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INFORMATION GATHERING THROUGH ALLIANCES 

 

Introduction 

In this paper we will consider some theoretical issues regarding the formation of optimal networks 

through inter-firm alliances from the perspective of an individual company. These inter-firm 

alliances are defined as collaborative agreements between independent companies. We will 

concentrate on technology alliances where companies share R&D and other innovative activities 

through a range of different collaborative agreements (Hagedoorn and Duysters, 2002). Given the 

context of these alliances, the main purpose of these collaborative activities is to learn about a 

particular new technology and to reduce the uncertainty surrounding this new technology. 

 We adopt a Bayesian learning framework (cf. Raiffa and Schlaifer, 1961; DeGroot, 1970). 

The results of these models have been interpreted in the context of alliance formation by Mody 

(1993) who argues that firms counter uncertainty by learning through alliances. Mody (1993) 

stresses that during each period an alliance exists, an experiment is conducted which yields an 

observation on the desirability of breaking up, continuing or merging. Our contribution is to 

determine the optimal number of alliances for a particular firm, when each alliance yields an 

observation on an uncertain technology. In fact, we presume that information has to be acquired 

from different sources. We find that a higher degree of technological uncertainty necessitates a 

higher number of alliances. Furthermore, we assume that contacts or ties are partly redundant. In 

that case, technological information obtained from various sources is to some extent similar. In 

other words, the firms that may potentially ally with each other share a common technological 

regime (cf. Dosi, 1982; Nelson and Winter, 1977). We study how this technological commonality 

affects the incentive to form alliances and we find that a higher degree of commonality reduces the 

incentive to form alliances.  
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Our model allows us to study two additional issues. First, according to the standard 

efficiency approach in network analysis (Burt 1992 a and b) it is the number of non-redundant 

contacts that counts. Companies should limit getting involved with networks where contacts are 

duplicated. We consider how uncertainty affects the incentive to form either redundant or non-

redundant ties. We argue that non-redundant ties yield better information to the firm though they 

might be costlier to obtain. In fact, firms that already belong to the network in which a firm 

participates are usually less costly allies to develop because trust between the members facilitates 

further alliances (Gulati, 1995b; Nooteboom et al, 1997; Saxton, 1997). The costs of searching for 

new alliances within the existing network is lower as well (Gomes-Cassares, 1996; Gulati, 1995a; 

Uzzi, 1997). However, the disadvantage of such ties is that members of an existing network 

progressively become less attractive candidates to form an alliance with, because the information 

they yield becomes more and more similar. We show that under higher uncertainty the choice for 

redundant contacts becomes less likely.  

Second, standard network theory argues that `weak ties’ or `bridge ties’ are beneficial in 

transmitting information from one group of social players to another (Granovetter, 1973; Burt, 

1992 a and b). Hence, these ties allow a firm to obtain information from a source to which it is not 

connected directly. The main argument is that firms should aim at forming efficient networks by 

means of a limited number of direct ties that act as bridges to indirectly connected companies. The 

presumption here is that communication between firms that are not directly connected is accurate. 

We challenge this assumption and study the choice between direct and indirect contacts when 

information transmission through a bridge tie may be inaccurate. We show, in line with the 

`closure’ argument by Coleman (1988), that under higher uncertainty the choice for direct contacts 

becomes more likely in order to improve the communication between the ties.  

The paper is structured as follows. In the first section we provide a general outline of the 

optimisation problem of a firm. In the second section, we investigate under which conditions it 
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becomes more important to form non-redundant ties. In the third section, we discuss the conditions 

determining when information obtained from indirect ties is dominated by information from direct 

ties. We draw some conclusions and provide some directions for future research in the final 

section. 

 

1  A Bayesian model of information collection through forming alliances 

This section presents an outline of the optimisation problem from the perspective of the 

management of a single, representative firm that is interested in information gathering about 

product or process innovation through alliances (see also Arora and Gambardella, 1994). The basic 

idea behind the model is that a firm is uncertain about the future direction in which its main 

technology will develop. To reduce this uncertainty surrounding technological innovation, the firm 

can form alliances with other firms to acquire useful information. In the following we adopt a 

Bayesian two-stage learning model as developed by among others Raiffa and Schlaifer (1961) and 

DeGroot (1970). 1 In the first stage, the firm decides on the number of its alliances. In the second 

stage, it decides about the direction of the technology it implements.  

