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Abstract

Returns in financial assets show consistent excess kurtosis and skewness, indicating the
of large fluctuations not predicted by Gaussian models. In this paper we propose a genera
to the popular RiskMetrics approach to Value-at-Risk. In order to model scale-consistent
at-Risk (VaR), we propose a model with a time varying scale parameter and error terms t
truncated Lévy distributed. Lévy flights include a method for scaling up from a single-day vola
to a multi-day volatility. We use this rule to approximate future volatility and estimate Value-at
several days ahead, and compare it to the popular approach, which is a special case of our
Back-testing results suggest that the inclusion of more sophisticated tail properties and th
driven scaling rule improves the performance of the VaR model significantly, for short and lon
horizons. Our approach is easier to implement and is less time and computer intensive comp
Monte Carlo simulation methods.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of financial markets constitutea major challenge for financial econom
tricians. While financial applications involve many different time intervals, ranging fro
few minutes (intraday) to a number of years, most techniques used in econometric
on modeling the fluctuations of price series in a single time interval. But the distrib
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that successfully explains daily price changes, for example, is typically unable to ch
terize the nature of hourly price changes. On the other hand, the statistical prope
monthly price changes are often not fully covered by a model for daily price changes.
order to describe the statistics of future prices of a financial asset, one needsa priori a dis-
tribution of price fluctuations for different time intervals, corresponding to different tra
time horizons.

Mandelbrot (1963) first proposed the idea that price changes are distributed accord
to a Lévy stable law. This model was frequently criticized, because the tails are now
overestimated and the infinite variance makes it impossible to apply the Central
Theorem. In physical systems, so-called Lévy flights have been observed experim
and have been used very successfully to describe, for instance, the spectral rando
of a single molecule embedded in a solid. Typically, unavoidable cutoffs in the tails o
distribution are always present. This cutoffensures that the variance will be finite and
distribution converges to a Gaussian in the limit. To model financial prices over tim
so-called truncated Lévy flight (TLF) can be constructed by the sum of independe
identically distributed random variables described by a truncated Lévy distribution (T
Mantegna and Stanley (1994) showed that the scale invariant behavior of a Lévy
can be observed for short time scales using ultra high frequency data. Cont et al.
showed that it breaks down for longer time scales. These observations have been ex
as a structural break in terms of the truncated Lévy flight. Among others, Mantegn
Stanley (1998, 2000) and Bouchaud and Potters (2000) confirmed that the truncate
distribution better captures the skewness and excess kurtosis in financial return ser

In contrast to physical systems, research in finance has shown that there is a stro
i.i.d. clustering effect in financial data. Fortunately the class of GARCH models has
very successful in modeling the significant volatility clustering andnon-i.i.d. nature of
the data. More specifically, the GARCH model produces a mean reverting time depend
volatility process that “filters out” the correlations in the data and the remaining resi
are assumed to be i.i.d. We account for non-i.i.d.-ness in the data by modeling the lo
and scale parameter of the truncated Lévy distribution time varying. A good descript
the distribution of price changes, especially in the tails, is important for risk mea
like Value-at-Risk (VaR). The VaR of a particular portfolio of assets (in our study
index portfolio) is directly related to the quantile of the asset’s return distribution.
GARCH framework, typically Monte Carlo simulation techniques are used in ord
derive multi-day density forecasts (see, e.g., Bams et al., 2003). A related approach w
recently proposed by McNeil and Frey (2000). They combine extreme value theory (
and GARCH-modeling and confirm that the model outperforms existing methods. Mittn
and Paolella (2000), Mittnik et al. (2000) demonstrate that more general GARCH structur
and skewed fat tailed distributions improve the precision of the model in-sample
out-of-sample. Both methods also rely on simulation methods to approximate the mu
day density function. In recent option pricing models, the same methods are success
employed (see, e.g., Lehnert, 2003). In all of these studies, the techniques are expe
to be quite time and computer intensive, but there is a lack of alternative method
propose an extension of the well-known RiskMetrics (1996) approach and approx
the time scaling behavior of the quantiles by a scaling rule, namely the alpha-root-o
rule of the Lévy flight, estimated from the data directly.
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2. The econometric framework

The Lévy distribution with a cutoff and exponentially declining tails was introduce
the physics literature by Mantegna and Stanley (1994). Koponen (1995) developed th
characteristic function (CF) of a truncated Lévy distribution. Note the misprint in
original publication, the characteristic function of a TLD random variablek should read:

