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1 Introduction

The purpose of this paper is to extend the work of Brown et al. (1996a,b), De-
Marzo and Eaves (1996), and Schmedders (1998, 1999) on the computation of
GEI equilibria to a setting with transaction costs. We lay the theoretical founda-
tion for a computational analysis of the impact of linear transaction costs in GEI
economies. We present a homotopy algorithm for the computation of equilibria in
finance economies with such transaction costs. Finding equilibria in models with
transaction costs is frequently thought of as a combinatorial problem (see Duffie
and Jackson, 1989), which leads to the conclusion that the search for an equilibrium
is quite cumbersome. We show that instead we can phrase the problem as finding
a solution to a single small system of equations.

The theoretical development of our algorithm reveals difficulties that are of
economic importance. In the presence of linear transaction costs, excess demand
functions are typically not differentiable and equilibria do not need to be locally
unique. In particular, some markets get closed endogenously and equilibria with
closed markets exhibit a continuum of asset prices in the closed market. This funda-
mental difference between models with and without transaction costs implies that
computing equilibria in transaction costs models is not a simple extension of the
known methods for models without such a friction. The way we take care of these
problems are of general interest and not restricted to the computation of equilibria
in GEI economies with linear transaction costs. In particular we show how to em-
bed the model with transaction costs into the same differentiable framework that
is popular for standard GEI finance economies. Crucial to the development of our
arguments is the introduction of an equilibrium selection concept that allows us to
pick out particular equilibria if there is indeed a continuum of equilibrium asset
prices. Moreover, this concept allows us to characterize the entire continuum of
equilibria.

Transaction costs are still important features of financial markets and are likely
to have a big impact on volumes of trade, asset pricing and agents’ welfare. In
addition to the well-known reasons for market incompleteness such as informational
asymmetries and moral hazard problems, transaction costs are sometimes given
as another explanation of market incompleteness, see, for example, Geanakoplos
(1990). This potential consequence of transaction costs is just one striking example
of their impact on the volume of trade for financial assets.Although commission fees
have decreased substantially over the past decade, other forms of transaction costs
like the ones caused by bid-asks spreads remain substantial. For the importance
of bid-ask spreads, as well as for some numerical assessments of transaction costs
caused by them, see Aiyagari and Gertler (1991) and Jouini and Kallal (1995).
The transaction costs in our model could also be interpreted as a form of securities
transaction tax. Summers and Summers (1989) propose such a tax (see also Stiglitz,
1989) to reduce excessive speculation by “throwing sand in the gears” of financial
markets, similar to Tobin’s proposal to impose a tiny tax on currency trades. Again
the intuition is that increasing transaction costs should lead to decreasing volumes
of trade.
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The remainder of the paper is organized as follows. In Section 2 we describe
the model of a finance economy with transaction costs and characterize the set of
no-arbitrage prices. Section 3 introduces the homotopy and outlines the main ideas
of our homotopy approach. We introduce the equilibrium selection concept and
show how to define an appropriate homotopy. Section 4 reports numerical results.

2 A finance economy with transaction costs

We consider the standard model of a finance economy with the additional feature
of transaction costs on the financial markets. There are two dates, t = 0, 1, with
uncertainty at t = 0 about the state of nature that realizes at t = 1. We identify
date 0 with state of nature 0.At date 1, exactly one out of S possible states of nature
realizes.

There are H agents in the economy. An agent h is characterized by his initial
income stream eh ∈ R

1+S and his preferences. The future initial income stream,
which is uncertain, is denoted by eh

11 ∈ R
S . Agent h has a preference over income

spent for consumption in the various states, ch ∈ R
1+S
+ . Preferences of agent h are

represented by a utility function uh : R
1+S
+ → R.

Agents have the possibility to use J assets in order to modify their income
stream across time and across states. Asset j pays a dividend dj

s in state of nature
s. The stream of dividends is dj = (dj

1, . . . , dj
S)� and the matrix of asset payoffs

is A = (d1, . . . , dJ). Without loss of generality, assets are in zero net supply. With
a slight abuse of notation we also use H, J and S to denote the set of agents, the
set of assets and the set of future states of nature, respectively.

Prices q = (q1, . . . , qJ)� of assets are denoted in units of income. Sales of
assets by agent h are denoted by θh,− ∈ R

J
+ and purchases by θh,+ ∈ R

J
+. The net

trade in assets then leads to an asset portfolio θh = θh,+ − θh,−. Both buyers and
sellers of assets incur real transaction costs.

Agent h’s trade (θh,−, θh,+) leads to transaction costs
∑

j∈J kh,−
j θh,−

j +∑
j∈J kh,+

j θh,+
j . Here, kh,−

j and kh,+
j are nonnegative transaction costs, denoted

in units of income per unit of trade in asset j. For notational simplicity, we assume
kh,−

j = kh,+
j = kh′,+

j for all agents h and h′, and denote these costs by kj . This
approach to modeling transaction costs is identical to the one in Arrow and Hahn
(1999). A finance economy with incomplete markets and transaction costs is given
by E = {(eh, uh)h∈H , A, k}.

Throughout the paper we make the following assumptions.

A1 For all h ∈ H, the initial income stream eh belongs to R
1+S
++ . We define the

open set E = R
(1+S)H
++ .

A2 For all h ∈ H, the utility function uh is three times continuously differentiable
on R

1+S
++ , ∂uh � 0, ∂2uh is negative definite, and interior income streams are

preferred to income streams with zero components, uh(ch) > uh(ch), when
ch ∈ R

1+S
++ and ch ∈ R

1+S
+ \ R

1+S
++ .

A3 The rank of the matrix of asset payoffs A is J.
A4 For all j ∈ J, transaction costs are positive, kj > 0.
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Assumptions A1 and A2 are standard in the literature, when differentiability of
demand functions is needed for the analysis. The assumption that interior income
streams are preferred is standard as well, but can easily be dispensed with when
using the techniques developed in this paper. The assumption that the matrix of
asset payoffs has full rank, A3, is not without loss of generality in the case with
transaction costs. We need this assumption to avoid degeneracies in the agents’
optimization problems.

