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Summary. The uniform rule is considered to be the most important rule for the
problem of allocating an amount of a perfectly divisible good between agents who
have single-peaked preferences. The uniform rule was studied extensively in the
literature and several characterizations were provided. The aim of this paper is to
provide two different formulations and corresponding axiomatizations of the
uniform rule. These formulations resemble the Nash and the lexicographic egalitar-
ian bargaining solutions; the corresponding axiomatizations are based on axioms of
independence of irrelevant alternatives and restricted monotonicity.

1. Introduction

We consider the problem of distributing a non-negative amount of a perfectly
divisible good among a finite set of agents who have single-peaked preferences, i.e.,
up to a certain amount an agent likes to consume more of the good, beyond this
amount the opposite holds. This problem has been studied extensively in the
literature. Sprumont (1991) initiated the axiomatic analysis by characterizing the
uniform rule. He showed that the uniform rule is the unique rule which satisfies
Pareto optimality, strategy-proofness and either envy-freeness or anonymity. Ching
(1994) shows that the anonymity property can be replaced by the weaker property of
equal treatment and provides an alternative proof. Other axiomatizations of the
uniform rule are given in Thomson (1994a) using the well-known principles of
consistency and converse consistency. As a result of this extensive analysis, the
uniform rule is now considered to be the most interesting rule for this type of
problems.

* The authors are grateful to Jeffrey Banks, Steve Ching, Vincent Feltkamp, Bezalel Peleg, Sang-Young
Sonn, William Thomson and an anonymous referee for helpful comments.
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In this paper we give two new characterizations of the uniform rule, both of
which are inspired by the axiomatizations of two different bargaining solutions. In
section 2 we associate with each economy an auxiliary bargaining problem in such
a way that the set of Pareto optimal allocations of the bargaining problem coincides
with the set of efficient divisions in the original economy. Next we show that the
division recommended by the uniform rule to each economy, coincides with the
allocation recommended both by the Nash and the lexicographic egalitarian
bargaining solutions to the associated bargaining problem. The proofs are interest-
ing because they use the principles of consistency and converse consistency in
different contexts, namely in the context of bargaining problems on the one hand,
and of the allocation of a commodity among agents with single-peaked preferences
on the other hand. Moreover, they illustrate that consistency and converse consist-
ency, which have been employed in axiomatic characterizations of game theoretic
solution concepts (for example, Sobolev (1975), Peleg (1985, 1986), Lensberg (1988),
Peleg and Tijs (1992) to mention just a few), can be helpful for other purposes as well.
Both our results suggest that the uniform rule might be characterized by means of
some suitably adapted set of axioms that characterize the bargaining solutions
mentioned above. Section 3 provides two characterizations of the uniform rule. One
uses axioms reminiscent of those used by Nash (1950) to axiomatize the Nash
bargaining solution and the other uses axioms inspired by the axiomatization of the
lexicographic egalitarian bargaining solution by Chun and Peters (1988). More
specifically, the first characterization is based on an independence of irrelevant alter-
natives axiom, and the second one is based on a restricted monotonicity axiom.

2. The uniform rule
2.1 The model

Let 1 < N be a non-empty set of agents and let M be some fixed positive number.
A coalition is a finite, non-empty subset of I. Given any preference relation R over
[0,M], ie., a complete and transitive binary relation, we denote x R y if (x, y)eR,
xPyifxRyandnot y Rx,and xIyifx R yand y R x. R is called single-peaked if
there exists a number p(R)e[0, M] such that for all x, ye[0, M ], with x < y < p(R) or
P(R) < y < x,we have y P x. p(R) is called the peak of the relation R. By % we denote
the set of all single-peaked preferences over [0, M]. The introduction of M is just for
notational convenience: It allows us to define peaks as a function only of the
preferences, i.e., independently of the amount to be divided. An alternative way
would be to define preferences over [0, cc), but then monotonic increasing prefer-
ences would be excluded from the definition of single-peaked preferences unless we
say that in this case the peak is infinity.

An economy is a tuple E = ( M, (R),.x >, where 0 < M < M, N is a coalition, and
for each ieN, R,e #. Denote p(E):= (p(R))),y- The class of all economies is denoted
by &. An economy represents the problem of allocating a positive amount of
a perfectly divisible good, which cannot be disposed of, among a group of agents
who have single-peaked preferences over [0, M].

Let N be a coalition and xeR". If S« N, S # ¢4, then we denote x(S):= 3, .¢X,
and xg:=(x),.s€R®. For x, yeR® we denote x < y(x <y) if x, < y;(x, < y,) for all 1€8.
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Let E = { M, (R)),.y > be an economy. An allocation for E is a vector xe RY such
that x(N) = M. By X*(E) we denote the set of all allocations for E. An allocation
xe X *(E) is called efficient if there is no ye X *(F) such that y, R, x, for all ie N and
y; P; x; for some ieN. X(F) denotes the set of all efficient allocations for E.

