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Abstract The directed transfer function (DTF) has been
proposed as a measure of information flow between the com-
ponents of multivariate time series. In this paper, we discuss
the interpretation of the DTF and compare it with other mea-
sures for directed relationships. In particular, we show that
the DTF does not indicate multivariate or bivariate Granger
causality, but that it is closely related to the concept of impulse
response function and can be viewed as a spectral measure
for the total causal influence from one component to another.
Furthermore, we investigate the statistical properties of the
DTF and establish a simple significance level for testing for
the null hypothesis of no information flow.

Keywords Directed transfer function · Granger causality ·
Impulse response function · Transfer function · Multivariate
time series · Significance test

1 Introduction

The identification of information flow and causal influences
in complex multi-variable systems is an important problem
in neuroscience as well as in many other scientific areas. For
instance, signals reflecting neural activity such as electroen-
cephalographic (EEG) or local field potential (LFP) record-
ings have been used to learn patterns of interactions between
brain areas that are activated during certain tasks and thus to
improve our understanding of neural processing of informa-
tion (e.g., Schack et al. 1999; Liang et al. 2000).

One commonly used approach for inferring causal rela-
tionships from such temporally structured data is based on
vector autoregressive (VAR) models and the concept of
Granger causality. This concept of causality, introduced by
Granger (1969), is based on the common sense perception
that causes always precede their effects in time: if one time
series causes another series, knowledge of the former
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series should help to predict future values of the latter series.
Although Granger (1969, 1980) always stressed the need to
include all relevant information in an analysis to avoid so-
called spurious causalities, much of the literature on Granger
causality has been concerned with the analysis of relation-
ships between only two time series. Consequently, relation-
ships among multiple time series are still quite frequently
investigated using bivariate Granger causality, that is, analy-
sing pairs of time series separately (e.g., Goebel et al. 2003;
Hesse et al. 2003; Brovelli et al. 2004).

In order to determine the directional influences between
the components in a multivariate system by a full multivariate
frequency-domain based method, Kamiński and Blinowska
(1991) introduced the directed transfer function (DTF). The
usefulness of the DTF method has been demonstrated in
many articles (e.g., Kamiński et al. 2001; Veeramani et al.
2003; Blinowska et al. 2004; Kamiński 2005), and it has been
applied, for example, to localize epileptic loci (Franaszczuk
and Bergey 1998), to determine LFP propagation between
brain structures of animals in different behavioural states
(Korzeniewska et al. 1997), to investigate EEG activity prop-
agation in different sleep stages (Kamiński et al. 1997), and
to study epileptogenesis (Medvedev and Willoughby 1999).
However, the DTF is defined in terms of the spectral transfer
function, which makes its interpretation in terms of causal
influences between the components difficult. In particular,
its relation to the concept of Granger causality remains un-
clear although there have been attempts to establish such a
relationship. Kamiński et al. (2001) claimed that the DTF is
equivalent to the concept of bivariate Granger causality. On
the other hand, Kuś et al. (2004), Blinowska et al. (2004) and
Kamiński (2005) show that DTF differs from bivariate mea-
sures of Granger causality; alternatively, they suggest that
DTF interprets Granger causality in a multivariate sense.

The aim of the present paper is to enhance the interpret-
ability of the DTF both theoretically and practically. Firstly,
we discuss the interpretation of the DTF as a measure of infor-
mation flow between processes and, in particular, clarify how
it relates to the concepts of bivariate and multivariate Granger
causality. Secondly, we investigate the statistical properties of
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the DTF. So far, there exists only a simulation-based approach
for the assessment of the statistical significance of the DTF,
which makes use of the method of surrogate data (Kamiński
et al. 2001). We derive the asymptotic distribution of the DTF
under the null hypothesis of no information flow and propose
a pointwise significance level that can be easily implemented.

2 Information flow in multivariate systems

2.1 Moving average representation and impulse response
function

Let X (t) = (
X1(t), . . . , Xd(t)

)′ denote a multivariate time
series from d data channels. For the theoretical discussion
in this section, we assume that X = {X (t)} is a weakly sta-
tionary and purely non-deterministic multivariate time series
with mean zero. Then X has an infinite moving average rep-
resentation

X (t) =
∞∑

u=0
b(u) e(t − u), (1)

where b(u) is a square-summable sequence of d × d matri-
ces, b(0) = I is the identity matrix and e = {e(t)} is a white
noise process with mean zero and non-singular covariance
matrix � (e.g., Brockwell and Davis 1991). The sequence
b(u) is called the impulse response function of the linear sys-
tem given by Eq. 1 and describes how the output series X of
the system is related to the input series e. More precisely, the
coefficient bi j (u) measures the response of the variable Xi
at time t to a random shock of unit size at variable X j at time
t − u.

2.2 Vector autoregressions and Granger causality

In applications in neuroscience, time series are more com-
monly evaluated by use of VAR models, which represent a
time series X at time t in terms of its previous values X (t−u),
u > 0 and a random component e(t). More precisely, let X
be a multivariate time series with moving average represen-
tation (Eq. 1). Then the spectral density matrix f(λ) of X
exists for almost all frequencies λ ∈ [−π, π] and is given by

f(λ) = (2π)−1 B(λ)� B(λ)∗, (2)

where

B(λ) =
∞∑

u=0
b(u) e−iλu (3)

is the Fourier transform of the impulse response function b(u)
and A∗ denotes the conjugate transpose of the matrix A. In
the sequel, we additionally assume that the spectral density
matrix f(λ) satisfies the boundedness condition

c I ≤ f(λ) ≤ c′ I for all λ ∈ [−π, π] (4)

and some constants c′ > c > 0. Here, A ≤ B for matri-
ces A and B indicates that B − A is non-negative definite.

Then the time series X is said to be invertible and has a VAR
representation

X (t) =
∞∑

u=1
a(u) X (t − u) + e(t), (5)

where a(u) is again a square-summable sequence of d × d
matrices and e = {e(t)} is the white noise process in Eq. 1.