At an asset price system q the decision problem of agent h consists of choosing
an asset trade (θh,−, θh,+) ∈ R

J
+ ×R

J
+ and a compatible consumption pattern. The

agent chooses an element of his budget set,

Bh(q) =

(θh,−, θh,+, ch) ∈ R
2J+1+S
+

∣∣∣ch
0 +

∑
j∈J

(qj + kj)θ
h,+
j

≤ eh
0 +

∑
j∈J

(qj − kj)θ
h,−
j ch

11 ≤ eh
11 + A(θh,+ − θh,−)

 ,

that maximizes utility.
We restrict ourselves in this paper to transaction costs on the units of assets

traded. Of course, we could instead consider transaction costs on the value of assets
traded. Our algorithm can easily be extended to models with such transaction costs.
Note also that we consider transaction costs in a broad sense, so they incorporate
effort, fees, taxes, or bid-ask spreads.

2.1 No-arbitrage asset prices

Some asset prices q ∈ R
J may lead to arbitrage in which case an agent’s decision

problem does not have a solution. This fact creates the need to characterize the
set of no-arbitrage prices. Because of the presence of transaction costs, the set of
no-arbitrage prices gets larger than in the model of a finance economy without
transaction costs.

Definition 2.1. A vector q ∈ R
J is a no-arbitrage asset price system when there

does not exist an asset portfolio (θ−, θ+) ∈ R
J
+ × R

J
+ such that (q − k) · θ− −

(q + k) · θ+ > 0 and A(θ+ − θ−) ≥ 0, or (q − k) · θ− − (q + k) · θ+ ≥ 0 and
A(θ+ − θ−) > 0.1

A vector q admits arbitrage possibilities whenever it is possible to make strictly
positive profits in at least one state and nonnegative profits in all states. We have
the following characterization of no-arbitrage prices.

Proposition 2.2. A vector q ∈ R
J is a no-arbitrage asset price system if and only

if there is π ∈ R
S
++ such that π�A − k ≤ q ≤ π�A + k.

1 For a vector x ∈ R
n we define x > 0 as xi ≥ 0 for all i and xj > 0 for at least some j.
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Proof. We define the matrix M by

M =


(q − k)� −(q + k)�

−A A
I 0
0 I

 ,

where I is a (J × J)-identity matrix and 0 a (J × J)-zero matrix. By definition, a
vector q ∈ R

J is a no-arbitrage price system if and only if for each s = 0, . . . , S,
there is no solution θs = (θs,−, θs,+) ∈ R

J × R
J to Mθs ≥ 0 and (Mθs)s > 0.

By the variant of Farkas’ lemma given in Rockafellar (1970), Theorem 22.2, page
198, the latter condition is equivalent to: for every s = 0, . . . , S, there exists
λs ∈ R

1+S+2J
+ with λs

s > 0 and λs�
M = 0, which is the case if and only if there

exists λ ∈ R
1+S
++ ×R

2J
+ such that λ�M = 0. Now the theorem follows immediately

after some elementary algebra. ��
Proposition 2.2 reduces to the fundamental theorem on the pricing of finan-

cial securities for k = 0. The set of no-arbitrage prices is denoted by Q, and it is
straightforward to show that Q is an open set if A has full column rank. Proposi-
tion 2.2 implies that Q is no longer a cone with vertex zero. The next proposition
easily follows from our assumptions.

Proposition 2.3. When q ∈ Q, the budget set Bh(q) is compact and convex, and
the agent’s decision problem has a solution (θh,−, θh,+, ch) that is unique and that
satisfies θh,− · θh,+ = 0.

2.2 Agents’ demand and competitive equilibrium

Proposition 2.3 implies that a single agent is never active simultaneously on the
demand side and the supply side of an asset market. There is no ambiguity when
we do not consider supply and demand of assets separately, but instead use the
net asset portfolio purchased, θh = θh,+ − θh,−. Proposition 2.3 implies that
the (net) demand of agent h for assets at prices q ∈ Q is a function gh : Q →
R

J . The demand of all agents for all assets is given by the HJ-vector g(q) =
(g1(q), . . . , gH(q)). Total asset demand is a function G : Q → R

J , where G(q) =∑H
h=1 gh(q).

Definition 2.4. A competitive equilibrium for an economy E is a collection of
portfolio holdings θ∗ = (θ∗1, . . . , θ∗H) ∈ R

HJ and asset prices q∗ ∈ R
J such

that

1. θ∗h is a utility maximizing asset portfolio for agent h at prices q∗,
2.
∑

h∈H θ∗h = 0.

The price vector q∗ is a competitive equilibrium price system if and only if
G(q∗) = 0. Equilibrium asset portfolios and equilibrium incomes spent on con-
sumption in each state are completely determined by equilibrium prices, since, due
to the monotonicity of the utility function, the solution to an agent’s optimization
problem satisfies all inequalities in the definition of the budget set with equality.
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Using standard methods one can now proceed to prove the existence of a compet-
itive equilibrium. Extending the work of Hens (1991) to our model with transaction
costs one can show that the individual asset demand functions gh and the total asset
demand function G are continuous on the set Q and satisfy a properness condition.
We refer to Herings and Schmedders (2001) for a detailed proof.

3 Computation of equilibria

A large part of the literature on GEI finance economies in the past (for a recent
survey, see Hens and Pilgrim, 2002) focusses on differentiable economies. Differ-
entiability assumptions have been widely made in general equilibrium ever since
Debreu (1972) (see also Mas-Colell, 1985). One reason why GEI models with trans-
action costs have been rarely examined in much detail is that transaction costs are
commonly believed to be incompatible with the usual differentiability assumption.

