonparametric
frequency domain approach can still be used for infer-
ence on the partial correlation graph, which describes
only the linear dependencies among the variables.

3 PARAMETRIC MODELLING

The nonparametric frequency domain approach can
easily be used for an exploratory analysis of the de-
pendence structure of stationary time series, but it
provides only insufficient tools for the identification of
conditional independence graphs. Moreover, it does
not include methods for building new, parsimonious
models that can be used e.g. for forecasting. As an
alternative, we consider parametric models that are
Markov for a given graph G and, thus, satisfy the
conditional independencies encoded by G. Here, the
main obstacle will be the constraints on the model
parameters that are imposed by the graph: for classi-
cal time series models such as vector autoregressions,
the constraints on the parameters are typically non-
linear and prevent efficient algorithms for parame-
ter estimation. Therefore we introduce graphical in-
teraction models for stationary Gaussian processes,
in which conditional independence restrictions corre-
spond to zero constraints on the parameters.

3.1 VECTOR AUTOREGRESSIONS

To illustrate the problems encountered by impos-
ing conditional independence restriction of the form
Xa ⊥⊥Xb |XV \{a,b} on a time series model, we briefly
consider the case of vector autoregressive models. Sup-
pose that XV is a stationary process given by

XV (t) =
p
∑

u=1
a(u) XV (t − u) + εV (t),

where εV is a Gaussian white noise process with
mean zero and non-singular covariance matrix Σ. Let
A(z) = � − a(1)z − . . . − a(p)zp be the characteristic
polynomial of the process (e.g., Dahlhaus 2000), where

� is the V × V identity matrix. Then, if detA(z) 6= 0
for all z ∈ � with |z| ≤ 1, the inverse spectral matrix
f(λ)−1 exists and is given by

f(λ)−1 = 2π A
(

eiλ
)

′ KA
(

e−iλ
)

, (3)

where K = Σ−1 is the inverse of the covariance matrix
Σ. From (1) and (2), it follows that Xa and Xb are

conditionally independent given XV \{a,b} if and only if
the corresponding entry in the inverse spectral matrix
f(λ)−1 vanishes for all frequencies, that is,

d
∑

k,l=1

p
∑

u,v=0
Kkl aka(u) alb(v) eiλ(v−u) = 0

for all λ ∈ [−π, π], where a(0) = − � and a(u) = 0
whenever u < 0 or u > p. Thus, the relation
Xa ⊥⊥Xb |XV \{a,b} imposes the following 2p + 1 re-
strictions on the parameters:

d
∑

k,l=1

p
∑

u=0
Kkl aka(u) alb(u + h) = 0, h = −p, . . . , p.

It is clear from these expressions that estimation of
the parameters, for example, by maximization of the
likelihood function under such constraints would be
difficult if not infeasible.

3.2 GRAPHICAL INTERACTION

MODELS

Alternatively to the frequency domain approach, we
can view the distribution of a Gaussian process XV as
a Gaussian Markov random field and describe the con-
ditional independencies among the variables in XV in
terms of the inverse of the covariance matrix of XV . To
make this idea explicit, assume that XV satisfies As-
sumption 2.1. Then the inverse of the spectral matrix
f(λ) exists and has an absolutely convergent Fourier
expansion given by

f(λ)−1 = 2π
∞
∑

u=−∞
Γ(i)(u) e−iλu

(e.g., Bhansali 1980). Simple calculations show that
the Fourier coefficients

Γ(i)(u) =
1

4π2

∫

Π

f(λ)−1 eiλu, u ∈ � , (4)

where Π = [−π, π], satisfy

∞
∑

u=−∞
Γ(v − u)Γ(i)(u) = δ0u �

for all v ∈ � (e.g., Shaman 1975, 1976). Thus, the
matrix Γ(i) =

(

Γ(i)(u − v)
)

u,v∈
� is the inverse of the

covariance matrix Γ of the process XV , and we call
Γ(i)(u) the inverse covariances of XV .

Similarly as for ordinary Gaussian Markov random
fields, the pairwise conditional independencies that
hold for the process XV can be expressed by zero
entries in the inverse Γ(i). In particular, (4) to-
gether with (1) and (2) leads to the following time
domain characterization of conditional independencies
between the components of XV .



Proposition 3.1. Let XV be a stationary Gaussian

process satisfying Assumption 2.1. Then, for all dis-

tinct a, b ∈ V ,

Xa ⊥⊥Xb |XV \{a,b} ⇔ Γ
(i)
ab (u) = 0 ∀u ∈ � .