ψTL(k,µ,C,α,λ,β) = iµk − Cα

{
λα − (k2 + λ2)α/2

cos(πα/2)
cos

(
α arctan

( |k|
λ

))

(1)×
[
1+ i sgn(k)β tan

(
α arctan

( |k|
λ

))]}
,

whereµ is a location parameter,C > 0 is a scale parameter,α is the characteristic expone
determining the shape of the distribution and especially the fatness of the tails (0< α � 2,
butα �= 1), andλ is the so-called cutoff parameter, which determines the speed of the dec
and as a result the cutoff region. The parameterβ (β ∈ [−1,1]) determines the skewne
whenβ �= 0. The distribution is skewed to the right when−1 < β < 0 and skewed to th
left when 0< β < 1. Accurate numerical values for the density can be calculated Fo
transforming the CF and evaluating the integral numerically. We use Romberg integ
which allows ex-ante specification of the tolerated error and in fact a calculation o
density as precise as necessary (see Lambert and Lindsey, 1999).

In practice, comparing the distributional properties of price increments at vario
time intervals provides insight into the temporal dependence structure of the
series. Analyzing the time scaling behavior of financial fluctuations means comp
the increments for shorter time scalesτ and for longer time scalesNτ . This formally
corresponds to summingN random variables. In the case of the Lévy distribution,
characteristic function satisfiesNψL(k) = ψL(N1/αk). The distribution for various time
scales for stationary and independent variables is related by a convolution relationPNτ =
Pτ ⊗ Pτ ⊗ · · · ⊗ Pτ . More generally, the distributionP(x) of price changes on a tim
scaleNτ may be obtained from that of a shorter time scaleτ by a rescaling of the variabl
PN

L (x) = N−1/αP 1
L(N−1/αx), wherePN(x) denotes aN -times convoluted distribution

of P 1(x).
Since we introduced a cut-off for the CF of the truncated LévyψTL(k, λ), it is no longer

self-similar or uni-fractal by the criteria mentioned above, but bi-fractal, the sim
version of a multi-fractal process (see Nakao, 2000). The convolution of the probability
distribution can still be obtained by scaling bothx and λ. The CFψTL(k, λ) satisfies
NψTL(k, λ) = ψTL(N1/αk,N1/αλ) and theN -times convoluted probability distributio
satisfiesPN

TL(x,λ) = N−1/αP 1
TL(N−1/αx,N1/αλ). For short time scales (daily) the proce

behaves like a Lévy flight, but converges towards a Gaussian for longer time scale
monthly) (see Matacz, 2000). The scaling ofλ, which means that for increasing time sca
the cutoff is introduced earlier in the tails, ensures that the process converges tow
Gaussian process instead of staying a Lévy flight.

Volatilities can be predicted reasonably successfully with a parametric model su
GARCH. Traditional GARCH models (with Normal- or Student-t distributed error terms
were designed to capture clustering of large and small innovations, which can be m
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as serially correlated conditional variances when the variance exists (Bollerslev
1992). The analogue of the standard deviationσ in the family of Lévy distributions is
the scale parameterC. If we replace the standard deviationσ by the scale parameterC, we
allow Ct to be serially correlated, which produces the volatility clustering.

In the following we are considering the single lag(p = q = 1) version of a very
general GARCH process, which is typicallysufficient in practice. The completeaugmented
GARCH (1,1) model reads:1

rt = µt + σtεt , εt ∼ D(0,1), φt = α0 + γ1,t−1φt−1 + γ2,t−1,

σt =
{

|δφt − δ + 1|1/2δ, if δ �= 0,√
exp(φt − 1), if δ = 0,

γ1,t−1 = α1 + α2|εt − b|κ + α3 max(0, b − εt )
κ ,

(2)γ2,t−1 = α4
|εt − b|κ − 1

κ
+ α5

max(0, b − εt )
κ − 1

κ
,

where the conditional location parameterµt can be specified additionally and th
conditional scale parameterσt is assumed to vary over time. The parametersδ andκ allow
for a Box–Cox transformation of the scale parameter and the innovation term, respe
For example, forδ = 0, κ = 1, andα2 = α3 = b = 0 the model reduces to the we
known EGARCH specification. In this caseα1 refers to the persistence of the volatili
process and a combination ofα4 andα5 captures the leverage effect. A value ofb �= 0
would additionally shift the news impact curve. Our model is not restricted to zero–
and variance–one distributions, it also allows for location–zero and scale–one cont
distributionsD(0,1). Since there is no evidence as to which GARCH specification sh
be used, we develop a Lagrange Multiplier specification test (LM test) based o
generalization of the augmented GARCH process of Duan (1997), which allows us to
several specifications among the models analyzed and to derive the ‘best’ specification f
each particular return series (see Duan, 1997, for details).