Sprumont (1991) showed that an allocation for an economy is efficient if and
only if there are no two agents such that one gets more than his peak and the other
gets less than his peak. This means that an allocation is efficient if and only
if all agents are on the “same side” of their peaks. Formally, for an economy
E={(M,(R);.yyeé and xe X*(E),

x<pE) if M<Y,_vp(R)
xzp(E) if M=%, yp(R,).

A rule is a function ¢ which assigns to each economy Eeé an allocation
¢(E)e X *(E), which can be interpreted as a recommendation for economy E.

A rule which plays a central role in the literature of economies with single-
peaked preferences is the uniform rule, see Sprumont (1991), Thomson (1991,
1994a,b, 1992a,b), Ching (1992, 1994).

The uniform rule, U, is defined as follows. Let E = (M, (R), y>€& and ieN.
Then

XEX(E)@{

max{p(Rt)’ }“} lf M = ZieN p(RL)a

where 4 is such that U(E)e X *(E).

For the case in which there is too little to divide, i.e, M <3 _y p(R), the uniform
rule chooses appropriately an amount A and allocates it to every agent with peak
above this amount whule all other agents obtain their peak. Here, appropriately
means that the resulting division is indeed an allocation. Note that the uniform rule
takes into account only the amount M and the peaks of the preferences of the
individual agents.

One of the reasons why the uniform rule is interesting, is that it is the only rule
which satisfies many desirable properties. For example, it always recommends
envy-free allocations. Moreover, the uniform rule is strategy-proof, i.e., if it is applied
on the basis of declared preferences, it is a (weakly) dominant strategy for each player
to declare his true preferences. We now discuss four other properties, which are also
satisfied by the uniform rule.

Let ¢ be a rule.

Pareto optimality: ¢ 1s Pareto optimal if ¢(E)e X (E) for all Ecé&.
M-Monotonicity: ¢ is M-monotonicif for all economies E = { M, (R}),.y > €&, and
E ={M',(R);cn>ed, with M < M’, we have ¢(E) < p(E).!
Let E=<{M,(R),.x>e€ be an economy, xe X*(E), and S = N, S # ¢J. The reduced
economy w.r.t. § and x is

UI(E): {min{p(Ri), )“} if M < ZieN p(Rz)

ES,x:: < x(S)’ (Ri)zss >

! M-monotonicity 1s different from the 1-sided resource monotonicity introduced in Thomson (1994b).
But if Pareto optimality 1s imposed both properties are equivalent.
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Remark 2.1 Note that ES*e&. Further, if 5 # T < S, then ET* = [ES*]T,

A rule ¢ is consistent if for all economies E =<{M, (R),.x>€&, and all SN,
S # (& we have, if x = ¢(E), then x4 = ¢(E5~).

Roughly speaking, consistency of a rule means that, if a subgroup of agents would
decide to pool their parts of the allocation prescribed by the rule and apply the same
rule to redistribute this total, then the agents in that group would end up each with
the same amount as before. Thomson (1994a) proved that the uniform rule is
consistent. For more details on the consistency principle the reader is referred to
Thomson (1990, 1994a).

A rule ¢ is converse consistent if for all economies E€ & and all xe X *(E) we have,
if xg = ¢(ES*) for all S = N with | S| =2, then x = @(E).

Converse consistency means that, given a certain allocation x for an economy, if the
restriction of x is recommended for every reduced economy with respect to
a subgroup of two agents and x, then the allocation x is recommended in the large
economy. As a consequence of the following lemma we obtain that the uniform rule
is converse consistent.

Lemma 2.2 Let ¢ be an M-monotonic rule. Then ¢ is consistent if und only if (i) for
every economy E€é& there exists an xe X *(E) such that xg = ¢(ES-*) for all S = N with
|S|==2, and (ii) ¢ is converse consistent.

Proof. (=) Let Ee&. Take x:= ¢(E). Consistency of ¢ yields that xg = ¢(E**)for all
S < N with|S]| = 2. In order to prove that ¢ is converse consistent, it suffices to show
that there is no allocation ye X*(E), y # x, such that ys = ¢(E5?) for all S « N with
|S| = 2. Suppose that there exists such a y. Since x(N) = y(N) = M, it follows that
there are i, je N such that x; < y, and x; > y,. Take §:= {i,j}. W.Lo.g. we assume that
x(S) > v(S). M-Monotonicity of ¢ yields that ¢(ES) > ¢(E>?). Hence, xg > yg, which
yields a contradiction.

