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SUMMARY

This paper studies the empirical performance of stochastic volatility models for twenty years of weekly
exchange rate data for four major currencies. We concentrate on the e�ects of the distribution of the
exchange rate innovations for both parameter estimates and for estimates of the latent volatility series. The
density of the log of squared exchange rate innovations is modelled as a ¯exible mixture of normals. We use
three di�erent estimation techniques: quasi-maximum likelihood, simulated EM, and a Bayesian procedure.
The estimated models are applied for pricing currency options. The major ®ndings of the paper are that:
(1) explicitly incorporating fat-tailed innovations increases the estimates of the persistence of volatility
dynamics; (2) the estimation error of the volatility time series is very large; (3) this in turn causes standard
errors on calculated option prices to be so large that these prices are rarely signi®cantly di�erent from a
model with constant volatility. # 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Many high-frequency ®nancial time series show time-varying volatility. The most popular way to
describe the time variation is the AutoRegressive Conditional Heteroscedasticity (ARCH) model
introduced by Engle (1982), or one of its variants (GARCH, Bollerslev, 1986; EGARCH,
Nelson, 1991). An alternative approach, which has become more popular recently, is the stoch-
astic volatility model, where the variance is modelled as an unobserved component. It has been
proposed because it is directly connected to the type of di�usion processes used in asset-pricing
theory in ®nance (see e.g. Melino and Turnbull, 1990). Initial research in these directions was
performed by Clark (1973), Tauchen and Pitts (1983), and Taylor (1986). It has been advocated
in econometrics by Harvey, Ruiz, and Shephard (1994), and Jacquier, Polson, and Rossi (1994)
among others.1

From an econometric viewpoint a practical drawback of stochastic volatility models is the
intractability of the likelihood function. Because (1) the variance is an unobserved component
and (2) the model is non-Gaussian, the likelihood function is only available in the form of a
multiple integral. Also, Quasi Maximum Likelihood (QML) andMethod of Moments estimators
are not very reliable (see Jacquier, Polson, and Rossi, 1994; Andersen and Sùrensen, 1996). Exact
likelihood-oriented methods require simulations and are thus computer intensive (see Danielsson,
1994; Jacquier, Polson, and Rossi, 1994).
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The ®rst purpose of the paper is to compare di�erent estimation techniques applied to an
empirical dataset of weekly exchange rate changes for six currencies over a 20-year period. The
estimation techniques di�er in their distributional assumptions about exchange rate innovations.
Most of the computational problems stem from the assumption that the innovation of the
underlying variable has a normal distribution, which translates into an awkward logarithmic chi-
square distribution when the model is written in a linear state space form. This implication is
ignored in the QML method, but fully implemented by Jacquier, Polson, and Rossi (1994) and
Kim, Shephard, and Chib (1998).

The computational aspects are not our primary focus. We are more concerned with the
implications of the normality assumption for the innovations. The distribution of exchange rate
news is fat-tailed as is widely established in the literature. Like ARCH models, stochastic
volatility can explain part of the fat-tailedness. But given the evidence for ARCH models one
would expect that time-varying volatility does not fully account for the tail behaviour (see Baillie
and Bollerslev, 1989; Engle and Bollerslev, 1986). Part of the fat-tailedness is attributable to time
aggregation. Our observations are weekly, whereas the stochastic volatility model is often
formulated in continuous time. But even in a continuous time model Gallant, Hsieh, and
Tauchen (1994) still ®nd evidence for non-normal exchange rate di�usions. Kim, Shephard, and
Chib (1998) ®nd that in daily sterling/dollar series the non-normality is not severe and primarily
due to a few outliers. Deviations from normality have not been as widely explored as in the
ARCH literature, though. The second purpose of this paper is to employ a ¯exible mixture
speci®cation for the innovation that is computationally tractable and empirically viable.

Estimation of stochastic volatility models consists of two stages: parameter estimation,
and estimation of the latent volatility time series. Methods that work well for estimating the
parameter vector are not necessarily suited for estimating the latent time series. For ®nance
applications the main interest is in the volatility time series itself. The series is estimated by some
smoothing algorithm, which also produces standard errors of the volatility estimate. This enables
us to compare the di�erent models and estimation techniques with respect to the estimated
volatility series. Focusing directly on the output of the modelÐ the volatility seriesÐ sheds light
on issues like the e�ciency gain from a simulation smoother over the Gaussian linear Kalman
smoother, and the e�ect of some forms of misspeci®cation. Because the interest is in estimating
the latent volatility series at every time period, asymptotic arguments are of limited value.
Consequently, distributional assumptions become important for this purpose.

Our main motivation stems from potential applications to option pricing. Hull and White
(1987) derive an option valuation formula if the underlying asset follows a stochastic volatility
process. The crucial input to their option formula is the average volatility over the lifetime of the
option. For short-term options the expected volatility will be approximately the current volatility,
while for longer term (at-the-money) options the average expected future volatility depends
crucially on the persistence and variance of the volatility process. The higher the persistence of
the volatility process, the more the long-term volatility depends on current volatility. For our
exchange rate data we ®nd that estimates of the persistence vary systematically with the
estimation method. It turns out that the di�erences are due to the auxiliary assumption about
normality of exchange innovations conditional on the volatility. We explain how ignoring the
occurrence of outliers, and thus notmodelling the deviations from normality, leads to biased low
estimates of the persistence in the volatility process.

In the empirical work we will compare di�erent estimators of volatility. The comparison allows
a decomposition of the estimation error in a part that is due to the smoothing algorithm and a
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part related to the parameter values obtained from a particular estimation method. We will also
compare the volatilities conditional on the parameters of the process with a full Bayesian
estimator of volatility, thus incorporating parameter uncertainty. A similar analysis for implied
volatilities, obtained from pricing at-the-money options, shows how well we can estimate average
volatility given only a time series of observations on the returns of the underlying asset.

The remainder of the paper is organized as follows. The model speci®cation and the estimators
are discussed in Sections 2 and 3. Section 4 describes the exchange rate data. Section 5 contains
the parameter estimation results. Section 6 reports the results for the estimation of the latent
volatility series. In Section 7 we concentrate on the option application. Section 8 presents
conclusions.

2. STOCHASTIC VOLATILITY MODEL

Let St be a bilateral exchange rate, and de®ne the returns st � D ln St . Assuming that the change
in the log of the exchange rate is unpredictable, the standard stochastic volatility model is written

st � c exp�ht=2�et �1�
ht�1 � rht � Zt �2�

where c2 exp(ht) � z2t is the variance of st for period t, and where the innovations et and Zt have
mean zero, with variances equal to one and s2 respectively. The usual assumption is that et and Zt
are normally distributed, and mutually uncorrelated.2 The exchange rate obtains its uncon-
ditional fat-tailed distribution by the mixing of et and exp(ht/2). The scale parameter c deter-
mines the unconditional variance of st .

The estimation of stochastic volatility (SV) models has been the main obstacle for application
of this type of model. Because of the latent volatility, likelihood analysis amounts to evaluating
an integral with dimension equal to the number of observations:

L�YT ; y� /
Z

f �YT jHT ; y�f �HT j y� dHT �3�

where YT contains all the data for a sample of T observations, HT � (h1 , . . . , hT)
0 is the vector

with all the latent volatilities, and y� (r, s, c)0 contains the parameters of the SV model. In this
equation the second density in the integral can be considered as a prior over HT, speci®ed by the
transition equation (2). Since the integral in equation (3) cannot be solved analytically, maximum
likelihood methods will be computationally intensive. That is one reason why alternative
estimators have been developed.

