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Abstract A one-sided asymptotically normal test for non-correlation between two
stationary time series is proposed based on the spectral coherence function. The test
statistic is a properly standardized version of the integrated spectral coherency and
has similar asymptotic properties as a previously introduced time domain based
test for non-correlation. Unlike its time domain counterpart, the proposed test does
not require prewhitening of the time series and, thus, is a truly nonparametric test
for non-correlation. In a simulation study, we evaluate the small sample perfor-
mance of the proposed test in comparison with the time domain test and address
the problem of bandwidth selection. Furthermore, we present a modification of the
test statistic that allows to test for non-correlation over frequency bands. This ver-
sion shows higher power of detecting interrelationships restricted to the frequency
band of interest.

Keywords Multivariate time series · Non-correlation · Spectral coherence ·
Nonparametric test · Bandwidth selection

1 Introduction

In multivariate time series analysis, testing for independence or non-correlation
between two time series is an important problem that has been recently addressed
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in many papers. Most tests that have been developed are for finite order vector
autoregressive (VAR) or vector autoregressive moving average (VARMA) processes
(e.g., Haugh 1976; Koch and Yang 1986; El Himdi and Saidi 1997; Hallin and Saidi
2005). More generally, Hong (1996) considers infinite order autoregressive series
and proposes first fitting autoregressive models to each series and then taking a
weighted sum of the squared residual cross-correlations. In contrast to Haugh’s
test, the order of the fitted autoregression increases with the sample size and,
thus, protects against misspecification of the true VARMA model at least for large
enough sample sizes. A robust version of Hong’s test for ARMA series is presented
in Duchesne and Roy (2003).

Alternatively, one might take a frequency domain approach and test for non-cor-
relation using the spectral coherence, which can be estimated nonparametrically
using kernel estimates for the (cross) spectral densities. The frequency domain
approach to time series analysis has been discussed in great detail in Brillinger
(1981). Tests for non-correlation in the frequency domain so far have been based
on pointwise test bounds. Dahlhaus et al. (1997) proposed to use the maximum of
the spectral coherence and provided heuristic approximate test bounds.

In this paper, we consider the integrated spectral coherence, which is the
frequency domain version of Hong’s test. Unlike the latter, the frequency domain
approach does not require prewhitening of the two time series and thus provides a
completely nonparametric approach for testing for non-correlation.

In section 2, we introduce the test statistic. The asymptotic distribution under
the null hypothesis and under a series of local hypothesis is discussed in section 3,
while in section 4 we investigate the small sample properties of the proposed test
statistic by simulation methods. In particular, we show that the frequency domain
approach yields better results than the time domain version if the time series exhibit
strong periodicities. The results also emphasize the need for selecting an appropri-
ate bandwidth for smoothing the periodogram. The problem of data-driven band-
width selection is briefly discussed in section 5. Finally, in section 6, we present
a simple modification to test for non-correlation over a fixed frequency band. The
methods are illustrated by an application to neurological data. The mathematical
proofs of the results are technical and put into the appendix.

2 The test statistic

Let (Xt ) = (Xt,1, Xt,2) be a bivariate stationary process with mean zero and
covariances cab(u) = E(Xt,a Xt−u,b) such that the (cross) spectral densities

fab(λ) = 1

2π

∑

u∈Z

cab(u) exp(−iλu), λ ∈ [−π, π]

exist for a, b = 1, 2. Then it is well known that (Xt,1) and (Xt,2) are uncorrelated if
and only if the cross spectral density f12(λ) is zero for all frequencies λ ∈ [−π, π]
or, equivalently, if and only if the spectral coherence

|R12(λ)|2 = | f12(λ)|2
f11(λ) f22(λ)

(1)

vanishes for all λ ∈ [−π, π]. In other words, (Xt,1) and (Xt,2) are uncorrelated if
and only if all their frequency components are uncorrelated.
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Given data X1, . . . , XT , nonparametric estimation of the spectral coherence is
based on the tapered periodogram

I (T )ab (λ) = (
2πH2,T

)−1
d(T )a (λ) d(T )b (−λ),

where

d(T )a (λ) =
T∑

t=1

ht,T Xt,a exp(−iλt)

is the discrete Fourier transform of (Xt,a), ht,T is a data taper with ht,T = h(t/T )
for some taper function h (e.g., Dahlhaus 1983), and H2,T = ∑T

t=1 h2
t,T . Then the

spectral density fab(λ) can be estimated by the kernel estimator

f̂ab(λ) =
T −1∑

j=0

w(T )
(
λ− 2π j

T

)
I (T )ab

(
2π j

T

)
,

where w(T ) is a 2π-periodic weight function with w(T )(λ) = MTw(MTλ) for
λ ∈ [−π, π] and some kernel function w (e.g., Brillinger 1981). MT determines
the effective number of frequencies over which the periodogram is averaged and
should increase with the sample size T ; furthermore, BT = M−1

T is called the
bandwidth of the kernel. An appropriate rate of increase for MT will be specified
in Theorem 5. Substituting the spectral estimators f̂ab into (1), we obtain

|R̂(T )12 (λ)|2 = | f̂12(λ)|2
f̂11(λ) f̂22(λ)

as an estimate for the spectral coherence. Since the spectral coherence is nonneg-
ative, we can take the estimated integrated spectral coherence

ST = 1

T

T −1∑

j=0

∣∣∣R̂(T )12

(
2π j

T

) ∣∣∣
2

to test for non-correlation between (Xt,1) and (Xt,2). An appropriately standardized
version of ST is

QT = T ST − MT µ√
MT σ

with

µ = H4

H2
2

∞∫

−∞
W (α)2dα and σ 2 = 2H2

4

H4
2

∞∫

−∞
W (α)4dα, (2)

where Hk = ∫ 1
0 h(t)k dt and W (α) = ∫ ∞

−∞w(λ) exp(iλα) dλ.
We note that the test statistic QT is of similar form as the time domain based

statistic proposed by Hong (1996), who suggested to test for non-correlation
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between (Xt,1) and (Xt,2) by first prewhitening Xt,1 and Xt,2 and then testing
for non-correlation between the residuals, say ε̂t,1 and ε̂t,2, based on the statistic

S∗
T =

T −1∑

u=1−T

W

(
u

MT

)2

ρ̂ε1ε2(u)
2,

where W (u) is a lag window and ρ̂ε1ε2(u) is the residual cross-correlation function
obtained from the residuals ε̂t,1 and ε̂t,2. This approach leads to the test statistic

Q∗
T = T S∗

T − MT µ
∗

√
MT σ ∗ , (3)

where the constants µ∗ and σ ∗ are given by (2) with H2 = H4 = 1. In the follow-
ing section, we show that the proposed frequency domain test statistic has similar
properties as the time domain version proposed by Hong (1996). However, the
frequency domain approach presented here is truly nonparametric since it does not
require prewhitening of the series.

An alternative nonparametric frequency-domain based test for non-correlation
has been proposed by Dahlhaus et al. (1997), who considered the maximal spectral
coherence

S∗∗
T = max

0≤ j<T

∣∣∣R̂(T )12

(
2π j

T

) ∣∣∣
2
.

A comparison of the definitions of ST and S∗∗
T suggests that ST , measuring the

mean deviation from the null hypothesis, leads to more powerful tests if the spec-
tral coherence differs from zero over a large range of frequencies. In contrast, tests
based on S∗∗

T should be superior if the null hypothesis is violated only at a single
frequency. We note that the exact asymptotic distribution of the maximal spectral
coherence S∗∗

T has not yet been established and the test proposed by Dahlhaus et
al. (1997) relies on a heuristic approximation.