The autoregressive representation of X is closely related
to the concept of (linear) Granger causality, which is a fun-
damental tool to describe the causal relationship between
time series. According to the original definition of Granger
(1969), one time series X causes another series Y , if the one-
step ahead prediction of Y based on the past of Y and that
of any relevant auxiliary variables Z can be improved (in
the mean square sense) by adding the past of X to the set of
predictor variables. In the context of multivariate time series
X with autoregressive representation (Eq. 5), this leads to
the following equivalent definition: one component Xi lin-
early Granger-causes another component X j if the coeffi-
cients a j i (u) do not vanish uniformly for all lags u (e.g.,
Sims 1980; Hsiao 1982; Toda and Philipps 1993; Hayo 1999;
Dufour and Renault 1998). Thus, linear Granger causality
describes the direct linear effect of one component Xi on
another component X j . In this paper, we do not consider any
forms of non-linear Granger causality and, for simplicity, will
use the term Granger causality in the restricted meaning of
linear Granger causality.

One drawback of the concept of Granger causality as a
measure for causal relationships among multiple time series
is the fact that it depends on the series X that is available for
the analysis. It is well known that omission of important rel-
evant variables can lead to so-called spurious causalities and,
thus, to a wrong identification of the underlying causal struc-
ture. Despite this fact, much of the literature on Granger cau-
sality has been concerned with the analysis of relationships
between only two time series (or two vector time series) and,
as a consequence, relationships among multiple time series
are still quite frequently investigated using bivariate Granger
causality; examples involving EEG signals or time-resolved
functional magnetic resonance imaging (fMRI) recordings
can be found in Kamiński et al. (2001), Goebel et al. (2003)
and Hesse et al. (2003).

For the purposes of this paper, we will therefore also con-
sider the concept of bivariate Granger causality. To this end,
let X be a d-variate weakly stationary time series satisfying
Eq. 5 and let Xi and X j be two components of X . Then the
bivariate subprocess (Xi , X j ) is again a weakly stationary
time series and has an autoregressive representation

Xi (t) = ∑∞
u=1 ãi i (u) Xi (t − u)

+ ∑∞
u=1 ãi j (u) X j (t − u) + ẽi (t),

X j (t) = ∑∞
u=1 ã j i (u) Xi (t − u)

+ ∑∞
u=1 ã j j (u) X j (t − u) + ẽ j (t),

(6)

where ẽ(t) = (ẽi (t), ẽ j (t)) is a white noise process with
some non-singular covariance matrix �̃. Based on this
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representation, we say that the series Xi bivariately Granger-
causes the series X j if the coefficients ã j i (u) are not zero
uniformly for all lags u.

To illustrate the difference between the multivariate and
bivariate concepts of Granger causality, we consider the fol-
lowing trivariate system. Let

X1(t) = α X2(t − 1) + e1(t),
X2(t) = β X3(t − 1) + e2(t),
X3(t) = e3(t),

(7)

where ev(t), v = 1, 2, 3, are independent and identically
normally distributed with mean zero and variance σ 2. Then
X3 Granger-causes X2, which in turn Granger-causes X1,
whereas X3 does not Granger-cause X1 (all with respect to
the full trivariate series X{1,2,3}). On the other hand, in a bivar-
iate autoregressive representation of X1 and X3, we have

X1(t) = α β X3(t − 2) + ẽ1(t),

X3(t) = ẽ3(t)

with ẽ1(t) = e1(t)+α e2(t −1) and ẽ3(t) = e3(t). From this
representation, we find that X3 bivariately Granger-causes
X1.

In general, the relationship between the two notions of
multivariate and bivariate Granger causality is more compli-
cated than in this example and, in most cases, an analytic der-
ivation of the bivariate representation would be very difficult
to obtain. However, Eichler (2005) has presented graphical
conditions for relating the two concepts to each other based
on a graphical approach for describing Granger-causal rela-
tionships in multiple time series (e.g., Eichler 2002).

In practice, VAR models of finite order p – that is, with
a(u) = 0 for all lags u > p – are used to approximate the
time series of interest. Such models are particularly suitable
for describing systems with some kind of oscillating behav-
iour. For EEG signals, the validity of the VAR modelling ap-
proach has been demonstrated, for example, by Franaszczuk
et al. (1985), Pijn et al. (1991, 1997), Stam et al. (1999),
Blinowska and Malinowski (1991) and Achermann et al.
(1994); applications to time-resolved fMRI recordings are
shown, for example, in Goebel et al. (2003), Harrison et al.
(2003) and Valdés-Sosa (2004). For the general theory on
VAR time series models, we refer to Lütkepohl (1993) and
Reinsel (2003).

2.3 Directed transfer function

Many biomedical time series such as EEG signals are charac-
terized in terms of their frequency properties. It is therefore
important to examine the relationships among multiple time
series also in the frequency domain. The frequency-domain
analysis of weakly stationary time series X is based on the
spectral representation of X , which is given by

X (t) =
π∫

−π

eiλt dZ X (λ) =
π∫

−π

B(λ) eiλt dZe(λ), (8)

where Z X (λ) and Ze(λ) are two random processes on [−π, π]
with mean zero and orthogonal increments (e.g., Brockwell
and Davis 1991). In this representation, the complex-
valued random increments dZ X (λ) and dZe(λ) indicate the
frequency components of the time series X and the white
noise process e, respectively, at frequency λ. From Eq. 8, we
find that these are related by

dZ X (λ) = B(λ) dZe(λ). (9)

Thus, the complex-valued function B(λ) describes how the
frequency components of the input process – here the white
noise process e – are transformed by the linear filter in Eq. 1
to the frequency components of the output process X . In par-
ticular, the entry Bi j (λ) measures the response of variable Xi
to sinusoidal random shocks of frequency λ at variable X j .
The function B(λ) is therefore called the transfer function
(e.g., Brockwell and Davis 1991) or the frequency response
function (e.g., Chatfield 2003) of X .