The most straightforward way to estimate the SV model is Quasi Maximum Likelihood
(QML). This is the approach followed by Harvey, Ruiz, and Shephard (1994), among others. The
QML method starts by transforming the measurement equation (1) in the following way. Let
yt � ln s2t , then equation (1) can be written in the linear form

yt � b � ht � xt �4�
2 Correlation between et and Zt introduces the leverage e�ect (see Nelson, 1991), which is important in applications to
stock returns, but less so for applications to exchange rates.
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where b � ln c2 and xt � ln e2t . In the QML approach the density of xt is approximated by a
normal density with mean m�ÿ1.2704 and variance o2� p2/2. QML estimates can be calculated
by standard numerical optimization techniques, using the Kalman ®lter.

Studies on the performance of the QML estimator have been concerned with estimating y. The
QML estimator is not e�cient, since the transformed error term xt will be extremely skewed to the
left, if the underlying et is normal. The GMM methodology is an alternative to QML, and can
provide a more e�cient estimator of the parameter vector y. If the main interest is in estimating
the parameter vector y, then QML or GMMwill be satisfactory.3 GMM, however, does not solve
the problem of estimating the latent time series ht or the volatility exp(ht). Additionally, the
standard Kalman smoother might produce poor estimates for the state variable ht conditional on
the parameters of the process. Unlike the problem of estimating the parameters y, estimating each
individual element ht remains a small sample problem. An estimator hÃt does not converge to the
true unobserved state variable as T!1. The Kalman smoother produces the best linear
estimator of ht , but if the xt innovations are non-normal, accurate estimation of the time series of
volatilities requires the entire conditional distribution of ht given the data and the parameters.

Several methods have been developed to deal with the multiple integration problem in equation
(3). These methods rely heavily on simulation techniques. Danielsson (1994) and Danielsson and
Richard (1993) develop an importance sampling technique to estimate the integral. In a Bayesian
setting Jacquier, Polson, and Rossi (1994) combine a Gibbs sampler with the Metropolis±
Hastings algorithm to obtain the marginal posterior densities of the parameters in equations (1)
and (2), and also the exact posterior distribution of the variance series given the observed data st .

In this paper we build on a suggestion by Kim, Shephard, and Chib (1998). These authors
retain the convenient linear form of the state space model, and approximate the log-chi-squared
distribution of xt by a prespeci®ed mixture of seven normals. Shephard (1994) describes e�cient
algorithms for statistical inference in this class of what he calls partial non-Gaussian state space
models, and provides examples of how to take advantage of the linear and Gaussian parts. The
approach of Kim, Shephard, and Chib (1998) is very ¯exible and lends itself easily for extensions
to accommodate alternative distributions of et . The mixture is speci®ed as

xt � x�zt� zt � 1; 2; . . . ;K

x�i� � n�mi;o2
i �

Pr�zt � i� � pi

�5�

Using the mixture model the latent volatility series can be estimated through simulation by the
multi-move Gibbs sampler. This sampler cycles through steps that simulate the mixture
indicators zt and the states ht . Conditional on a time series of mixture indicators
ZT� (z1 , . . . , zT)

0 the standard Kalman recursions can be used to simulate the states ht from
the conditional density f(HT jYT, ZT ; y). Conversely, given a time series for the states, a
posterior odds calculation gives the multinomial distributions f(zt jYT, HT ; y), from which new
regime indicators can be drawn. Given the parameters the log-volatility ht is estimated by
averaging over the draws h� j�t ( j� 1, . . . , M). The volatility itself is estimated by averaging over
exp(h� j�t �. All other functions of the volatility can be estimated similarly.

3 The merits and drawbacks of QML and GMM have been documented by Jacquier, Polson, and Rossi (1994), and
Andersen and Sùrensen (1996). See also Ghysels, Harvey, and Renault (1996) and the references cited therein.
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The mixture model also allows fast optimization of the likelihood function with respect to y
using the simulated EM algorithm (see Tanner, 1996; Kim, Shephard, and Chib, 1998).
Conditional on ZT the likelihood is completely Gaussian, and can be easily computed using the
Kalman ®lter. Maximization of the likelihood proceeds by cycling through an Estimation and a
Maximization step. In the estimation step the relevant part of the log-likelihood is estimated by
simulation conditional on a set of draws Z

� j�
T , (j� 1, . . . , M),

ln L�YT j y� �
1

M

XM
j�1

ln f �YT jZ� j�T ; y� �6�

Keeping the draws Z
� j�
T ®xed the likelihood function is maximized with respect to y. When a new

parameter vector y* has been found, the Gibbs sampler is run to obtain a new set ofZ
� j�
T using the

new parameter vector y*. The EM steps are repeated until convergence.
The classical estimators of the volatility are conditional on the parameters. To investigate the

e�ect of parameter uncertainty on the volatility and option value estimates, we compare the
classical methods with a fully Bayesian procedure. The Bayesian Gibbs sampling algorithm cycles
through simulators for the states, the mixture indicators, and the parameter vector y. In the
Bayesian procedure we assume very di�use proper conditionally conjugate priors. Simulation
from the conditional density of y given the states and the data works well, since the model is
linear. More details on the estimation procedures can be found in the Appendix.

3. FLEXIBLE MIXTURE MODEL

The skewed log-chi-squared distribution for xt comes from the normality assumption for et .
From a statistical viewpoint there is, however, no reason to insist on the normality of et . In fact,
Gallant, Hsieh, and Tauchen (1994) ®nd that the innovations for the Dmark/dollar exchange rate
are still fat-tailed in a stochastic volatility model.4 Therefore we extend the mixture model to
accommodate a wide range of shapes of the distribution of xt and hence the distribution of et .

The generalization allows xt to be generated by a ¯exible mixture of normals. If the distribution
of et is symmetric, there is in principle no loss of information, since it is always possible to
calculate the implied distribution of j et j �

���������������
exp�xt�

p
.5 In general the tails of et become fatter the

larger the variance of xt , ceteris paribus. Also, the fatter the tails of et , the more symmetric the
implied density of xt . For example, if et has a Cauchy distribution, the density of xt is symmetric
(Mahieu and Schotman, 1994). Ghysels, Harvey, and Renault (1996) give a detailed
characterization of the relation between the moments of et and xt .

Since each element in the mixture adds three more nuisance parameters, we have to keep the
number of elements small to avoid overparameterization and convergence problems. After some
experimentation we settled for a mixture of three normals with ®xed weights p� (0.70, 0.25,
0.05). This choice is motivated by some of the main features of the data. The negative skewness of

4 Evidence on fat tails in stochastic volatility models is, however, less clear than for GARCHmodels. Kim, Shephard, and
Chib (1998) ®nd that normality of et is a good approximation for some daily exchange rate return series. Partly this is due
to their `o�set' parameter c in taking the logtransform yt� ln(s2t � c). The parameter c4 0 reduces the impact of very
small values of st , which would cause huge negative outliers otherwise. The o�set parameter e�ectively shifts mass away
from small values j st j to larger values.
5 In practice, due to the exponential form, the transformation is very sensitive to exact speci®cation of especially the right
tail of the density of xt .
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xt is caused by the `inliers', i.e. observations with almost zero change (st � 0) for which the
transformation yt� ln s2t generates large negative outliers. Even as few as two normals could
model the skewness of xt : the ®rst normal centred around zero, covering the bulk of the data, and
the other centred around a large negative mean to accommodate the outliers. Its main drawback
is that such a distribution is likely to be bimodal. We therefore add a third element to the mixture
to provide a smooth blending to a unimodal density.