3 Asymptotic properties

For the discussion of the asymptotic properties of the test statistic QT , we require
the following mixing condition of the process (Xt ).

Assumption 1 (Xt ) = (Xt,1, Xt,2) is a bivariate stationary process with mean
zero such that

∑

u1,...,uk−1∈Z

(
1 + |u j |

) |ca1,...,ak (u1, . . . , uk−1)| < ∞

for all k ≥ 2 and 1 ≤ j ≤ k − 1, where ca1,...,ak (u1, . . . , uk−1) is the kth order
cumulant of Xu1,a1, . . . , Xuk−1,ak−1, X0,ak .

This condition, which is a special version of Assumption 2.6.2 of Brillinger (1981),
is satisfied, for example, for all ARMA processes of finite order. The assumption
implies that the spectral densities exist and have bounded and uniformly continu-
ous derivatives. Furthermore, we require that the spectral matrix is bounded away
from zero.
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Assumption 2 The spectral matrix f (λ) = ( fab(λ)) is nonsingular for all
frequencies λ ∈ [−π, π].

Additionally, we impose the following assumptions on the taper function h and
the kernel function w.

Assumption 3 The taper function h(x) is a bounded real function of bounded
variation with h(x) = 0 for x /∈ [0, 1].

The assumption in particular includes the nontapered case, where h(x) = 1 for
x ∈ [0, 1] and 0 otherwise. However, we note that the small sample properties of
spectral estimates can be improved considerably by choosing a smooth taper func-
tion with h(0) = h(1) = 0 (e.g., Dahlhaus 1990). The small sample properties of
the test statistic will be investigated by simulation methods in the next section.

Assumption 4 The kernel functionw(λ) is bounded, symmetric, nonnegative, and
Lipschitz continuous with

∫ ∞
−∞w(λ) dλ = 1 and

∫ ∞
−∞ λ2w(λ) dλ < ∞. Further-

morew(λ) has continuous Fourier transform W (α) such that
∫ ∞
−∞ W (α)2 dα < ∞

and
∫ ∞
−∞ W (α)4 dα < ∞.

This assumption includes, for example, the quadratic spectral window or the
Parzen window, but excludes other commonly used kernels such as the Daniell or
Bartlett window (e.g., Priestley 1981).

With these assumptions, it can be shown that QT is appropriately standardized
and under the null hypothesis has asymptotically a standard normal distribution.

Theorem 5 Suppose that Assumptions 1–4 hold. Let MT → ∞ and M2
T /T → 0.

If (Xt,1) and (Xt,2) are uncorrelated, then QT → N (0, 1) in distribution.

In order to investigate the power of the proposed test for non-correlation, we
consider sequences of local alternatives. More precisely, suppose that for T ∈ N

the time series
(

X (T )t,1

)
and

(
X (T )t,2

)
satisfy Assumptions 1 and 2 and have cross-

spectrum

f (T )12 (λ) = cT g(λ) (4)

for some complex-valued function g(λ). Then, if cT → 0 as T tends to infinity,

the series
(

X (T )t,1

)
and

(
X (T )t,2

)
belong to a class of local alternatives that converge

to the null hypothesis H0 : R12(λ) = 0, λ ∈ [−π, π]. If cT decreases fast enough,
the test statistic is still asymptotically normally distributed.

Theorem 6 Suppose that, for T ∈ N, the time series
(

X (T )t,1

)
and

(
X (T )t,2

)
satisfy

Assumptions 1–4 and their cross-spectrum f (T )12 (λ) is of the form (4). Furthermore,

let MT → ∞ and M2
T /T → 0 as T → ∞ and let cT = M1/4

T /T 1/2. Then the
test statistic QT is asymptotically normally distributed with mean

ν(g) = 1

σ

π∫

−π

|g(λ)|2
f11(λ) f22(λ)

dλ

and variance 1.
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The asymptotic mean ν(g) under the sequence of local alternatives (4) has been
called efficiacy of QT (e.g., Taniguchi et al. 1996) and measures the ability of the
test to detect this sequence of local alternatives. We note that a similar result has
been established for the time domain test statistic Q∗

T (Hong 1996, Theorem 2).
Thus, the power of the two tests QT and Q∗

T can be compared by the asymptotic
relative efficiency

ARE
(
QT , Q∗

T

) =
(

eff(QT )

eff(Q∗
T )

)2

=
(
ν(g)

ν∗(g)

)2

,

where ν∗(g) is the asymptotic mean of Q∗
T under the sequence of local alternatives.

Inserting the expressions for ν(g) and ν∗(g), we obtain

ARE
(
QT , Q∗

T

) = σ ∗2

σ 2 = H4
2

H2
4

≤ 1,

where equality holds if and only if h is the rectangular taper function, which
corresponds to the nontapered case. Thus, we find that the use of data taper leads to
asymptotically less powerful tests. In the next section, we will show by simulations
that tapering nevertheless is important and improves the small sample properties
of the test statistic especially for time series that exhibit strong periodic behaviour.

4 Simulations

In this section, we present the results of two simulation studies that have been used
to investigate the small sample properties of the proposed frequency domain test
for non-correlation in comparison with the time domain version by Hong (1996).
For the first simulation study, we consider a bivariate ARMA(1,1) model with
processes (Xt,1) and (Xt,2) given by

Xt,1 = 1
2 Xt−1,1 + φ Xt−1,2 + εt,1,

Xt,2 = 1
2 εt−1,2 + εt,2.

(5)

For φ = 0, the two series (Xt,1) and (Xt,2) are uncorrelated and hence satisfy the
null hypothesis.

For this model, samples of size T = 100 and 200 were generated both under the
null hypothesis (φ = 0) and under the alternative with φ = 0.2. For each sample,
the two test statistics QT and Q∗

T were calculated. The frequency domain test sta-
tistic QT was computed from the nontapered periodogram as well as from a tapered
periodogram using a 20% cosine taper. For the computation of the time domain
statistic Q∗

T , the two series were prewhitened using an AR(p) model with p = 2, 4,
and 8. Additionally, the effect of the choice of bandwidth BT = 1/MT and kernel
w was examined by calculating all test statistics for six different bandwidths and
two kernels, namely the rectangular kernel (or Daniell window) and the quadratic
kernel (or Bartlett–Priestley window). While the latter satisfies Assumption 4, the
former violates this assumption.