To develop some notation, consider a firm that is uncertain about the future technology it 

needs in order to survive. Suppose that the desired future direction of the firm’s technology is 

reflected by a parameter T of which the value is unknown and outside the control of the firm. The 

uncertainty about the value of T is represented by a probability density function (pdf). The 

technological direction ultimately chosen by the firm is given by the decision parameter d. The 

firm has some prior expectations about the variable T, which are derived from information already 

                                                           
1 Parts of this section are closely related to Cukierman (1980). In our model the parameter n 

reflects the number of alliances the firm selects. Cukierman interprets n as the optimal number of 

periods a firm may collect observations of x.  
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available. This means that the firm has some notion of the expected direction and degree of 

uncertainty surrounding technological developments. We formalize this idea by assuming that 

before the firm forms any alliance, the prior distribution of T is normal with mean µ and variance 

σT
2: 

 

(1) T~N(µ, σT
2)   

 

It is costly to choose a technology deviating from the desired one. Hence, the firm incurs a cost if 

the direction d does not match the desired direction given by T. In this study the costs when 

choosing direction d are given by (as an alternative a quadratic cost function could be used): 

 

(2)  C(T,d)=a|T-d| , a>0. 

 

The idea is that the costs are influenced by the extent to which the direction d chosen by the firm 

fits with the desired technology represented by the variable T. The firm minimizes the expected 

value of C(T,d) by choosing dopt. This means that dopt is determined by:  

 

(3) , ),(min dTCE
Td

 

where E  denotes that expectations are taken with respect to T. If T is known with certainty, it is 

obviously optimal to select d=T. However, T is assumed to be unknown and the uncertainty about 

its value is represented by a prior probability distribution function as given by equation (1).  

The firm does not need to fix d immediately. In fact, it has the opportunity to collect 

information about the properties of T by forming alliances with other firms. Before developing the 
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model in detail we provide an informal description of the information acquisition process by 

means of alliance formation. Each alliance yields information that is based on two components. 

First, since each potential alliance partner is different due to firm specific resources (Barney, 1991 

and 2001; Eisenhardt and Schoonhoven, 1996; Madhok and Tallman, 1998) each alliance yields 

some unique information. This information component does not resemble information obtained 

from other alliances. In other words, this means that this piece of information is uncorrelated and 

hence is not comparable with that obtained from other alliance partners. Second, the potential 

partners belong to a group of firms in the sense that they share a common base of knowledge, as 

found in common technological regimes (Dosi, 1982; Nelson and Winter, 1977). A striking 

example of this is found in the personal computer industry. After the dominance of the DOS-

Windows regime was established in the early 1990s, even companies with competing operating 

systems such as IBM and Apple became major collaborators on the integration of multimedia with 

Windows applications, the development of object-oriented software and RISC processing 

technologies in which both companies had established different capabilities (Hagedoorn, 

Carayannis and Alexander, 2001).  

The implication of shared technological regimes is that information derived from different 

firms will show some overlap. In statistical terms this means that observations from these firms are 

correlated and hence are comparable to a certain extent. To analyze these aspects of alliance 

formation, we consider the following formal model: each time the firm sets up an alliance with 

another firm it receives information by observing the realization of a random variable xi where xi  

=  yi  + ε.  This means that each time information is acquired it is based on two different 

independent sources. In fact, the first variable yi varies with each alliance formed by the firm. It is 

independently and identically normally distributed with y~N(Ey, σy
2). This part of the model 

reflects that each alliance provides some new information due to partner specific resources. 

However, all observations xi share a common component. This is captured by the second stochastic 
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term ε, which does not change with the alliances formed. It has a normal distribution ε~N(Eε, σε
2). 

This assumption means, that information obtained by an alliance is based on some knowledge that 

is shared among the potential partners. We assume that Ey+ Eε,=T.2 Hence, the desired future 

direction of the technology T, is the mean of the normally distributed variable x. As a consequence, 

if the firm obtains an observation x, this yields some information about T. Note that the firm can 

only observe the sum of yi and ε. It does not identify these two terms separately. The variances of 

the two components yi and ε are assumed to be given and known.  

If the firm obtains various observations by forming alliances they contain partly similar 

information. There is some overlap because the potential alliances share a technological regime. 