Amixture of three normals is also not a serious limitation in case the error distribution happens
to be log-chi-squared. We performed a small simulation study to estimate the optimal parameters
for data generated by a log-chi-squared. The resulting mixture distribution parameters are given in
Table I. In the upper panel of Figure 1 we plot the mixture distribution together with the actual
log-chi-squared distribution. The main di�erence is the slightly higher mode of the mixture
distribution. The middle panel of Figure 1 shows the w2(1) distribution together with the
exponential mixture distribution. The lower panel shows the logarithmic ratio of chi-square
and exponential mixture distributions. It can be seen that our mixture gives a reasonable ®t. It
looks like a three-element mixture strikes a balance between ¯exibility and the number of
parameters.6

Since the unconditional mean of the measurement error xt is a free parameter in the mixture
distribution (m� SK

i�1pimi), the constant term b in the measurement equation (4) becomes
unidenti®ed. We therefore identify b and c2� exp(b) from the unconditional variance of st .

There is a second reason for the extension of standard volatility models. Fixing the distribution
of the measurement error means that in particular the variance of xt is restricted. In QML, GMM
and the mixture of Kim, Shephard, and Chib (1998) the variance of xt is equal to o2� p2/2. With
fat-tailed exchange rate innovations this restriction will be rejected by the data. But this will also
a�ect the estimates of the other parameters (r and s2), even asymptotically, since a larger value
for o2 changes the implied autocorrelation function of yt . The state space model is an AR(1)
process with measurement error, or equivalently an ARMA(1,1) process, parameterized by r, s2

and o2. The variance and ®rst-order autocorrelation of yt are

Var�yt� �
s2

1 ÿ r2
� o2 �7�

Corr�yt; ytÿ1� �
rs2

s2 � �1 ÿ r2�o2
�8�

Table I. Mixture parameters for log-chi-squared distribution

i pi mi oi

1 0.70 ÿ0.2172 1.1052
2 0.25 ÿ3.0461 1.5705
3 0.05 ÿ6.4818 3.0002

Notes: The mixture density is S3
i�1pin(mi , o

2
i ). Parameters have been estimated

by simulating 100,000 random numbers from a log-chi-squared distribution,
and maximizing the likelihood function of the three-element mixture for these
data.

6Our method di�ers from the approach followed in Escobar and West (1995). These authors also provide estimation
procedures for determining the mixture weight parameters pi . We set the weights a priori.

338 R. J. MAHIEU AND P. C. SCHOTMAN

# 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 333±360 (1998)



When the parameters match the sample variance Var(yt) and the ®rst order autocorrelation
AR(1), we have

Corr�yt; ytÿ1�
r

� 1 ÿ o2

Var�yt�
�9�

which shows that r is an increasing function of o2. An increase in o2 must lead to a larger value
of r to keep the sample ®rst-order autocorrelation AR(1) constant. So one e�ect of the extended

Figure 1. Densities of measurement error. The mixture approximation is based on the values in Table I
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model with an unrestrictedo2 will most likely be an increase in the estimated persistence r. In that
way fat-tailedness (of et!) and persistence are connected in the stochastic volatility model. The
increase in estimates of r are a second moment property, and will already show up in the QML
estimates with unrestricted measurement error variance.

Estimation of the ¯exible mixture model proceeds analogous to the estimation algorithms
for the ®xed mixture. The parameter vector y is augmented to the eight-dimensional vector
(r, s, m0, o0), where m is the (3� 1) vector of means of the mixture, and o the (3� 1) vector of
standard deviations. Using the EM algorithm the optimal value of y is found by iteratively
maximizing equation (6).

In the Bayesian algorithm we assume independent normal/inverse gamma conjugate priors for
each element of m and o. The prior means of mi and oi are set at the values of the approximating
mixture in Table I. The prior variances of the mi's are equal to 1000, while the prior degrees of
freedom in the inverted gamma priors for oi is equal to 5. We need proper priors, since with an
improper prior on oi the posterior does not exist.

4. DATA

The data consist of weekly observations on bilateral exchange rates among the major currencies
(US dollar, pound sterling, Japanese yen, and German mark). The sample period is 3 January
1973 until 9 February 1994, which gives us 1102 observations. All data are taken from DATA-
STREAM and are sampled onWednesdays. If Wednesday is a holiday in the UK, Thursday data
are used. The raw data series are denominated in sterling. The data series are transformed to
yt� ln[(D ln St7 �s)2], where �s is the sample mean of D ln St .

The weekly sampling frequency is chosen as a compromise between using as many data as
possible and avoiding additional modelling issues. Daily data would in general be preferable for
studies that focus on second moments. However, except for the two most recent years, the data
from DATASTREAM are only reported in discrete tick sizes. As a result, daily data contain
many days with `no change', which is a discrete phenomenon that would have to be modelled
separately. Volatility over the interval of a week is much larger, so that `no change' observations
are less frequent in weekly data. For example, for the yen/pound exchange rate the tick size is 0.25
in DATASTREAM. With daily data 14% of changes are zero, and for another 10% and 12% of
the data we see changes of 0.25 and 0.50 respectively. For weekly data the percentages are much
smaller: 3%, 3% and 7% respectively. It also appears that the distribution of daily returns is
much more fat-tailed than the distribution of weekly returns. A second problem with the use of
daily data (or even higher frequencies) is the treatment of weekends and other seasonal day-of-
the-week e�ects.

Table II provides summary statistics. The main features of the transformed data are the
negative skewness and the persistent autocorrelations. Negative skewness is implied by the log
transformation, and related to the `inlier' problem. The variance of the transformed data is much
higher than that of a log-chi-squared (which is equal to p2/2), so that either the logarithmic
volatility series ht is itself highly volatile or normality of the measurement error in equation (4) is
violated. The ®rst-order autocorrelation is generally low, but higher-order autocorrelations are
always of similar magnitude as the ®rst-order autocorrelation. That would roughly identify all
series as ARMA(1,1) or equivalently AR(1) with measurement error, consistent with the
speci®cation of the ®rst-order stochastic volatility model.

340 R. J. MAHIEU AND P. C. SCHOTMAN

# 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 333±360 (1998)



We include all six possible bilateral rates, because in this way we can model all variances and all
possible covariances. For example, the covariance between the yen/pound and mark/pound can
be written as the identity

Cov s
JP=UK
t ; sGE=UK

t

� �
� 1

2
Var s

JP=UK
t

� �
� Var s

GE=UK
t

� �
ÿ Var s

JP=GE
t

� �n o
�10�

which shows that the covariance between two pound-denominated exchange rates can be
obtained through the variance of the cross-rate.

