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EVALUATING DOWNSIDE RISKS IN RELIABLE NETWORKS

Megha Sharmal
Diptesh Ghosh?

Abstract

Reliable networks are those in which network elements have a positive probability of failing.
Conventional performance measures for such networks concern themselves either with expected
network performance or with the performance of the network when it is performing well. In
reliable networks modeling critical functions, decision makers are often more concerned with
network performance when the network is not performing well. In this paper, we study the
single-source single-destination maximum flow problem through reliable networks and propose
two risk measures to evaluate such downside performance. We propose an algorithm called
COMPUTE-RISK to compute downside risk measures, and report our computational experi-
ence with the proposed algorithm.

Keywords: Network Flows; Reliable Networks; Maximum Flows.

1 Introduction

A network is a combinatorial structure in which one is given a finite node set V.= {1,2,...,n} and a
finite arc set A C V x V connecting nodes in V' to other nodes in V. Arcs in a network conventionally
have two properties; a strictly positive capacity value denoting the maximum amount of flow that
can be sent along the arc, and a cost value denoting the cost of sending a unit of flow through the
arc. A node s € V is designated as a source node and another node ¢t € V' is designated as a terminal
node. Network flow problems are concerned with sending flow from the source node to the terminal
node. These flows are called s-t flows. A common network flow problem is the maximum s-t flow
problem, in which, given a network one needs to determine the maximum amount of s-¢ flow that
can be sent through the network. Ahuja et al. [1] provides a comprehensive treatment on networks
and network flow problems including the maximum flow problem.

While modeling practical networks, one needs to account for the fact that network components
can become non-functional from time to time. This is done by associating a reliability value to each
arc. The reliability value denotes the probability that the arc would be functional at a given point
in time. Networks which incorporate reliability values for their arcs are called reliable networks. In
this paper we will assume that the arc reliabilities are independent of each other. A reliable network
exists in one of 214! network states, where in each state, only a subset of the arcs in A are functional.
The probability of the network being in a particular state is a function of the reliability values of the
arcs and the set of functional arcs in the state. The maximum s-t flow, differs from state to state,
and hence is a random variable in reliable networks.

There is considerable literature on the evaluation of maximum s-¢ flows in reliable networks. The
most popular measure used is the expected maximum s-t flow through the network (see, e.g., Ball
et al. [2]). Another popular measure is obtained by defining a threshold value of flow, and finding
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the probability that the network will allow at least that much s-t flow (see, e.g., Lee [3], Aggarwal
et al. [4]). Both these measures have a limitation when evaluating the performance of networks that
model critical processes. In such networks, one important aspect of network performance is its flow
carrying capacity of the network when it is in a downside state, i.e., one in which many of the arcs
are not functioning, and the network is not capable of carrying much flow. Neither of the measures
mentioned above explicitly quantify the behavior of networks in their downside states. The only
measure in the literature that deals with downside states is the 2-terminal connectivity measure,
a connectivity measure which evaluates the probability that s is connected to ¢ through a directed
path in the network (see, e.g., Aggarwal et al. [5], Yarlagadda and Hershey [6]).

Alternate and equally meaningful measures for evaluating the performance of reliable networks
modeling critical applications would be ones that evaluate the performance of the network in its
downside states. We propose a downside risk (DsR) measure, in which one is given a value p,
0 < p < 1, and the measure is the maximum value of s-t flow attainable in the worst 100p% of
the network states. We also propose a conditional downside risk (CDsR) measure, in which one is
given a value p, 0 < p < 1, and the measure is the expected value of the maximum s-¢ flow in the
worst 100p% of the network states. These measures are motivated by the value at risk (VaR) and
conditional value at risk (CVaR) measures common in the financial literature (see, e.g., Jorion [7]).

Computing 100p% DsR and 100p% CDsR values of reliable networks requires the computation
of the probability mass function of the maximum s-t flow in the network for the bottom 100p%
of the network states. Existing algorithms generate the complete probability mass function either
by pre-generating all possible minimal cuts in the network (see, e.g., Patra and Misra [§]) or by
pre-generating all possible s-t paths in the network (see, e.g. Patra and Misra [8]), or by complete
enumeration of the network state space (see, e.g., Alexopoulos [9]). Since both the number of
minimal cuts and the number of possible s-t paths can grow exponentially with the number of arcs
in a network (see Ball et al. [2]), these methods are not practical for network with more than a few
arcs. In existing algorithms not much time saved in requiring the algorithm to compute a part of
the probability mass function rather than the whole function. In addition, all papers that propose
algorithms based on pre-generating all s-t paths assume acyclic networks.