(«=)Let Ee&. Let J # T < N, and x = ¢(E). We have to prove that x; = ¢(E').
By assumption there exists a ye X*(E) such that yg = ¢(E”) for all S < N with
|S| = 2. Converse consistency of ¢ yields that y = ¢(E) = x. Hence, xz = ¢(ES) for
all S = N with |§| = 2. By remark 2.1, xg = ¢([E"*]5*) for all S < T, with |S| =2.
Clearly, x, € X*(ET~). Hence, converse consistency of ¢ yields x; = ¢(E™). [

2.2 Bargaining solutions

Before we state the main results of section 2, we first recall some notions from
cooperative bargaining theory. Those who are acquainted with this theory may skip
this subsection.

Let N < I be a coalition. A bargaining problem for N is a subset B of RY which
satisfies the following properties:

(i) Bis compact and convex.
{i1) There exists a ye B with y > 0.
(iii) B is comprehensive, ie., if xeB, and yeRY, with y < x, then yeB.
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Let # denote the set of all bargaining problems.?

A (bargaining) solution is a function # which assigns to each Be# an element
F(B) of B.

A prominent solution is the Nash bargaining solution introduced by Nash
(1950). Let Be# be a bargaining problem for N. The Nash bargaining solution is
defined by

A(B):= argmax {]—[ xi|xeB}.
ieN

Another bargaining solution is the lexicographic egalitarian solution. To define
it we need some notation.

Let a:RY > RY be a function such that for each xeRY the vector a(x) is
a reordering of the coordinates of x in a non-decreasing order. So if i, je N with i <j,
then o;(x) < «,(x). The lexicographic maximin ordering >" on R" is defined by
x>"y if o(x)>"a(y), where >' denotes the lexicographic order on RY, i.e., for
a,beRY, a >'b if there exists an ie N such that ¢, > b, and a, = b, for all j <i.

The lexicographic egalitarian solution, & : % —RY assigns to each bargaining
problem Be# the unique point which is maximal with respect to the lexicographic
maximin ordering >

It is well-known that both 4" and . satisfy the three properties listed below.

A solution # is Pareto optimal if for all Be 4, and all ye B we have, if y > #(B),
then y = % (B).
A solution & satisfies strict individual rationality if #(B) > 0 for all Be 4.

Thomson and Lensberg (1989) and Lensberg (1988) characterized the lexicographic
egalitarian solution and the Nash bargaining solution respectively, using a consist-
ency property. In order to introduce it we need the following definition.

Let Be# be a bargaining problem for N, let xeB, and let S N, § # 4. The
reduced bargaining problem w.r.t. § and x is

BS’xI= {ySeRi[(ys’ xN\S)eB}'

Note that not necessarily, B> However, if x = A'(B) or if x=.%(B), then
BS~*e. This is a consequence of the fact that both 4" and .# satisfy strict individual
rationality.

The consistency property is now defined as follows.

A solution & is consistent if for all bargaining problems Be# for N, and all
S < N, S # 5 we have, if BS*€:# where x = % (B), then xg = F (B>

For the results in this section we are going to make use of the fact that both 4" and
& satisfy the consistency property. The results in the next section are based on the
characterizations of 4" and .% by Nash (1950) and Chun and Peters (1988).

2 Usually, a barganing problem is defined by a set B and a disagreement outcome de B. For our analysis
the disagreement outcome does not play an explicit role: The reader may think of the disagreement
outcome as being d =0
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2.3 Two formulations of the uniform rule

Let E = {M,(R));.x > be an economy. Let p(E) denote the set of agents ie N for which
thereis an xe X (E)such that x, > 0. Note that p(E) # ¢f ifand only if M > 0. If one is
interested in Pareto optimal rules, it is clear that the problem is, how to divide the
total amount M among the agents in p(E), for all efficient allocations give zero to the
agents not in p(E). In other words, the set of agents which are relevant for economy
E is p(E).

We now state the main results of this section.

Theorem 2.3 Let E = (M, (R)),.n> be an economy. Then U(E) is the unique element of
argmax{[ 1., v.|yeX(E)}, if p(E) # &, and U(E) =0, otherwise.

Theorem 2.4 Let E = (M, (R,),.x> be an economy. Then U(E) is the unique efficient

im

allocation for E which is maximal with respect to >"",

Instead of giving a direct proof of both theorems, we will give an indirect one
based on some properties of the uniform rule and the consistency property of both
the Nash solution and the lexicographic egalitarian solution.

Proof of theorems 2.3 and 2.4.

Clearly, both theorems hold if the economy consists of only one agent orif M = 0. So
from now on attention is restricted to economies with at least two agents and M > 0.
For any such an economy E define B(E):= comp X(E).? (See figure 1).

Case 1: All agents are relevant.

Let E = {M,(R;);.y > be an economy with p(E) = N and |N| > 2. Since, p(E) = N,and
X(E) is a convex set, there exists a point yeX(E) with y>0. Hence, B(E) is
a bargaining problem. B(E) is called the bargaining problem associated with E.*

Figure 1. The set B(E) in case E 1s an economy with two agents

3 compX(E) denotes the comprehensive hull of X(E), 1.e., the set of all ye R’z such that y <x for some
xe X(E).