The proposition suggests to define graphical interac-
tion models directly in terms of inverse covariances
and thus to make use of the zero constraints that are
imposed on the parameters by the conditional inde-
pendencies encoded by the absence of edges in the as-
sociated graph.

Definition 3.2. Let XV be a stationary Gaussian
process such that Assumption 2.1 holds. Furthermore,
let Γ(i)(u), u ∈ � , be the inverse covariances of XV .
Then we say that XV belongs to the graphical inter-

action model of order p associated with the undirected
graph G = (V, E) if

Γ(i)(u) = 0 ∀|u| > p (5)

and for all distinct a, b ∈ V

a −−− b /∈ E ⇒ Γ
(i)
ab(u) = Γ

(i)
ba (u) = 0 ∀u ∈ � . (6)

We will also say that the process XV belongs to the
GI(p,G) model.

The graphical interaction model of order p is
parametrized by the vector of inverse covariances

θ =











vechΓ(i)(0)
vecΓ(i)(1)

...
vecΓ(i)(p)











,

where as usual the vec operator stacks the columns of a
matrix and the vech operator stacks only the elements
contained in the lower triangular submatrix. In the fol-
lowing, we denote the spectral matrices, covariances,
and inverse covariances specified by the parameter θ

by fθ(λ), Rθ(u), and Γ
(i)
θ

(u), respectively. Then the
parameter space Θ(p, G) of the graphical interaction
model of order p associated with graph G is the set of
all θ ∈ � r with r = d2p + 1

2d(d + 1) such that

◦ fθ(λ) satisfies Assumption 2.1 and

◦ Γ
(i)
θ

(u) satisfy conditions (5) and (6).

We note that the latter condition imposes zero con-
straints on the elements of the parameter vector θ.

3.3 RELATION TO VECTOR

AUTOREGRESSIONS

We now return to our discussion of vector autoregres-
sive models. For this, suppose again that XV is a

stationary Gaussian VAR(p) process that satisfies As-
sumption 2.1. Then equations (4) and (3) imply that
the inverse covariance function Γ(i)(u) of the process
XV is given by

Γ(i)(u) =
p−u
∑

v=0
a(v)′ Ka(v + u) (7)

with K = Σ−1. These equations show that the con-
straints on the autoregressive parameters a(u), u =
1, . . . , p and Σ can be reformulated in terms of the
inverse covariances. More importantly, the equations
also imply that the inverse covariances Γ(i)(u) of a
VAR(p) process vanish for all |u| > p (e.g., Bhansali
1980, Battaglia 1984). In other words, the equations
show that every VAR(p) process that is Markov for an
undirected graph G also belongs to the GI(p,G) model.

Conversely, it can be shown that the equation system
(7) has a unique solution of the autoregressive param-
eters a(u), u = 1, . . . , p and Σ in terms of the inverse
covariances (Tunnicliffe Wilson 1972). Thus, a pro-
cess XV belongs to the GI(p,G) model if and only if it
belongs to the class of all VAR(p) processes that are
Markov for the graph G. Therefore the graphical vector

autoregressive model of order p associated with a graph
G, denoted by VAR(p,G), is identical to the GI(p,G)
model. Thus, graphical interaction models can be seen
as graphical VAR models with an alternative param-
eterization that is better suited for representing the
constraints on the parameters imposed by the graph.

4 LIKELIHOOD INFERENCE

In this section, we discuss estimation of the parameter
θ based on maximization of an appropriate version of
the Gaussian log-likelihood function.

4.1 WHITTLE’S LIKELIHOOD

Suppose that XV (1), . . . , XV (T ) are observations from
a stationary Gaussian process XV . In the following,
we assume that XV belongs to a GI(p,G) model with
unknown parameter θ0 ∈ Θ(p, G). For estimation of
the parameter θ0, we consider the likelihood function

LT (θ) = (2π)T/2
(

detΓθ,T

)−1/2

· exp
(

− 1

2
X

′
V,T Γ−1

θ,T XV,T

)

,

where XV,T = vec(XV (1), . . . , XV (T )) and Γθ,T is the
|V |p × |V |p matrix with entries Γθ(u − v) for u, v =
1, . . . , T (e.g., Brockwell and Davis 1991, §8.6). In
maximum likelihood estimation, the parameter θ0 is
estimated by the vector in Θ(p, G) that maximizes the
likelihood function or, equivalently, that minimizes the



−1/T log-likelihood function

`T (θ) ∼ 1

2T
log detΓθ,T +

1

2T
X

′
V,T Γ−1

θ,T XV,T , (8)

where we have omitted an additive constant. The main
problem in the application of the log-likelihood func-
tion `T (θ) to graphical interaction models are the con-
straints on the parameters. Since `T (θ) depends on the
parameters only through the covariance matrix Γθ,T

and its inverse Γ−1
θ,T , derivation of the likelihood equa-

tions under the constraints of a graphical interaction
model would be infeasible.