5. PARAMETER ESTIMATES

In the empirical analysis we compare four di�erent sets of classical parameter estimates. The ®rst
is the QML estimator with the measurement error ®xed at o2� p2/2 as in Harvey, Ruiz, and
Shephard (1994) (QML1). The second is the QML estimator with unrestricted o2 as in Harvey
and Shephard (1993) (QML2). The third is the simulated maximum likelihood estimator for the
®xed three-element mixture with the parameters from Table I (SIEM1). The last one is the ML
estimator for the ¯exible mixture with free parameters in the three elements of the mixture
(SIEM2).

Table III summarises the parameter estimates for the four classical methods and the posterior
means of the Bayesian algorithm. We concentrate the discussion on the parameters r and s of the
volatility process. In general, the parameter estimates are similar, both across currencies as well as
estimators. The high value of r implies persistent logarithmic volatility series. The estimates of r
are never signi®cantly di�erent from unity using Dickey±Fuller critical values. The estimates of r

Table II. Summary statistics

JP/US GE/US UK/US GE/JP UK/JP GE/UK

Statistics of st� D ln St
Std dev. 10.12 10.96 10.78 9.78 10.84 8.34

Statistics of yt� ln[(D ln St7 �s)2]
Mean ÿ1.203 ÿ0.770 ÿ1.003 ÿ0.926 ÿ0.979 ÿ1.494
Variance 6.555 5.954 6.383 5.318 6.461 5.817
Skewness ÿ0.971 ÿ1.202 ÿ0.968 ÿ1.257 ÿ1.278 ÿ0.904
Kurtosis 1.225 1.022 0.895 2.850 2.731 1.181
Minimum ÿ13.03 ÿ13.15 ÿ11.80 ÿ15.04 ÿ14.93 ÿ11.83
Maximum 4.871 4.129 4.310 3.613 4.525 3.853

Autocorrelations of yt
1 0.184 0.080 0.172 0.078 0.074 0.132
2 0.142 0.098 0.170 0.071 0.081 0.096
3 0.163 0.115 0.152 0.105 0.064 0.090
4 0.167 0.055 0.202 0.047 0.077 0.114
5 0.127 0.096 0.123 0.063 0.016 0.035
10 0.104 0.027 0.129 ÿ0.012 0.019 0.053
20 0.087 0.062 0.073 0.097 0.040 0.002

Notes: The standard deviation of st is reported in units of per cent per annum. JP is yen, US is dollar, GE is mark and UK
is sterling. Skewness and kurtosis of yt are scaled by the standard deviation of yt . The kurtosis is measured as excess
kurtosis.
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are uniformly higher when the measurement error variance is estimated as a free parameter
(compare QML1 and QML2), or when the mixture density is left unrestricted (compare SIEM1
and SIEM2). These results are consistent with the analysis of the measurement error restriction
o2� p2/2 discussed in Section 3 (see equation (9)). The clearest example is the pound/yen series,
where r increases from 0.58 under SIEM1 to 0.96 under SIEM2. The pound/yen series is also the
one for which the measurement error variance deviates most from p2/2. Together with the
increase in r we see a drop in the volatility parameter s.

The QML estimator can be interpreted as the maximum likelihood estimator for a model with
xt generated by a mixture with the same parameters in each element of the mixture. It is therefore
nested within the more general SIEM2 model. Since both SIEM1 and the two QML models are
nested within SIEM2, these speci®cations can be tested by a likelihood ratio test. Table IV reports
likelihood ratio tests. The results clearly show that the ¯exible mixture SIEM2 ®ts the data much
better than any of the other models. The improvement is mainly due to the increased ¯exibility in
the shape of the measurement error distribution. Of course, the mixture ®ts better than a normal
(with or without a restriction on the variance), but the ¯exible SIEM2 mixture also obtains a

Table III. Parameter estimates ht�1� rht � Zt Zt � N(0, s2) yt� ln s2t � ht � xt f(xt)� S3
i�1piN(mi , o

2
i �

JP/US GE/US UK/US GE/JP UK/JP UK/GE

(a) Persistence: r
QML1 0.976 0.967 0.960 0.985 0.653 0.884
(restricted) (0.015) (0.027) (0.015) (0.009) (0.391) (0.061)
QML2 0.983 0.978 0.963 0.985 0.981 0.895
(unrestricted) (0.010) (0.016) (0.014) (0.010) (0.015) (0.050)
SIEM1 0.878 0.928 0.952 0.921 0.584 0.768
(®xed mixture) (0.016) (0.013) (0.009) (0.014) (0.042) (0.027)
SIEM2 0.979 0.975 0.967 0.954 0.957 0.930
(¯exible mixture) (0.007) (0.007) (0.008) (0.011) (0.011) (0.014)
Bayesian 0.971 0.938 0.963 0.912 0.924 0.862
(¯exible mixture) (0.013) (0.022) (0.014) (0.041) (0.033) (0.050)

(b) Volatility standard deviation: s
QML1 0.225 0.198 0.311 0.092 0.842 0.419
(restricted) (0.081) (0.097) (0.055) (0.027) (0.612) (0.142)
QML2 0.182 0.150 0.296 0.090 0.118 0.389
(unrestricted) (0.051) (0.062) (0.055) (0.031) (0.057) (0.125)
SIEM1 0.558 0.293 0.330 0.285 0.822 0.650
(®xed mixture) (0.024) (0.018) (0.017) (0.018) (0.036) (0.028)
SIEM2 0.190 0.148 0.251 0.200 0.190 0.285
(¯exible mixture) (0.013) (0.012) (0.013) (0.015) (0.016) (0.018)
Bayesian 0.274 0.267 0.285 0.300 0.270 0.454
(¯exible mixture) (0.046) (0.047) (0.044) (0.082) (0.059) (0.101)

(c) Measurement error variance: o2

QML2 5.540 5.426 5.163 5.027 6.074 5.046
SIEM2 5.524 5.778 5.042 4.830 6.276 5.289
Bayesian 5.511 5.349 5.087 4.767 5.987 4.937

Notes: For QML1 and SIEM1 the measurement error variance is equal to p2/2� 4.935 as opposed to QML2, where this
variance is estimated as the free parameter o2. The parameters for SIEM1 refer to a ®xed three-dimensional mixture for
the measurement error with variance equal to p2/2. The results for SIEM2 refer to a ¯exible three-dimensional mixture
with variance o2� S3

i�1pi(o
2
i � (mi7 �m)2), where �m� S3

i�1pimi . Standard errors are in parentheses.
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much higher likelihood value than the ®xed SIEM1mixture. Surprisingly, the variance restriction
that distinguishes QML2 from QML1 can only be rejected for three exchange rates (JP/US, GE/
US and UK/JP). Details on the computation of the likelihood values are presented in the
Appendix.

Figure 2 shows the estimated measurement error densities. The main di�erence between a log-
chi-square and the ¯exible mixture is in the shift of the right tail of the density of x. Because
positive values of x get more weight, the implied density of e� exp(x)1/2 will have extremely fat
tails.7

The Bayesian posterior means of r are somewhat lower than the ML estimates in the ¯exible
SIEM2.8 Otherwise the Bayesian posterior means are not very di�erent from the SIEM2
maximum likelihood estimates. We will use the Bayesian version of the model to investigate the
e�ects of parameter uncertainty on volatility estimates. This is the topic to which we turn in the
next sections.