From Eq. 9, it is clear that the transfer function B(u) can
be used as a measure for directional information flow in mul-
tivariate time series. Kamiński and Blinowska (1991) pro-
posed the DTF, which is a normalized version of the transfer
function. It is given by

γ 2
i j (λ) = |Bi j (λ)|2

∑
k

∣
∣Bik(λ)

∣
∣2 (10)

and describes the ratio of the influence of component X j
on component Xi to all the influences on component Xi .
Due to the normalization, the DTF takes values in [0, 1]. For
the comparison of the information flow for different target
processes or between different experiments, Kamiński et al.
(2001) and Kamiński (2005) suggested also a non-normal-
ized version of the DTF, which is given by

θ2
i j (λ) = |Bi j (λ)|2 (11)

and basically measures the amplitude of the complex-valued
transfer function Bi j (λ).

We note that the transfer function B(λ) and hence the
DTF θ2

i j (λ) can be computed also from the coefficients in the
autoregressive representation (Eq. 5). Let

A(λ) =
∞∑

u=1
a(u) e−iλu

be the Fourier transform of the autoregressive coefficients
a(u) and define Ā(λ) = I − A(λ). Then B(λ) and A(λ) are
related by

B(λ) = Ā(λ)−1 = (
I − A(λ)

)−1
.

Furthermore, expanding the inverse Ā(λ)−1 = (
I −A(λ)

)−1

as a geometric series, we obtain

Bi j (λ) = Ai j (λ) +
d∑

k=1
Aik(λ) Ak j (λ)

+
d∑

k1,k2=1
Aik1(λ) Ak1k2(λ) Ak2 j (λ) + . . . . (12)
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This shows that the transfer function Bi j (λ) accumulates
the information flow from direct pathways – measured by
Ai j (λ) – as well as from indirect pathways via components
Xk1, . . . , Xkr .

Finally, we note that information flow among multiple
time series can also be described directly by the entries in
the matrix Ā(λ). This leads to the partial directed coherence
(PDC) introduced by Sameshima and Baccalá (1999) and
Baccalá and Sameshima (2001). Using a different normal-
ization from that of Kamiński and Blinowska (1991), they
defined the PDC as

πi j (λ) = |Āi j (λ)|
√∑

k |Āk j (λ)|2
. (13)

Alternatively, one might also consider |Āi j (λ)| as a non-
normalized version of the PDC.

3 Relationship between DTF and Granger causality

From the definition of the DTF, it is clear that the DTF γ 2
i j (λ)

is directly related to the transfer function B(λ) and, thus, to
the impulse response function b(u) and the moving aver-
age representation of X . Similarly, it follows from Eq. 13
that the PDC πi j (λ) vanishes for all frequencies λ if and
only if ai j (u) = 0 for all lags u. Consequently, the PDC
can be viewed as a frequency-domain measure for multivar-
iate Granger causality (see Sameshima and Baccalá 1999;
Baccalá and Sameshima 2001).

In contrast, the relationship between the DTF and the
notion of Granger causality remains unclear. For a bivariate
time series X = (X1, X2), it can be shown that

θ2
21(λ) = |B21(λ)|2 = |A21(λ)|2

| det A(λ)|2 .

Therefore, the DTF γ 2
21(λ) vanishes if and only if X1 does not

Granger-cause X2. However, for the general case of multivar-
iate time series, there exists no similar relationship between
the off-diagonal entries in B(λ) and in A(λ). Furthermore, the
literature about the DTF provides conflicting views about this
topic. For instance, Kamiński et al. (2001) claimed that the
DTF can be interpreted in terms of bivariate Granger causal-
ity. On the other hand, Blinowska et al. (2004) and Kuś et al.
(2004) argue against the use of bivariate measures of Granger
causality and in favour of the DTF as a multivariate measure
of Granger causality, and Kamiński (2005) suggest that the
DTF can interpret Granger causality in a multivariate sense.

Part of this discussion about the role of DTF as a mea-
sure of Granger causality seems to be due to the fact that the
concept of Granger causality is closely related to the time do-
main and the notion of predictability, and that it is not imme-
diately clear how to describe this concept in the frequency
domain. However, it should be noted that Granger causality
in principle is a binary relation: one process Granger-causes
another process, multivariately or bivariately, or it does not.
Consequently, it is natural to require that any frequency-
domain quantities that measure the Granger-causal effect of a

process Xi on another process X j vanish for all frequencies
if and only if Xi does not Granger-cause X j . Under this pre-
mise, we discuss the relationship between the DTF and the
two concepts of multivariate and bivariate Granger causality.
For illustration, we consider the following trivariate system.
Suppose that X = (X1, X2, X3) is a weakly stationary time
series with autoregressive representation

X1(t) = αX2(t − 1) + β X3(t − 2) + e1(t),
X2(t) = γ X3(t − 1) + e2(t),
X3(t) = e3(t),

(14)

where {e1(t)}, {e2(t)} and {e3(t)} are uncorrelated white noise
processes with variances var

(
ei (t)

) = σ 2
i , i = 1, 2, 3. The

dependence structure of this process is also depicted by the
path diagram in Fig. 1; it indicates that X2 Granger-causes
X1 while X3 Granger-causes both X2 and X1.

For the derivation of the DTF of X , we note that

Ā(λ) =



1 −α eiλ −β ei2λ

0 1 −γ eiλ

0 0 1



 .

Then inversion of Ā(λ) yields

B(λ) =



1 α eiλ (β + αγ ) ei2λ

0 1 γ eiλ

0 0 1



 . (15)

Comparing Eqs. 14 and 15, we find that the DTF from X2
to X1 is non-zero if and only if X2 Granger-causes X1; the
same holds for the DTF from X3 to X2. In contrast, the non-
normalized DTF from X3 to X1 is given by

θ2
13(λ) = (β + α γ )2.

We consider the following two situations.

1. Suppose that β = 0. This implies that X3 does not
Granger-cause X1, but the DTF still shows a non-zero
effect of X3 on X1 if αγ �= 0. This is due to the fact
that the DTF – unlike measures of multivariate Granger
causality, which describe only the direct effect of X3 on
X1 – also takes into account the indirect effect mediated
by X2 as indicated by Eq. 12.