The main purpose of this paper is to show that the computation of equilibria for
models with transaction costs can be embedded in the standard differentiable frame-
work, even though there may be locally non-unique equilibria. We can compute
equilibria for our model in the tradition of Brown et al. (1996), Schmedders (1998,
1999), and Herings and Kubler (2002). Crucial in our approach is the introduction
of an equilibrium selection concept that allows us to pick out particular equilibria
if there is indeed a continuum. Moreover, this concept allows us to characterize the
entire continuum of equilibria. The homotopy approach allows us to nicely relate
a constructive existence proof to the computation of equilibria. Moreover, Kubler
and Schmedders (2000) show that other algorithms such as Newton-based methods
do very poorly computing GEI equilibria, and because of differentiability problems
one would expect such methods to do even worse in models with transaction costs.

3.1 The common homotopy approach

A natural homotopy for computing equilibria in our model would be the function
F : [0, 1] × Q → R

J which is defined by

F (t, q) = tG(q) + (1 − t)(q0 − q), (t, q) ∈ [0, 1] × Q,

where q0 may be any price system in Q. Note that for t = 0, there is a unique
solution, q = q0.For t = 1, the problemF (1, q) = 0 is equal to the problemG(q) =
0, and therefore solving F (1, q) = 0 amounts to finding an equilibrium asset price
vector q. The idea now would be to start at the unique solution for F (0, q) = 0
and to follow a path of solutions to F (t, q) = 0 until eventually a solution to
F (1, q) = 0 is reached. In order to formalize this idea we would like to show
that F is a twice continuously differentiable function, that F−1({0}) is a compact
1-dimensional differentiable manifold with boundary, and that the boundary of
F−1({0}) equals the transversal intersection of F−1({0}) and the boundary of
[0, 1] × Q. Usually it is impossible to prove the transversality conditions for all
economies. The standard approach is then to invoke methods from transversality
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theory such as Sard’s theorem to show that transversality conditions hold for a
generic set of economies.

When we try to apply this standard homotopy approach to finding equilibria in
our model we encounter two significant problems. The first difficulty is the existence
of non-differentiabilities of the homotopy F, which are due to non-differentiabilities
in the market excess demand function G. We approach this problem by subdividing
the domain of F into subsets where the excess demand G and thus the homotopy
F are differentiable. The zero sets of F on the different subsets are then nicely tied
together to guarantee the convergence of the algorithm. The second difficulty is
that even the application of transversality theory cannot rule out the occurrence of
robust degeneracies which occur at t = 1. With transaction costs it cannot be ruled
out that certain assets are robustly non-traded by every trader, even at equilibrium
prices. In that case there is a continuum of equilibrium prices, as small perturbations
in prices of assets that nobody trades in do not affect market clearing. The solutions
to the homotopy equations cannot even be expected to constitute a 1-dimensional
topological manifold. For example, if two or more assets are robustly non-traded,
then the prices of all these assets can vary within some neighborhood without
affecting the equilibria.

3.2 Equilibrium selection

We solve the robust degeneracy problem by making an equilibrium selection. We
analyze two alternatives for equilibrium selection. The first alternative considers
only those competitive equilibria where for each asset market there is either non-
zero trade, or there is zero trade and at least one agent is indifferent between selling
an asset and not selling an asset. The second alternative considers those competitive
equilibria where for each asset market there is non-zero trade, or at least one agent
is indifferent between buying and not buying an asset.

We say that an agent h is indifferent at q between selling asset j and being
inactive in asset market j if gh

j (q) = 0 and the relaxation of the non-negativity

constraint on θh,−
j would not affect the optimal decision of household h. Under

our differentiability assumptions on utilities the latter condition is equivalent to the
requirement that the Lagrange multiplier corresponding to the inequality θh,−

j ≥
0 equals zero at q. This Lagrange multiplier is denoted by λh,−

j (q) and equals

−∂ch
0
uh(ch(q))(qj −kj)+

∑S
s=1 ∂ch

s
uh(ch(q))dj

s. A similar definition applies for
an agent to be indifferent between buying asset j and being inactive in asset market
j. The Lagrange multiplier corresponding to the inequality θh,+

j ≥ 0 is denoted by

λh,+
j (q) and equals ∂ch

0
uh(ch(q))(qj + kj) −∑S

s=1 ∂ch
s
uh(ch(q))dj

s. The set of
agents which is indifferent between selling asset j and not selling asset j is denoted
by I−

j (q) and the set of agents which is indifferent between buying asset j and not
buying asset j by I+

j (q). The demand function of agents in I−
j (q)∪I+

j (q) displays a
non-differentiability at the asset price system q. It is due to this non-differentiability
that robust non-degeneracies may occur.
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Definition 3.1. A competitive equilibrium (θ∗, q∗) of E is demand-perfect, if in
each asset market j there is non-zero trade, θ∗h

j 	= 0 for some h, or at least one
agent is indifferent between selling asset j and not selling asset j, I−

j (q∗) 	= ∅.

The terminology demand-perfect comes from the fact that generically demand-
perfect equilibria are the ones that are robust to the introduction of a trader that
demands all assets. Indeed, generically, demand-perfect equilibria are obtained by
perturbing the total excess demand function of the economy by an excess demand
function of a trader that demands all assets, considering the set of competitive
equilibria that results, and taking the limit of the set of competitive equilibria for a
perturbation going to zero. For each asset market, it holds in the limit either that there
is non-zero trade or that one agent will be on the limit of supplying the asset or not
supplying the asset. A similar motivation can be given for supply-perfect equilibria.
From an economic point of view, no information is lost by restricting attention
to supply-perfect or demand-perfect equilibria, in the sense that no competitive
equilibrium allocations are lost.

Proposition 3.2. For each competitive equilibrium (θ∗, q∗) of E there is exactly
one allocationally equivalent supply-perfect equilibrium (θ∗, qs) and exactly one
allocationally equivalent demand-perfect equilibrium (θ∗, qd).

