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Abstract

Returns in financial assets show consistent excess kurtosis and skewness, indicating the presence
of large fluctuations not predicted by Gaussian models. In this paper we propose a generalization
to the popular RiskMetrics approach to Value-at-Risk. In order to model scale-consistent Value-
at-Risk (VaR), we propose a model with a time varying scale parameter and error terms that are
truncated Lévy distributed. Lévy flights include a method for scaling up from a single-day volatility
to a multi-day volatility. We use this rule to approximate future volatility and estimate Value-at-Risk
several days ahead, and compare it to the popular approach, which is a special case of our method.
Back-testing results suggest that the inclusion of more sophisticated tail properties and the data-
driven scaling rule improves the performance of the VaR model significantly, for short and long time
horizons. Our approach is easier to implement and is less time and computer intensive compared to
Monte Carlo simulation methods.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of financial markets constitatenajor challenge for financial econome-
tricians. While financial applications involve many different time intervals, ranging from a
few minutes (intraday) to a number of years, most techniques used in econometrics focus
on modeling the fluctuations of price series in a single time interval. But the distribution
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that successfully explains daily price changes, for example, is typically unable to charac-
terize the nature of hourly price changes. On the other hand, the statistical properties of
monthly price changes are often not fullgpwered by a model for daily price changes. In
order to describe the statistics of future prices of a financial asset, oneanpeds a dis-
tribution of price fluctuations for different time intervals, corresponding to different trading
time horizons.

Mandelbrot (1963) first proposed the idea that@ changes are distributed according
to a Lévy stable law. This model was frequently criticized, because the tails are now much
overestimated and the infinite variance makes it impossible to apply the Central Limit
Theorem. In physical systems, so-called Lévy flights have been observed experimentally
and have been used very successfully to describe, for instance, the spectral random walk
of a single molecule embedded in a solid. Typically, unavoidable cutoffs in the tails of the
distribution are always present. This cuteffsures that the variance will be finite and the
distribution converges to a Gaussian in the limit. To model financial prices over time the
so-called truncated Lévy flight (TLF) can be constructed by the sum of independent and
identically distributed random variables described by a truncated Lévy distribution (TLD).
Mantegna and Stanley (1994) showed that the scale invariant behavior of a Lévy flight
can be observed for short time scales using ultra high frequency data. Cont et al. (1997)
showed that it breaks down for longer time scales. These observations have been explained
as a structural break in terms of the truncated Lévy flight. Among others, Mantegna and
Stanley (1998, 2000) and Bouchaud and Potters (2000) confirmed that the truncated Lévy
distribution better captures the skewness and excess kurtosis in financial return series.

In contrast to physical systems, research in finance has shown that there is a strong non-
i.i.d. clustering effect in financial data. Fortunately the class of GARCH models has been
very successful in modeling the significant ablity clustering andnon-i.i.d. nature of
the data. More specifically, the GARCH mdgeoduces a mean reverting time dependent
volatility process that “filters out” the correlations in the data and the remaining residuals
are assumed to be i.i.d. We account for non-i.i.d.-ness in the data by modeling the location
and scale parameter of the truncated Lévy distribution time varying. A good description of
the distribution of price changes, especially in the tails, is important for risk measures
like Value-at-Risk (VaR). The VaR of a particular portfolio of assets (in our study an
index portfolio) is directly related to the quantile of the asset’s return distribution. In a
GARCH framework, typically Monte Carlo simulation techniques are used in order to
derive multi-day density forecasts (see, eRams et al., 2003). A related approach was
recently proposed by McNeil and Frey (2000). They combine extreme value theory (EVT)
and GARCH-modeling and confirm that thexdel outperforms existing methods. Mittnik
and Paolella (2000), Mittnik et al. (2000) demtnase that more general GARCH structures
and skewed fat tailed distributions improve the precision of the model in-sample and
out-of-sample. Both methods also rely omsiation methods to approximate the multi-
day density function. In recent option pimgj models, the same methods are successfully
employed (see, e.g., Lehnert, 2003). In all of these studies, the techniques are experienced
to be quite time and computer intensive, but there is a lack of alternative methods. We
propose an extension of the well-known RiskMetrics (1996) approach and approximate
the time scaling behavior of the quantiles by a scaling rule, namely the alpha-root-of-time
rule of the Lévy flight, estimated from the data directly.
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2. The econometric framework