Table 1 reports the performance of the two tests under the null hypothesis at a
5% significance level, based on 10,000 replications. Here, the size of all test sta-
tistics depends on the bandwidth and decreases for smaller bandwidths. For fixed
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Table 1 Rejection rates out of 10,000 replications with sample sizes T = 100 and 200 generated
by model (5) under the null hypothesis (φ = 0.0) for 5% significance level

Frequency domain Time domain
h = 0% h = 20% p = 2 p = 4 p = 8

T BT QS DN QS DN QS DN QS DN QS DN

100 0.3 3.7 6.9 2.2 4.8 4.8 5.0 4.9 5.1 5.8 6.1
0.4 4.4 5.3 3.2 4.0 5.8 5.9 5.6 5.7 6.7 6.8
0.5 5.1 7.4 4.4 6.8 6.1 6.4 6.4 6.3 7.6 7.5
0.6 5.7 7.3 4.7 5.9 6.1 6.0 6.7 6.5 8.5 8.4
0.7 6.5 7.3 5.5 6.0 6.4 6.2 7.0 6.8 8.2 8.2
0.8 6.1 7.9 5.6 7.4 6.5 6.5 6.9 6.8 8.2 8.0

200 0.3 4.8 6.0 4.4 5.5 5.9 6.1 5.3 5.5 6.4 6.5
0.4 5.8 7.5 5.2 6.8 6.5 6.7 6.4 6.5 7.1 6.9
0.5 6.5 8.1 5.3 7.1 7.2 7.0 6.8 6.9 7.4 7.1
0.6 6.3 7.0 6.0 6.4 6.6 6.4 6.5 6.6 7.4 7.4
0.7 6.0 7.2 6.0 6.8 6.6 6.4 6.9 6.6 7.3 7.3
0.8 6.3 7.7 6.8 8.0 7.1 6.9 6.9 7.1 7.5 7.5

QS quadratic-spectral kernel, DN Daniell window

bandwidth, the tapered version of QT yields smaller sizes than the nontapered
version and hence requires more smoothing to obtain similar sizes. For Q∗

T , on the
other hand, the rejection rate increases with the model order p. Furthermore, we
note that the choice of kernel seems to affect the frequency domain test more than
the time domain version: in the time domain, both kernels yield similar sizes for
fixed order and bandwidth. Finally, comparing the results for the different sample
sizes, we find that the size of the tests increases slightly with the sample size, which
can be compensated by reducing the bandwidth accordingly. Summarizing we find
that all tests have reasonable sizes although the frequency domain tests seem to be
more susceptible to the choice of bandwidth.

Table 2 gives the power performances of the two tests under the alternative
with φ = 0.2 at a 5% significance level, again based on 10,000 replications. We
note that the frequency domain tests show a large variation in power depending
on bandwidth as well as on the choice of kernel or the amount of tapering. For
fixed bandwidth, the nontapered version with rectangular kernel has highest power
whereas the tapered version with quadratic kernel is the least powerful among all
tests. In contrast, the time domain tests show only moderate changes in power as the
bandwidth or the order p varies. These differences between the tests become less
pronounced when comparing tests that have the same size under the null hypothesis
although the results still show a loss in power when tapering is used.

In a second simulation study, we consider a bivariate ARMA(12,10) model with
roots close to the unit circle (Table 3). The process thus exhibits strong periodic
behaviour and the strong moving average part makes it difficult to prewhiten the
process. The used model is

Xt,1 = ∑12
u=1 φ

(1)
u Xt−u,1 + φ∗ Xt−1,2 + ∑4

u=1 θ
(1)
u εt−u,1 + εt,1,

Xt,2 = ∑4
u=1 φ

(2)
u Xt−u,2 + ∑12

u=1 θ
(2)
u εt−u,2 + εt,2.

(6)

The coefficients that were used for the simulations are given in Table 3. For
φ∗ = 0 the two series (Xt,1) and (Xt,2) are uncorrelated and hence satisfy the null
hypothesis.
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Table 2 Rejection rates out of 10,000 replications with sample size T = 100 and 200 generated
by model (5) under the alternative (φ = 0.2) for 5% significance level

Frequency domain Time domain
h = 0% h = 20% p = 2 p = 4 p = 8

T BT QS DN QS DN QS DN QS DN QS DN

100 0.3 20.3 31.4 14.3 24.1 27.1 25.3 25.8 23.7 25.3 23.3
0.4 25.5 31.0 20.8 25.8 30.8 28.9 30.0 27.5 29.4 27.7
0.5 30.4 39.5 25.3 33.3 34.3 32.1 32.4 30.6 32.1 30.7
0.6 34.2 39.9 28.0 33.1 35.8 34.4 34.0 32.9 34.1 33.0
0.7 36.0 39.5 31.7 34.2 36.5 36.6 34.5 34.6 34.2 34.0
0.8 37.0 42.5 32.2 37.0 36.2 36.7 35.2 35.6 35.3 35.1

200 0.3 52.2 59.5 44.0 51.7 58.4 54.7 58.8 54.7 56.5 52.4
0.4 58.9 66.4 53.2 60.4 63.1 59.8 61.8 58.2 61.8 58.2
0.5 64.4 70.8 56.7 63.9 67.3 64.6 66.3 63.7 64.4 61.9
0.6 66.8 70.1 60.0 63.9 68.6 67.2 66.8 65.0 65.3 63.5
0.7 69.6 72.1 63.9 67.5 69.3 68.4 67.3 67.1 66.0 65.4
0.8 71.0 74.2 64.5 68.2 68.7 69.2 67.5 68.2 66.1 67.0

QS quadratic-spectral kernel, DN Daniell window

Table 3 Coefficients of bivariate ARMA(12,10) model (6)

u 1 2 3 4 5 6 7 8 9 10 11 12

φ
(1)
u 4.7 −12.1 21.8 −30.8 35.9 −35.7 30.4 −22.2 13.4 −6.4 2.2 −0.4
φ
(2)
u 2.3 −2.7 2.1 −0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
θ
(1)
u −0.1 0.1 −0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
θ
(2)
u 2.6 4.1 4.8 4.6 4.2 4.2 3.9 2.9 1.6 0.5 0.0 0.0

Table 4 Rejection rates out of 10,000 replications with sample size T = 1,000 generated by
model (6) under the null hypothesis (φ∗ = 0.0) for 5% significance level

Frequency domain Time domain
h = 0% h = 20% p = 5 p = 10 p = 20 p = 40

BT QS DN QS DN QS DN QS DN QS DN QS DN

0.05 100.0 100.0 2.5 13.9 63.7 68.0 8.6 9.8 8.3 9.7 6.4 7.7
0.10 100.0 100.0 4.9 26.8 51.8 55.1 9.6 10.3 8.7 9.7 8.0 8.6
0.15 100.0 100.0 7.7 39.1 46.9 49.0 9.2 10.0 8.6 9.4 7.9 8.3
0.20 100.0 100.0 9.3 46.5 41.4 44.0 9.1 9.7 8.3 8.6 7.7 7.9

QS quadratic-spectral kernel, DN Daniell window

For the simulations, we used sample size T = 1,000. Table 4 reports the per-
formances of the test statistics under the null hypothesis at a 5% significance level,
based on 10,000 replications. The results show severe over-rejection for several
test statistics. In particular, the nontapered version of QT breaks down completely
and always rejects the null hypothesis of non-correlation: without tapering the pe-
riodogram estimates are strongly affected by leakage effects and thus may lead
to severely biased estimates of the auto- and cross-spectra and, consequently, of
the spectral coherence. Similarly, the time domain test leads to rejection rates of
40–70% if the autoregressive order is chosen too small (p = 5) to remove the
serial correlation of the two series (Xt,1) and (Xt,2) sufficiently. For larger values
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Table 5 Rejection rates out of 10,000 replications with sample size T = 1, 000 generated by
model (6) under the alternative (φ∗ = 0.002) for 5% significance level

Frequency domain Time domain
h = 20% p = 5 p = 10 p = 20 p = 40

BT QS DN QS DN QS DN QS DN QS DN

0.05 30.2 66.5 96.0 96.3 38.6 37.7 45.4 45.2 42.8 42.4
0.10 57.6 89.1 93.4 94.4 45.1 46.5 51.3 53.0 51.8 53.3
0.15 75.0 96.1 89.5 92.2 42.5 46.9 48.5 53.0 48.5 52.6
0.20 83.7 98.3 84.0 88.8 38.0 44.0 43.6 49.6 43.7 49.9

QS quadratic-spectral kernel, DN Daniell window

of p, the tests still show moderate over-rejection, which decreases as p increases.
Finally, we note that the use of a Daniell window for the frequency domain test
yields rejection rates between 10 and 50%. These observations indicate that the
smoothness of the kernel as required by Assumption 4 is indeed of importance. In
this study, the nominal significance level of 5% is only attained by the frequency
domain test based on a tapered periodogram and the quadratic-spectral window.