This comparability is reflected by the degree of correlation of the observations. To see this 

consider the n by n covariance matrix of n observations xn
xΣ 1 , x2 , ... , xn:  
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The correlation coefficient of two different observations xi and xj equals 022
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+
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ji . It 

appears that the correlation between xi and xj increases with the variance σε
2 and decreases with the 

variance σy
2. Hence, if the variance of ε is high relative to that of y, the information carried by the 

variable x will largely be influenced by the informational content of ε. Therefore, if the variance 

                                                           

distributed variables is the sum of the respective means. 

2 This assumption is not crucial to our main findings. One may also assume that Ey=T (0) and 

Eε=0 (T). It is important that the sum of  Ey+ Eε equals T, since the mean of the sum of normally 
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σε
2 is high compared to the variance σy

2, the two observations xi and xj will both be highly affected 

by the presence of the technological regime and much less by the alliance specific information (i.e. 

yi), implying a high coefficient of correlation.  

Information becomes available at a cost, which represents the cost of setting up an alliance and 

the cost of collecting and evaluating the information. The total cost per observation of x is given 

by c. If the firm decides to observe n values of the variable x before it chooses its direction d, the 

firm uses the acquired information to update its knowledge concerning the variable T using 

Bayesian learning. 3This knowledge is given by the posterior distribution of T which incorporates 

all information that is contained in the observations x1 , x2 , ... , xn. The parameters of the prior pdf 

(1) are assumed to be given and known. The variance of the random variable x in (4) is also 

assumed to be given and known. This latter assumption could be dropped easily. When the 

variance of x is unknown, the uncertainty surrounding its value could be represented by a prior 

pdf, e.g. using an inverted gamma pdf (see e.g. Raiffa and Schlaifer, 1961).  

The optimal number of information-gathering alliances before the firm determines its optimal 

direction dopt can be determined as follows. The firm chooses n to minimize the expected value of 

the cost function C(T,d) presented in equation (2) given the posterior beliefs concerning T and the 

cost of collecting information given by nc. Hence, n is found by: 

 

(5) C=  ⎟
⎠
⎞⎜

⎝
⎛ + ncdTCE

nTdn
),(minmin

,

 

The n under the expectations operator in equation (6) denotes that d is chosen, using the posterior 

distribution of T after n observations of x. The minimized expected cost the firm incurs equals C. 

                                                           
3 Note that n refers to the number of alliances the firm selects. 
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In order to derive the optimal number of information-gathering alliances, we first need to 

determine the firm’s optimal direction dopt using equations (2) and (3). We find that: 

 

(6)  ||min),(min
,,

dTEadTCE
nTdnTd

−=

 

The optimal direction dopt is equal to the median of the distribution of T (see DeGroot, 1970).  

Since the posterior distribution of T is normal and therefore symmetrically distributed around its 

mean, the optimal strategy of the firm is given by dopt=µn, i.e. the expected value of T given its 

posterior distribution. As shown by DeGroot the minimized value of equation (6) is given by:  

 

(6’)
π
σ 2

,

2
),(min n

nTd
adTCE =  

 

It appears that the expected cost the firm incurs depends on the degree of uncertainty remaining 

after n observations as given by . The higher the uncertainty as measured by , the higher the 

cost. Therefore, the firm has an incentive to reduce the uncertainty it faces. Using equation (5) the 

firm’s optimisation problem becomes:  

2
nσ 2

nσ
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The variance of T given its posterior distribution which incorporates all information x1 , x2 , ... , xn 

is given by: 
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The derivation is given in the appendix. Before proceeding with the optimization problem of the 

firm let us consider two extreme cases. First, consider the situation where each partnership 

provides some alliance specific and commonly available information. Suppose now that 

commonly available information is very inaccurate: σε
2 approaches infinity. Then the posterior 

variance equals the variance of the prior distribution σ2
nσ T

2. This means that in this case forming 

alliances does not provide any useful information since the degree of uncertainty faced by the firm 

remains equal to its prior degree of uncertainty given by σT
2. The explanation is as follows. The 

correlation coefficient between two observations xi and xj, i.e. 22

2

,
ε

ε

σσ
σ

ρ
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=
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ji , approaches one in 

this case. This means that two alliances provide exactly the same information. Hence, the 

maximum number of alliances that possibly provides relevant information is one. However, an 

observation xi is drawn out of a distribution with a variance which approaches infinity. Therefore 

the estimate of T based on observation xi is very inaccurate and does not lead to a reduction of 