A more favourable choice for fitting graphical interac-
tion models is Whittle’s approximation to the exact
Gaussian log-likelihood function, which has been orig-
inally proposed by Whittle (1953, 1954). Whittle’s
likelihood is formulated in terms of the inverse spec-
tral matrix and thus allows a direct treatment of the
constraints in graphical interaction models. More pre-
cisely, the approximation is based on the fact that the
matrix Γ−1

θ,T in (8) can be approximated by the corre-
sponding submatrix of inverse covariance matrix









Γ
(i)
θ

(0) · · · Γ
(i)
θ

(1 − T )
...

. . .
...

Γ
(i)
θ

(T − 1) · · · Γ
(i)
θ

(0)









(cf Shaman 1975, 1976). Together with the Szegö iden-
tity (cf Grenander and Szegö 1958), this leads to Whit-
tle’s likelihood function

`wT (θ) =
1

4π

∫

Π

(

log det fθ(λ) + tr
[

I(T )(λ)fθ(λ)−1
]

)

dλ.

In this expression, I(T )(λ) is the periodogram matrix
with entries

I
(T )
ab (λ) =

(

2πH2,T

)−1
d(T )

a (λ) d
(T )
b (−λ),

where
d(T )

a (λ) =
T
∑

t=1
Xa(t) exp(−iλt)

is the discrete Fourier transform of the data
Xa(1), . . . , Xa(T ). Minimization of Whittle’s likeli-
hood function leads to the Whittle estimator

θ̂T = argmin
θ∈Θ(p,G)

`wT (θ).

We note that in practice a tapered version of the peri-
odogram should be used as this improves the small
sample properties of the resulting Whittle estimate
considerably (e.g., Dahlhaus 1988).

4.2 LIKELIHOOD EQUATIONS

The likelihood equations are the estimating equations
obtained by setting the first derivatives of the log-
likelihood function `w

T (θ) with respect to θ to zero.

Using matrix calculus (e.g., Harville 1997), we obtain
the following first derivatives of `w

T (θ)

∂`wT (θ)

∂θi

=
1

4π

∫

Π

tr
[

(

I(T )(λ)−fθ(λ)
)∂fθ(λ)−1

∂θi

]

dλ. (9)

Since the inverse spectral matrix is linear in the pa-
rameters, we get an explicit formula for its derivatives.

Let θk correspond to Γ
(i)
ab(u). Then, for i, j ∈ V ,

∂f−1

ij,θ(λ)

∂θk

=











2πδiaδja if a = b and u = 0

2π
[

δiaδjbe
−iλu

+δibδjaeiλu
] otherwise

.

Substituted into (9), we therefore get

∂`wT (θ)

∂θk

=

∫

Π

(I
(T )
ab (λ) − fab,θ(λ)) eiλu dλ (10)

for all u ∈ {−p, . . . , p}. These equations can be rewrit-
ten in terms of time domain quantities. For this, let
Γ̂(u) be the empirical covariance function, which is re-
lated to the periodogram by

Γ̂(u) =

∫

Π

I(T )(λ) eiλu dλ. (11)

Noting that similarly Γθ(u) =
∫

Π
fθ(λ) eiλu dλ, we ob-

tain the following likelihood equations.

Theorem 4.1. Let θ̂T be the Whittle estimator of

the parameter θ0 in the graphical interaction model

GI(p, G). Then θ̂T is a solution of the following equa-

tion system:

(i) for a, b ∈ V with a = b or a −−− b ∈ E

Γab,θ̂T
(u) = Γ̂ab(u), u = −p, . . . , p;

(ii) for a, b ∈ V with a 6= b and a −−− b /∈ E

Γ
(i)

ab,θ̂T

(u) = 0, u = −p, . . . , p.