2. Suppose that β = −α γ �= 0, that is, the direct and indi-
rect effect of X3 on X1 cancel out. In this case, the total
effect of X3 on X1 is zero and the DTF vanishes for all
frequencies. On the other hand, X3 has a non-zero direct
effect on X1 and, thus, X3 Granger-causes X1. The situ-
ation is depicted in Fig. 2a.

Fig. 1 Path diagram associated with the autoregressive representation
of the process X (t) in Eq. 14
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Fig. 2 Relation between DTF and multivariate Granger causality. a path
diagram of three-dimensional process with θ2

13(λ) �≡ 0 and X3 does not
Granger-cause X1. b path diagram of three-dimensional process with
one latent variable Z for which θ2

13(λ) ≡ 0 and X3 Granger-causes X1
with respect to (X1, X2, X3)

It could be argued that the second situation is negligible in
practice since the condition β = −α γ describes only a null
set in the parameter space of the VAR model (Eq. 14). How-
ever, such constraints arise naturally if latent variables are
present – a problem that cannot be ruled out particularly for
applications in neuroscience. As an example, we consider the
trivariate process X = (X1, X2, X3) given by

X1(t) = α1 Z(t − 2) + e1(t),
X2(t) = α2 Z(t − 1) + γ X3(t − 1) + e2(t),
X3(t) = e3(t),

(16)

where {Z(t)}, {e1(t)}, {e2(t)} and {e3(t)} are uncorrelated
white noise processes with variance one. The structure is
shown in Fig. 2b. In this system, the process Z represents
an unobserved variable with a common effect on variables
X1 and X2. Simple calculations show that the process X has
an autoregressive representation of the form (Eq. 14) with
coefficients α = α1α2/(1 + α2

2) and β = −αγ , that is,
the observed process X fulfills the above constraint for all
parameter values of the underlying process (X, Z).

In this example, the DTF indicates correctly that there
is no information flow from X3 to X1, whereas measures of
Granger causality wrongly detect a direct effect of X3 on X1.
Situations of this kind are known as type I spurious causality
(Hsiao 1982). Since variable Z is not available for predicting
X1(t), the value of X2(t − 1) serves as a proxy for Z(t − 2),
while X3 is used as a purifying variable to eliminate the noise
in X2(t−1). The example suggests that the DTF—measuring
only the total information flow from one variable to another
– is not affected by such type I spurious causalities. This is,
however, not true in general as we will see later.

For a discussion of the relationship between DTF and
bivariate Granger causality, we consider again the trivariate
process specified by Eq. 14. Simple evaluations show that the
bivariate subprocess (X1, X2) has autoregressive representa-
tion

X1(t) =
(
α + βγσ 2

3

σ 2
2 + γ 2σ 2

3

)
X2(t − 1) + ẽ1(t),

X2(t) = ẽ2(t),
(17)

where

ẽ1(t) = e1(t) + βσ 2
2

σ 2
2 + γ 2σ 2

3

e3(t − 2) − βγσ 2
3

σ 2
2 + γ 2σ 2

3

e2(t − 1)

and ẽ2(t) = e2(t) + γ e3(t − 1). Furthermore, calculations
show that cov

(
ẽ1(t), ẽ2(s)

) = 0 for all t, s and hence that

ẽ1(t) and ẽ2(t) are two uncorrelated white noise processes
with mean zero and variances σ̃ 2

1 = σ 2
1 + β2(1 + γ 2)σ 2

2 σ 2
3

/(σ 2
2 + γ 2σ 2

3 ) and σ̃ 2
2 = σ 2

2 + γ 2σ 2
3 , respectively. Similarly,

we find that the autoregressive representation of the subpro-
cess (X1, X3) is given by

X1(t) = (
α + βγ

)
X3(t − 2) + ẽ1(t),

X3(t) = ẽ3(t),
(18)

where ẽ1(t) = e1(t) + αe2(t) and ẽ3(t) = e3(t). Obviously,
ẽ1(t) and ẽ3(t)

)
are two uncorrelated white noise processes

with mean zero and variances σ 2
1 +α2σ 2

2 and σ 2
3 , respectively.

Comparing Eqs. 18 and 15, we find that X2 bivariately
Granger-causes X1 if and only if the DTF from X2 to X1
is identical to zero. Like the DTF, the concept of bivariate
Granger causality accumulates direct and indirect informa-
tion flow from one variable to another. However, it does not
eliminate effects due to confounding as shown by the bivar-
iate representation in Eq. 17. We consider the following two
situations.

1. Suppose that α = 0. Then Eq. 17 implies that X2 bivari-
ately Granger-causes X1 although X2 has neither a direct
nor an indirect effect on X1 (see Fig. 3). The DTF from
X2 to X1 indicates correctly that there is no information
flow from X2 to X1.

2. Suppose that α = −βγ σ 2
3 /(σ 2

2 +γ 2σ 2
3 ). In this case, the

direct effect from X2 on X1 and the effect due to con-
founding by X3 cancel out and X2 does not bivariately
Granger-cause X1. On the other hand, both the DTF and
the measures of multivariate Granger causality eliminate
the common effect by X3 and identify the causal link
from X2 to X1.

Again, such parameter constraints may arise naturally in sit-
uations where the system is affected by latent variables. As
an example, we consider the following system. Suppose that
X = (X1, X2, X3) is a weakly stationary time series given
by

X1(t) = β1 Z1(t − 2) + e1(t),
X2(t) = γ1 Z2(t − 2) + e2(t),
X3(t) = β2 Z1(t − 1) + γ2 Z2(t − 1) + e3(t),

(19)

where {Z1(t)}, {Z2(t)}, {e1(t)}, {e2(t)} and {e3(t)} are un-
correlated white noise processes with variance one. Here, Z1

(a) (b)

Fig. 3 Relation between DTF and bivariate Granger causality. a path
diagram of three-dimensional process with θ2

12(λ) ≡ 0 and X2 bivari-
ately Granger-causes X1. b path diagram of three-dimensional process
with two latent variables Z1 and Z2 for which θ2

12(λ) �≡ 0 and X2 does
not bivariately Granger-cause X1
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and Z2 are two unobserved latent variables. The structure of
the system is depicted in Fig. 3b.