In Section 2 of this paper, we propose the COMPUTE-RISK algorithm which, given a value of p,
0 < p <1, computes the probability mass function of the maximum s-t flow in the bottom 100p% of
the network states. It is based on state-space enumeration, but incorporates two enhancements. If p
is set to 1, the algorithm computes the complete probability mass function of the maximum s-t flow.
The time taken by this algorithm increases significantly with increasing values of p. In Section 3 we
present the results of computational experiments with the COMPUTE-RISK algorithm. Section 4
summarizes the main contributions of the paper and presents directions for future research.

2 COMPUTE-RISK, an algorithm for evaluating risk mea-
sures

The COMPUTE-RISK algorithm to compute 100p% DsR and 100p% CDsR is a state-space enu-
meration algorithm. Given a reliable network, it first identifies the network states that can carry a
maximum s-t flow of zero units. It computes the probability that the network will be in one of these
states. If the probability exceeds 100p%, then it terminates and outputs the value of 100p% DsR
and 100p% CDsR as zero. Otherwise, it iterates until the probability that the network will be in
one of the states identified by it is at least 100p%. In each iteration, it finds the minimum value of
maximum s-t flow among the as yet unidentified states, and identifies all states that have this value
for maximum s-t flow. Since in the process, it generates the probability mass function of the states
that it identifies, we can calculate 100p% DsR and 100p% CDsR values.
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We start the discussion of our algorithm by proposing an algorithm that finds the probability
that a reliable network N = (V, A, s,t) assumes a state in which the maximum s-t flow is zero. To
do this, we first introduce some terminology to describe the algorithm that we propose.

A reliable network is said to exist in one of many states. A network state of the reliable network
N is formally defined as a representation of its functional part at any point in time. It is represented
by a network Ng = (V, Ag, s,t) where Ag C A is the set of arcs which are functional in the network
state. The probability of observing IV in state Ng is given by

I I a-»,

a;€As  a;€A\Ag
where p;. is the reliability of arc ay for each ap € A.

A Hasse diagram for the network N is a directed graph with 2/4 nodes, where a node represents
a state of the network, and an arc connects the node representing state Ng, = (V, Ag,, s,t) to the
node representing Ng, = (V, Ag,, s,t) if and only if Ag, is obtained by adding one arc to Ag, .

A cut in the network N = (V, A, s,t) is defined as a minimal set of arcs Ac C A such that there
does not exist a path from s to ¢ in the network (V, A\ A, s,t). A set of cuts is a set whose elements
are cuts. An arc-disjoint set of cuts is a set of cuts in which no two member cuts include the same
arc.

Example 1 Figure 1 shows a network with five arcs and its Hasse diagram. The node in the Hasse
diagram corresponding to a state Ng = (V, Ag, s, t) is labeled by the arc set Ag. Arcs a and b together
form a cut of the network, as do arcs a and e together, and d and e together. Sets {{a,b},{d,e}}
and {{a,e}} are both arc disjoint sets of cuts for the network while the set {{a, b}, {a, e}} is not.

The following propositions concerning network states of reliable networks are immediate.

Propositon 1 Consider a sequence of states N1, No, ..., Nk, in which for any pair of states N; =
(V,A;,8,t) and N; = (V, Aj,s,t), i< j<= A; CA;. Then if i < j, the mazimum s-t flow in state
N; cannot exceed the mazimum s-t flow in state N;.

Proof: The proof is trivial by contradiction. [ |

Propositon 2 Consider a reliable network and a Hasse diagram of the network. Let T be the set
of modes in the Hasse diagram representing network states which cannot transmit flow from s to t.
Then there exists a tree in the Hasse diagram whose node set is T'.