uncertainty as measured by . Hence, it is optimal to build no alliances. 2
nσ

 Secondly, suppose now that the technological regime is strong. This means that 

information derived from an alliance is compelled by the technological regime and not by alliance 

specific information (i.e. yi). In terms of our model, this happens when is small relative to , 

because then as the correlation coefficient 

2
yσ 2

εσ

22

2

,
ε

ε

σσ
σ

ρ
+

=
y

ji indicates two observations xi and xj, are 

highly correlated and comparable. Consider the extreme case where the variance of the 

idiosyncratic term is zero, i.e. . This implies that information derived from the alliance is 02 =yσ
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completely based on the shared technological regime. Hence, within the set of potential partners, 

information about the technology is public knowledge. Again the correlation coefficient ji ,ρ equals 

one. Therefore one alliance is enough to acquire all information available. In fact the posterior 

variance of T after observing x is equal to 
1

22
2 11

−

⎟⎟
⎠

⎞
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⎝

⎛
+=

εσσ
σ

T
n  which is independent of the number 

of observations: n. If every participant in the industry has a pretty good idea of what the 

technological regime looks like, i.e. when  is very small, then the posterior variance will be 

small as well. Since is small relative to the assumption that approaches zero means that 

will be zero as well. Furthermore, if  approaches zero, then becomes zero as well. In this 

instance the firm knows the value of T precisely. 

2
εσ

2
yσ 2
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Let us now return to the optimization problem faced by the firm. The first and second order 

conditions for the optimization of equation (5) become: 
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As all components of the SOC are positive, the second order condition for a minimum is always 

satisfied. The FOC depicted above implicitly identifies the optimal number of alliances.4 

Unfortunately, it is not possible to derive an explicit expression for the optimal n (taking n as a 

continuous variable, in practice one will take the integer value of the optimal value for n resulting 

from the optimisation problem). However, in the appendix we derive a number of comparative 

static results that we summarize in the following proposition: 

 

Proposition 1 

The optimal number of information gathering alliances, denoted by n,  

• decreases with the cost c of setting up an alliance 

• increases with the cost attached to making mistakes as measured by the parameter a 

• increases with the degree of uncertainty the firm faces as measured by σT
2  

• decreases with the variance σε
2 of the common random term ε. 

 

The proposition indicates that the optimal number of alliances decreases with the cost, i.e. c, of 

setting up an alliance. 5 If the cost associated with making mistakes increases, as measured by the 

parameter a, the optimal value of n also increases. It can be seen straightforwardly that the higher 

the initial uncertainty as measured by the variance σT
2, the larger the number of alliances the firm 

                                                           
4 Note that if we substitute σε

2=0 in the FOC depicted in equation (11) and solve for n we obtain 

the well known optimisation problem as studied by Raiffa and Schlaiffer (1961), DeGroot (1970) 

and Cukierman (1980). The SOC guarantees optimality of this case as well. 

 
5 While the first result of proposition 1 is in line with a finding of Mody (1993), we do not account 

for uncertainty to also increase the possibility of opportunistic behaviour and hence the perceived 

costs of an alliance, which tend to reduce alliance activity. 
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is willing to form. Hence, there exists a relationship between a firm’s incentive to collect 

information through alliances and the degree of uncertainty it faces. In classical social network 

theory this is referred to as ‘gregariousness’ (Erbe, 1962) where uncertainty is countered by 

increasing the number of contacts (i.e. alliances) that will lead to increasing flows of information. 

Some recent empirical studies found that under conditions of increasing uncertainty, companies 

use large numbers of alliances to improve their learning and information collection capability. 

These empirical findings refer to a variety of high-tech industries such as semiconductors (Gomes- 

Casseres, 1996), data processing (Hagedoorn and Duysters, 2002) and biotechnology (Powell et al, 

1996; Walker et al, 1997).  

The fourth result should be interpreted as follows. We noted before that 22

2

,
ε

ε

σσ
σ

ρ
+

=
y

ji . 