The results obtained under the alternative with φ∗ = 0.002 are given in Table 5.
Here, the frequency domain test based on a tapered periodogram and the qua-
dratic-spectral window shows rejection rates of 55–75% if we restrict ourselves
to bandwidths that lead to reasonable sizes under the null hypothesis. In contrast,
the time domain tests reject only in 35–55% of all cases. The results suggest that
for processes with strong spectral features, the frequency domain test based on a
tapered periodogram and a smooth kernel outperforms the other tests.

5 Bandwidth selection

One crucial step in the application of the proposed frequency domain test for
non-correlation is the selection of an appropriate bandwidth for smoothing the
periodogram. As we have seen in the previous section, the size and the power of
the test both depend on the bandwidth and are sensitive to under- as well as to
over-smoothing. Consequently, the application of the test requires a data-driven
method for choosing the optimal bandwidth.

In the literature on nonparametric spectral density estimation, a number of
criteria for bandwidth selection have been proposed; a partial overview and com-
parison is given, for example, in Fortin and Kuzmics (2000). In the following, we
will consider three methods: the cross-validated log-likelihood (CVLL) criterion
by Beltrão and Bloomfield (1987), a global version of the iterative procedure (ITP)
suggested by Bühlmann (1996), and a method by Lee (2001) that combines plug-
in and unbiased risk estimation (PURE) ideas. For all simulations, the frequency
domain statistics were computed using a 20% cosine taper and a quadratic kernel
for smoothing the periodogram.

Table 6 compares the empirical size and power of the frequency domain test for
the three bandwidth selection methods when applied to samples of length T = 100,
200, and 300 from model (5). For sample size T = 100, the iterative method failed
to converge in most cases and thus could not be used for testing. Otherwise, all
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Table 6 Testing with data-driven bandwidth selection: rejection rates out of 5,000 replications
for sample sizes T = 100, 200, and 500 generated by model (5) for 5% significance level

φ = 0.0 φ = 0.2
T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

PURE 6.6 6.2 6.5 32.5 61.7 95.7
CVLL 5.7 5.9 5.8 30.7 60.3 95.6
ITP – 6.5 6.5 – 65.8 97.4

Table 7 Testing with data-driven bandwidth selection: rejection rates out of 5,000 replications
for sample sizes T = 500, 1,000, and 2,000 generated by model (6) for testing for non-correlation
at 5% significance level

φ∗ = 0.0 φ∗ = 0.002
T = 500 T = 1,000 T = 2,000 T = 500 T = 1,000 T = 2,000

PURE 3.2 4.1 4.3 21.6 46.0 82.6
CVLL 0.8 3.0 3.9 6.0 30.8 80.7
ITP 6.3 6.1 6.3 38.0 69.5 93.8

three methods show good performance both under the null hypothesis and under
the alternative and agree with the results in Tables 1 and 2. We note that the CVLL
criterion achieves rejection frequencies that are closest to the nominal 5%-level;
on the other hand, it has also the lowest power whereas the iterative method has the
highest power of these tests and performs only slightly worse than the time domain
tests (cf Table. 2).

In order to compare the merits of the three bandwidth selection criteria for
hypothesis testing in less favourable situations, a second simulation study was
performed with data generated from model (6). The results for samples of size
T =500, 1,000, and 2,000 are given in Table 7. Here, the CVLL criterion appears
to be severely biased for sample size T = 500 with rejection rate of 0.8% under
the null hypothesis and 6% under the alternative. For larger sample sizes, the bias
becomes less pronounced, but the test based on the CVLL criterion still performs
worst. This observation is in accordance with the results by Fortin and Kuzmics
(2000), who reported that the CVLL criterion has problems with sharp peak density
processes. The best results are obtained by the iterative procedure of Bühlmann:
while the test over-rejects slightly under the null hypothesis, it is uniformly and
quite clearly more powerful than the tests based on the other two criteria. More-
over, we note that it clearly outperforms also the time domain tests: firstly, the time
domain tests showed a higher tendency to over-reject under the null hypothesis
and, secondly, they were far less powerful with rejection rates less than 55% as
compared to 70% achieved by the frequency domain test with bandwidth selected
by the ITP method.

6 Restriction to frequency bands

In some applications, one is interested in whether two time series (Xt,1) and (Xt,2)
are uncorrelated over a specific frequency interval. Suppose that 
 = [λ1, λ2] ⊆
[0, π] is the frequency band of interest. Then integrated spectral coherence can
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be adapted to test for non-correlation over this frequency band by considering the
statistic

ST,
 = 1

|J |
∑

j∈J

∣∣∣R̂(T )12

(
2π j

T

) ∣∣∣
2
,

where J is the set of all j such that 2π j/T ∈ 
. The corresponding standardized
test statistic is

QT,
 = T ST,
 − MT µ√
MT /|
| σ ,

where |
| = (λ2 − λ1)/π and µ and σ 2 are as in (2). We obtain the following
result.

Theorem 7 Suppose that the assumptions of Theorem 5 hold. Then under the null
hypothesis

R12(λ) = 0 for λ ∈ [λ1, λ2],
we have QT,
 → N (0, 1) in distribution. Furthermore, under the sequence of

local alternatives in (4) with cT = M1/4
T /T 1/2, we have QT,
 → N (ν
(g), 1) in

distribution, where ν
(g) is given by

ν
(g) = 1√|
| σ

λ2∫

λ1

|g(λ)|2
f11(λ) f22(λ)

dλ.

In order to compare the power of the localized test QT,
 and the global test
QT , we consider the asymptotic relative efficiency

ARE
(
QT , QT,


) =
(
ν(g)

ν
(g)

)2

.

Suppose that the function g in (4) vanishes outside the interval
. From Theorems
6 and 7, we obtain

ARE
(
QT , QT,


) = |
| = λ2 − λ1

π
≤ 1,

that is, the global test QT is less powerful in detecting dependencies restricted to
the frequency range [λ1, λ2] than the localized test QT,
. This is due to the fact
that the global test QT tests against a larger class of alternatives than the localized
test.

For an illustration of the advantages of the localized test for non-correlation, we
consider neurological data concerned with the identification of signal transmission
pathways in the investigation of human tremor. Tremor is defined as the invol-
untary, oscillatory movement of parts of the body, mainly the upper limbs. It has
been shown that patients suffering from Parkinson’s disease show a tremor-related
cortical activity which can be detected in the EEG time series by cross-spectral
analysis (e.g., Timmer et al. 2000).
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Table 8 Results of testing for non-correlation between EEG channels C2P and C3 and EMG
signal of left hand wrist extensor

C2P-EMG C3-EMG C2P-C3

QT 0.97 −0.34 3.81
Q∗

T,p=1,000 0.54 0.01 2.89
QT,[1 Hz,8 Hz] 12.16 0.08 0.35

In one experiment, the EEG and the surface electromyogram (EMG) of the
left hand wrist extensor muscle in a healthy subject have been measured during
an externally enforced oscillation of the hand with 1.9 Hz. All data were simulta-
neously sampled at 1,000 Hz. For the analysis, a subseries of length T =40,000 has
been used. All kernel estimates were computed with bandwidth BT = 0.002. The
data are described in detail in Dahlhaus and Eichler (2003). In the following, we
restrict ourselves to two EEG channels, namely C2P and C3.