Straightforward, but lengthy algebraic manipulations show
that X = (X1, X2, X3) has a trivariate autoregressive repre-
sentation as in Eq.14 with coefficients

α = −γ1 γ2 β1 β2/τ,

β = β1 β2 (1 + γ 2
1 )/τ,

γ = γ1 γ2/σ
2
3 ,

where τ = 1 + β2
2 + γ 2

1 + γ 2
2 + β2

2 γ 2
1 , and variances σ 2

3 =
1 + β2

2 + γ 2
2 and σ 2

2 = 1 + γ 2
1 (1 + β2

2 )/σ 2
3 . Further calcu-

lations show that the system satisfies the constraint

α = −βγ σ 2
3 /(σ 2

2 + γ 2σ 2
3 )

for all values of the parameters β1, β2, γ1 and γ2.
In this example, conditioning on X3 in a multivariate anal-

ysis of the process X induces a type I spurious causality from
X2 to X1 regardless of whether DTF or multivariate Granger
causality is used for the analysis. The difference between
this and the previous example of type I spurious causality is
that according to the autoregressive representation of X the
third variable X3 seems to act as a confounder and not as a
mediating variable for X2 and X1. Both DTF and multivar-
iate Granger causality correct for any confounding by other
variables included in the analysis and, consequently, fail to
detect that there is no information flow from X2 to X3. In
contrast, a bivariate analysis of X1 and X2 shows that X2
does not bivariately Granger-cause X1 and thus provides a
correct description of the connectivity among the variables.

Summarizing the results of this section, we note that the
DTF and the concepts of bivariate and multivariate Granger
causality are different descriptions of the relationships among
multiple time series that concentrate on different aspects of
the relationships. In particular, the DTF measures the total
effect of one series on another, whereas multivariate Granger
causality is concerned only with the direct effect that one
series has on another series. In contrast, bivariate Granger
causality cannot distinguish between causal effects – direct
or indirect – and confounding due to other variables and thus
seems less suitable for the description of information flow
among multiple time series.

Some of the theoretical examples in this section involved
latent variables. In practice, the possible existence of latent
variables, which despite the best efforts of experimentalists
to include all important variables cannot be ruled out com-
pletely, poses a serious problem for the identification of the
connectivity and the information flow in multivariate sys-
tems. Obviously, if we rely on a single measure of informa-
tion flow, we have no basis to decide whether the obtained
results are correct or not. However, the examples have shown
that the combined use of the three discussed measures of
information flow may provide additional information that in-
deed allows identifying spurious causalities induced by latent
variables; for example, we have seen that bivariate Granger
causality can be used to detect spurious causality of type
I. For such a combined analysis, it becomes important to

understand the properties of the different measures and the
conditions under which they succeed or fail. We note that
Eichler (2005) more generally suggested to consider also
Granger causality with respect to arbitrary subprocesses in
order to identify the causal structure of systems with latent
variables.

4 Statistical properties of the DTF

In practice, the identification of directed relationships is based
on estimates of the DTF. These can be simply obtained by
substituting estimates for the autoregressive coefficients into
the definition of the DTF. However, the statistical properties
of these estimators have not yet been investigated although
there exists a simulation-based approach for the statistical
assessment of significance (Kamiński et al., 2001). In the
following, we establish a simple pointwise significance level
for testing whether for given indices i and j and frequency
λ the DTF γi j (λ) differs significantly from zero.

For the derivation, we assume that the spectral density
matrix f(λ) of X satisfies the boundedness condition (4).
Under this assumption, the function B̂(λ) = (I − Â(λ))−1

has a Taylor expansion in a neighbourhood of A(λ) given by

B̂(λ) = B(λ) −B(λ)
(
Â(λ) − A(λ)

)
B(λ) + r(λ), (20)

where the remainder term r(λ) tends to zero in probability
with a rate faster than T −1/2 and thus is negligible compared
with the first two terms. The estimate Â(λ) depends on the
parameter estimates âkl(u), which are, for large T , approx-
imately normally distributed with mean akl(u) and covari-
ances satisfying

lim
T →∞ T cov

(
âkl(u), âmn(v)

) = Hln(u, v) �km,

where Hln(u, v) are entries of the inverse H = R−1 of the
covariance matrix R of the process (Lütkepohl, 1993). The
covariance matrix R is composed of d × d submatrices

R(u, v) =





R11(u, v) · · · R1d(u, v)
...

. . .
...

Rd1(u, v) · · · Rdd(u, v)






with entries Rln(u, v) = cov
(
Xl(t − u), Xn(t − v)

)
for

l, n = 1, . . . , d and u, v = 1, . . . , p; the matrix H is par-
titioned similarly. Based on the asymptotic distribution of
the autoregressive estimates âi j (u), we show in the appendix
that for large sample sizes T under the null hypothesis of
|Bi j (λ)|2 = 0 the distribution of

T

Cλ

∣
∣B̂i j (λ)

∣
∣2 (21)

with

Cλ =
p∑

u,v=1

[(
B(λ)′H(u, v)B(λ)

)
j j

(
B(λ)�B(λ)∗

)
i i

×(
cos(uλ) cos(vλ) + sin(uλ) sin(vλ)

)]
(22)
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can be approximated by that of a weighted average of two
independent χ2 distributed random variables with one de-
gree of freedom. Thus the critical value of the distribution is
bounded by the critical value of a χ2 distribution with one
degree of freedom. This leads to a significance level for the
non-normalized DTF θ2

i j (λ).
Next, we consider the complex-valued function

γ̂i j (λ) = B̂i j (λ)
√∑

k

∣
∣B̂ik(λ)

∣
∣2

,

from which we obtain the estimate γ̂ 2
i j (λ) for the normalized

by taking the squared absolute value. This function is non-
linear in the parameter estimates âkl(u). Taylor expansion of
γ̂i j (λ) about akl(u) yields