* Tt should be noted that B(E) represents a set of physical allocations, whereas a bargaining problem 1n
the usual sense represents a sct of utility n-tuples.
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The following lemma shows that the operation of reducing an economy commutes
with the operation of reducing an associated bargaining problem. It also implies
that, within this context, the consistency requirements for bargaining problems and
economies coincide.

Lemma 2.5 Let E={(M, (R),.n> be an economy with |N|>2 and p(E)= N. Let
SaN,S# 3, and xe X(E). Then

B(ES™) = BS¥(E).

Proof. We only prove the case 3,y p(R,) < M. The other case is easier.
Since xe X(E), it follows that 3 s p(R,) < x(S). Hence,

X(E%Y) = {yeRS | y(S) = x(S), y; > p(R)VieS}.

Let ye B(ES) = comp X (E5*). Then there exists a ze X (ES) with z > y. This means
that z(S) = x(S), and z; > p(R)) for all ieS, which implies (z, x,s)€ X(E) < B(E).
Hence, by definition of the reduced bargaining problem, it follows that ze B>~(E).
Since BY*(E) is comprehensive, we have ye BS-*(E).

Now take ye B¥*(E) = {yeRS |(y, xy.s)ecomp X(E)}. Then there exists a te X(E)
with £ >(yg Xy ) and ¢; = p(R,) for all ieS. Since ty5> x5 and t(N) = x(N), it
follows that #(S)<x(S). Hence, tgecomp{zeR3 |z(S)=x(S), z;>p(R,) for all
ieS} = B(ES™). Since tg > yg, comprehensiveness of B(ES™) implies that yse B(ES).
Hence, BS*(E) < B(ES>). [J

In order to prove theorems 2.3 and 2.4 for this case it is sufficient to show that
U(E) = A (B(E)) = Z(B(E)). (1)

First note that in case |N| = 2, it is immediately clear that U(E) = ¥ (B(E)). Further-
more, it is also straightforward to show that A"(B(E)) = Z(B(E)).

Hence, it remains to show that (1) holds if [N|> 2. This will follow from
lemma 2.6 below.

Let £’ < & be the family of economies E with p(E) = N.

Lemma 2.6 Let & be a bargaining solution which satisfies Pareto optimality, strict
individual rationality, and consistency. If F(B(E)=U(E) for all E= <M,
(R),cny > €& with |N| = 2, then #(B(E)) = U(E) for all E=&".

Proof. Let x:= #(B(E)). From strict individual rationality we know that x > 0 and
therefore, B>*(E)e #. Moreover, by consistency of #

xg=F(BS*E)) forallScN,|S|=2.

Furthermore, from Pareto optimality of # and the definition of B(E), it follows that
xe X(E). So by lemma 2.5, B(ES*) = BS*(E). Hence,

xg=F(B(ESY) forallS< N, |S|=2.

Since B(ES™) = comp X (ES*)e 4, it follows that there exists an ye X (ES*) with y > 0.
So p(E>*) = S for all S < N, |S] = 2. Hence, by assumption

xg=U(ES®) forallScN,|S|=2.
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Converse consistency of the uniform rule now yields
x=U(F). [

Since both 4" and & are consistent, strict individually rational and Pareto optimal
bargaining solutions, which satisfy (1) in case E is an economy with two agents, it
immediately follows from lemma 2.6 that (1) holds for all Ec4". This ends the proof
of case 1.

Case 2: Not all agents are relevant.
To complete the proof of theorems 2.3 and 2.4 we consider an economy E =
M, (Ry)ien > with p(E) # N.

Let x:= U(E) and S:= p(E). § # (& since M > 0. Parcto optimality of U implies
that xy,s = Oy,s. Consistency of U implies that xg = U(E®*). Clearly, p(E®*) = S. So
by case 1, we have xg = argmax{[ ;.5 y.| y€ X(E>¥)}, and moreover, we have that xg
is maximal with respect to >""in X (E>). Since X (E) = X (E>%) x {Oy.s}, it immedi-
ately follows that U(E) = (x,,0y.s) = argmax{] T,s ;| ye X(E)}, and that x is maxi-
mal with respect to >"in X(E). []

Clearly, the fact that the Nash solution and the lexicographic egalitarian
solution coincide is due to the narrowness of the class of bargaining problems that
arise as associated with economies.

A similar kind of proof can be found in Aumann and Maschler (1985), who
showed that one bankruptcy rule, the contested garment consistent rule, can be
defined as the nucleolus of an appropriately chosen TU-game. Theorem 2.3 can be
seen as a generalization of Dagan and Volij (1993) who showed that the constrained
equal award rule for bankruptcy problems corresponds to the Nash bargaining
solution of an appropriately chosen bargaining problem.