Figure 1a displays estimates for the spectral densities of the three series. The
spectrum of the EMG signal shows a strong periodicity of about 1.9 Hz. The higher
harmonics in the spectrum indicate that the process has a nonlinear dynamic. The
signal for channel C2P also shows strong peaks at the oscillation frequency of
1.9 Hz and the first harmonic, whereas the signal for channel C3 does not show any
clear signs of periodicity.

The estimates for the spectral coherences between the three time series in Fig-
ure 1b indicate a strong relationship between C2P and the EMG signal at the
oscillation frequency and the first harmonic, while for the other two pairs the spec-
tral coherence exhibits only a small peak at the first harmonic. For a statistical
evaluation of the relationships between the three series, we tested for non-correla-
tion between each pair of series. Because of the strong periodicity and nonlinearity
of the EMG signal, the autoregressive model order used for prewhitening the series
in the computation of the time domain test was very large (p=1,000). For the fre-
quency domain test, we used a tapered periodogram with 10% cosine taper. The
values of the test statistics QT , Q∗

T , and QT,[1Hz,8Hz] are given in Table 8. Here,
both global tests for non-correlation do not find a significant relationship between
the EMG signal and either EEG channel, but establish a significant relationship
between the two EEG channels.

On the other hand, if we test for non-correlation only over the frequency band
from 1 to 8 Hz, which is most relevant for the discussion of tremor-like phenomena,
channel C2P and the EMG signal show a highly significant relationship, whereas
neither C3 and the EMG signal nor the two EEG channels are significantly related
over this frequency band. We conclude that only channel C2P, which is located
over the right hemisphere, shows a cortical activity that is directly related with the
oscillating movement of the left hand.

7 Conclusions

We have presented a new frequency domain based test for non-correlation be-
tween two stationary time series. The test is based on the integrated spectral coher-
ence and has similar asymptotic properties as a previously introduced time domain
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version. Unlike the time domain version, the proposed test is truly nonparamet-
ric and does not require prewhitening of the time series by autoregressive model
fitting. Consequently, the test shows a high power of detecting relationships also
for highly periodic, nonlinear processes, for which prewhitening by autoregressive
modelling is less appropriate.

The performance of the test crucially depends on the chosen bandwidth for
smoothing the periodogram. Thus, a data-driven method for selecting the optimal
bandwidth is needed to make the proposed test applicable. We have compared three
bandwidth selection methods for spectral density estimation. Our results indicate
that a global version of the iterative bandwidth selection method by Bühlmann
(1996) achieves good results, although it can suffer from convergence problems
for small sample sizes. In that case, it can be replaced, for example, by the PURE
bandwidth selection method of Lee (2001).

Moreover, we have shown that a modification of the test can be used to test
for non-correlation over frequency bands. The restriction to frequency bands of
interest allows a more powerful detection of relationships at those frequencies.

Acknowledgements The author wishes to thank two anonymous referees for their comments
and remarks, which helped to improve on an earlier version.

Appendix: Proofs

The derivation of the asymptotic distribution of the test statistic QT is based on
the following version of the integrated spectral coherence. Let

S̃T = 1

2π

∫

�

∣∣R̂(T )12 (λ)
∣∣2

dλ

with � = [−π, π], where the coherence R̂(T )12 (λ) is computed from spectral esti-
mates

f̃ (T )ab (λ) =
∫

�

w(T )(λ− α) I (T )ab (α) dα.

Using a Taylor expansion of second order, S̃T can be approximated by

S̃(2)T =
∫

�

f̃ (T )12 (λ) f̃ (T )21 (λ)

2π f11(λ) f22(λ)
dλ

with S̃T = S̃(2)T + oP

(
M1/2

T /T
)

.

For the proofs, we need the following function, which has been introduced by
Dahlhaus (1983). For T > 0 let L(T ) be the 2π-periodic function with

L(T )(λ) =
{

T, |λ| ≤ 1/T
1
|λ| , 1/T < |λ| ≤ π.

(7)

The properties of these functions are summarized by the following lemma. Here
and throughout the paper, C denotes a generic constant.
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Lemma 1 Let L(T )(λ) be defined as in (7), α, β, γ ∈ R and r ∈ N. We obtain with
a constant C independent of T , T1, and T2

(i) L(T )(α) is monotonically increasing in T ∈ R
+ and decreasing inα ∈ [0, π].

(ii) L(T )(cα) ≤ c−1L(T )(α) for all c ∈ (0, 1].

(iii)
∫

�

L(T )(α)dα ≤ C log(T ).

(iv)
∫

�

L(T1)(β+α)L(T2)(γ−α)dα≤C max{log(T1), log(T2)}L(min{T1,T2})(β+γ ).

(v)
∫

�

L(T )(α)r dα ≤ CT r−1.

(vi)
∫

�

L(T1)(β+α)r L(T2)(γ − α)r dα≤C max{T r−1
1 , T r−1

2 }L(min{T1,T2})(β+γ )r .

Proof The proofs are straightforward and can be found in Dahlhaus (1983, 1990).

The L(T ) function provides convenient upper bounds when dealing with ker-
nels and data tapers in the frequency domain. More precisely, suppose that h is a
taper function of bounded variation and let Hk,T (λ) = ∑T

t=1 hk
t,T exp(−iλt) the

corresponding finite Fourier transform. Then, we have
∣∣Hk,T (λ)

∣∣ ≤ C L(T )(λ) (8)

with positive constant C independent of T and λ. Similarly, we obtain by Assump-
tion 4 for the kernel w(T )

w(T )(λ) ≤ C
L(MT )(λ)2

MT
,

again with a positive constant C independent of T and λ.
For the derivation of the asymptotic distribution of S̃T , we follow the approach

due to Brillinger (1981) and show convergence of the cumulants of first, second,
and higher order to the corresponding cumulants of the limit distribution in Lemmas
4, 6, and 7, respectively. This leads us to considering cumulants of the form

cum
{

d(T )i j,1
(α j,1)d

(T )
i j,2
(−α j,1)d

(T )
i j,3
(α j,2)d

(T )
i j,4
(−α j,2) | j = 1, . . . , k

}
. (9)

In the following, we introduce the basic ideas and concepts for evaluating these
cumulants. First, we note that by the product theorem for cumulants (cf Brillinger
1981, Theorem 2.3.2), the above cumulant is equal to

∑

i.p.

m∏

j=1

cum
{

d(T )ν j,1
(γ j,1), . . . , d(T )ν j,p j

(γ j,p j )
}
,
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where
∑

i.p. denotes the sum over all indecomposable partitions {P1, . . . , Pm} of
the table

α1,1 −α1,1 α1,2 −α1,2
...

...
...

...
αk,1 −αk,1 αk,2 −αk,2

(10)

with p j = |Pj | and Pj = {γ j,1, . . . , γ j,p j }. Recall that a partition {P1, . . . , Pm}
is said to be indecomposable if every set Pj is hooked to at least one other set Pi ,
where two sets Pi and Pj are hooked if there exists an index l ∈ {1, . . . , k} and
variables γir ∈ Pi and γir ′ ∈ Pj such that γir and γir ′ are both contained in the lth
row {αl,1,−αl,1, αl,2,−αl,2}.