γ̂i j (λ) = B̂i j (λ)
√∑

k

∣
∣Bik

∣
∣2

+ Bi j (λ)r1(λ) + r2(λ) (23)

with |r1(λ)| ≤ C‖â − a‖ and |r2(λ)| ≤ C‖â − a‖2. Here,
a = (

a(1), . . . , a(p)
)

and â denotes the corresponding esti-
mate. Under the hypothesis of |Bi j (λ)|2 = 0, the second term
Bi j (λ)R1 vanishes and we have

γ̂ 2
i j (λ) = |B̂i j (λ)|2

∑
k

∣∣Bik(λ)
∣∣2 + r(λ),

where the remainder r(λ) is of order ‖â − a‖3 and is thus
negligible compared with the first term. Therefore the α-sig-
nificance level for the normalized DTF γ 2

i j (λ) can be approx-
imated by

Ĉλ χ2
1,1−α

T
∑

k

∣
∣B̂ik(λ)|2 , (24)

where χ2
1,1−α is the 1−α quantile of the χ2 distribution with

one degree of freedom and Ĉλ is an estimate of the constant
in Eq. 22 obtained by substituting estimates (R̂−1)(u, v), �̂

and B̂(λ) for H(u, v), � and B(λ), respectively.
The significance level in Eq. 24 for the normalized DTF

γ 2
i j (λ) depends on the frequency λ through the constant Cλ

and the normalizing factor
∑

k |Bik(λ)|2. The latter compen-
sates for the effects of normalization, that is, significance
depends not on the relative but on the absolute strength—as
measured by the non-normalized DTF—of the information
flow at a particular frequency. The effects of the dependence
on Cλ are far more difficult to predict. Unlike in the case
of the PDC (Schelter et al. 2005), the factor Cλ depends
not only on the variances R and �, but also on the transfer
function B(λ) and, thus, on the DTF itself. We will exam-
ine this dependence briefly in the next section by simulation
studies. We note that the asymptotic distribution of the non-
normalized DTF under the null hypothesis also depends on
the frequency, which underlines the importance of non-con-
stant significance levels that adapt to the local variation in
distribution of the estimates.

One drawback of the proposed significance level is that it
is only a pointwise level, which on average is exceeded for a

small number of frequencies even under the null hypothesis
of no information flow. However, the estimates γ̂ 2

i j (λ) (and

θ̂2
i j (λ)) of the DTF at different frequencies λ are highly corre-

lated since the DTF is a smooth function of the autoregressive
coefficients ai j (1), . . . , ai j (p), which are themselves corre-
lated. Therefore, it seems hardly possible to derive a uniform
non-constant significance level for the DTF. We note that for
similar reasons it if rather common in other applications to
use pointwise levels.

5 Applications

The usefulness of the DTF as a measure of information flow in
multivariate systems has been demonstrated in many articles
(e.g., Kamiński and Blinowska 1991; Kamiński et al. 2001;
Blinowska et al. 2004). In this section, we will, therefore,
examine only the effectiveness of the pointwise significance
level that has been derived in the previous section.

5.1 Simulated examples

In the first simulation study, we consider a simple system of
three processes given by the VAR process

X (t) = a(1) X (t − 1) + a(2) X (t − 2) + e(t)

with coefficient matrices

a(1) =







4
15

2
5 0

2
5

5
28 0

0 2
5

5
28





 and a(2) =







− 1
4 − 1

5 0
1
5 − 1

9 0

0 1
5 − 1

9





 (25)

and covariance matrix � = I. In this system, the first two
components exhibit a reciprocal interaction while the third
component is influenced unidirectionally by the second pro-
cess. The coupling scheme for this system is depicted in
Fig. 4.

To study the properties of the significance test, we gen-
erated samples of length T = 1,000 and fitted an auto-
regressive model of order p = 4 to the simulated data.
Figure 5 shows estimates of the spectral densities and the
non-normalized DTF for one of these samples. As expected,
the DTF indicates substantial information flow for the three
direct links 3 → 2, 2 → 1 and 1 → 2 in the system. Addi-
tionally, it shows a smaller information flow from X3 to X1,
which corresponds to the indirect link 3 → 2 → 1. On
the other hand, the DTFs θ2

21(λ) and θ2
31(λ) stay below the

pointwise significance level and thus indicate that there is no

Fig. 4 Path diagram and coefficients for the three-dimensional
autoregressive process in the first simulation example
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Fig. 5 Results for a three-dimensional linear system with the coupling scheme given by Fig. 4: estimated spectral densities (on diagonal) and
non-normalized DTF (off-diagonals). The dashed lines signify pointwise 95% test bounds for the hypothesis that the DTF is zero

significant information flow from X1 to X2 and from X1 to
X3, respectively. We note that the analysis of the normalized
DTF γ 2

i j (λ) leads to very similar results (not shown).
Figure 6 shows the pointwise rejection rates out of 10,000

samples. The first two plots give the rejection rates for the
DTF from X3 to X2 and the DTF from X3 to X1, which are
both uniformly zero. In each case, the null hypothesis of no
information flow is rejected in 2–5% of all samples, that is, the
actual size of the proposed pointwise significance test turns
out to be smaller than the nominal size of 5%. The reason
for this conservative behaviour of the test is that we used
the 95 % quantile of the χ2 distribution with one degree of
freedom as an upper bound in our construction of the signifi-
cance level in Eq. 24. The remaining four plots demonstrate
the ability of the significance test to detect the alternative, that
is, the presence of information flow. Only for frequencies for
which the value of the DTF is close to zero, the rejection rate
falls below 90%. We note that there is no clear relationship
between the value of the DTF and the rejection rate, which
is again due to fact that the significance level is not constant
and, in particular, depends on the transfer function B(λ).