These equations are similar to the likelihood equa-
tions in ordinary Gaussian graphical models (cf Lau-
ritzen 1996). In fact, together with the condition that

Γ
(i)

θ̂T

(u) = 0 for |u| > p, these equations can be seen as

the likelihood equations obtained in a Gaussian graph-
ical model for the random variables Xv(t) with v ∈ V
and t ∈ � , where the graph is specified by the zero
constraints on Γ(i) and Γ̂ =

(

Γ̂(u−v)
)

u,v∈
� is the em-

pirical covariance matrix of the variables. This is not
surprising by the way the Whittle likelihood approxi-
mates the log-likelihood function in (8): Whittle’s ap-
proximation basically neglects the edge effects due to
observing only a finite horizon by substituting asymp-
totic approximations for the finite sample parameters
detΓθ,T and Γ−1

θ,T .



The asymptotic properties of the Whittle estimator
are well known (e.g., Dzhaparidze and Yaglom 1983).
For the formulation of the asymptotic distribution, let
Ξ(θ) =

(

ξij(θ)
)

be the matrix with entries

ξij(θ) =
1

4π

∫

Π

tr
[

fθ(λ)
∂fθ(λ)−1

∂θi

fθ(λ)
∂fθ(λ)−1

∂θj

]

dλ.

Furthermore let PG be a projector matrix such that
PGθ is the vector of unconstrained parameters in
GI(p,G). Then, if XV belongs to the GI(p,G) model
with parameter θ0, the Whittle estimator θ̂T is asymp-
totically normally distributed,

√
T
(

θ̂T − θ0

) D→ N
(

0,Λ(θ0)
)

,

where Λ(θ0) = P′
G

(

PGΞ(θ0)P
′
G

)−1
PG.

We note that, although the Whittle estimator θ̂T is
consistent for θ0, the likelihood equations in general
may have multiple solutions. Thus, a solution of the
likelihood equations may be only a local minimum of
the Whittle log-likelihood `w

T (θ).

5 ITERATIVE ESTIMATION

For Gaussian graphical models, there exist two itera-
tive algorithms for solving the likelihood equations:
iterative proportional scaling (e.g., Lauritzen 1996)
and the algorithm by Wermuth and Scheidt (1977).
The former requires that all constraints are preserved
throughout the iterations and is hard to realize in the
present situation. We therefore discuss an adapted
version of the second algorithm.

Let Cp,G be the set of all (a, b, u) ∈ V × V × �
such that a and b are distinct and not adjacent in
G or |u| > p. Then Cp,G represents the entries in
the infinite-dimensional inverse covariance matrix Γ(i)

that are constrained to zero in the GI(p,G) model, that
is, we have in the GI(p,G) model

(a, b, u) ∈ Cp,G ⇒ Γ
(i)
ab (u) = 0.

For the application of the algorithm by Wermuth and
Scheidt (1977), which preserves only part of the con-
straints in each iteration, we define subsets Ci speci-
fying the constraints to be preserved alternately. To
this end, let {ai, bi}, i = 1, . . . , m, be an enumeration
of all distinct vertices ai, bi that are not adjacent in G.
Then we set

C0 =
{

(a, b, u) ∈ V × V × �
∣

∣ |u| > p
}

and, for i = 1, . . . , m,

Ci =
{

(a, b, u) ∈ V × V × �
∣

∣ {a, b} = {ai, bi}
}

.

Here, the set C0 represents the constraints imposed
by the order p of the GI(p,G) model while the sets Ci

indicate the constraints due to the absence of the edges
ai −−− bi in G. Furthermore, we have Cp,G = ∪m

i=0Ci.

Starting with Γ̂0(u) = Γ̂(u) for all u ∈ � , where Γ̂(u) is
the empirical covariance function given by (11), the al-
gorithm proceeds by solving in the n-th step the equa-
tion system

Γ̂ab,n(u) = Γ̂ab,n−1(u) ∀(a, b, u) /∈ Cn mod m+1,

Γ̂
(i)
ab,n(u) = 0 ∀(a, b, u) ∈ Cn mod m+1.

In order to avoid working with infinite-dimensional
matrices, the computations are carried out in the fre-
quency domain:

For n mod m + 1 = 0, the constraints in C0 define
a VAR(p) model without further constraints. Thus,
the solution of the above equation system satisfies the
Yule-Walker equations

Γ̂n−1(u) =
p
∑

v=1
Γ̂n−1(u − v) a(v)′ + Σ δu0,

which are solved by the Yule-Walker estimates
ân(1), . . . , ân(p) and Σ̂n (e.g., Brockwell and Davis
1991). From these, the spectral density can be ob-
tained by

f̂n(λ) = Ân(e−iλ)−1Σ̂nÂn(eiλ)′−1,

where Ân(z) = I − ân(1)z − . . . − ân(p)zp.