Next, we note that

cum
{

d(T )a1 (α1), . . . , d(T )ak (αk)
}

= (2π)k−1 Hk,T (α1 + · · · + αk) fa1···ak (α1, . . . , αk−1)+ O(1)
(11)

uniformly in α1, . . . , αk ∈ � (Brillinger 1981, Theorem 4.3.2), where

fa1···ak (α1, . . . , αk−1) = (2π)−k+1
∑

u1,...,uk−1∈Z
ca1,...,ak (u1, . . . , uk−1) exp (−i(u1α1 + · · · + uk−1αk−1))

is the kth order cumulant spectrum of the process. Thus, we obtain for the cumulants
in (9)

cum
{
d(T )i j,1

(α j,1)d
(T )
i j,2
(−α j,1)d

(T )
i j,3
(α j,2)d

(T )
i j,4
(−α j,2) | j = 1, . . . , k

}

=
∑

i.p.

m∏

j=1

[
(2π)p j −1 Hp j ,T (γ̄ j ) fν j,1···ν j,p j

(γ j,1, . . . , γ j,p j −1)+ O(1)
]

=
∑

i.p.

m∏

j=1

(2π)p j −1 Hp j ,T (γ̄ j ) fν j,1···ν j,p j
(γ j,1, . . . , γ j,p j −1)+ RT , (12)

where γ̄ j = γ j,1 + · · · + γ j,p j and the remainder term RT satisfies

|RT | ≤ C
∑

i.p.

∑

J�{1,...,m}

∏

j∈J

(2π)p j −1
∣∣Hp j ,T (γ̄ j )

∣∣ ∣∣ fν j,1...ν j,p j
(γ j,1, . . . , γ j,p j −1)

∣∣.

Noting that, by Assumption 1, the kth order cumulant spectra are bounded, we can
use (8) to obtain an upper bound for (12). The further evaluation of these bounds
is based on Lemma 1 and the following lemma.

Lemma 2 Let k ≥ 3 and suppose that {P1, . . . , Pm} is an indecomposable parti-
tion of the table

α1 −α1
...

...
αk −αk .
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If m = k, then for any k − 2 variables αi1, . . . , αik−2 we obtain

∫

�k−2

k∏

j=1

L(T )(γ̄ j )dαi1 · · · dαik−2 ≤ C L(T )(αik−1 ± αik )
2 log(T )k−2.

If m < k, there exist k − 2 variables αi1, . . . , αik−2 such that

∫

�k−2

m∏

j=1

L(T )(γ̄ j )dαi1 · · · dαik−2 ≤ CT log(T )k−2.

Proof The first part follows from the indecomposability of the partition and the
properties of the L(T )-function. For the second part, we note that because of the
indecomposability of the partition there exists an ordering Pj1, . . . , Pjm and vari-
ables αi1, . . . , αim−1 such that αir ∈ ⋃r

i=1 Pji and −αir ∈ Pjr+1 . Therefore, we
have

∫

�k−2

L(T )(γ̄1) · · · L(T )(γ̄m−1)dαi1 · · · dαik−2

≤ C log(T )
∫

�k−3

L(T )(γ̄1 + γ̄2) · · · L(T )(γ̄m−1)dαi2 · · · dαik−2

≤ C log(T )m−1L(T )(γ̄1 + · · · + γ̄m) = CT log(T )m−1, (13)

which concludes the proof.

For the application of this lemma, it will be convenient to consider a partition
{P1, . . . , Pm} of table (10) also as a partition of the table

α1,1 −α1,1
α1,2 −α1,2
...

...
αk,1 −αk,1
αk,2 −αk,2

. (14)

This partition, however, might now be decomposable into two or more indecom-
posable subpartitions. We call these subpartitions non-hooked as two sets from
different subpartitions are not hooked. Furthermore, we say that a subpartition
covers only one variable if it consists of exactly one row of the table (14), that is,
it consists either of one set {αl,i ,−αl,i } or of two sets {αl,i } and {−αl,i } for some
l ∈ {1, . . . , k} and i ∈ {1, 2}.

When applying the first part of Lemma 2 repeatedly to the non-hooked subpar-
titions of table (14), we need to choose αik−1 and αik such that subsequent steps
in the evaluation lead to the lowest possible bounds. To this end, we introduce the
following concept of a circle.
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For each partition {P1, . . . , Pm}, we denote by Q j = {ν j,1, . . . , ν j,p j } the sets
of the corresponding partition of the table of indices

i1,1 i1,2 i1,3 i1,4
...

...
...

...
ik,1 ik,2 ik,3 ik,4.

(15)

Suppose that {P1, . . . , Pm} has s non-hooked subpartitions of table (14), of which u
cover only one variable. Now suppose that we select for each of the s−u remaining
non-hooked subpartitions two variables αl j,1,i j,1 and αl j,2,i j,2 such that l j,1 
= l j,2
for all j = 1, . . . , s − u. Then a sequence (l j1,1, l j1,2), . . . , (l jr ,1, l jr ,2) in the set
{(l j,1, l j,2)| j = 1, . . . , s − u} is called a circle if

l ju ,2 = l ju+1,1 ∀u = 1, . . . , r − 1 and l jr ,2 = l j1,1.

The next lemma states that the variables αl j,1,i j,1 and αl j,2,i j,2 can be chosen such
that not more than one circle is obtained.

Lemma 3 Let J1, . . . , Js−u denote the non-hooked subpartitions of table (14)
that cover more than one variable. Then, for each subpartition Jr , there exist
two variables αlr,1,ir,1 and αlr,2,ir,2 covered by Jr such that the set {(l j,1, l j,2)| j =
1, . . . , s − u} does not contain more than one circle.

Proof Unifying the sets within each subpartition, we obtain again an indecompos-
able partition Q1, . . . , Qs of the table (10). Since the u subpartitions that cover
only one variable do not link different rows they can be omitted without destroy-
ing indecomposability. Now, suppose there are two circles represented by the sets
Q j1, . . . , Q jr and Q jr+1, . . . , Q jr ′ , respectively. Then the sets A = Q j1 ∪· · ·∪Q jr ,
B = Q jr+1 ∪ · · · ∪ Q jr ′ , and Q jr ′+1

, . . . , Q js−u form a new indecomposable parti-

tion. Therefore there exists a sequence A, Q̃1, . . . , Q̃q , B such that two consecutive
sets are hooked. Choosing the variables correspondingly we obtain a selection with
at least one circle less. As there can be only a finite number of circles, we can apply
this scheme repeatedly.

We note that the lemma remains true if we consider only a subset of the non-
hooked subpartitions. Finally, we define the sequence {�(T )2 }T ∈N of functions

�
(T )
2 (λ) = |H2,T (λ)|2

2π H4,T (0)
. (16)

By the upper bound in (8) and Lemma 1, it can be shown that {�(T )2 }T ∈N is an
approximate identity (e.g., Dahlhaus 1983).