Hence, the correlation between xi and xj increases with the variance σε
2. This means that if the 

informational content of the various observations gathered by forming alliances becomes more 

similar, the optimal number of alliances decreases. In other words, the firm is less likely to form a 

multitude of alliances if these alliances yield more similar information and therefore have a higher 

degree of redundancy. Hence, in case the firms share a common technological regime the incentive 

to form alliances is reduced. This line of thought refers to the current efficiency approach in 

network analysis (Burt, 1992 a and b) which stresses that the size of a specific network of alliances 

of a company is not that important for the adequate transfer of information. What really counts is 

the number of non-redundant contacts, because it is assumed that redundant contacts carry the 

same information. By definition, dense networks involve a considerable degree of interaction 

between companies and many of these interactions are expected to be redundant and inefficient. In 

standard network analysis terminology this implies that the structural equivalence in a network 

(the degree of interaction with the same group of companies) and the cohesion in networks (the 

connectivity of companies) should be limited to benefit from its contacts (see also Knoke and 
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Kuklinski, 1982). Therefore, a company should avoid duplication of contacts, it should create 

well-informed and selective linkages that generate so-called structural autonomy and that exercise 

control over rewarding opportunities (i.e. the structural equivalence in its network should be 

small). According to e.g. Burt (1992a), the lower the number of structural equivalent partners that 

a firm faces, the more effective a firm’s portfolio of alliances (see also Lorrain and White, 1971). 

The next section provides a more detailed illustration of this issue. 

 

2 When does non-redundancy become important? 

In the above, we considered the case where all observations have part of the information in 

common as these observations are correlated. In other words they share a common knowledge 

base. Now, we introduce a simple framework in which the firm may choose to acquire 

observations that are either correlated or uncorrelated with previous ones. Hence, we discuss under 

which conditions firms should try to avoid duplication of information through alliances.  

Suppose now that two networks of firms exist, which we denote by network A and B. 

Observations obtained from alliances with companies that belong to network A are given by xi  =  

yi  + εA. Like in the previous section the variable yi varies with each alliance formed by the firm 

and is independent across different firms. It is identically normally distributed with y~N(Ey, σy
2) 

with variance assumed to be given and known. The observations xi share a common term εA, which 

does not change with the alliances formed within network A. It has a normal distribution εA~N(Eε, 

σε
2) with variance assumed to be given and known. This assumption implies that observations 

within a certain network are correlated and hence show some overlap. To put this differently, this 

means that firms that constitute a particular network are likely to provide comparable information. 

Support for this assumption is found in Gomes-Casseres (1996) and Uzzi (1997) who found that 

within a network of interacting firms knowledge across the constituents will become similar. To 
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keep the model tractable we do not formally derive how information becomes similar within a 

network. Network B is very similar in the sense that observations provided by firms that make up 

the group are given by xi  =  yi  + εB and the variable yi varies independently with each alliance 

formed by the firm. For the sake of convenience we assume it is also identically normally 

distributed with y~N (Ey, σy
2). The common component of the observations xi in network B is εB 

which has a normal distribution N(Eε, σε
2) as well to facilitate the discussion. We assume again 

that Ey+ Eε,=T .The stochastic terms εA and εB are assumed to be independent. Hence, if 

observations are obtained from firms that belong to different networks they do not show any 

overlap. In statistical terms, these observations are not correlated. Furthermore, we presume that 

the variances of the stochastic terms εA and εB are equal. This assumption could be dropped. In fact 

the degree of precision of the information available within network A and B may depend on the 

size and structure of the network. However, for convenience and without affecting the main 

conclusions of our study we abstain from this possibility.   

 Suppose now that the firm has already formed an alliance with a firm in network A. The 

firm now belongs to network A and has access to information derived from the technological 

regime that is present in network A. Information derived from its alliance with a firm in network A 

is optimally included in its knowledge base by Bayesian learning. The firm we consider and the 

firms in network A have become similar to some extent in terms of their knowledge bases. In fact, 

an additional alliance with a firm from network A will yield information that partly overlaps with 

the information it already possesses (i.e. a new observation is correlated with an observation it 

already obtained). However, an alliance with a firm from network B will not show any overlap 

with its knowledge base (i.e. an observation from network B is not correlated with its observation 

from network A). Hence, our firm may build an alliance with a firm that is similar (from network 

A) or with a firm that is dissimilar (from network B) in terms of its knowledge base.  
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Consider now the firm’s decision of setting up an alliance with another firm from either 

network A or B. Using the result depicted in equation (7) the variance of T after two observations 

from network A is given by:  
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If the firm chooses to cooperate with a firm from network B the variance of each observation will 

be equal to . Furthermore, the observations from the two different networks A and B 

are independent. Therefore, we find, in line with section 1, that after two observations the posterior 

variance of the variable T becomes:
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The cost of forming an alliance with an additional company from network A is denoted cA. If the 

firm chooses a partner from network B the cost is given by cB. One may argue that the cost cB is 

larger than cA. For instance, once alliances have been established within a network, trust between 

the members may facilitate further alliances as found by Gulati (1995b), Nooteboom, Berger and 

Noorderhaven (1997) and Saxton (1997). Also, the cost of searching for new useful partners may 

be lower within the existing network (Gomes-Casseres, 1996; Gulati, 1995a; Uzzi, 1997).  