Under the hypothesis of conditional leptokurtosis and skewness, the conditio
volatility estimate is used together with the characteristics of the truncated Lévy
Once the parameters of the model are estimated, we know the probability distribu
one particular time scale, say daily. TheN -times convoluted probability distribution ca
be obtained by scaling the parameterC and the cut-off parameterλ by a α-root-of-time
rule to derive the multi-day parameters. Therefore, the VaR of a position with a confi
levelq and forN periods ahead can be defined as

(3)VaRq,N = W0
(
1− exp

(
R∗

N

))
,

where exp(R∗
N) can be determined by settingR∗

N equal to the(1 − q)th quantile of the
truncated Lévy distribution with the characteristic functionψTL(µtN,N1/αCt ,N

1/αλ,β),
whereµt andCt are the location and scale parameter, respectively,α is the characteristic
exponent of the truncated Lévy distribution, andN1/α is the adjustment factor needed
scale the parameter. Equivalently, for the RiskMetrics EWMA method, exp(R∗

N) can be

1 Our model contains most of the existing GARCH specifications.
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determined by settingR∗
N equal to the(1 − q)th quantile of the normal distribution wit

the characteristic functionψG(µtN,
√

Nσt ), whereµt andσt are the mean and standa
deviation, respectively,

√
N is the adjustment factor needed to scale the standard devi

The method is frequently applied in practice, but it has been shown to underestim
downside risk consistently (see, e.g., Pownall and Koedijk, 1999).

3. Empirical results

In this study, daily closing prices for some major stock market price indices betwe
May 1992 and April 2000 are used for the analysis. In particular, we examine the S&
NASDAQ, and FTSE 100 from May 4, 1992, to April 3, 2000. The total number of tra
days covered by the data is 2000 (FTSE 100) and 2001 (S&P500 and NASDAQ
data are obtained from DataStream. We used the percentage daily logarithmic
100∗ ln(pt/pt−1), wherept is the price index at timet .

There is already some evidence that the inclusion of a time-varying asymm
volatility process can capture only some of the excess kurtosis and skewness in fin
data. Additionally, Hentschel (1995) showedthat the differences in the condition
volatility estimates could be substantial among the various specifications. Since the
of a particular specification will affect the conditional volatility estimate, it will a
affect VaR estimates, which is of our particular interest. We considered the follo
restricted specifications of our augmented GARCH process for the specification tes
simple GARCH, the power-GARCH processes with either shift or rotation of the n
impact curve, the NGARCH, and the EGARCH specification. The results of the Lagran
Multiplier test for robust standard errors based on White (1982) confirm that sta
GARCH model can be rejected for all indexes at the 1 or 5% level (results not repo
For the S&P500 and the NASDAQ returns the test suggests that an asymmetric G
process with a rotation of the news impact curve (Power-GARCH) and for the FTSE
returns the asymmetric volatility model with a shift of the news impact curve (NGAR
are most appropriate.2 The parameter estimates for theparticular GARCH specification
and the individual index portfolios are presented in Table 1.

Since we are interested in the out-of-sample performance, we back-test our mo
all indices and the particular GARCH specifications over a period May 1996 until M
2000 and compare it to the RiskMetrics EWMA approach. Every day we estimat
model using the last about 1000 trading days (that means exactly one half of each sam
and a moving window) and forecasted the 99% (95%) VaR 5, 10, and 20 days a
Table 2 reports the out-of-sample results.

The results are very promising: the VaR estimates we obtained by using our m
compared to the RiskMetrics method produceson average less violations of the expec
VaR for all confidence intervals and horizons. The RiskMetrics method const
underpredicts extreme events and this leads very often to an inappropriate num

2 Among the models that cannot be rejected, we base ourdecision on the Schwarz Bayesian Criterion (SB
(Schwarz, 1978).
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Table 1
Parameter estimates

Index/model Parameters

δ κ α1 α2 α3 α4 α5 b α λ β

S&P500
Power-GARCH, truncated Lévy

0.880 1.760 0.927 0.008 0.072 0 0 0 1.698 0.235 0.276
(0.033) – (0.015) (0.009) (0.020) – – – (0.105) (0.117) (0.133)
(0.058) – (0.018) (0.007) (0.026) – – – (0.185) (0.153) (0.248)