Lemma 4 Suppose that Assumptions 1–4 hold. Furthermore, let MT → ∞ and
M2

T /T → 0. Then, if (Xt,1) and (Xt,2) are uncorrelated, we have

E

(
S̃(2)T

)
= MT

T

2π H4

H2
2

∞∫

−∞
w(α)2 dα + o

(
M1/2

T

T

)
. (17)
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Proof Let �(λ) = (2π f11(λ) f22(λ))
−1. Noting cum{d(T )a (α)} = 0, it then fol-

lows from the product theorem for cumulants

E




∫

�

�(λ) f̃ (T )12 (λ) f̃ (T )21 (λ) dλ





= 1

(2πH2,T (0))2

∫

�3

�(λ)w(T )(λ− α)w(T )(λ− β)

×
[

cum{d(T )1 (α), d(T )2 (−α), d(T )2 (β), d(T )1 (−β)}

+cum{d(T )1 (α), d(T )2 (−α)}cum{d(T )2 (β), d(T )1 (−β)}
+cum{d(T )1 (α), d(T )2 (β)}cum{d(T )2 (−α), d(T )1 (−β)}
+cum{d(T )1 (α), d(T )1 (−β)}cum{d(T )2 (−α), d(T )2 (β)}

]
dα dβ dλ. (18)

Since d(T )1 (λ) and d(T )2 (λ) are uncorrelated, the second and third terms are zero.
Furthermore, by (11), we find that the first term is of order O(T −1) while the last
term can be rewritten as

2πH4

T H2
2

∫

�3

�(λ) f11(λ− α) f22(λ− α)w(T )(α)w(T )(α − β)�
(T )
2 (β)

dα dβ dλ+ O(T −1).

Let ψ(λ, α) = |�(λ) f11(λ − α) f22(λ − α)|. Since w and ψ are Lipschitz con-
tinuous, we obtain with L(T )(λ) ≤ |λ|−1

∫

�3

ψ(λ, α) |w(T )(α)w(T )(α − β)− w(T )(α)2|�(T )2 (β) dα dβ dλ

≤ C M2
T

∫

�

|β|�(T )2 (β) dβ ≤ C M2
T

T

∫

�

L(T )(β) dβ ≤ C M2
T log(T )

T
,

and, noting that
∫
�
�
(T )
2 (β) dβ = 1,

∫

�3

|ψ(λ, α)− ψ(λ, 0)|w(T )(α)2�(T )2 (β) dα dβ dλ

≤ C

M2
T

∫

�

|λ|L(MT )(λ)4dλ ≤ C.

Together with M−1
T

∫
�
w(T )(α)2 dα → ∫

w(α)2 dα, this proves the convergence
in (17).
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For the derivation of the variance of S̃(2)T , we define the sequence {�(T )}T ∈N

of functions

�(T )(α1, . . . , α5)= 1

C (T )
�

w(T )(α1) · · ·w(T )(α4)�
(T )
2 (α5)�

(T )
2 (α1+α2−α3−α4+α5)

with

C (T )
� =

∫

�5

w(T )(α1) · · ·w(T )(α4)�
(T )
2 (α5)�

(T )
2 (α1+α2−α3−α4+α5)dα1 · · · dα5.

Lemma 5 Let w satisfy Assumption 4. Then

(i) �(T ) is an approximate identity;
(ii) limT →∞ 1

MT
C (T )
� = 1

2π

∫ ∞
−∞ W (α)4dα;

(iii) for any integrable function g : R
6 → R, we have

∣∣∣
∫

�6

g(λ, α1, . . . , α5)�
(T )(α1, . . . , α5) dα1 · · · dα5 dλ

−
∫

�

g(λ, 0, . . . , 0) dλ
∣∣∣ = o(1).

Proof The proof is straightforward.

Lemma 6 Suppose that Assumptions 1–4 hold. Furthermore, let MT → ∞ and
M2

T /T → 0. Then, if (Xt,1) and (Xt,2) are uncorrelated, we have

E

(
S̃(2)T

)
= MT

T 2

2 H2
4

H4
2

∞∫

−∞
W (λ)4dλ+ o

(
MT

T 2

)
.

Proof Let�(λ) be as in the proof of Lemma 4. From (12) we obtain for the variance
of S̃(2)T

var
(

S̃(2)T

)

=
∫

�6

2∏

j=1

[
�(λ j ) w

(T )(λ j − α j,1) w
(T )(λ j − α j,2)

]

×cum{I (T )12 (α1,1) I (T )21 (α1,2), I (T )12 (α2,1) I (T )21 (α2,2)} dα1,1 · · · dα2,2 dλ1 dλ2

= 1

(2πH2,T )4

∑

i.p.

∫

�6

2∏

j=1

[
�(λ j ) w

(T )(λ j − α j,1) w
(T )(λ j − α j,2)

]

×
m∏

j=1

(2π)p j −1 Hp j ,T (γ̄ j ) fν j,1...ν j,p j
(γ j,1, . . . , γ j,p j −1) dα1,1 · · ·

dα2,2 dλ1 dλ2 + RT , (19)
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where the remainder term RT is of smaller order than the main term. We evalu-
ate the terms for the different partitions separately. First, we consider the partition
consisting of the sets {α1,1, α2,1}, {−α1,1,−α2,1}, {α1,2, α2,2}, and {−α1,2,−α2,2}.
We obtain terms of the form

1

H4
2 T 4

∫

�6

2∏

j=1

�(λ j ) w
(T )(λ j − α j,1) w

(T )(λ j − α j,2)
∣∣H2,T (α1, j + α2, j )

∣∣2

× f11(α1,1) f22(−α1,1) f22(α1,2) f11(−α1,2) dα1,1 · · · dα2,2 dλ1 dλ2

= (2π)2C (T )
� H2

4

H4
2 T 2

∫

�6

�(λ1)�(λ2 − λ1 + α1,1 + α2,1)

× f11(λ1 − α1,1) f22(α1,1 − λ1) f22(λ1 − α1,2) f11(α1,2 − λ1)

×�(T )(α1,1, α1,2, α2,1, α2,2, λ2) dα1,1 · · · dα2,2 dλ1 dλ2

and further by Lemma 5(iii)

= (2π)2C (T )
� H2

4

H4
2 T 2

∫

�

�(λ)�(λ) f11(λ) f22(λ) f11(λ) f22(λ) dλ+ o

(
MT

T 2

)
.

Inserting the definition of �(λ) we obtain

MT

T 2

H2
4

H4
2

∞∫

−∞
W (α)4 dα + o

(
MT

T 2

)
.

For the partition {α1,1,−α2,2}, {−α1,1, α2,2}, {α1,2,−α2,1}, {−α1,2, α2,1}, we ob-
tain the same result. In all other partitions of length m = 4, at least one factor is
the cross-spectrum f12(α) and, thus, the term is zero. The same argument applies
to any partition with a set of the form {α,−α}.

Next, we show that for all other partitions the corresponding term in (19) is of
order o(MT /T 2). First, if the partition consists of only one or two sets, we directly
get the upper bound

C

T 4

∫

�6

w(T )(λ1 − α1,1) · · ·w(T )(λ2 − α2,2)T
2dα1,1 · · · dα2,2dλ1dλ2 ≤ C

T 2 .
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Second, if all sets in the partition are also hooked in table (10), we obtain

C

T 4 M4
T

∫

�6

L(MT )(λ1 − α1,1)
2 · · · L(MT )(λ2 − α2,2)

2

×
m∏

j=1

L(T )(γ̄ j )dα1,1 · · · dα2,2dλ1dλ2

≤ C

T 4 M2
T

∫

�4

L(MT )(α1,1 − α1,2)
2L(MT )(α2,1 − α2,2)

2

×
m∏

j=1

L(T )(γ̄ j )dα1,1 · · · dα2,2

≤ C M2
T

T 4

∫

�4

m∏

j=1

L(T )(γ̄ j )dα1,1 · · · dα2,2

≤ C M2
T log(T )m−2

T 3 = o

(
MT

T 2

)
.