3. Two characterizations of the uniform rule

Itis clear from the previous section that, at least formally, there is a relation between

the uniform rule on the one hand, and the Nash and the lexicographic egalitarian

bargaining solutions on the other hand. This suggests that the uniform rule might be

characterized by means of a suitable adaptation of some properties that characterize

these bargaining solutions. Before we go into axiomatic characterizations of the uni-

form rule, we present some properties, most of which are satisfied by the uniform rule.
Let ¢ be a rule.

Equal treatment: ¢ satisfies equal treatmentifforall E = (M, (R);.y>e& and alli,
jeN,if R;=R,, then P (E) P (E).
It is easy to see that together with Pareto optimality, equal treatment implies that
any two agents with identical preferences get the same physical amount of the good.

Peak only: ¢ satisfies peak only if for all economies E = (M, (R);cx >, E'=<M,
(R)ien > €&, we have, if p(E) = p(E'), then ¢(E) = H(E").

This property requires from a rule to take into consideration only the peaks of the
preference profile when dividing a certain amount M. Peak only is a natural axiom
for rules which satisfy Pareto optimality. To see this recall that a Pareto optimal rule
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selects allocations which are characterized by the fact that either all agents get more
than their peaks or all agents get less than their peaks. Once restricted to the relevant
side of the peak all preferences with this peak are identical. Hence, the peak contains
all the ‘relevant” information.

The following property, though different, is reminiscent of the one used by Nash
(1950) in his characterization of the Nash bargaining solution.

Independence of irrelevant alternatives (I1A4): ¢ satisfies ITA if for all economies
E=(M, (R)uy> E=<(M, (R)x>ed, with X(E)c X(E), we have, if
P(E')e X(E), then ¢(E) = ¢(E).

The IIA axiom makes sense only if ¢ is Pareto optimal. The idea behind this axiom is
the following. If some efficient allocations which were not selected by the rule
become inefficient, then this should not result in a change of the recommended
outcome if this outcome is still efficient. For our results we need only a weaker
version of IIA which requires independence only in cases where in both economies
either there is too much to divide or there is too little to divide.

One-sided independence of irrelevant alternatives: ¢ satisfies one-sided A if for
all E={M, (R).n>, E=<{(M, (R),.x>€é, with X(E)<= X(E') such that
max{¥ .y PR), Tiey PR)} < M or min{X ey p(R)), Xiew P(R)} = M the follow-
ing condition holds: If ¢(E")e X(E), then ¢(E) = H(E").

Consider the following property:

Monotonicity: ¢ satisfies monotonicity if for all economies £ = (M, (R),.y> and
E' = {M',(R)),.5>,such that for each xe X(E) there exists an x'e X (E') with x;R}x,
for all ie N we have ¢ (E") R¢ (F) for all ieN.

This axiom states that if for every efficient allocation x in E we can find an efficient
allocation x" in E’ such that x’ is weakly preferred to x by all agents in E’, then the
same must be true for the recommendations ¢(£’) and ¢(E), namely ¢(E’) must be
weakly preferred to ¢(E) by all agents in E'. This axiom is similar in spirit to the
monotonicity axiom of bargaining theory, and, like in bargaining theory, mono-
tonicity is incompatible with Pareto optimality, as the following lemma shows.

Lemma 3.1 There is no Pareto optimal rule ¢ that satisfies monotonicity.

Proof. Assume by contradiction that ¢ satisfies both properties. Let E, E' and E” be
three two-agent economies in which there are 3 units to be divided. The peaks of the
preference relations are respectively, p=(1,2), p’ =(2,1) and p” = (3,3). By Pareto
optimality of ¢ we have that ¢(E} = (1, 2). It is clear that X(E) = X(E")so E and E”
trivially satisfy the condition in the monotonicity property. Hence by monotonicity,
we must have ¢(E”) = (1,2). A similar argument shows that ¢(E") = (2, 1), which is
a contradiction. []

Lemma 3.1 shows that if we want to keep Pareto optimality, we must, as in
bargaining theory, weaken the monotonicity requirement. We are going to weaken
the monotonicity axiom in two different ways. First, we are going to allow for
non-monotonicity only if one of the agents that got his peak in the smaller problem,
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strictly prefers the recommendation for the bigger problem. Second, we are going to
require this restricted form of monotonicity only when comparing some very specific
economies.

One-sided restricted monotonicity: ¢ satisfies one-sided restricted monotonicity if
for all economies E=<{M, (R)n>,E =<{M, (R).y>€é, satisfying
X(E)c= X(E') and either max{3 .y p(R), Y. nP(R)} <M or min{}, ,p(R),
>.nD(R)} = M the following condition holds: If ¢ (E) R;¢,(E’) for all ieN
such that ¢,(E) = p(R)), then ¢ (E')R; ¢ (E) for all ieN.