NASDAQ
Power-GARCH, truncated Lévy

0.791 1.582 0.877 0.040 0.071 0 0 0 1.814 0.089 0.918
(0.052) – (0.022) (0.015) (0.022) – – – (0.045) (0.041) (0.141)
(0.049) – (0.029) (0.012) (0.022) – – – (0.036) (0.046) (0.120)

FTSE 100
NGARCH, truncated Lévy

1 2 0.935 0.019 0 0 0 1.116 1.906 0.164 0.419
– – (0.010) (0.004) – – – (0.274) (0.065) (0.157) (0.289)
– – (0.011) (0.003) – – – (0.242) (0.055) (0.117) (0.289)

Notes. The table reports parameter estimates for the truncated Lévy model and the particular GARC
specifications. We used our specification test to determine the appropriate GARCH specification for eac
series. The underlying data set consists of daily observations for the period May 1992 until March 2000. T
location parameter is assumed to be equal to the unconditional value. Standard errorsand robust standard erro
proposed by White (1982) are given within parentheses.

Table 2
Violations of the actual Value-at-Risk

HORIZON VaR (conf. level) S&P500 NASDAQ FTSE 10
(days) (%) (%) (%) (%)

EWMA 5 99 2.6 3.3 2.9
95 5.9 7.6 6.1

10 99 1.8 2.7 1.1
95 5.2 6.6 4.9

20 99 0.9 2.3 1.3
95 4.6 7.2 4.3

Augmented GARCH 5 99 1.5 1.2 1.3
Truncated Lévy 95 5.2 4.9 5.3

10 99 1.2 1.3 0.8
95 4.3 5.5 4.0

20 99 0.7 1.4 0.9
95 3.7 4.6 3.9

Notes. The table reports percentage violations of the actual Value-at-Riskfor the alternative models during th
‘back-testing period’ (May 1996 until March 2000). Every day the particular model was calibrated and a Valu
at-Risk estimate was obtained for different forecasting horizons and confidence levels. Subsequently, the ac
realized return over a certain horizon was compared withthe reported Value-at-Risk. Given a confidence le
of 95% (99%), the model assumes a violation rate of 5% (1%). A higher (lower) violation rate indicates that th
model underestimates (overestimates) the actual Value-at-Risk.

violations. But in particular this underprediction is slightly reduced for lower confidenc
intervals or longer forecasting horizons. This is a well-known result for the Gau
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distribution and the square-root-of-timescaling rule. On the other side, the GARCH m
with the truncated Lévy distribution and the alpha-root-of-time scaling rule lead t
appropriate number of violations for lowand high confidence intervals and shortand long
forecasting horizon.

In order to further evaluate our modeling approach, we compared the performa
our model with the performance of a model proposed by Mittnik and Paolella (2000). Th
authors consider a GARCH process driven by a skewed Student-t distribution and obtain
multi-period densities using Monte Carlo simulation techniques. Results suggest th
in-sample fit as well as the out-of-sample forecasting performance of our VaR model
superior to the GARCH-skewed Student-t model (results not reported). Further evaluat
of the different forecasting techniques underlying the two models is beyond the scope
this paper.

Therefore, we can conclude that our scaling rule captures the scaling behavior
the data quite well and shows a convergence from a skewed leptokurtic distribut
a Gaussian for larger sampling intervals. This is actually the unique bi-fractal scalin
behavior of the truncated Lévy flight.

4. Conclusions

In this paper we propose a generalization of the popular RiskMetrics approa
Value-at-Risk. Our approach has some advantages: using the truncated Lévy fli
the innovations of a GARCH process, we are able to capture the observed cond
tail fatness and skewness in financial returns. We propose a new scaling rule to fo
volatility. Location and scale parameter (volatility) are estimated on one time scale (
and the multi-day (weekly or monthly) values are derived by using the stable prope
Lévy processes. The method has the implied advantage that we are able to iden
relationship between return distributions for different sampling intervals by analyzin
time series of returns on one sampling interval (say daily). As a result, based on our s
approach, we are able to produce better forecasts compared to methods, which add up o
day forecasts to derive a multi-day forecast. Our approach is easier to implement
less time and computer intensive compared to Monte Carlo simulation methods, wh
typically used in risk management applications and in option pricing models. Additionall
scaling rules are known to improve the accuracy of VaR estimates and suffer less fro
‘estimation errors’ in VaR compared to other approaches.
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