6. VOLATILITY ESTIMATES

The main reason for estimating stochastic volatility models is that we are interested in the time
series of volatilities. The basic issue in this section is the accuracy of the volatility estimates
themselves.

Volatilities can be estimated in three di�erent ways: (1) by a Kalman smoother conditional on
the parameters assuming that the measurement error xt is Gaussian; (2) by a simulation smoother
conditional on the parameters using the mixture distribution of the measurement error density
f(xt); (3) by a fully Bayesian simulation smoother using the posterior density of the parameters.
The Bayesian smoother averages both over the mixture indicators Z

� j�
T as well as parameter draws

y(j) from the conditional posterior f(y jZ� j�T ;H� j�T �. In this section we compare the various methods
for our exchange rate data.

In Section 5 we considered various sets of parameter estimates and model speci®cations.
Conditional on each set of parameter estimates we could compute the volatilities either by
method (1) or (2), creating a two-way classi®cation. In order to limit the number of tables and
graphs, we will concentrate primarily on the SIEM2 parameter estimates.

Table IV. Likelihood ratio tests

df JP/US GE/US UK/US GE/JP UK/JP GE/UK

QML1 (restricted) 5 150.6 259.3 113.9 226.9 242.0 80.0
QML2 (unrestricted) 4 144.1 255.0 112.9 226.8 225.4 79.8
SIEM1 (®xed mixture) 5 179.9 113.2 63.3 156.7 240.7 189.8

Notes: The entries report the likelihood ratio statistic comparing each model with the ¯exible mixture SIEM2 model. The
number of restrictions is given by df. The 5% and 1% critical values of a w2(5) distribution are 11.1 and 15.1 respectively.

7 The implied densities of e�+exp(x)1/2 do not look very sensible. Because the Jacobian of the transformation is zero at
e� 0, the implied densities of e go to zero for every mixture by construction. The kurtosis of e implied by the estimated
mixtures is of the order 1020 for some exchange rates. For this reason we focus entirely on the volatility dynamics and not
on the distribution of exchange rate changes.
8One way to increase the posterior mean is by adopting a di�erent prior, for instance one that is proportional to
(17r2)71/2. Such a prior would implicitly arise, if it is assumed that the initial condition in the state vector has variance
proportional to (17r2)71. See Schotman (1994) and Kim, Shephard, and Chib (1998).
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Figure 2. Implied measurement error densities
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6.1. Log-volatility

Examining the precision of the estimates of the log-volatilities ht is based on the decomposition

ht � ĥt jT � �ht ÿ ĥt jT � �11�

where hÃt jT is a shorthand for the smoothed estimate EÃ[ht jYT]. The smoothing algorithm that we
used is described in De Jong and Shephard (1995). The variance of the left-hand side of equation
(11) can be estimated from the parameters of the process,

Var�ht� �
s2

1 ÿ r2
� V

2
h �12�

This is the overall variance of the log-volatility. The variance of the ®rst term on the right-hand
side of equation (11) is estimated from the sample variance of the time series of smoothed log-
volatilities,

Var�ĥt jT � �
1

T

XT
t�1

ĥ
2
t jT �13�

Finally, the variance of the estimation errors (ht7 hÃt jT) is obtained from the simulation
smoother. First, note that for the Kalman smoother the standard error of the volatility estimator
is directly available in the recursion from Var(ht7 hÃt jT)� Pt jT. For the simulation smoothers the
standard errors are obtained by averaging over the results of the Kalman smoother conditional
on a set of mixture indicators Z

� j�
T at the jth iteration of the Gibbs sampler. Conditional on Z

� j�
T

the model is Gaussian, and the Kalman smoother produces the conditional means h
� j�
t jT and

variances P
� j�
t jT . The variance of the volatility estimator at time t is computed as

Pt �
1

M

XM
j�1

P
� j�
t jT �

1

M

XM
j�1
�ĥt jT ÿ h

� j�
t jT �2 �14�

which uses the fact that the total overall variance equals the average conditional variance plus the
variance of the conditional means. For reporting purposes we calculate the average variance over
the sample as

�P
2 � 1

T

XT
t�1

Pt:

The variances of all three components in equation (11) have been computed independently,
and are reported in Table V. The variances of the two components on the right-hand side in
equation (11) therefore do not necessarily add up to the total variance implied by the parameter
estimates on the left-hand side. Since the numbers refer to log-volatility the standard errors �P can
be interpreted as the percentage error in estimating the variance at a particular time t. Thus the
value of 0.421 for the yen/dollar rate means that there is a 42% error on the variance. These
standard errors are large for every exchange rate. For the Bayesian smoother they are even larger
due to parameter uncertainty. With such high standard errors we can understand why some
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studies ®nd that econometric volatility models do such a poor job in predicting variance (see, for
example, West and Cho, 1995; Figlewski, 1994).

The lowest relative estimation error variance �P2=V2
h is obtained for the dollar/pound rate,

where the sample variance of hÃt jT accounts for 90% of the total variation of the volatility. This is
also the series for which we ®nd the highest time-varying volatility. The highest error ratios are
for the non-dollar cross-rates, where the sample variance of hÃt jT is between 60% and 70% of the
total variance.

The standard errors are primarily a function of the parameter estimates. The larger the
measurement error variance, the harder it is to estimate the underlying state variable. On the other
hand, the larger the persistence r, the more information about ht can be extracted from the data
around time t. For comparison Table V also reports the variance estimates from the Kalman
smoother. Note that the standard error on the log-volatilities di�ers substantially from the values
that were found for the simulation smoothers. Because the numbers for Vh and

�P are very close to
the simulation estimates, we conclude that the large standard errors do not arise from the
distributional properties of the measurement error xt , but are indeed due to the low signal/noise
ratio. In other words, no matter whether one applies the simulation smoother or the straight-
forward Kalman smoother, one would always ®nd that the log-volatilities cannot be estimated
with great accuracy (given the empirically relevant parameters for the volatility process). Section 7
investigates what consequences this has for ®nancial applications like option pricing.

6.2. Volatility

In this section we discuss how the results for the log-volatilities translate to actual volatilities
zt� exp(ht/2). The results are reported graphically in Figures 3 to 5. Each ®gure is a scatter plot of
the volatility estimates from two methods. The horizontal axis represents the time series of
estimates ẑt (t� 1, . . . , T) from one method, and the vertical axis the corresponding estimates

Table V. Summary statistics of log-volatility estimates

JP/US GE/US UK/US GE/JP UK/JP GE/UK

SIEM2 parameters, simulation smoother:
Vh 0.932 0.666 0.985 0.667 0.655 0.775
sd(hÃt jT) 0.837 0.576 0.938 0.540 0.508 0.586
�P 0.421 0.343 0.459 0.394 0.408 0.487

Bayes:
Vh 1.060 0.786 0.864 0.764 0.723 0.899
sd(hÃt jT) 0.865 0.613 0.910 0.553 0.518 0.660
�P 0.549 0.485 0.578 0.497 0.497 0.626

SIEM2 parameters, Kalman smoother:
Vh 0.932 0.666 0.985 0.667 0.655 0.775
sd(hÃt jT) 0.879 0.554 1.028 0.505 0.404 0.714
�P 0.467 0.408 0.524 0.448 0.460 0.543