In order to understand this axiom, note that ¢, (E) = p(R,) means that it is physically
impossible to make agent i better off in economy E. In this case we say that i’s peak is
binding at ¢(F). One-sided restricted monotonicity says that given two economies
E and E’ satisfying the conditions in the definition of this property, if ¢ does not
behave monotonically, i.e., there is some agent in E” who strictly prefers ¢(E) to
¢(E"), then there must be some other agent in E', whose peak was binding at ¢(F),
who strictly prefers ¢(E’) to ¢{E). In other words, if the peaks of the agents’
preferences change in the same direction, then no agent’s award should follow the
opposite direction unless there is an agent whose peak was binding in the original
situation and whose award followed the direction of his peak in the transition to the
new situation. The motivation for this axiom is the same as the one for the restricted
monotonicity satisfied by the lexicographic egalitarian bargaining solution (Chun
and Peters (1988)): In some situations an agent may benefit from the fact that it is
physically impossible to make other agents better off. If this impossibility disappears
due to the fact that the peaks change, it may be bad news for those who benefitted
from the previous situation, i.e., their awards may go farther away from their peaks.
It is only this kind of non-monotonic behavior that is allowed by the restricted
monotonicity axiom.

The following lemma shows that there is a relation between the one-sided
monotonicity axiom and the one-sided I1A.

Lemma 3.2 Ifarule ¢ satisfies Pareto optimality and one-sided restricted monotonic-
ity, then it satisfies one-sided 11 A.

Proof. Let ¢ be a rule which satisfies Pareto optimality and one-sided restricted
monotonicity and let E= (M, (R);.x>, E = (M, (R),.y>€E, be two economies
satisfying X (E) = X (E'). We distinguish two cases.

Case 1: min{3¥, .y p(R), Xien P(R)} = M.
Assume ¢(EYe X(E). Then by Pareto optimalily of ¢, we have

max{¢,(E), p,(E)} <min{p(R), p(R)} forallieN. (2)
Since X(E) < X(F’), it follows that
min{M, p(R)} < p(R})) forallieN. 3

Let ieN be such that ¢,(E)=p(R). Then it follows from (2) and (3) that
#(E) < p(R) = ¢,(E) < p(R). This implies that ¢(E)R; ¢(E') for all ieN with
¢.(E) = p(R).
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Since ¢ satisfies one-sided restricted monotonicity, if follows that ¢,(E) R; ¢,(E)
for all ieN. Since ¢(E)e X(E'), we must have ¢,(E') I; ¢,(E) for all ieN. Since both
@(E) and ¢(E") are efficient in E' it follows that ¢(E) = ¢(E).

Case 2: max{Y .y P(R), TinP(R)} <M.
In this casc X(E)c< X(E') implies that p(E)<p(E). Let ieN be such that
$.(E) = p(R,). Then, since $(E")e X(E), it follows from Pareto optimality of ¢ that
$(E)=p(R) = ¢p(E)=> p(R)). This implies that ¢,(E) R; ¢(E) for all ieN with
$:(E) = p(R).
Since ¢ satisfies one-sided restricted monotonicity, it follows that ¢,(E") R} ¢,(E)
for all ie N. Since both ¢(E) and ¢(E’) are efficient in £, it follows that ¢(E) = ¢(E).
O

The following lemma will allow us to considerably simplify notation.

Lemma 3.3 If a rule ¢ satisfies Pareto optimality and one-sided 1A, then it satisfies
peak only.

Proof. Let ¢ satisfy Pareto optimality and one-sided ITA and let E = { M, (R);cn >
E = {M, (R).x>€& be two economies with p(E) = p(E"). Then X(E)= X(E') and
since ¢ is Pareto optimal, we have ¢(E')e X(E) = X(E'). Hence, by one-sided IIA,
P(E) = P(E).

Lemmas 3.2 and 3.3 imply

Corollary 3.4 Let ¢ be a Pareto optimal rule which satisfies one-sided restricted
monotonicity. Then it also satisfies peak only.

It will follow from theorem 3.5 and from example (iii) below that the converses of
lemmas 3.2, 3.3, and corollary 3.4 are not true.

The following property imposes a restriction only when the solution satisfies
peak only.

Conditional p-continuity: A solution ¢ is conditional p-continuous if the follow-
ing holds: If ¢ is peak only, then it is continuous with respect to the peaks.

Note that conditional p-continuity is weaker than the continuity with respect to
preferences introduced by Sprumont (1991).

We are now ready to state the two main results of this section, which are
characterizations of the uniform rule, based on axioms inspired by the results of the
previous section.

Theorem 3.5 The uniform rule is the unique rule which satisifes

(i) Pareto optimality
(ii) Equal treatment
(iii) One-sided IIA
(iv) Conditional p-continuity.