Finally, we consider partitions of length m = 3 with two non-hooked subpar-
titions. If one set, P1 say, spans two variables, the other two sets are hooked and
have two elements each. It follows that γ̄2 = −γ̄3 and, therefore, we obtain

C

T 4 M4
T

∫

�6

L(MT )(λ1 − α1,1)
2 · · · L(MT )(λ2 − α2,2)

2T L(T )(γ̄2)
2

×dα1,2 · · · dα2,2dλ1dλ2

and further by integrating over λ1, λ2 and the variables in P1

≤ C

T 3

∫

�

L(T )(γ̄2)
2d γ̄2 ≤ C

T 2 .

Otherwise, one of the sets is of the form {α,−α} and hence corresponds to a
zero term in (19). The same applies to partitions with three or four non-hooked
subpartitions.

Lemma 7 Suppose that Assumptions 1–4 hold. Furthermore, let MT → ∞ and
M2

T /T → 0. Then, if (Xt,1) and (Xt,2) are uncorrelated, the cumulants of kth

order of S̃(2)T satisfy

cumk{S̃(2)T } = o

(
Mk/2

T

T k

)

for all k ≥ 3.
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Proof Let �(λ) be defined as in the proof of Lemma 4. Then, by (12), we obtain
for the kth order cumulant similarly as for the variance in the previous lemma

∣∣cumk{S̃(2)T }∣∣ ≤ C

T 2k

∑

i.p.

∣∣∣
∫

�3k

k∏

j=1

[
g(λ j )w

(T )(λ j − α j,1)w
(T )(λ j − α j,2)

]

×
m∏

j=1

Hp j ,T (γ̄ j ) fν j,1...ν j,p j
(γ j,1, . . . , γ j,p j −1)

×dα1,1 · · · dαk,2dλ1 · · · dλk

∣∣∣ + RT , (20)

where the remainder term RT is of smaller order than the main term. Therefore it
suffices to show that each summand of the sum in the main term asymptotically
tends to zero with rate Mk/2

T /T k .
Let {P1, . . . , Pm} be an indecomposable partition of table (10) which consists

of s non-hooked subpartitions. Since any subpartition that covers only one variable
corresponds to a zero factor f12(αi, j ) in the above product, we can assume that
every subpartition covers at least two variables. Then the corresponding summand
in (20) is bounded by

C

T 2k M2k
T

∫

�3k

k∏

j=1

[
L(MT )(λ j − α j,1)

2 L(MT )(λ j − α j,2)
2
]

×
m−u∏

j=1

L(T )(γ̄ j )dα1,1 · · · dαk,1dα1,2 · · · dαk−u,2dλ1 · · · dλk .

Next, suppose there are s′ subpartitions {Pi1, . . . , Pir } such that pi j = 2 for all
j = 1, . . . , r . Then, according to Lemma 3, we can select two variables αl j,1,i j,1

and αl j,2,i j,2 such that the set of row indices {(l1,1, l1,2), . . . , (ls′,1, ls′,2)} does not
contain more than one circle.

Similarly for each of the remaining s−s′ subpartitions, we can choose two vari-
ables, such that the remaining variables in the set satisfy the conditions of Lemma
2. Now we can bound L(MT )(·)2 by M2

T for each of the 2k − 2s variables that are
left. Thus, integrating over these variables, we have by Lemma 2

C log(T )ρ
M2k−4s

T

T 2k−s+s′

∫

�k+2s

s∏

j=1

[
L(MT )(λl j,1 − αl j,1,i j,1)

2L(MT )(λl j,2 − αl j,2,i j,2)
2
]

×
s′∏

j=1

L(T )(αl j,1,i j,1 ± αl j,2,i j,2)
2dαl1,1,i1,1 · · · dαls,2,is,2 dλ1 · · · dλk

for some ρ ∈ N. Integrating over αls′+1,1,is′+1,1
, . . . , αls,2,is,2 , we further obtain

C log(T )ρ
M2(k−s−s′)

T

T 2k−s+s′

∫

�k+2s′

s′∏

j=1

[
L(MT )(λl j,1 − αl j,1,i j,1)

2L(MT )(λl j,2 − αl j,2,i j,2)
2
]
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×
s′∏

j=1

L(T )(αl j,1,i j,1 ± αl j,2,i j,2)
2dαl1,1,i1,1 · · · dαls′,2,is′,2 dλ1 · · · dλk .

Integrating over the remaining αl j,1,i j,1 , we get

C log(T )ρ
M2(k−s)−s′

T

T 2k−s

∫

�k

s′∏

j=1

L(MT )(λl j,2 ∓ λl j,1)
2dλ1 · · · dλk .

Since the pairs (l j,1, l j,2) where chosen such that at most one circle exists, inte-

gration over λ1, . . . , λk yields an additional factor of order O(Ms′+1
T ). Thus, for

any partition {P1, . . . , PM } with s non-hooked subpartitions, the corresponding
summand in (20) is bounded by

C
Mk/2

T

T k

(
M2

T

T

)k−s+1/2−k/4 log(T )ρ

T k/2−1 .

Since s ≤ k and k ≥ 3, this is of order o
(

Mk/2
T /T k

)
.

Proof of Theorem 6 Under the local alternative with f (T )12 (λ) = cT g(λ), the sta-
tistic S̃T can be approximated by

S̃(2)T = cT ν(g)+
∫

�

�(λ)
(

f̃ (T )12 (λ) f̃ (T )21 (λ)− f (T )12 (λ) f (T )21 (λ)
)

dλ.

with S̃T − S̃(2)T = oP(cT )+ OP
(
(MT /T )3/2

) = oP(M
1/2
T /T ). When we evaluate

the mean of S̃(2)T under the local alternative, the second term in (18) cancels with

the constant term in S̃(2)T while all other steps remain the same.
For the convergence of the cumulants of second and higher order, we note that

∫

�

w(T )(λ− α) cum{d(T )1 (α), d(T )2 (−α)}

= 2πH2,T

∫

�

w(T )(λ− α) f12(α)dλ+ O(1) = o(cT T ).

For cT = M1/4
T /T 1/2, it can be shown that all terms corresponding to partitions with

subpartitions covering only one variable are of order o(Mk/2
T /T k). The remaining

steps are the same with slight modifications.

If we consider ST instead of S̃T , we have ST = S(2)T + oP(M
1/2
T /T ) with

S(2)T = 2π

T

T −1∑

j=0

f̂12(λ j ) f̂21(λ j )

2π f11(λ j ) f22(λ j )
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and λ j = 2π j/T . The proofs of Lemmas 4, 6, and 7 remain the same with inte-
grals replaced by sums. For the application of the L(T ) function, note that it can be
shown that

T −1∑

j=0

L(T )(λ j )
r ≤ C

∫

�

L(T )(λ)r dλ

for some constant C independent of T . Thus the upper bounds remain unchanged
in the discrete case. Finally, sincew, fab, and� = (2π f11 f22)

−1 are all Lipschitz
continuous, all sums in the final expressions converge to integrals with a rate of
o(T −1). This concludes the proof of Theorems 5 and 6.

Proof of Theorem 7 The result is a straightforward modification of Theorems 5
and 6.
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