For n mod m + 1 = i > 0, the constraints in Ci are
equivalent to f−1

aibi
(λ) = 0. Consequently, the iteration

step can be formulated as

f̂ab,n(λ) = f̂ab,n−1(λ) ∀λ∈ [-π, π] if {a, b} 6= {ai, bi},
f̂−1

ab,n(λ) = 0 ∀λ∈ [-π, π] if {a, b} = {ai, bi}.

This can be accomplished by setting

f̂aibi,n(λ) = f̂aiSi,n−1(λ)f̂SiSi,n−1(λ)−1f̂Sibi,n−1(λ)

for λ ∈ [−π, π], where Si = V \{ai, bi} (cf Wermuth
and Scheidt 1977).

Speed and Kiiveri (1986) have shown the convergence
of the algorithm to a solution of the likelihood equa-
tions in the case of Gaussian graphical models; the
proof for the present situation is similar. After the
n-th step, an estimate θ̂T for θ can be obtained by
inverting the spectral matrix f̂n(λ) and computing the

inverse covariances Γ̂
(i)
n (u) by (4). Alternatively, if

the algorithm is stopped at n mod m + 1 = 0, it also
provides the estimates in the parameterization of the
VAR(p,G) model.
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Figure 2: Estimated spectral densities, coherencies, and partial coherences for air pollution data: nonparametric estimates
(solid lines) and parametric fit (dashed lines) obtained by minimizing the BIC criterion.
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Figure 1: Undirected graphs with lowest BIC value for the
air pollution data.

6 EXAMPLE

We illustrate the proposed graphical modelling ap-
proach by application to a five-dimensional time series
that has been analysed previously by the nonparamet-
ric frequency domain approach in Dahlhaus (2000).
The time series consists of T = 4386 measurements
of the concentrations of four air pollutants—carbon
monoxide (CO), nitrate monoxide (NO), nitrate diox-
ide (NO2), and ozone (O3)—and the global radiation
intensity (I) recorded from January 1991 to December
1992 in Heidelberg (6 equidistant recording per day).
For more details, we refer to Dahlhaus (2000).

In order to learn the conditional independence graph
of XV from the data, we fitted graphical interaction
models of orders ranging from p = 1 to p = 6 for

Table 1: Results of model selection for the air pollution
data: graphs and orders p with the lowest BIC values.

Graph BIC (p = 3) BIC (p = 4)
G1 686.0 705.6
G2 687.7 687.0
G3 708.8 722.1
G4 714.9 733.1
G5 716.1 733.5
G6 718.7 748.1

all possible undirected graphs. For each fitted model,
the parameters were computed in their autoregressive
form, that is, as âp,G and Σ̂p,G. From these, we ob-
tained the BIC score (Schwarz 1978)

BIC(p, G) = T det Σ̂p,G + log(T ) qp,G,

where qp,G is the number of parameters in the GI(p,G)
model. The BIC criterion was minimized for order
p = 3 and the graph G1 in Figure 1. Figure 2 shows
the parametric estimates of the spectral densities and
the spectral and partial spectral coherences for the se-
lected model (dashed lines); these fit the nonparamet-
ric estimates (solid lines) reasonably well. Notice that
in the four lower left plots the parametric estimates
for the partial spectral coherence are identical to zero
as required by (1).

Table 1 shows the BIC scores for the six best models
of orders 3 and 4 (models with different orders led to



higher BIC scores). Here, the scores for the best model
GI(3,G1) and the models GI(p,G2) with p = 3, 4 differ
by less than 2. This indicates that there is not enough
evidence in the data to discriminate between the best
model and the competing models GI(p,G2) with p =
3, 4 (e.g., Raftery 1995). We note that the graph G2

was also selected by the nonparametric approach in
Dahlhaus (2000).

7 DISCUSSION

In this paper, we have presented a parametric ap-
proach for graphical interaction modelling of station-
ary Gaussian processes. Graphical interaction models
provide a simple description of the dependence struc-
ture of stationary processes by undirected graphs. We
have proposed a new parametrization of vector autore-
gressive models in terms of inverse covariances. With
this parametrization, the conditional independence re-
strictions encoded by an undirected graph lead to sim-
ple zero constraints on the parameters.

We have discussed parameter estimation based on
Whittle’s approximation to the log-likelihood function
and proposed to compute the resulting estimates by an
adapted version of the iterative algorithm by Wermuth
and Scheidt (1977). This algorithm not only has clear
convergence properties, but also provides estimates al-
ternatively in the parameterization of the graphical
interaction model GI(p,G) and of the graphical vector
autoregressive model VAR(p,G).
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