Proof. Let (θ∗, q∗) be a competitive equilibrium of E , inducing income streams
used for consumption c∗. If for all j ∈ J there exists h ∈ H such that θ∗h

j 	= 0,
then (θ∗, q∗) is both a supply-perfect and a demand-perfect equilibrium and the
proposition holds.

Suppose asset market j ∈ J is such that θ∗h
j = 0 for all h ∈ H. We

give the argument for the existence of a demand-perfect equilibrium that is al-
locationally equivalent to the competitive equilibrium; the argument for the ex-
istence of an allocationally equivalent supply-perfect equilibrium is similar. If
minh∈H λh,−

j (q∗) = 0, then we define qd
j = q∗

j . Otherwise, minh∈H λh,−
j (q∗) =

minh∈H −∂c∗h
0

uh(c∗h)(q∗
j − kj) +

∑S
s=1 ∂ch

s
uh(c∗h)dj

s > 0. Since λh,−
j (q) is a

function that is linearly decreasing in qj , we may define qd
j unambiguously by

min
h∈H

−∂c∗h
0

uh(c∗h)(qd
j − kj) +

S∑
s=1

∂ch
s
uh(c∗h)dj

s = 0.

If asset market j ∈ J is such that θ∗h
j 	= 0 for some h ∈ H, then we define qd

j = q∗
j .

Using the first-order conditions for the decision problem of household h, it is
easily verified that θ∗h is an optimal asset portfolio at prices qd. For all asset markets
j for which θ∗h

j = 0 for all h ∈ H, it holds that I−
j (qd) 	= ∅. It follows that (θ∗, qd)

is a demand-perfect equilibrium. ��
The proof of Proposition 3.2 yields another important aspect of supply-perfect

and demand-perfect equilibria. These equilibria give a lower bound, respectively
an upper bound, on prices that sustain a certain allocation. We exploit this property
in our numerical example, to give the equilibrium interval of asset prices in case
there is no trade in a certain asset.
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We modify the excess demand function for the computation of demand-perfect
equilibria. To this end we define, for q ∈ Q,

Λ−
j (q) =

H∏
h=1

λh,−
j (q), j = 1, . . . , J.

We now add the term (ϕ(Λ−
j (q)))/(1 + eqj ) to the total excess demand function

Gj , where ϕ : R → R is any bounded, differentiable function with ϕ(0) = 0 and
ϕ′ > 0.Any function of qj with an everywhere nonnegative derivative that diverges
to plus infinity as qj tends to plus infinity would suffice. This addition results in the
function G̃, defined by

G̃j(q) = Gj(q) +
ϕ(Λ−

j (q))
1 + eqj

, j ∈ J, q ∈ Q.

Proposition 3.3. It holds that (g1(qd), . . . , gH(qd), qd) is a demand-perfect com-
petitive equilibrium of E if and only if G̃(qd) = 0.

Proof. Consider a demand-perfect equilibrium induced by prices qd. It holds that
G(qd) = 0 and, for every asset j, either there is a householdh′ such thatgh′

j (qd) 	= 0,

or for all h, gh
j (qd) = 0 and there is a household h′ such that λh′,−

j (qd) = 0. In
the first case it follows by the definition of a competitive equilibrium that without
loss of generality gh′

j (qd) < 0 and therefore λh′,−
j (qd) = 0. In both cases it is then

immediate that G̃(qd) = 0.

Consider a price system qd such that G̃(qd) = 0. For every asset j, either
gh′

j (qd) 	= 0 for some agent h′, or gh
j (qd) = 0 for all agents h = 1, . . . , H. Since

Λ−
j (qd) ≥ 0, ϕ(0) = 0 and ϕ′ > 0, it holds that ϕ(Λ−

j (qd)) ≥ 0. It follows

that gh′
j (qd) < 0 for some agent h′ in the former case, so λh′,−

j (qd) = 0 and
Λ−

j (qd) = 0. Then it is immediate that Gj(qd) = 0. In the latter case it holds that

Gj(qd) = 0, so Λ−
j (qd) = 0, which implies that λh′,−

j (qd) = 0 for some agent
h′. Combining the two cases implies that qd induces a demand-perfect equilibrium.

��

3.3 Bid-ask structures

Now we address the issue of non-differentiabilities of G̃. The basic idea is to
subdivide the domain of G̃ into subsets on which G̃ is differentiable, and to jump
from one such subset to the next when tracking the solution curve of the homotopy.
This approach is supported by the fact that generically these subsets are a covering of
Q, that is, the relative interiors of any two such subsets have an empty intersection,
and the union of all those subsets equals the set Q. The standard homotopy approach
allows us to follow a path of solutions in any of these subsets. Once we hit a boundary
of our domain subset we switch over to the next subset and continue the path. In
order to formalize this idea we need some further notation.
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We define a set R of sign vectors,

R = {r ∈ R
HJ | rh

j ∈ {−1, 0, +1}}.

A sign vector r ∈ R determines a subset of Q where the sign of the trades being
made, the bid-ask structure, is determined by r. If rh

j = −1, then agent h supplies
asset j, if rh

j = 0 then agent h does not trade in asset market j, and if rh
j = +1,

then agent h is buying asset j.
Formally, for r ∈ R,

Q(r) = {q ∈ Q | gh
j (q) < 0, or gh

j (q) = 0 and h ∈ I−
j (q), when rh

j = −1,

gh
j (q) = 0, when rh

j = 0,

gh
j (q) > 0, or gh

j (q) = 0 and h ∈ I+
j (q), when rh

j = +1},

and gh,r : Q(r) → R
J and Gr : Q(r) → R

J denote the restrictions of the
individual demand functions for assets and the total demand function for assets
to Q(r). For all q ∈ Q(r) an agent h is always taking a long position, a short
position, and not trading at all in the same set of assets. The fact that the long or
short position could go to zero complicates the definition somewhat. We define
Λ−r : Q(r) → R

J as the restriction of Λ− to Q(r). Notice that Λ−r
j is identically

equal to zero if rh
j = −1 for at least one household h.