The Lévy distribution with a cutoff and exponentially declining tails was introduced in
the physics literature by Mantegna anthiey (1994). Koponenl@95) developed the
characteristic function (CF) of a truncated Lévy distribution. Note the misprint in the
original publication, the characteristic function of a TLD random varigtdbould read:

A — (k2 4 A2)2/2 |k|
k,u,C,o, M, B) =ipuk —C* coq« arctarf —
UTL, u, Coah, B) =ip { cosma/2) o r( . ))

X [1+isgr(k)ﬁtan(a arctar(%))]}, Q)

wherey is a location parametef, > 0 is a scale parameter|s the characteristic exponent
determining the shape of the distribution and especially the fatness of the tails €02,

buta # 1), and is the so-called cutoff parameterhieh determines the speed of the decay
and as a result the cutoff region. The paramgtép < [—1, 1]) determines the skewness
when g £ 0. The distribution is skewed to the right wherl < 8 < 0 and skewed to the

left when O< 8 < 1. Accurate numerical values for the density can be calculated Fourier-
transforming the CF and evaluating the integral numerically. We use Romberg integration,
which allows ex-ante specification of the tolerated error and in fact a calculation of the
density as precise as necessary (see Lambert and Lindsey, 1999).

In practice, comparing the distributionatgperties of price increments at various
time intervals provides insight into the temporal dependence structure of the time
series. Analyzing the time scaling behavior of financial fluctuations means comparing
the increments for shorter time scalesand for longer time scale®’t. This formally
corresponds to summiny random variables. In the case of the Lévy distribution, the
characteristic function satisfi@y; (k) = ¥ (NY%k). The distribution for various time
scales for stationary and independent vdgalis related by a convolution relatidty, =
P.® P, ® --- ® P;. More generally, the distributio® (x) of price changes on a time
scaleNt may be obtained from that of a shorter time scalgy a rescaling of the variable
PN (x) = N~Yepl(N~Yex), where PV (x) denotes av-times convoluted distribution
of P1(x).

Since we introduced a cut-off for the CF of the truncated Lévy (k, ), it is no longer
self-similar or uni-fractal by the criteria mentioned above, but bi-fractal, the simplest
version of a multi-fractal process (see Mak 2000). The convotion of the probability
distribution can still be obtained by scaling bothand A. The CF v (k, A) satisfies
NyTL(k, A) = 1L (NY%%, NY/*)) and theN-times convoluted probability distribution
satisfiesPd (x, 1) = N-YVe pL (N~Yex, NY%3). For shorttime scales (daily) the process
behaves like a Lévy flight, but converges towards a Gaussian for longer time scales (say
monthly) (see Matacz, 2000). The scalingwpfvhich means that for increasing time scales
the cutoff is introduced earlier in the tails, ensures that the process converges towards a
Gaussian process instead of staying a Lévy flight.

Volatilities can be predicted reasonably successfully with a parametric model such as
GARCH. Traditional GARCH models (with Normal- or Studendistributed error terms)
were designed to capture clustering of large and small innovations, which can be modeled
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as serially correlated conditional variances when the variance exists (Bollerslev et al.,
1992). The analogue of the standard deviatioin the family of Lévy distributions is
the scale parametér. If we replace the standard deviatierby the scale parametér, we
allow C; to be serially correlated, which produces the volatility clustering.

In the following we are considering the single lag = ¢ = 1) version of a very
general GARCH process, which is typicadlyfficient in practice. The compleaegmented
GARCH (1, 1) model reads:

re = +or&, &~ D(O0,1), Or =00+ y1i-1P—1+ V21,
18—+ 1Y%, if 550,

7T S =D,  ifs=0,

YLi—1= a1+ azle; — bl +azmax0, b — &),
le; — bl —1 max0,b — &) — 1
+ o5 . )

(2)

where the conditional location parametgy can be specified additionally and the
conditional scale parametey is assumed to vary over time. The paramegeaiad« allow

for a Box—Cox transformation of the scale parameter and the innovation term, respectively.
For example, fors =0, k = 1, andap = a3 = b = 0 the model reduces to the well-
known EGARCH specification. In this casg refers to the persistence of the volatility
process and a combination ef andas captures the leverage effect. A valueio$ 0

would additionally shift the news impact curve. Our model is not restricted to zero—mean
and variance—one distributions, it also allows for location—zero and scale—one continuous
distributionsD(0, 1). Since there is no evidence as to which GARCH specification should
be used, we develop a Lagrange Multiplier specification test (LM test) based on our
generalization of the augmented GARCH process of Duan (1997), which allows us to reject
several specifications among the models axedyand to derive the ‘best’ specification for
each particular return series (see Duan, 1997, for details).