 However, as indicated in the above, companies might have an advantage in forming 

alliances with companies from network B. Let  denote the variance of the predictor of T after 2
Aσ

                                                           
6 To see this use equation (7) and fill in n=2, σε

2=0 and σy
2=σy

2+σε
2 
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one observation of a firm out of network A. The firm will choose a firm from network B if the 

marginal benefit of adding a network B observation is higher than the marginal benefit from 

additional information from network A: 
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Since,  the inequality of equation (11) will hold if the cost of setting up an 

alliance with a firm from B is relatively low. Furthermore, if the degree of uncertainty, i.e. σ

22
ABAA σσ >

T
2, 

faced by the firm is larger, equation (11) is also more likely to hold, because  
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This leads to our second proposition: 

 

Proposition 2 

If the environment faced by the firm is more uncertain as measured by σT
2, the firm is more 

inclined to avoid duplication of information through alliances within its existing network. 

 

Within the context of our model, assuming higher uncertainty, firms that are member of the 

existing network (here network A) gradually become less attractive allies, because they actually 

yield similar information. Hence, members of other networks to which the firm has no contacts yet 

become more appealing candidates to ally with. In fact existing networks may break down when 
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searching for new information is crucial. The Advanced Computing Environment (ACE) network, 

established during the 1990s, illustrates this point. This network broke down within a couple of 

years after its key members began to develop new technologies with other companies outside the 

ACE network (see Gomes-Casseres, 1996). Another interesting illustration of this point is found in 

the network of R&D alliances established by IBM during the 1990s.7 During the first half of this 

period, IBM entered into close-knit R&D cooperation through a series of multiple alliances with 

companies such as Apple, Siemens, Toshiba and Motorola. The technological emphasis in this 

inter-firm network was on R&D alliances in computer hardware and related activities such as 

computer-based telecommunication systems and supporting software. However, during the second 

half of the 1990s, most of these R&D alliances were terminated or only continued at a lower level 

of partnering intensity with a few short-term alliances. Then, given their focus on somewhat 

similar interest, many companies such as IBM started to establish R&D alliances in related 

information technology fields and in sectors outside information technology. These new inter-

sectoral R&D alliances concentrated on fields such as microelectronics, software, various internet-

related products and services, and a host of multimedia technologies. IBM began to collaborate 

extensively on joint R&D with a different set of companies with which it had no or very few prior 

R&D alliances. During that period IBM established multiple R&D alliances with Intel, Netscape, 

Novell, Oracle, Philips and Sun. Apparently, opportunities for further R&D cooperation with 

individual companies from the first group of partners, in which IBM was well-embedded through 

multiple dyadic ties, had dried up in a relatively short period time and other companies became 

attractive partners for further R&D collaboration. 

 

                                                           
7 This information is drawn from the MERIT-CATI database on inter-firm R&D alliances. 
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3 When do direct ties dominate indirect ties? 

Standard social network theory assumes that it is beneficial for companies to access existing 

information through a limited number of direct contacts while avoiding direct links to dense 

inefficient networks. This line of reasoning is based on classical arguments such as for instance 

found in Granovetter’s (1973) ‘weak ties’ that serve as bridges that can help to transfer 

information from one group of social players to another. A similar argument is made by Burt 

(1992 a, b) where ‘structural holes’ within networks are overarched by bridge ties with as little 

redundancy as possible.  

 In this section we present an alternative approach that determines when a direct tie, that 

carries information directly from another company, is preferred to an indirect tie where 

information is based on transfer from a company in a network through a single bridge tie. For the 

sake of convenience we abstract from the existence of technological regimes and assume that 

σε
2=0, implying that different alliances do not yield comparable information. We consider three 

firms and in order to facilitate the discussion we label them A, B, and C. Suppose now that firm A 

considers the two following strategies. The first strategy involves the formation of an alliance with 

firm B. As before this yields an observation denoted xB, which is normally distributed with mean T 

and variance σx
2. We assume that firm B has already established an alliance with firm C. 