Proposition 3.4. For r ∈ R, the asset demand functions gh,r and Gr, and the
function Λ−r are twice continuously differentiable.2

The proof of Proposition 3.4 is given in Herings and Schmedders (2001). The
main step of the proof consists of applying the implicit function theorem to the sys-
tem of necessary and sufficient first-order conditions that characterize gh,r on Q(r).

3.4 Homotopy

We can now define our homotopy function F̃ : [0, 1] × Q → R
J by

F̃ (t, q) = tG̃(q) + (1 − t)(q0 − q), (t, q) ∈ [0, 1] × Q,

where q0 may be any price system in Q. Note that for t = 0, there is a unique
solution, q = q0. For t = 1, the problem F̃ (1, q) = 0 is equal to the problem
G̃(q) = 0, and therefore, by Proposition 3.3, solving F̃ (1, q) = 0 amounts to
finding an asset price vector q that induces a demand-perfect equilibrium. The
function F̃ is differentiable on all subsets [0, 1] × Q(r).

Next we define the set P (r) consisting of the pairs of the homotopy parameter
and the asset price vectors that satisfy the homotopy equation, together with the
requirement that r be compatible with the bid-ask structure in all markets, that is,

P (r) = {(t, q) ∈ [0, 1] × Q(r)|F̃ (t, q) = 0}.

2 A function with domain a subset of Euclidean space which is not necessarily open is differentiable
if it has a differentiable extension to an open neighborhood of its domain of definition.
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It is a well-known problem that it is usually impossible to find an analytical
solution for the function G, and as a consequence for F̃ . We are not aware of any
utility function satisfying the standard monotonicity and concavity assumptions for
which analytical solutions are available in the presence of both transaction costs
and incomplete markets. The homotopy approach makes it possible to tackle this
problem in an elegant way. Instead of characterizing the set P (r) by means of the
total demand function for assets G we will make use of the first-order equations
that characterize demand. In the literature this is called an extended system, see
also Citanna (2000).

Given a sign vector r ∈ R we are interested in the collection of assets for which
agent h is a supplier, the assets in which he does not trade, and the assets for which
agent h acts as a buyer. These sets are denoted by J−

h (r), J0
h(r), and J+

h (r), so

J−
h (r) = {j ∈ J | rh

j = −1}, J0
h(r) = {j ∈ J | rh

j = 0},

J+
h (r) = {j ∈ J | rh

j = +1}.

The following notation indicates for each sign vector r ∈ R all combinations
of agents and assets where supply, inactivity or demand occurs,

R−(r) = {(h, j) ∈ H × J | rh
j = −1}, R0(r) = {(h, j) ∈ H × J | rh

j = 0},

R+(r) = {(h, j) ∈ H × J | rh
j = +1}.

Consider any sign vector r ∈ R and any (t, q) ∈ R × Q, then (t, q) ∈ P (r) if and
only if there is (λ−, λ+, θ, c) ∈ R

K , where K = 3HJ + H(1 + S), such that

λh,−
j = 0, (h, j) ∈ R−(r), (1)

λh,+
j = 0, (h, j) ∈ R+(r), (2)

θh
j = 0, (h, j) ∈ R0(r), (3)

ch
0−eh

0 +
∑

j∈J−
h (r)

θh
j (qj −kj)+

∑
j∈J+

h (r)

θh
j (qj +kj) = 0, h ∈ H, (4)

ch
s−eh

s −
∑

j∈J−
h (r)∪J+

h (r)

θh
j dj

s = 0, h ∈ H, s ∈ S, (5)

λh,−
j + ∂ch

0
uh(ch)(qj − kj)−

S∑
s=1

∂ch
s
uh(ch)dj

s = 0, h ∈ H, j ∈ J, (6)

λh,+
j − ∂ch

0
uh(ch)(qj + kj)+

S∑
s=1

∂ch
s
uh(ch)dj

s = 0, h ∈ H, j ∈ J, (7)

t
∑
h∈H

θh
j + (1 − t)(q0

j − qj) + t
ϕ(
∏H

h=1 λh,−
j )

1 + eqj
= 0, j ∈ J, (8)

λh,−
j ≥ 0, (h, j) ∈ R0(r), (9)

λh,+
j ≥ 0, (h, j) ∈ R0(r), (10)

−θh
j ≥ 0, (h, j) ∈ R−(r), (11)
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θh
j ≥ 0, (h, j) ∈ R+(r), (12)

t ≥ 0, (13)

1 − t ≥ 0. (14)

Equations (8) are the perturbed market-clearing conditions that correspond to the
homotopy equations F̃ (t, q) = 0, only that the asset-demand functions are replaced
by the portfolio choices θh

j . Note that equations (8) are the only equations containing
the homotopy parameter t that is constrained to lie between 0 and 1 by inequalities
(13)–(14). Equations (1)–(7) and inequalities (9)–(12) are the first-order conditions
of the agents’ utility maximization problems. These conditions are necessary and
sufficient since the agents’ utility maximization problems are convex programming
problems with linear constraints, so a constraint qualification is satisfied. In fact,
the first-order conditions of the agents’ utility maximization problems also lead to

the inequalities λh,−
j ≥ 0 for (h, j) ∈ R+(r) and λh,+

j ≥ 0 for (h, j) ∈ R−(r).
These inequalities are redundant, as they follow with strict inequality from equa-
tions (1), (6) and (7), and (2), (6) and (7), respectively, making use of the assumption
that ∂ch

0
uh(ch) and kj are strictly positive. These inequalities are therefore omit-

ted. Equations (4) and (5) are the budget constraints, equations (6) and (7) are the
derivatives with respect to the decision variables θh

j , and equations (1)–(3) are the
complementary slackness conditions for the multipliers corresponding to the sign
constraints on the decision variables. Note that for (h, j) ∈ R0(r) the complemen-
tarity condition reduces simply to θh

j = 0, that is, to equation (3). If θh
j < 0, then

λh,−
j must be 0, and the complementarity condition is just equation (1). Inequalities

(9)–(12) are the sign restriction on the decision variables and multipliers.
For r ∈ R, the solutions to the system of equations (1)–(8) and the inequalities

(9)–(14) are denoted by P̃ (r).