To illustrate the dependence of the significance level on
the transfer function B(λ), we performed a second simulation
study based on the bivariate autoregressive process given by

X1(t) = 7

8
X1(t − 1) − 4

5
X1(t − 2)

+4

5
X1(t − 3) − 1

2
X1(t − 4) + e1(t),

X2(t) = 1

20
X1(t − 1) + 1

20
X1(t − 2) + e2(t),

(26)

with � = I. The estimates of the power spectra and the non-
normalized as well as the normalized DTF obtained from
simulated data (T = 1,000) for this process are presented in
Fig. 7. First, we note that the spectral density of the first com-
ponent (Fig. 7a) exhibits a strong peak at frequency λ = 0.4
and a smaller peak at λ = 1.8. Next, we find also a strong
peak at frequency λ = 0.4 in the plots of the non-normal-
ized DTFs θ2

21(λ) and θ2
12(λ) (Fig. 7b). The peaks in both

plots are of about equal height, but while the DTF from X1
to X2 clearly exceeds the significance level for frequencies
less than λ = π/2, the DTF from X2 to X1 is enveloped by
the pointwise significance level and, thus, indicates correctly
that there is no significant information flow between the two
processes in that direction. We note that the curve of the sig-
nificance level for θ2

21(λ) resembles the power spectrum of
the first component, which shows that it depends strongly on
B̂11(λ).

Finally, comparing the non-normalized and the normal-
ized DTF (Fig. 7c), we find that after normalization the peak
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Fig. 6 Efficiency of the DTF-based pointwise significance test: rejection rates out of 10,000 replications for the linear system with coupling
scheme given by Fig. 4

in the DTF from X2 to X1 has vanished and the corresponding
significance level is now almost constant. In contrast, the nor-
malized DTF from X1 to X2 does not seem much affected by
the normalization, and the significance level still varies over
frequency.

Kamiński et al. (2001) and Kamiński (2005) have advo-
cated the use of the non-normalized DTF in cases where the
information flow for different target processes or between
different experiments are compared. The last example has
shown that the variation of the non-normalized DTF can vary
greatly over frequency in particular if the signals have strong
oscillating components. It, thus, demonstrates the importance
of a non-constant significance level that can adapt to such
changes in the variation of the estimates over frequency.

5.2 Application to neuronal spike trains

In this example, we analyse neuronal spike train data recorded
from the lumbar spinal dorsal horn of a pentobarbital-
anaesthetized rat during noxious stimulation. The firing times
of ten neurons were recorded simultaneously by a single elec-
trode with an observation time of 100 s. The data have been
described in detail in Sandkühler and Eblen-Zajjur (1994);
the connectivity among the recorded neurons has been anal-
ysed previously by partial correlation analysis (Eichler et al.
2003) and partial directed correlations (Dahlhaus and Eichler
2002).

For the present analysis, the spike trains were converted
to binary time series of length T = 19,999 and a VAR
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Fig. 7 Results for the bivariate autoregressive process in Eq. 26: estimates of a spectral densities, b non-normalized DTF and c normalized DTF.
The dashed lines signify pointwise 95% test bounds for the hypothesis that the DTF is zero

model of order p = 100 was fitted to the resulting series.
Figure 8 displays on the diagonal the estimated spectra for
five neuronal spike trains. The strong peaks in the spectra
for neurons 1 and 2 indicate that these neurons show rhyth-
mic discharges at 5 Hz; similarly, neuron 5 fires rhythmically
at 7.5 Hz.

In order to identify the information flow between these
five neurons, we have estimated the non-normalized DTF
(Fig. 8, off-diagonals). Due to the strong peaks in the spectra
of the spike trains, the significance level for the DTF exhibits
also strong peaks at the major frequencies of the involved
spike trains. As a result, some of the clearly visible peaks in
the DTF, most notably in that from neuron 2 to neuron 1 or
that from neuron 4 to neuron 5, are marked as non-significant.

Summarizing we find information flow from neuron i to neu-
ron j whenever i < j except for neurons 4 and 5, which is in
correspondence with the results of Eichler et al. (2003) and
Dahlhaus and Eichler (2002).

For comparison, we have also computed the normalized
DTF, which is depicted in Fig. 9. Here, the pointwise signifi-
cance level for the DTF exhibits in general less peaks than
in the case of the non-normalized DTF, but the DTF from
neuron 3 to neuron 2 or those from neuron 5 to neurons 4
and 1 still show small peaks that are enveloped by the signifi-
cance level and, thus, judged non-significant. We conclude
that consideration of the normalized version of the DTF does
not protect against the occurrence of non-significant peaks in
the DTF.
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Fig. 8 Results for neuronal spike train data: estimates of log-spectral densities (on diagonal) and non-normalized DTF (off-diagonals). The dotted
lines signify pointwise 95% test bounds for the hypothesis that the DTF is zero

6 Conclusion

In this paper, we have discussed the theoretical interpretation
of the DTF as a measure of information flow in multivariate
systems. We have shown that the DTF measures the response
of one target component to sinusoidal inputs in another com-
ponent and, thus, is closely related to the impulse response
function in the time domain. Furthermore, we have shown
by a number of examples that the DTF does not provide
necessary or sufficient conditions for either bivariate or mul-
tivariate Granger causality. This means that the DTF cannot
be used as a measure for either concept of Granger causality.
The DTF and bivariate as well as multivariate Granger cau-
sality focus on different aspects of the connectivity structure
and, therefore, should be seen as complementary tools for the
description of the relationships among multiple time series.
The DTF method seems to be most suitable as a spectral mea-
sure of the total causal influence that one component exerts
over another component.

While the usefulness of the DTF as a measure of informa-
tion flow in multivariate systems has been demonstrated in
many studies, the statistical properties have not yet been dis-
cussed thoroughly. In this paper, we have derived the asymp-
totic distribution of the DTF under the null hypothesis of no

information flow and have proposed a pointwise significance
level that forms an upper bound for the true unknown critical
value of the asymptotic distribution.

The significance level is a pointwise level that adapts
to local variations in the distribution of the DTF. Simula-
tions have shown that the variation especially of the non-
normalized DTF may increase greatly at frequencies where
peaks are present in the corresponding power spectra. In such
cases, the non-constant significance level adjusts appropri-
ately and, thus, prevents false detection of information flow
due to spurious peaks in the DTF. Furthermore, the proposed
significance level is easy to implement and fast to compute.
Thus, it enables a widespread use in the statistical evaluation
of estimates of the DTF in applications in neuroscience and
other fields.