Under the hypothesis of conditional legurtosis and skewness, the conditional
volatility estimate is used together with the characteristics of the truncated Lévy flight.
Once the parameters of the model are estimated, we know the probability distribution of
one particular time scale, say daily. Thetimes convoluted probability distribution can
be obtained by scaling the parameteiand the cut-off parametek by a «-root-of-time
rule to derive the multi-day parameters. Therefore, the VaR of a position with a confidence
level g and forN periods ahead can be defined as

VaR; v = Wo(1—exp(R})). 3)

where expRy,) can be determined by settingj;, equal to the(1 — g)th quantile of the
truncated Lévy distribution with the characteristic functipa_ (1, N, NY*C,, NY*x, B),
whereu; andC; are the location and scale parameter, respectiwely,the characteristic
exponent of the truncated Lévy distribution, aNé/® is the adjustment factor needed to
scale the parameter. Equivalently, for the RiskMetrics EWMA method(&¥p can be

Y2,1—1 =04

1 Our model contains most of the existing GARCH specifications.
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determined by setting®}, equal to the(1 — ¢)th quantile of the normal distribution with

the characteristic functiottg (u; N, v/ No;), whereu, ando, are the mean and standard
deviation, respectively/N is the adjustment factor needed to scale the standard deviation.
The method is frequently applied in practice, but it has been shown to underestimate the
downside risk consistently (see, e.g., Pownall and Koedijk, 1999).

3. Empirical results

In this study, daily closing prices for s@rmajor stock market price indices between
May 1992 and April 2000 are used for the analysis. In particular, we examine the S&P500,
NASDAQ, and FTSE 100 from May 4, 1992, to April 3, 2000. The total number of trading
days covered by the data is 2000 (FTSE 100) and 2001 (S&P500 and NASDAQ). The
data are obtained from DataStream. We used the percentage daily logarithmic change
100« In(p;/ p:—1), wherep; is the price index at time.

There is already some evidence that the inclusion of a time-varying asymmetric
volatility process can capture only some of the excess kurtosis and skewness in financial
data. Additionally, Hentschel (1995) showelat the differences in the conditional
volatility estimates could be substantial among the various specifications. Since the choice
of a particular specification will affect the conditional volatility estimate, it will also
affect VaR estimates, which is of our particular interest. We considered the following
restricted specificatns of our augmented GARCH process for the specification test: the
simple GARCH, the power-GARCH processes with either shift or rotation of the news
impact curve, the NGARCH, and the EGARCHesjfication. The results of the Lagrange
Multiplier test for robust standard errors based on White (1982) confirm that standard
GARCH model can be rejected for all indexes at the 1 or 5% level (results not reported).
For the S&P500 and the NASDAQ returns the test suggests that an asymmetric GARCH
process with a rotation of the news impact curve (Power-GARCH) and for the FTSE 100
returns the asymmetric volatility model with a shift of the news impact curve (NGARCH)
are most appropriateThe parameter estimates for tharticular GARCH specifications
and the individual index portfolios are presented in Table 1.

Since we are interested in the out-of-sample performance, we back-test our model for
all indices and the particular GARCH specifications over a period May 1996 until March
2000 and compare it to the RiskMetrics EWMA approach. Every day we estimate the
model using the last about 1000 trading days( means exactly one half of each sample
and a moving window) and forecasted the 99% (95%) VaR 5, 10, and 20 days ahead.
Table 2 reports the out-of-sample results.

The results are very promising: the VaR estimates we obtained by using our method
compared to the RiskMetrics method produoesaverage less violations of the expected
VaR for all confidence intervals and horizons. The RiskMetrics method constantly
underpredicts extreme events and this leads very often to an inappropriate humber of