Proof: This is a direct consequence of Proposition 1. [ |

Based on Proposition 2, it is easy construct an explicit enumeration algorithm to obtain the
probability that the network exists in a state which does not allow a positive maximum s-t flow. A
naive implementation of this algorithm is computationally expensive, since a large number of network
states represented in the Hasse diagram will need to be evaluated to determine the maximum s-¢
flow in them. We describe two modifications to the naive implementation which, taken together,
speed up the enumeration and associated probability computations.
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(b) The Hasse diagram of the network above

Figure 1: A network and its Hasse diagram

Using cuts to reduce computation

Consider a cut Ac = {ap),afz),-..,ap} in a reliable network. Any network state that does not
include a single arc from A¢ clearly does not carry any s-t flow. Regardless of the number of such
states, the aggregate probability of the network being in any one of those states can be computed as

H (1 - P[i])-

1<i<k

If C is a maximal arc-disjoint set of cuts in the network, then the aggregate probability of the network
being in a state that does not contain any arc included in at least one member of C can be easily
computed using the inclusion-exclusion principle (see, e.g. Pitman [10]). This observation allows us
to significantly reduce the time required to compute the aggregate probability of states represented
in a Hasse diagram which do not carry a non-zero s-t flow.

Example 2 Consider the network shown in Figure 1(a). A maximal arc-disjoint set of cuts for this
network is C = {{a,b},{d, e}}. The states in the Hasse diagram shown in Figure 1(b) which do not
carry any s-t flow are those represented by the gray colored nodes in Figure 2(a). The states that
do not contain a single arc in C are represented by the nodes colored black in Figure 2(b). From the
preceding discussion, we know that these states can be identified without solving maximum s-t flow
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(a) The network states corresponding to the nodes colored gray have zero s-t flow
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(b) Using cuts {{a,b},{d,e}} we know that the network states corresponding to the nodes colored black have zero s-t

flow

Figure 2: Use of cuts to speed computations

problems in them. The probability of the network being in one of these states can also be computed

using the inclusion-exclusion principle.

Note that the number of cuts in a maximal arc-disjoint set of cuts is bounded above by the
number of arcs in the network. Hence speed ups using maximal arc-disjoint set of cuts are practical
for reasonably sized networks. Note also that small cardinality cuts are better than large cardinality
cuts in speeding up the probability calculations. The MAX-CUTSET algorithm (Algorithm 1) is a
greedy algorithm to generate a maximal arc-disjoint set of cuts.
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Algorithm 1 MAX-CUTSET: A greedy algorithm to generate a maximal arc-disjoint set of cuts
in a network

Input: Network N = {V, A, s,t}.

Output: Maximal arc-disjoint set of cuts C.

Steps:

Step 1: Set C « (). Set all arc capacities to 1 unit. Compute the minimum cut A¢ in N. Let ¢ «
capacity of the cut Ac. If ¢ = 0, output @) and exit. Else go to Step 2.

Step 2: If ¢ > M, output C and terminate. Else set C <+ A¢ go to Step 3.

Step 3: In the network N, replace the capacity of each arc in A¢ with M. Compute the minimum
cut Ac in N. Let ¢ « capacity of the cut Ac. Go to Step 2.

Algorithm 2 WARMSTART: An algorithm to warmstart the calculation of maximum s-¢ flow

Input: Network states N; = {V, A;,s,t} and N; = {V, A, s,t}, such that A; C A;, and A; \ A; =
A; maximum s-t flow f in N;, and residual network N/ = (V, A7, s,t) after calculating the
maximum s-t flow in IV;.

Output: Maximum s-¢ flow in Nj.

Steps:

Step 1: Set max flow « f; and set N” = (V, AT U A, s,t). Go to Step 2.

Step 2: If there is no augmenting path inNV,., output mazx flow and terminate. Else go to Step 3.

Step 3: Find an augmenting path in N,., and set f, «+ maximum amount of flow that can be routed
from s to ¢ through this path. Set max flow «— mazflow + f,. Update N, after routing
this flow from s to t. Go to Step 2.

Warmstarting computations for network states

Consider two network states N; = (V, A;,s,t) and N; = (V, A;,s,t) of a reliable network N =
(V, A, s,t) such that A; = A; U A, A C A. Then the residual network obtained after computing the
maximum s-t flow in state N; can be used to compute the maximum s-t flow in state N; efficiently.
We call this process warmstarting and say that the calculation of maximum s-t flow in N; has been
warmstarted from N;. The WARMSTART algorithm (Algorithm 2) is a procedure for warmstarting
the calculation of maximum s-t flow in state IV; from N;. Such warmstarting is particularly effective
when one needs to compute the maximum s-t flow in a large number of states of a reliable network
whose arc sets have a large pair-wise intersection (see Sharma and Ghosh [11]).