Proof. It is clear that the uniform rule satisfies properties (i), (ii} and (iv). That the
uniform rule satisfies (one-sided) I1A follows immediately from theorem 2.3 above.
For each Me[0, M7, let &(M) be the class of economies in which M is the amount
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to be divided. Furthermore, let A(M):={xeRY|x(N)=M). For peRY let
S(p)={xeA(M)|x < p orx = p}.

Now let ¢ be a rule satisfying the foregoing axioms. By lemma 3.3 ¢ is peak only.
Let Me[0, M], and let N be a coalition. Define the following function f:RY — A(M)
by

S (p) = ¢(E) for some Eec&(M) with p(E) = p.
Since ¢ is peak only, [ is well-defined.

Since ¢ satisfies (i)—(iv), the reader can easily verify that f satisfies the following
properties.

(A.1) f(p)S(p) for all peRN.

(A.2) fip) = f,(p) for all peRY with p,=p,.
(A.3) For all p,qeRY such that either mdx{p(N), 4(N)} <M or min{p(N), g(N)} >

M, we have, if f(q)eS(p) = S(g), then f(p) = f(q).
(A.4) f is continuous in p.

To conclude the proof of theorem 3.5 it suffices to show that for all peRY

1 )z{min{pi,i} if p(N)=M

4
max{p, i} if p(N)<M, )

where 1 is such that f(p)eA(M).
Let pe RY . Assume p(N) < M (the case p(N) > M is similar, and the case p(N}Y=Mis
trivial). (A.1) implies f(p) > p.
Define the following set of agents:
K:={ieN|f{p)>p,}.
Since p(N)y< M, K # (.
The proof of (4) follows from the following four steps.
Step A: Let ieK and let 0 < g; < p;. Define ge RY by
_p, i jeNA{i}
Y=g, ifj=i
Then f(q) = f(p).
Proof. Let
a=inf{z,e[q, p]l f(z, p_) = f(D)}-

Here, p_, denotes the vector py, ;.

By (A.4), if follows that f(x,p_,) = f(p). We prove that « = g,. Suppose, on the con-
trary, that « > g,. Since fio, p_,) = fi(p) > p,, it follows from (A.4) that there exists a
q; <a < aclose enough to o, such that fi(a,p_)) > p,. By (A.1), we have f{{a,p_)>p,
forall je N\{i}. Hence, f(a, p _)eS(p). Clearly, S(p) = S(a,p_)). Therefore by (A.3)we
have f(a, p_;) = f(p), contradicting the definition of &. We conclude that o = g, and

so it follows that f(g) = f(q,p_)=f(p). [
Step B: for all i, je K we have f,(p) = f,(p).
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Proof. Leti,jeK, and let 0 <v=min{p, p;}. Define ge RY by
_ {pk if ke N\{i,j}
e if k=i,j.
(A.2) yields that fi(q) = f,(q). From Step A it now follows that f,(p)= f{(p). O
Step C: For all i, jeN we have, if p, < p;, then f,(p) < fi(p)-
Proof. Suppose that there exist i, je N, with p, < p;and f,(p) > f(p). Define geRY by

pe if keN\{i}
p, if k=i

=

From (A.1) and the definition of g it follows that g, = p, < fi(p) for ke N\{i}.
Moreover, from the assumptionit follows that g, = p; < f(p) < fi(p). Hence, f(p) = g,
and 3, v 4 < Yien f1(p) = M. Therefore, f(p)eS(g) = S(p). (A.3) now yields that

f(p)= f(g). Hence using (A.2), we obtain f(p) = fi(q) = f,(q) = f{p), which contra-
dicts the assumption f(p) > f(p). [

According to Step B all agents in K obtain the same amount. Denote this amount by
A Le., fip)=/for all ieK.
We now have

Step D: p, > A for all ie N\K.

Proof. Suppose that there exists an ie N\ K, with p; < 4. Take je K. By definition of
K and 4 we have fi(p) = p; <A = f,(p). Hence by Step C, we have p; < p;. Define
qeRY by

_pe if keN\{j}

o, if k=]
By StepA it follows that f(q)=f(p). (A2) yields fi(p)=f,(9=f(@=
f{p)=p, < p;, which contradicts (A.1). []

Now we show that (4) holds.
From Step B and the definition of K and 4 it follows that

fdpy=max{p, i} foralliek.
From Step D and the definition of K we obtain
fi(p) = max{p, i} forallieN\K.
Since f(p)e A(M), (4) holds. This completes the proof of theorem 3.5. [

The following examples show that the properties (i)-(iv) in theorem 3.5 are indepen-
dent.
M

(i) The egalitarian rule ¢! defined by ¢!(E)= <|TV|”|-1\T|> for all economies

E =< M, (R),.y € satisfies equal treatment, (one-sided) IIA, and conditional
p-continuity, but not Pareto optimality.
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(ii) Let ¢ be defined as follows: For each E = (M, (R),.y Y&

U(E) if |N| 2

Y(E)=
¢(E) {argmax{x}"‘x;/‘*lxeX(E)} if N={ij}, i<j.