Therefore, firm B knows observation xC, which is also normally distributed with mean T and 

variance σx
2. As a consequence, an indirect observation of xC is obtained as well by firm A if it 

allies with firm B. Hence, firm C is an indirect tie of firm A. However, the transmission of 

information from firm B to firm A is ambiguous. We assume that it is impossible to observe xC 

directly without an error. Instead it is possible to receive a message zC = xC + η, where η is a 

transmission error which is normally distributed with zero mean and variance ση2. Hence, message 

zC is normally distributed with mean T and variance σx
2 + ση2. As a result, by only incurring cost c 
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the firm obtains two observations: xB and zC. In the sequel we assume that xB, xC, and η are 

independently distributed. 

 It is worth noting that the variable xB does not represent firm B’s best guess of the 

parameter T. If xB would be its best estimate of T we should derive how observation xC is 

incorporated into xB. We prefer our approach because it is not very likely that firm A receives firm 

B’s best guess of T. Often, firms protect important parts of their knowledge and they attempt to 

control the information they wish to release to their partners (Arora, 1995; Poppo and Zenger, 

2002; Ring, 2002). However, this control of information transfer may be imperfect and some spill 

over of knowledge may occur (see also Arora, 1995; Goyal and Moraga-González, 2001; Poppo 

and Zenger, 2002). As a consequence it is possible that some of its information obtained from B’s 

partner C is transmitted to firm A. According to our model the information received by A consists 

of two parts. One part is independent of firm B’s observation of xC. This is represented by the 

variable xB. The other part does depend on observation xC. However, firm A can only observe xC 

imprecisely. This notion is captured by the variable zC = xC + η. We believe our approach comes 

closer to reality than assuming that firm A observes firm B’s best guess.  

It is straightforward to show within the present model that alliances yielding both direct 

and indirect ties are preferred to those that only yield direct ties. In terms of network analysis this 

implies that a company searches for alliances with other firms that are also well connected to their 

own specific networks. As a consequence, this company is characterized by both a high network 

centrality and a high betweenness centrality. This network centrality refers to the number of direct 

links of a particular company with other companies. In an information-network the possibility to 

control the flow of information between other companies is also dependent on a company’s degree 

of betweenness centrality that refers to the number of times a company is located on the shortest 

geodesic path between other companies (Freeman, 1979; Hagedoorn and Duysters, 2002; Knoke 

and Kuklinski, 1982). 
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 The second strategy the firm may pursue is to form direct alliances with both firm B and C 

(or forming a direct alliance with C).  The advantage of this strategy is that in this case both xB and 

xC are observed without any error. The properties of these observations are the same as before. The 

cost of observing xB and xC equals 2c. The first strategy is preferred to the second one if 8
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It is straightforward to show that the left hand side of this expression increases with a 

higher degree of initial uncertainty, i.e. σT
2, and increases with a higher degree of transmission 

ambiguity, i.e. ση2. These properties lead to our third proposition: 

  

                                                           
8 The first term on the right hand side of (13) can be found as follows. Take equation (A2) from 

the appendix where is a two by two matrix with the variances of xn
xΣ b and zc on its diagonal and 

zeroes elsewhere. The vector i contains two numbers 1. The expression in brackets of (A2) is equal 

to the variance of T, which has to be substituted into equation (6) to yield the first element of (13). 

We assume that xb and xc are uncorrelated. This yields the second term on the right hand side of 

(13) if we apply equation (7).  
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Proposition 3 

Direct ties are preferred to indirect ties if 

• the cost of forming alliances, i.e. c, is low 

• the cost of making mistakes as measured by a is high 

• if uncertainty as measured by σT
2 is high 

• the degree of transmission ambiguity as measured by ση2 is high. 