Notes: Vh� s/
��fp 1 ÿ r2g is the unconditional standard deviation of ht implied by the SIEM2 parameter estimates in

Table III. The Bayesian estimate of V2
h is obtained as the average of s2(j)/(17r2(j)). sd(hÃt jT) is the sample standard

deviation of the time series hÃt jT of estimated log-volatilities. For the simulation smoothers �P2 is the sample mean of the
estimated error variances of hÃt jT. For the Kalman smoother �P2 is the steady-state variance of the estimation error
(ht7 hÃt j T).
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Figure 3. Volatility estimates: Kalman versus simulation smoother. The pluses (�) are the smoothed estimates of the volatility zt
from the Kalman smoother (vertical axis) against the simulation smoother (horizontal axis). Both smoothers use the parameter
values of the SIEM1 model. The solid lines represent a one standard error margin above and below the estimates. The dashed

line is the unconditional variance of ln s2t . Both axes have a square root scale
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Figure 4. Volatility estimates: SIEM1 versus SIEM2. The pluses (�) are the smoothed estimates of the volatility zt from the
SIEM1 (vertical axis) and SIEM2 (horizontal axis) simulation smoothers. The solid lines represent a one standard error margin
above and below the estimates using the SIEM2 parameters. The dashed line is the unconditional variance of st . Both axes have

a square root scale
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Figure 5. Volatility estimates: SIEM2 versus Bayes. The pluses (�) are the smoothed estimates of the volatility zt from the
SIEM2 (vertical axis) and Bayesian (horizontal axis) simulation smoothers. The solid lines represent a one standard error
margin above and below the estimates using the Bayesian parameters. The dashed line is the unconditional variance of ln st .

Both axes have a square root scale
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from another. If both methods would produce the same volatility estimates, all points on the
scatter would lie on the 458 line through the origin. If volatility is constant all dots in the graph
would be cluttered around a single point.

For the Kalman smoother the volatility estimates are calculated using the properties of the
lognormal distribution as

ẑ2t jT � ~c exp�ĥt jT �
1

2
Pt jT � �15�

The scaling factor ~c is chosen such that ~c2E[eht ] equals the unconditional sample variance of the
relevant exchange rate. Such a scaling factor is applied to all smoothing methods, which are thus
standardized to produce the same unconditional variance. For the simulation smoothers the
volatility is estimated by

ẑ2t jT �
1

M

XM
j�1

z2� j�t jT �16�

where z2� j�t jT is the Kalman smoother estimate conditional on the mixture indicators Z
� j�
t . The

volatility estimates on the horizontal axis are plotted against a one-standard error band

�
������������������
ẑ2t jT ÿ vt

q
,

������������������
ẑ2t jT � vt

q
).9 The standard errors vt are computed analogously to equation (14) as

v
2
t �

1

M

XM
j�1

z2� j�t jT exp�P� j�t jT � �
1

M

XM
j�1
�ẑ2t jT ÿ z2� j�t jT �2 �17�

The standard error bands are represented as the solid lines in the ®gures.10,11

Figure 3 compares the Kalman smoother with the simulation smoother using the SIEM1
parameter estimates in both methods. The ®rst conclusion from Figure 3 is that there are
substantial di�erences between the Kalman smoother and the simulation smoother. Although
the parameters are the same in both methods, the points are widely dispersed around the ideal 458
line, where both smoothers would give the same volatility estimates. So in applications the choice
of smoothing technique matters for the point estimates. The second conclusion from the ®gure is
in line with the previous results for the log-volatilities: volatility is not estimated with any
precision at all. The one standard error band on both sides of the ®xed SIEM volatility estimates
is extremely large. It is therefore no surprise that almost all Kalman smoother volatility estimates
®t within the bands. Even the unconditional volatility is within the band for about 75% of the
observations, i.e. the sample variance of st is within the interval �ẑt j T ÿ vt, ẑt j T � vt� 75% of the
time.

Figure 3 considered di�erent smoothing methods using the same parameters. In Figure 4 we
compare the same smoothing technique (simulation) but for di�erent sets of parameters. The ®rst

9 The square root appears because the graphs use a volatility instead of a variance scale.
10 Convergence of the Gibbs sampler for the standard errors vt appears to be much slower than for the point estimates
ẑt jT . For the ¯exible SIEM estimates we needed about 1000 iterations before the vt estimates stabilize.
11 For graphical purposes the lower and upper bounds are shown as solid lines through use of a non-parametric kernel
smoother. If lt�

��fp ẑ2t jT ÿ vtg is the lower part of the standard error band corresponding to ẑt jT , then the plotted lower
bound line is the function f(z) obtained from f(z)� SK(z7 ẑt j T)lt/SK(z7 ẑt j T) with K(x) a kernel. If for the lower bounds
the function value is negative, it is plotted as zero (variance cannot be negative).
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set of parameters are the SIEM1 estimates, where we assume that the measurement error density
is a log-chi-squared, approximated by a ®xed mixture of normals. The alternative set of
parameters are the SIEM2 estimates, which are based on the ¯exible mixture. Two things stand
out from Figure 4. First, the volatility estimates from the two models are highly correlated,
despite the di�erence in parameter estimates (see Table III above). The points are generally much
closer to the 458 line than in the previous ®gure. Comparing Figures 3 and 4 it appears that the
smoothing method is more important than the parameter values.

The second point to notice is that the standard error bands of SIEM2, shown in Figure 4 are
much smaller than those of SIEM1, shown in Figure 3. This decrease in standard errors is related
to the increased persistence estimates in Table III. The higher the value of r, the smoother the
volatility series. With a large value for r neighbouring observations t � s are more informative
about the volatility at time t. Higher persistence also comes together with a lower estimate of s,
and this smaller innovation variance of ht further reduces the standard errors of the volatility
estimates.

Finally, Figure 5 compares SIEM2 with the Bayesian volatility estimates. These estimates are
very closely related (often almost on the 458 line), again indicating that parameter uncertainty is
less of an issue than the smoothing method.

Summarizing, we ®nd that the point estimates of z2t are not very sensitive to the precise
parameter values, but more sensitive to the smoothing method. However, the estimated standard
errors vt very strongly depend on the parameters and less on the smoothing method. The
dependence of standard errors on the parameters also shows up in the Kalman smoother
variance.

7. APPLICATION TO OPTION PRICING

An important application of the stochastic volatility model is the pricing of options. The large
standard errors of the volatility estimates do not necessarily carry over to option prices. Option
prices depend on the average expected volatility over the length of the option contract, and this
averaging should reduce standard errors. In the limit, the average volatility over a long horizon
converges to the unconditional variance, which is known without error when conditioning on the
parameters of the process. On the other hand, if the persistence parameter r of the volatility
process is close to unity, convergence to the unconditional volatility will be slow, and the errors of
the smoothing estimator will be highly autocorrelated. In that case the option prices and deltas
will also have large standard errors.