2 Among the models that cannot be rejected, we baseletision on the Schwarz Bayesian Criterion (SBC)
(Schwarz, 1978).
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Table 1
Parameter estimates
Index/model Parameters
) K o oo o3 ag og b o A B
S&P500
Power-GARCH, truncated Lévy
0880 1760 Q0927 Q008 Q072 O O O 1698 0235 Q276
(0033 - (0.015 (0.009 (0.020 - - - (0.105 (0.117 (0.133
(0.058 - (0.018 (0.00n (0.0269 - - - (0.185 (0.153 (0.248
NASDAQ
Power-GARCH, truncated Lévy
0.791 1582 Q877 Q040 Qo071 0 O 0 1814 Q089 Q918
(0.052 - (0.022 (0.015 (0.022 - - - (0.045 (0.04) (0.14)
(0.049 - 0.029 (0012 (0.022 - - - (0.036) (0.046) (0.120
FTSE 100
NGARCH, truncated Lévy
1 2 0935 Q019 O 0 0 1116 1906 Q164 Q419
- - (0.010 (0.004 - - — (0.274 (0.065 (0.157) (0.289
- - (0.01) (0.003 - - — (0242 (0.055 (0.117 (0.289

Notes. The table reports parameter estimates foe truncated Lévy model and the particular GARCH
specifications. We used our specification test to determine the appropriate GARCH specification for each return
series. The underlying data set consists of daily ofagiems for the period May 1992 until March 2000. The
location parameter is assumed to be equal to the unconditvalue. Standard erroasid robust standard errors
proposed by White (1982) are given within parentheses.

Table 2
Violations of the actual Value-at-Risk

HORIZON VaR (conf. level) S&P500 NASDAQ FTSE 100

(days) (%) (%) (%) (%)

EWMA 5 99 26 33 29
95 59 7.6 6.1

10 99 18 27 11

95 52 6.6 49

20 99 Q09 23 13

95 46 72 43

Augmented GARCH 5 99 5 12 13
Truncated Lévy 95 2 49 5.3
10 99 12 13 0.8

95 43 55 40

20 99 Q7 14 09

95 37 4.6 39

Notes. The table reports percentage wtibns of the actual Value-at-Ridkr the alternative models during the
‘back-testing period’ (May 1996 until March 2000). Everyydae particular model was calibrated and a Value-
at-Risk estimate was obtained for different forecastingzoms and confidence levels. Subsequently, the actual,
realized return over a certain horizon was compared thi¢hreported Value-at-Risk. Given a confidence level
of 95% (99%), the model assumes a violation rate of 5%)(®higher (lower) violation rate indicates that the
model underestimates (overestimates) the actual Value-at-Risk.

violations. But in particular this underpretion is slightly reduced for lower confidence
intervals or longer forecasting horizons. This is a well-known result for the Gaussian
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distribution and the square-root-of-time scaling rule. On the other side, the GARCH models
with the truncated Lévy distribution and the alpha-root-of-time scaling rule lead to an
appropriate number of violations for loand high confidence intervals and shartd long
forecasting horizon.

In order to further evaluate our modeling approach, we compared the performance of
our model with the performance of a modebposed by Mittnik and Paolella (2000). The
authors consider a GARCH process driven by a skewed Studdistribution and obtain
multi-period densities using Monte Carlo simulation techniques. Results suggest that the
in-sample fit as well as the out-of-samptedcasting performance of our VaR model is
superior to the GARCH-skewed Studentiodel (results not reported). Further evaluation
of the different forecasting techniques urlgiang the two models is beyond the scope of
this paper.

Therefore, we can conclude that our scglirule captures the scaling behavior of
the data quite well and shows a convergence from a skewed leptokurtic distribution to
a Gaussian for larger sampling intervaldi§ is actually the unique bi-fractal scaling
behavior of the truncated Lévy flight.

4, Conclusions

In this paper we propose a generalization of the popular RiskMetrics approach to
Value-at-Risk. Our approach has some advantages: using the truncated Lévy flight for
the innovations of a GARCH process, we are able to capture the observed conditional
tail fatness and skewness in financial returns. We propose a new scaling rule to forecast
volatility. Location and scale parameter (volatility) are estimated on one time scale (daily)
and the multi-day (weekly or monthly) values are derived by using the stable property of
Lévy processes. The method has the implied advantage that we are able to identify the
relationship between return distributions for different sampling intervals by analyzing the
time series of returns on one sampling interval (say daily). As a result, based on our scaling
approach, we are able to produce better foresoa@mpared to methods, which add up one-
day forecasts to derive a multi-day forecast. Our approach is easier to implement and is
less time and computer intensive compared to Monte Carlo simulation methods, which are
typically used in risk management applicats and in option pricing models. Additionally,
scaling rules are known to improve the acayaf VaR estimates and suffer less from
‘estimation errors’ in VaR cmpared to other approaches.
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