¢ satisfies Parcto optimality, (one sided) ITA and conditional p-continuity, but
not equal treatment.
(i) Let ¢ be defined as follows: For each E = (M, (R),.y>€& and ieN

HHE)= { UE) if ,enP(R) > M
l P(R) + %(M — X, .y p(R)) otherwise.

¢? satisfies Pareto optimality, equal treatment, and conditional p-continuity,
but not (one-sided) I1A.
(iv) Let ¢* be defined as follows: For each E = (M, (R),_.y Y&

U(E) if 1N %2
$HE)=< argmin{xx;|xe X(E)} if N={i,j} and (4,%)¢X(E)
yu otherwise.

¢* satisfies Pareto optimality, equal treatment and (one-sided) IIA, but not
conditional p-continuity.

The following theorem shows that if one-sided IIA is replaced by one-sided
restricted monotonicity in theorem 3.5, then we can drop conditional p-continuity.
Theorem 3.6 The uniform rule is the unigue rule on & which satisfies

(i) Pareto optimality
(ii) Equal treatment
(111) One-sided restricted monotonicity.

Proof. 1t is clear that the uniform rule satisfies properties (i) and (ii). The following
lemma shows that it satisfies (iii).

Lemma 3.7 The uniform rule satisfies one-sided restricted monotonicity.

Proof. Let E=<{M, (R)iex>, E'={M, (R)),.xy>€8, be two economies satisfying
max{¥ ..y P(R), Yien P(R)} < M (the other case is similar) and assume X(E) = X(E').
Then p(E) = p(E'). ForallieN, let U(E) = max{p(R)), A} and U(E) = max{p(R)), A'}.
Define K: = {ieN|U(E) > p(R))} and assume U,(E) R, U{E’) for all ieN\K, ie.,

U(E)< U,E), forallieN\K. (5)
We need to show that U (£') R} U(E) for all ieN. Since
M =3 max{p(R), X'} =Y max{p(R), i} = Y max{p(R)), 1},

icN 1eN icN

it follows that 2" > 4.
Take ieK. It follows from the definition of K that p(R)) < p(R;) < 2 < A". Hence,

U(E)< U(E). (6)
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This together with assumption (5) implies that (6) holds for all ieN. But since
S.n ULE) =Yy UAE), we have U (E) = U(E') for all ieN, which in turn implies
that U(E") R; U (E)for allieN. []

Now let ¢ be a rule satisfying the axioms (i) -(iii). By corollary 3.4 ¢ is peak only. Let

Me[0, M], and let N be a coalition. Analogously to the proof of theorem 3.5, define
the function f:RY — A(M) by

f(p)= ¢(E) for some Ec&(M) with p(E) = p.
Since ¢ is peak only, f is well-defined.

The reader can easily verify that (i)-(ili) together with lemma 3.2 imply that

f satisfies, besides (A.1),(A.2), and (A.3) (see the proof of theorem 3.5), the following

property.

(A.5) Forall p,qeRY, with S(p) = S(¢), and such that either max{p(N), g(N)} < M or
min{p(N), ¢(N)} = M, we have, if | f(p) — q,| <|f{q) — q,| for all ie N such that
fdp) = p;, then | fi(q) — q| < |fip) — g,/ for allieN.

To conclude the proof of theorem 3.6 it suffices to show that for all peRY
fi(p)= min{p, 4} if p(Ny=M
FTT \max{p, 4} if p(N)< M,

where / is such that f(p}e A(M).

Let peRY . Assume p(N) < M (the case p(N) > M is similar, and the case p(N) = M is
trivial). (A.1) implies f(p) = p.

Define the following set of agents:

K:= {ieN|f(p)>p}.

Since X, xp; <M, K # .
Analogously to the proof of theorem 3.5 we now have

Step Az Let ieK and let 0 < ¢, < p,. Define ge R’} by
{pk if keN\{i}
qdi = . o
g, if k=i
Then f(q) = f(p)-

Proof. From the definition of g it follows that S(p) < S(g). Suppose f(p) # f(q). Since
p, g A(M), it is not true that f(q) < f(p). Hence by (A.5), it follows that there exists
a jeN such that f(p)=p, and f,(p) > fi(q). Since j¢ K, it follows that j # i. Hence,
q,=p;= f(p)> f{q) = q; which is a contradiction. []

The proof of theorem 3.6 now follows from the remark that in the proofs of Steps B,
C, D above only (A.1), (A.2), and (A.3) are used. So the proof of theorem 3.6 can
proceed in the same way as that of theorem 3.5. [J

The examples (i), (ii), and (iii} above show that the axioms in theorem 3.6 are
mdependent.
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