Let C be the value of a European call option on a currency. The value of the call option with
maturity t, exercise price X, and domestic interest rate r, is given by

C�St; ht� � e
ÿrt

Et�max�St�t ÿ X; 0�� �18�

The expected payo� is a function of both the current log-volatility ht and the current spot
exchange rate St . The expectation is taken with respect to the risk-neutral density of the exchange
rate. Hull and White (1987) assume a continuous time stochastic volatility process and show that
the value of the option depends on the expected average variance of the exchange rate over the
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remaining life of the option, conditional on the current volatility. Assuming that volatility risk is
not priced they obtain the pricing formula:12

C�St; ht� � e
ÿrt
Z 1
0

BS�wt�t�p�wt�t j ht� dwt�t

� e
ÿrt

Et�BS�wt�t��
�19�

where BS(wt�t) is the Black±Scholes value

BS�wt�t� � FtN�d1� ÿ XN�d2� �20�

in which Ft is the forward exchange rate applying to time t � t, and d1 and d2 are de®ned as

d1 �
ln�Ft=X� � 1

2w
2
t�t

wt�t
�21�

d2 � d1 ÿ wt�t �22�

w
2
t�t �

Z t�t

t

exp�h2s � ds �23�

The expectation is taken with respect to the conditional density p(wt�t j ht) of the total lifetime
volatility wt�t given the current log-volatility ht . Since it is assumed that volatility risk is not
priced the density p(wt�t j ht) coincides with the actual density. Note that the expectation is taken
conditional on knowing the current log-volatility ht , i.e. assuming that the market knows the
volatility. The density p(wt�t j ht) is a function of the parameters of the stochastic volatility
process, but does not involve any data information. The econometric problem is to estimate the
option value given time-series data of exchange rates, but without directly observing the volatility
ht . Volatility is only available through the stochastic volatility model.

The pricing formula simpli®es if the option is at-the-money, i.e. the exercise price X is equal to
the forward rate Ft :

C�St; ht� � e
ÿrt

FtEt�2N�12wt�t� ÿ 1� �24�

The option value is homogeneous of degree one in the discounted forward rate e7rtFt , so this can
be set equal to one without loss of generality.

In discrete time we replace the integral in equation (23) by the summation (see Amin and Ng,
1993):

w
2
t�n �

Xn
i�1

exp�ht�i� �25�

12 The valuation of European-style currency options under stochastic volatility is analogous to the derivation for stock
options in Ghysels, Harvey, and Renault (1996) and Renault (1996). The only di�erence is that currency options pay a
`dividend' rate equal to the foreign interest rate (see Hull, 1996, ch. 12).

352 R. J. MAHIEU AND P. C. SCHOTMAN

# 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 333±360 (1998)



where n is the number of discrete time periods until maturity of the option. The value of the
option can be computed by direct simulation using the following steps:

(1) Draw h� j�t from the simulation smoother.
(2) Conditional on the initial condition h� j�t , draw the ith path (i� 1, . . . , K) of future volatilities

h�ij�t�s from the recursion

h
�ij�
t�s � rh�ij�t�sÿ1 � Z�ij�t�sÿ1 �26�

for s� 1, . . . , n. From these compute w
�ij�
t�n according to equation (25), and the Black±Scholes

value BS(w
�ij�
t�n�.

(3) If i5K, select next i and go to step (2).
(4) Compute the Hull±White option value conditional on h� j�t as

HW�h� j�t � �
1

K

XK
i�1

BS�w�ij�t�n� �27�

Also compute the implied volatility c
� j�
t by solving HW�h� j�t � � BS(c

� j�
t �.

(5) If j5M, select next j and go to step (1).
(6) Compute the option value conditional on observing the data YT as the average (1/

M)SM
j�1HW(h� j�t �. For reporting purposes also compute the mean and variance of the implied

volatilities, denoted by ct and vt respectively.

The algorithm is not necessarily e�cient for practical use, since there exist several simplifying
approximations for at-the-money options (see, for example, Ghysels, Harvey, and Renault,
1996). The inner loop (steps 2 and 3) with K independent sample paths for the volatility is
introduced to facilitate the computations of standard errors. By fully integrating over possible
volatility paths in step 2 we obtain for each draw h� j�t the exact corresponding option value and the
implied volatility, apart from numerical integration error that is negligible for large enough K.
The simulation variance of the option price and the implied volatility is thus only due to the error
in estimating ht from the time-series data YT.

The algorithm has been applied to price a 26-weeks at-the-money call option for each of the six
exchange rates and for each week in the sample. At each sample point we thus obtain the
smoothed value of the option (or equivalently the implied volatility) and a standard error
re¯ecting the precision of the smoothed estimate.13

The results are summarized in Figure 6 for the SIEM2 estimates, and in Figure 7 for the
Bayesian analysis. Each graph shows the cumulative empirical distribution function of the
implied volatility (solid line). The two thin lines in the ®gures show the cumulative sample
distributions of the lower and upper end of a plus and minus two standard error interval around
the implied volatility, i.e. F(ct7 2vt) and F(ct � 2vt), with F( . ) the empirical distribution
function. The vertical dashed line in the ®gures denotes the unconditional volatility.

The main conclusion we draw from the ®gures is that the unconditional volatility is very often
included in the con®dence intervals. Apart from 5% of the observations with extreme low
volatility, the implied volatility of the three cross-rates (GEJP, UKJP and GEUK) is never
signi®cantly di�erent from the unconditional volatility. For the three dollar rates the number of

13 The parameter K was set to 500. The random numbers for Z�ij�t�s were common for each time period observation t, but
refreshed for each iteration j of the smoother.
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Figure 6. Option values: SIEM2. The empirical distribution function of the implied volatility for a 26-week at-the-money call
option for each of the six exchange rates shown. Option values, implied volatility and standard errors are computed according to
the algorithm described in Section 7. The solid line represents the implied volatility, the two thin lines are lower and upper ends of a

plus and minus two standard error con®dence band. The dashed vertical marks the unconditional volatility
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Figure 7. Option values: Bayes. The empirical distribution function of the implied volatility for a 26-week at-the-money call option
for each of the six exchange rates shown. Option values, implied volatility and standard errors are computed according to the
algorithm described in Section 7. The solid line represents the implied volatility, the two thin lines are lower and upper ends of a

plus and minus two standard error con®dence band. The dashed vertical marks the unconditional volatility
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signi®cant deviations from unconditional volatility is between 15% and 20%. The SIEM2 and
Bayesian results are very similar, indicating that parameter uncertainty does not play a major role
in the results. This is the same conclusion as we drew in Section 6. The problem is that the
univariate time-series analysis does not lead to accurate estimates of the volatility at a particular
point in time. Averaging over 26 weeks, as in the option calculations, reduces the standard errors,
but at the same time also pulls the average volatility towards the unconditional volatility.

The di�erences between the dollar rates and the cross-rates are due to the di�erent degree of
persistence. The larger r, the larger the di�erence between the lifetime volatility wt�t and the
unconditional volatility. The signi®cant di�erences appear at the low volatilities because of the
exponential speci®cation of the process. Standard errors of volatility are proportional to the
volatility itself.

The general conclusion is that volatility estimates from a univariate time-series model have
such large standard errors that they are hardly informative for the purpose of option pricing or
currency hedging.

8. SUMMARY AND CONCLUSIONS

In this paper we have empirically studied the performance of the ®rst-order stochastic volatility
model using a dataset of weekly exchange rates. The model has been estimated for di�erent
speci®cations of the distribution of the standardized exchange rate innovations. Our ®rst ®nding
is that estimates of the persistence of the volatility process depend crucially on the stochastic
speci®cation of the model.