Proposition 3.5. For r ∈ R, P (r) and P̃ (r) are C2 diffeomorphic.

Proof. We define the function f : R×Q(r) → R×Q(r)×R
HJ ×R

HJ ×R
HJ ×

R
H(1+S) by

f(t, q) = (t, q, λ−(q), λ+(q), g(q), c(q)),

where ch
0 (q) = eh

0 −∑j∈J qjg
h
j (q) +

∑
j∈J−

h (r) kjg
h
j (q) −∑j∈J+

h (r) kjg
h
j (q),

and ch
11 = eh

11 + Agh(q). Then (t, q) ∈ P (r) if and only if f(t, q) ∈ P̃ (r). That the
function f is C2 follows easily, see Herings and Schmedders (2001). Obviously,
f−1 is C∞. ��

Define the open set E = R
(1+S)H
++ .

Theorem 3.6. There is a subset E∗ of E such that E \ E∗ has a closure with
Lebesgue measure zero and for all e ∈ E∗, for all r ∈ R, P̃ (r) is a compact, 1-
dimensional C2 manifold with boundary. A point (t, q, λ−, λ+, θ, c) in the boundary
of P̃ (r) is either not a boundary point of P̃ (r) for all r 	= r and belongs to
{0, 1} × Q × R

K , or is a boundary point of exactly one P̃ (r) with r 	= r and
belongs to (0, 1)×Q× R

K . Moreover, r and r differ in exactly one element which
changes from −1 to 0 or from +1 to 0, or the reverse.
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For almost all economies, for all r ∈ R, the set P̃ (r) is a compact, 1-dimensional
differentiable manifold with boundary, so it is a finite collection of disjoint paths and
loops. It follows that each component of P̃ (r), i.e. a maximally connected subset
of P̃ (r), is either a path or a loop. We write P̃ (r) = P̃ (r, 1) ∪ · · · ∪ P̃ (r, c(r)),
where P̃ (r, c), c = 1, . . . , c(r), is a component of P̃ (r) and c(r) is the number of
components in P̃ (r). The set P̃ = ∪r∈RP̃ (r) is C2 diffeomorphic to the set of all
solutions to the homotopy equations, so P̃ is C2 diffeomorphic to F̃−1({0}).

The proof of Theorem 3.6 is given in Herings and Schmedders (2001) and con-
sists of three parts. First, consider the system of equations (1)–(8). The number of
variables (t, q, λ−, λ+, θ, c) in the system of equations (1)–(8) equals 1 + J + K,
one more than the number of equations which is given by J + K. Using transver-
sality theory, it is therefore indeed possible to show that there is generically a
one-dimensional set of solutions. Second, if in addition to (1)–(8), we require ex-
actly one of the inequalities in (9)–(14) to hold with equality, using transversality
theory, one can show that generically one obtains a finite set of locally unique so-
lutions. Third, it can be shown, generically, that a system of equations consisting
of (1)–(8) and two or more equations of (9)–(14) has no solutions. Although in
principle standard, the proof is very tedious because of the large number of cases
that have to be verified in the transversality arguments.

The following result confirms that the non-differentiabilities of F̃ are well-
behaved and do lead to well-behaved non-differentiabilities of F̃−1({0}) that allow
us to prove convergence of our algorithm.

Theorem 3.7. There is a subset E∗ of E such that E \ E∗ has a closure with
Lebesgue measure zero and such that for all e ∈ E∗ the following statements
hold. The set F̃−1({0}) is a compact 1-dimensional piecewise C2 manifold with
boundary.3 The boundary of F̃−1({0}) equals the intersection of F−1({0}) and
{0, 1} × Q and is a compact 0-dimensional manifold. There is a unique boundary
point in {0}×Q that is connected by F̃−1({0}) to a uniquely determined boundary
point in {1} × Q, i.e. the homotopy path is well-defined.

Proof. Consider the set E∗ of Theorem 3.6. For all e ∈ E∗, for all r ∈ R, the
set P̃ (r) consists of a finite number of paths and loops. Each path in P̃ (r) has two
boundary points. If it has a boundary point in {0, 1}×Q× R

K , then the boundary
point does not belong to any P̃ (r) for r 	= r. It is then a boundary point of P̃ . If a
path has a boundary point in (0, 1) × Q, then it is a boundary point of exactly one
P̃ (r) with r 	= r. So it is a boundary point of a path in P̃ (r). This path has another
boundary point, either in {0, 1} × Q × R

K or in (0, 1) × Q × R
K . In the former

case, we have found a boundary point of P̃ . In the latter case, there is exactly one
r̃ such that the boundary point is also a boundary point of an arc in P̃ (r̃), etc.

Since the cardinality of the set R is finite, and each P̃ (r) consists of finitely many
paths and loops, it will either be the case that eventually a path is generated with a
boundary point in {0, 1} × Q × R

K , or a path is generated that has been generated
before. In the latter case, we have found a piecewiseC2 loop of P̃ . In the former case,

3 A manifold is a 1-dimensional piecewise C2 manifold if it is a 1-dimensional topological manifold
that is a finite union of C2 manifolds.
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the finite chain of paths constitutes a piecewise C2 path of P̃ with boundary points
belonging to {0, 1} × Q. It follows that P̃ is a compact 1-dimensional piecewise
C2 manifold with boundary, where the boundary is given by the intersection of P̃
and {0, 1} × Q × R

K . As a consequence it follows that F̃−1({0}) is a compact
1-dimensional piecewise C2 manifold with boundary, where the boundary is given
by the intersection of F̃−1({0}) and {0, 1} × Q. Notice that the argument above
is nothing but a nonlinear version of the door-in door-out principle of Lemke and
Howson (1964).