7 Appendix

In this appendix, we establish the asymptotic distribution of
the estimator for the non-normalized DTF θ2

i j (λ) = |Bi j (λ)|2.
For the technical derivation, we need some notation from
matrix theory: vec(A) stands for the vector resulting from
stacking the columns of the matrix A on top of each other
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Fig. 9 Results for neuronal spike train data: estimates of log-spectral densities (on diagonal) and normalized DTF (off-diagonals). The dotted
lines signify pointwise 95% test bounds for the hypothesis that the DTF is zero

and A ⊗ B denotes the Kronecker product of two matrices A
and B. For details we refer to Harville (1997).

Let â(u), u = 1, . . . , p be some commonly used estima-
tor for the autoregressive coefficients such as the least squares
or Yule-Walker estimator. Then it is well known (e.g., Lütke-
pohl 1993) that, for u = 1, . . . , p, the vectors vec

(
â(u)

)

are jointly asymptotically normally distributed with means
vec

(
a(u)

)
and covariances satisfying

lim
T →∞ T cov

[
vec

(
â(u)

)
, vec

(
â(v)

)] = H(u, v) ⊗ �.

The estimation of the DTF is based on the Fourier trans-
form Â(λ) = ∑p

u=1 â(u) e−iλu . Since it is complex valued,
we consider its real and imaginary part separately. Then the
above limiting distribution for the parameter estimates im-
plies that

X (λ) = √
T

(
vec

(
Re[Â(λ) − A(λ)])

vec
(

Im[Â(λ) − A(λ)])
)

is asymptotically normally distributed with mean zero and
covariance matrix

Ṽ(λ) =
p∑

u,v=1

[ (
cos(uλ) cos(vλ) cos(uλ) sin(vλ)
sin(uλ) cos(vλ) sin(uλ) sin(vλ)

)

⊗H(u, v) ⊗ �

]
.

We note that for p ≥ 2 and λ �= 0 mod π the matrix Ṽ(λ)
has full rank and hence is positive definite.

Next, we consider the entry B̂i j (λ) of the inverse matrix
B̂(λ) = (

I − Â(λ)
)−1. From the Taylor expansion in (20),

we obtain that under the null hypothesis of Bi j (λ) = 0 the
entry B̂i j (λ) can be approximated by

B̂i j (λ) = β(λ)′ vec
(
Â(λ) − A(λ)

) + r(λ),

where β(λ) is the vector with elements Bik(λ)Bl j (λ) for
k, l = 1, . . . , d and r(λ) is a remainder term that converges
to zero in probability with a rate faster than T −1/2 and hence
is negligible compared with the main term. Treating real and
imaginary parts separately, we find that

Y (λ) =
(√

T Re B̂i j (λ)√
T Im B̂i j (λ)

)
(27)

has the same limiting distribution as �(λ) X (λ), where

�(λ) =
(

Re β(λ)′ − Im β(λ)′
Im β(λ)′ Re β(λ)′

)
,

and thus is asymptotically normally distributed with mean
zero and covariance matrix

V(λ) = �(λ) Ṽ(λ)�(λ)′



Evaluation of information flow by the DTF 481

with Ṽ(λ) defined as above. For p ≥ 2 and λ �= 0 mod π
the matrix V(λ) is positive definite and thus can be factorized
as V(λ) = Q(λ)D(λ)Q(λ)′, where Q(λ) is some orthogonal
matrix and D(λ) is the diagonal matrix of the eigenvalues of
V(λ). It follows that

T |B̂i j (λ)|2 = Y (λ)′Y (λ) ≈ Z ′ D(λ) Z

= D11(λ) Z2
1 + D22(λ) Z2

2

for some standard normally distributed Z = (Z1, Z2)
′. Sim-

ple calculations show that the eigenvalues of V(λ) satisfy

Di i (λ)

Cλ

= 1

2
±

√
1

4
− det V(λ)

C2
λ

> 0,

where Cλ = V11(λ)+V22(λ) is the constant in Eq. 22. It fol-
lows that for large sample sizes T |B̂i j (λ)|2/Cλ has approx-
imately the same distribution as the weighted average of two
independent χ2 distributed random variables with one degree
of freedom.

Now suppose that λ = 0 mod π . Then B(λ) and A(λ)
both are real-valued. Similar arguments as above show that,
again under the null hypothesis of Bi j (λ) = 0,

√
T B̂i j (λ)

is asymptotically normally distributed with mean zero and
variance

β(λ)′ Ṽ(λ) β(λ) = Cλ,

where

Ṽ(λ) =
p∑

u,v=1
H(u, v) ⊗ �

is the asymptotic variance of vec
(
Â(λ)

)
. Consequently, the

ratio T |B̂i j (λ)|2/Cλ is asymptotically χ2-distributed with
one degree of freedom.

Finally, we consider the case p = 1, that is, Â(λ) =
â(1) e−iλ. It follows that Y (λ) in (27) is of the form

Y (λ) = √
T �̃(λ) vec

(
â(1) − a(1)

)
,

where

�̃(λ) =
(

Re β(λ)′ cos(λ) − Im β(λ)′ sin(λ)
Im β(λ)′ cos(λ) + Re β(λ)′ sin(λ)

)
,

and hence has asymptotic variance

V(λ) = �̃(λ)
[
H(1, 1) ⊗ �

]
�̃(λ)′.

We note that �̃(λ) = 0 if and only if β(λ)′ eiλ = 0, which
contradicts the invertibility of the matrix B(λ) ⊗ B(λ)′, of
which β(λ) is a column vector. Thus �̃(λ) has at least rank
1. Since H(1, 1) ⊗ � is positive definite, it follows that the
2 × 2 matrix V(λ) is non-negative definite with at least rank
1. Using again the factorization V(λ) = Q(λ)D(λ)Q(λ)′, we
find that T |B̂i j (λ)|2/Cλ asymptotically has the same distri-
bution as the weighted average of two independent χ2 dis-
tributed random variables with one degree of freedom. In
particular, the asymptotic distribution becomes a χ2-distri-
bution with one degree of freedom if V(λ) has rank 1 and,
hence, one eigenvalue of V(λ) is zero.
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