The other results pertain to the estimation of the time series of volatilities. First, we ®nd that
di�erent smoothing algorithms produce very di�erent estimates, even if the parameters of the
underlying process are the same. Again, the di�erences arise from explicit consideration of the
measurement error density in the state space model for the log volatility. The most disturbing
®nding is that even the most e�cient simulation smoothers produce very large standard errors for
the volatility estimates.

The implications of the large standard errors are investigated in an application to option
pricing. Using the Hull and White (1987) framework and our simulation procedures we com-
puted values for at-the-money currency options with a maturity of 26 weeks. The standard error
bounds around the option values are mostly wide enough that the Black±Scholes price based on
the unconditional volatility is not signi®cantly di�erent. We conclude that volatility estimates
based on a univariate time-series model have such large standard errors that they are hardly
informative for the purpose of option pricing or currency hedging. These results explain some of
the problems with volatility forecasting.

APPENDIX: COMPUTATIONAL DETAILS

The SIEM algorithms in the text are based on the following decomposition of the likelihood
function (Kim et al., 1998):

ln L�y jYT � � ln Pr�ZT � ÿ ln Pr�ZT jYT ; y� � ln f �YT jZT ; y� �A1�

with YT the observed data and ZT the latent data. In the stochastic volatility models that we
consider in the text the latent data consist of the mixture indicators ZT. As in Dempster et al.
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(1977), the likelihood function is maximized by considering the term ln f(YT jZT ; y) only. Note
that values for this part of the likelihood function can be found by running the Kalman ®lter,
since the state space of the SV model becomes Gaussian when conditioning on the mixture
indicators. A multimove Monte Carlo Markov Chain (MCMC) can be used to ®nd vectors Z

�i�
T ,

i� 1, . . . , M. The objective function in the moment step of the simulated EM algorithm is

1

M

XM
i�1

ln f �YT jZ�i�T ; y� �A2�

When a new parameter vector y* has been found, the multimove MCMC must be run again
replacing y with y*. The EM algorithm is stopped when the absolute di�erence in subsequent
parameter vectors jy7 y* j is smaller than a previously set constant.

Standard errors of the parameters can be found by inverting

ÿ @
2 ln L�y jYT �

@y@y0

����
y�y*

� �
�A3�

Using the decomposition of the likelihood function we ®nd that

@2 ln L�y jYT �
@y@y0

� @
2 ln f �YT jZT ; y�

@y@y0
ÿ @

2 ln Pr�ZT jYT ; y�
@y@y0

�A4�

Tanner (1996) shows that

@2 ln Pr�ZT jYT ; y�
@y@y0

� Var
@ ln f �YT jZT ; y�

@y

� �
�A5�

which in our case can be approximated by

1

M

XM
i�1

@ ln f �YT jZ�i�T ; y�
@y

 !0
@ ln f �YT jZ�i�T ; y�

@y

 !
ÿ 1

M

XM
i�1

@ ln f �YT jZ�i�T ; y�
@y

( )2

�A6�

The derivatives can be computed numerically using common random variables.
To update the parameters in the Simulated EM cases, we have run the multimove Gibbs

sampler for 500 iterations. To diminish the correlations between subsequent draws from the chain
we used only every ®fth draw. Thus M in equation (A2) is equal to 100. We took the estimated
parameters from the unrestricted QML estimation procedure as start values for the SIEM
algorithms. The optimization we used in equation (A2) is a quasi-Newton method. Convergence
of the algorithms is determined by checking that subsequent values of parameters and functions
(A2) are close.14 For the simulated EM model with ¯exible mixture parameters the standard
errors are conditional on the covariance structure of the m̂�zt� and ô2�zt�. The SIEM algorithms
were programmed in Fortran 90 and executed on a DEC Alpha workstation. Computation time
for 100 sweeps of the algorithms was about 22 seconds.

14 In fact we applied the conditions jy*7 y j 5 0.01 and j ln L(YT jy*)7 ln L(YT jy) j 5 0.01. The values of
ln L(YT jy*) and ln L(YT jy) are computed with common random variables.
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In order to compute likelihood values for ln s2t we again consider the decomposition of the
likelihood function (A1). In the stochastic volatility models that we consider in the text the latent
data consist of the mixture indicators ZT. The Simulated EM algorithm of Kim, Shephard, and
Chib (1998) is used to obtain maximum likelihood estimates �ŷ� for the parameter vector y. In
order to obtain an estimate of the likelihood function itself we apply the ideas of Dempster et al.
(1977). They integrate both sides of the likelihood equation (A1) with respect to the density
Pr[ZT jYT ;y]. Evaluating the likelihood in ŷ, we can rewrite equation (A1) as

ln L�ŷ jYT � �
Z
ZT

ln Pr�ZT �Pr�ZT jYT ; ŷ� dZT

ÿ
Z
ZT

ln Pr�ZT jYT ; ŷ�Pr�ZT jYT ; ŷ� dZT

�
Z
ZT

ln f �YT jZT ; ŷ�Pr�ZT jYT ; ŷ� dZT

�A7�

Note that the Gibbs sampling scheme includes the density Pr[ZT jYT ; ŷ] for making mixture
indicator draws Z

� j�
T , (j� 1, . . . , M). Consequently, the draws from the MCMC can be used

directly to estimate the three parts of the likelihood in equation (A7). The ®rst part can be
approximated by using the mixture frequencies pi , (i� 1, . . . , K):Z

ZT

ln Pr�ZT �Pr�ZT jYT ; ŷ� dZT �
1

M

XM
j�1

XT
t�1

ln p
z
� j�
t

The second part uses the multinomial distribution Pr(ZT jYT ; ŷ), which in our case is
proportional to

Pr�zt � i j yt; ŷ� /
pi
ôi

exp ÿ 1

2ô2
i

�yt ÿ ht ÿ b̂ ÿ m̂i�2
� �

i � 1; . . . ;K:

In order to compute conditional frequencies fi we normalize in the following way:

f i �
Pr�zt � i j yt; ŷ�XK

k�1
Pr�zt � k j yt; ŷ�

; i � 1; . . . ;K :

The likelihood part is then approximated asZ
ZT

ln Pr�ZT jYT ; ŷ�Pr�ZT jYT ; ŷ� dZT �
1

M

XM
j�1

XT
t�1

ln f
z� j�t

The last part of the likelihood f(YT jZT, ŷ) is conditionally Gaussian and can be easily calculated
by applying the Kalman ®lter.

The parameters for the Bayesian algorithm were found by running the Gibbs sampler for
50,000 iterations. The information from every tenth iteration is used in the computation of
posterior densities and volatilities. The prior means of mi and oi are set at the values of the
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approximating mixture in Table I. The prior variances of the mi's are equal to 1000, while the
prior degrees of freedom in the inverted gamma priors for oi is equal to 5. The prior for r is a
truncated normal with mean one and variance 1000. It is truncated at its mode r� 1, so that we
restrict the volatility process to be stationary a priori.

Using GAUSS 3.2 on a Pentium 200 PC the Bayesian smoother runs about 300 iterations per
minute for our model with 1100 observations.
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