It is easy to see that there is a unique boundary point in {0}×Q, since F̃ (0, q) =
q0 − q, which has q = q0 as the unique solution in F̃−1({0}). Since F̃−1({0}) is a
1-dimensional manifold with boundary, the unique solution in {0}×Q is connected
by F̃−1({0}) to a uniquely determined boundary point in {1} × Q. ��

The homotopy approach now consists of numerically following the homotopy
path in F̃−1({0}) that connects the unique boundary point in {0}×Q to a uniquely
determined boundary point in {1} × Q. The latter point induces a demand-perfect
equilibrium.

3.5 Bounds on asset prices

Adding equations (6) and (7) yields the equation λh,−
j +λh,+

j = 2∂ch
0
uh(ch)kj .This

equation shows that λh,−
j +λh,+

j > 0 implying the last statement of Proposition 2.3,

namely that θh,−
j ·θh,+

j = 0, it can never be optimal for an agent to be both long and
short in a financial security. Moreover, this equation sheds light on what happens
along the homotopy path when an agent changes sides on a security market, for
example, from being long, to being inactive, to being short. When the agent’s
long position in asset j is reduced down to zero, and the homotopy path is at the
boundary of two sets P̃ (r) and P̃ (r′) the shadow prices are λh,−

j = 2∂ch
0
uh(ch)kj

and λh,+
j = 0. As the homotopy path moves through the interior of P̃ (r′) both

shadow prices are positive indicating by complementary slackness that the asset
variable is zero, that is θh

j = 0, or equivalently θh,−
j = θh,+

j = 0. As the path hits

a set P̃ (r′′) where the agent is short in asset j (in its interior) the shadow prices
reach the point where λh,−

j = 0 and λh,+
j = 2∂ch

0
uh(ch)kj .

The shadow prices always satisfy λh,−
j , λh,+

j ≥ 0 resulting in the following
inequalities for all h ∈ H,

qj ≤ kj +
S∑

s=1

(
∂ch

s
uh(ch)

∂ch
0
uh(ch)

dj
s

)
, and qj ≥ −kj +

S∑
s=1

(
∂ch

s
uh(ch)

∂ch
0
uh(ch)

dj
s

)
.

Hence, the price range for asset j in equilibrium equals

−kj+maxh∈H

{
S∑

s=1

∂ch
s
uh(ch)

∂ch
0
uh(ch)

dj
s

}
≤ qj ≤ kj+minh∈H

{
S∑

s=1

∂ch
s
uh(ch)

∂ch
0
uh(ch)

dj
s

}
.
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An immediate consequence of the last inequalities is that the price difference
between the asset prices in a demand-perfect equilibrium and a supply-perfect
equilibrium never exceeds 2kj . In a demand-perfect equilibrium the upper bound

kj + minh∈H{∑S
s=1

∂
ch
s

uh(ch)

∂
ch
0

uh(ch)d
j
s} and in a supply-perfect equilibrium the lower

bound −kj + maxh∈H{∑S
s=1

∂
ch
s

uh(ch)

∂
ch
0

uh(ch)d
j
s} is computed.

3.6 A differentiable homotopy

A drawback of our algorithm is that a large number of bid-ask structures might be
generated before reaching a demand-perfect equilibrium. To avoid this problem we
exploit the complementarity between the portfolio variables θh,−

j (θh,+
j ) and the

shadow prices λh,−
j (λh,+

j ) of the nonnegativity constraints for the portfolio vari-
ables. See Garcia and Zangwill (1981) for a discussion of this approach. Equations
(1)–(3) and inequalities (9)–(12) imply the standard complementarity conditions

θh,−
j · λh,−

j = 0 and θh,+
j · λh,+

j = 0.

Therefore, we actually can represent, for example, θh,+
j and λh,+

j by a single vari-
able. We introduce two vectors α−, α+ ∈ R

HJ and substitute the following func-
tions for the portfolio variables and shadow prices

λh,−
j = (max{0, αh,−

j })l, λh,+
j = (max{0, αh,+

j })l,

θh,−
j = (max{0,−αh,−

j })l, θh,+
j = (max{0,−αh,+

j })l,

where l can be any integer greater than or equal to two. Note that the functions are l−
1 times continuously differentiable in the variables αh,−

j and αh,+
j , respectively. By

definition of these functions inequalities (9)–(12) are always automatically satisfied
and we can drop them from consideration.

A bid-ask structure r corresponds to (α−, α+) ∈ A−(r) × A+(r), where

A−(r) = {α− ∈ R
HJ | αh,−

j ≤ 0 if (h, j) ∈ R−(r)
αh,−

j ≥ 0 if (h, j) ∈ R0(r) ∪ R+(r)}
A+(r) = {α+ ∈ R

HJ | αh,+
j ≤ 0 if (h, j) ∈ R+(r)

αh,+
j ≥ 0 if (h, j) ∈ R−(r) ∪ R0(r)}.