  

This implies that with increasing uncertainty a company will expand its number of direct links to a 

variety of other companies to improve the accuracy of communication between the ties, leading to 

dense networks. This result contradicts the efficiency approach within current social network 

theory, which states that under these conditions companies should aim at establishing efficient 

networks by means of a limited number of ties that act as bridges to other indirectly connected 

companies (Burt, 1992a; Rowley, Beherens and Krackhardt, 2000). However, our result is more in 

line with the ‘closure’ argument of Coleman (1988) who states that information rich dense 

networks of direct ties are more beneficial to network-actors than sparse networks. An illustration 

of this phenomenon is found in the biotechnology sector where many companies establish a dense 

and partly overlapping network with a multitude of well-connected partners that enables them to 

learn about interesting opportunities from a wide variety of sources (see Powell et al, 1996; 

Walker et al, 1997).  
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4 Conclusions 

We employ a Bayesian learning model in which a firm obtains information about the desired 

future technology by forming alliances with other firms. We find that the number of firms a 

company will ally with increases with the amount of uncertainty it faces (cf. Mody, 1993). In 

classical social network theory this is referred to as ‘gregariousness’ (Erbe, 1962). However, we 

also argue that the incentive to form alliances decreases once the information of possible partners 

has become somewhat similar. In fact, we find that a firm is less likely to form many alliances if 

these different alliances share a common knowledge base. Such alliances have a higher degree of 

redundancy. This finding is in line with arguments advanced by Burt (1992 a and b) who argues 

that the number of non-redundant contacts matters. Furthermore, our paper indicates that under 

higher uncertainty redundant contacts become less attractive partners. If the information these 

contacts yield is very similar, even if such alliances are less costly to form, a firm will prefer non-

redundant ties. Members of networks to which the firm has no ties yet and possess non-redundant 

information become appealing partners. Standard social network theory predicts that companies 

should establish efficient networks characterised by a limited number of contacts, that form ties to 

other indirectly connected companies. However, our model indicates that with higher uncertainty 

direct contacts, yielding more accurate information than indirect ties, become more attractive. This 

ultimately leads to dense networks.  

 Our model employs a number of specific assumptions. Hence, several extensions of the 

analysis are worth investigating, but they are beyond the scope of the present paper. First, our 

model discusses the optimisation problem from the point of view of a single firm. A next step is to 

extend our model to account for the fact that stable links require approval of all participants 

involved (cf. Jackson and Wolinsky, 1996). Second, we assume key parameters to be given and 

known to the management of the firm. This can be replaced by an assumption that the uncertainty 

regarding these parameters can be represented by some prior probability density function. Third, in 
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section 1 we assume that information obtained from alliances is similar. This degree of similarity 

is determined exogenously. An extension of the model could account for endogeneity, different 

technologies and strategic (learning) behaviour of companies. Such an extended model could use 

other functional forms for the objective function, for instance by allowing for increasing costs of 

managing a network and it could include other motives than collecting information for network 

formation (e.g. joint projects). Fourth, we assume that firms learn about one single technology as 

given by a variable T. The model can be easily extended to allow for learning about various 

aspects of technology and other matters of interest to the firm, by assuming T and x (i.e. the 

observation on the technology) to be vectors of values. A formal analysis of such extensions can 

be found in Raiffa and Schlaifer (1961) or in Zellner (1971). Fifth, one could allow for 

heterogeneity among potential participants in an alliance. For instance, if the most valued 

information provider is a rival firm, which has the lowest incentive to share its information, the 

costs of forming an alliance will be high. This case could be dealt with by differentiating the cost 

structure on the basis of prior expectations about the value of the information obtained.   

It is also interesting to extend our line of modelling into some empirical models, testing 

major elements of the above in alternative empirical settings such as industries characterised by 

different levels of technological development. In that context the use of a combination of existing 

network indicators, derived from current social network analysis, and the development of new 

network measures seems both appropriate and necessary to further expand this line of work in an 

empirical direction. 
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Appendix 

Derivation of expression (10) 
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where nn J
n

J 1
=  and Jn is an n by n matrix with all elements being equal to 1. The matrix 

nnn JIE −=  where In is the n by n identity matrix. To derive the posterior variance  we first 

note that 

2
nσ

nnn JJJ =⋅ , 0=⋅ nn EJ , and nnn EEE =⋅ . Using a variance decomposition method 

well known in the analysis of panel data with random effects (Baltagi, p. 14, 1995) we find that  
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where i is an n by 1 vector whose elements contain the number 1 and x is an n by 1 vector 

containing the observations xi.  To determine the posterior variance of T it suffices to collect all 

terms that involve T2. These are  
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Therefore, the posterior variance of T is equal to 
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Proof of Proposition 1 

The proofs all follow the same idea. Since n is implicitly determined by equation (11) we derive 

the comparative static results as follows. Suppose we want to know the effect of a variable s on n. 
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where K collects some terms which are positive 
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