Given a particular bid-ask structure, equations (1)–(3) are also automatically sat-
isfied. There is a solution (t, q, λ−, λ+, θ, c) ∈ P̃ (r) if and only if there is
(t, q, α−, α+, c), where (α−, α+) ∈ A−(r) × A+(r), such that

∂ch
0
uh(c)(qj−kj)−

S∑
s=1

∂ch
s
uh(c)dj

s+(max{0, αh,−
j })l = 0, (15)

(h, j) ∈ H × J,
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∂ch
0
uh(c)(qj+kj)−

S∑
s=1

∂ch
s
uh(c)dj

s−(max{0, αh,+
j })l = 0, (16)

(h, j) ∈ H × J,

ch
0 − eh

0 +
∑
j∈J

qj((max{0,−αh,+
j })l − (max{0,−αh,−

j })l)

+
∑
j∈J

kj((max{0,−αh,−
j })l + (max{0,−αh,+

j })l) = 0, h ∈ H, (17)

ch
s − eh

s −
∑
j∈J

((max{0,−αh,+
j })l − (max{0,−αh,−

j )l})dj
s = 0, (18)

h ∈ H, s ∈ S,

t
∑
h∈H

((max{0,−αh,+
j })l − (max{0,−αh,−

j })l)

+(1 − t)(q0
j − qj) + t

ϕ(
∏

h∈H(max{0, αh,−
j })l)

1 + eqj
= 0, j ∈ J. (19)

The advantage of this reduced system is the absence of inequality constraints
and the independence of the system of the sign vector r. We can use standard
path-following methods to follow the path generated by this particular homotopy.
Obviously the values of all variables along the path generated by this homotopy
are identical to those along the path generated by the homotopy F̃ .

4 Numerical example

We implemented our homotopy algorithm on a 450 MHz PCPentiumII using the
software package HOMPACK. This software package is a collection of FORTRAN
77 subroutines for solving systems of nonlinear equations using homotopy meth-
ods (Watson et al., 1987). From the three methods available in HOMPACK we
selected the most robust path-following algorithm, which tracks the homotopy path
by solving an ordinary differential equation. The starting point of the homotopy
can be found using a standard nonlinear equation solver. We use a variation of
the penalty approach of Schmedders (1998). We approximate the Jacobian of the
homotopy function with a one-sided difference formula. When the path-following
routine finds a solution we use a Newton routine to refine the solution to further
reduce the error. In all our examples the maximum relative errors are of the order
of magnitude of 10−10. The running time of the computer implementation of our
algorithm is less than two seconds for the examples below.

4.1 Simple economy

Consider an economy with H = 2 agents, S = 4 possible states in period t = 1, and
J = 2 assets, called a bond and a stock. Both agents have identical von-Neumann-
Morgenstern CRRA utility functions with identical uniform beliefs. That is, agent
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Figure 1. Asset trades of agent 1 along the homotopy path

i’s utility function equals:

ui(c) =
c1−γi

0

1 − γi
+

4∑
s=1

1
4

c1−γi
s

1 − γi
.

The two agents have coefficients of risk-aversion of γ1 = 5 and γ2 = 1, respec-
tively. Both agents have an endowment of e1

0 = e2
0 = 1 in period 0. Agent 1

has an endowment (labor income) e1
1 = (0.9, 1.1, 0.9, 1.1) at date t = 1; agent

2 has zero endowment at t = 1, but he owns the entire stock paying dividends
dst = (0.5, 1.0, 1.5, 2.0). The stock is in unit net supply. (Agent 2’s endowment at
t = 0 can be thought of as the stock’s dividend dst

0 = 1 at t = 0.) The bond pays
one unit in the second period regardless of the state of nature and is in zero net
supply. Agents trading the bond and the stock have to pay identical transaction cost
k = kb = kst = 0.05 for both securities.

Using the differentiable homotopy of Section 3.6 we need to solve a system of
2HJ +H +HS +J = 20 equations with 21 unknowns. By solving equations (17)
and (18) for the consumption variables and substituting the obtained values into the
first-order conditions (15) and (16) we can reduce the system to 2HJ + J = 10
equations and 11 unknowns. We use the expected payoffs of the two assets as values
for the “starting" prices q0, that is, q0

b = 1 and q0
st = 1.25.

We depict the nature of the homotopy path in a few figures. Figures 1 and 2
show the change of agent 1’s and agent 2’s portfolio, respectively, as a function of
the homotopy parameter. The behavior of the two portfolios is extremely different
along the path. For small values of t the first agent is long in the bond and short in
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Figure 2. Asset trades of agent 2 along the homotopy path
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Figure 3. Asset prices along the homotopy path
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the stock. The short position in the stock decreases quickly to zero as t increases and
the path of θ1

b exhibits a kink which in turn leads also to a kink in the path of θ1
st. This

type of behavior of the portfolio functions is typical; whenever one function exhibits
a kink with a function value of zero then the other portfolio function also has a non-
differentiability. However, these kinks in the first agent’s portfolio functions do not
affect the second agent’s portfolio functions. Along the homotopy path no holding
of the second agent hits zero for t < 1 resulting in smooth portfolio functions.
Note that equation (19) does not enforce market clearing for t < 1. Only as t hits
1 the variable θ2

b decreases to zero. In equilibrium the bond market is closed. The
equilibrium trade on the stock market equals a sale of 0.012 shares by agent 2 to
agent 1. Figure 3 displays the behavior of the asset prices along the homotopy path.
Both price functions are smooth and are unaffected by the kinks in the portfolio
functions of agent 1.

4.2 The need for an equilibrium selection

With this simple economy we can also show the importance of an equilibrium
selection. Figure 4 shows the prices along the homotopy path for the homotopy
without the term used for the equilibrium selection, that is, for the homotopy where
equation (19) is replaced by the following equation:

t
∑
h∈H

((max{0,−αh,+
j })l−(max{0,−αh,−

j })l)+(1−t)(q0
j −qj) = 0, j ∈ J.

Until t hits 1 the price paths are identical. But in equilibrium the bond is not traded
due to the large transaction costs resulting in a continuum of equilibrium bond
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Figure 4. Continuum of equilibrium prices
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prices. If we don’t force the homotopy to make an equilibrium selection then the
path runs into this continuum and the homotopy exhibits a drop in rank at t = 1
which causes numerical problems. (In this example the homotopy solver cannot
find a unique stable solution at t = 1 and instead finds many solutions with varying
bond prices. Eventually the solver reports one of the found solutions and indicates
a numerical problem.)
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