Given the MAX-CUTSET and WARMSTART algorithms we construct the ZERO-FLOW algo-
rithm (Algorithm 3) to compute the probability py that a reliable network N = (V, A, s,t) will be
in a state which does not allow a positive s-t flow. In Step 1 the algorithm uses MAX-CUTSET to
generate a maximal set of cuts C in the network. Using the inclusion-exclusion principle, it com-
putes the probability of states that do not have any of the member arcs of at least one cut in C. It
initializes pp with this value. In Step 2 of the algorithm, network states are enumerated as a tree
rooted at (V,{}, s,t). In this approach a child state is generated from a parent state by adding an
arc to the set of arcs in the parent state, and backtracking is achieved by removing that arc from the
child state. Apart from pg, Algorithm ZERO-FLOW also outputs a set of network states S which
contain the network state allowing the least positive maximum s-t flow, and the maximum s-t flow
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Algorithm 3 ZERO-FLOW: An algorithm to compute the probability that a reliable network
will not permit a non-zero s-t flow

Input: A reliable network N = {V, A, s,t}.

Output: Probability pg that N will be in a state that does not allow positive s-t flow; set S of
network states including one which has the minimum value of non-zero maximum s-t flow.
Steps:

Step 1: Set S « (. Set C + MAX-CUTSET(N). Use the inclusion-exclusion principle to find p,
the probability that the network will be in a state that does not include any arc in a cut in
C. Set pg < p. Go to Step 2.

Step 2: Generate an enumeration tree starting from the network state (V,{},s,t). For any state
Ng = (V, Ag, s,t) generated, fathom the state if
(a) there exists a cut in Ac € C such that the state does not contain any arc in A¢; or
(b) A non-zero flow is possible from s to t.
If Ng is fathomed due to rule (b), and if Ag is not a superset of the arc set of any other
state in S, then S «— S U{Ng}. If after modifying S in this manner, it is found that there

exists a state Ng € S whose arc set is a superset of any other state in .S, then S < S\ {Ng}
If Ng is not fathomed, then po < po + [[, c4, Pi HajeA\As(l —pj)-

Step 3: For each state Ng € .S, compute the maximum s-¢ flow allowed in Ng and associate it with
Ngin S.

Step 4: Output (po, S) and terminate.

that they allow. In order to keep the cardinality of S small, the set S does not include any state
whose arc set is a superset of that of any other state in .S.

The ZERO-FLOW algorithm can, with minor modifications be used to compute the aggregate
probability of states which allow the same maximum s-t¢ flow as a given state. We call this algorithm
SAME-FLOW and describe it in Algorithm 4.

We now describe the COMPUTE-RISK algorithm (Algorithm 5) which takes a reliable network
N = (V, A, s,t) and a value p, 0 < p < 1, as input, and outputs the 100p% DsR and the 100p%
CDsR for N. The algorithm maintains two lists, called distribution and frontier. distribution
stores the partial probability mass function of the maximum s-t flow through the network. frontier
stores a short-list of network states to be examined by the algorithm. The states in frontier are
all capable of transmitting at least the amount of s-t flow as is allowed by the state currently being
examined by the algorithm. No state in frontier has an arc set that is a superset of the arc set in any
other state in frontier. frontier also stores the maximum s-t flow possible in each of its member
states. The COMPUTE-RISK algorithm also maintains a number p. which stores the aggregate of
the probability of states already accounted for in distribution.

In Step 1 of the COMPUTE-RISK algorithm, distribution and frontier are both initialized to
empty sets, and p. is initialized to 0. In Step 2, the probability of the network being in states that
allow no positive s-t flow is computed using ZERO-FLOW, and distribution, frontier, and p. are
adequately updated. In Step 3, COMPUTE-RISK removes all network states from frontier for
which the value of the maximum s-t flow is the minimum among all states in frontier. It adds
these states to a separate set called S*. Let the maximum s-t flow in all the states of S* be fg,.
In Step 4 the algorithm aggregates the probabilities of all states in N whose arc sets are supersets
of at least one of the members of S*. Since there may be states whose arc sets are supersets of
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Algorithm 4 SAME-FLOW: An algorithm to compute the aggregate probability of network states
in a Hasse diagram that have the same maximum s-t flow as the state at the root of the diagram

Input: A reliable network N = {V, A, s, t}; a network state Ng,; and a Hasse diagram with a node
representing Ng, as root.

Output: Aggregate probability pgs, of states represented in the Hasse diagram that have the same
maximum s-t flow as Ng,; set .S of network states including one which has the minimum value
of maximum s-¢ flow among states that do not have the same maximum s-t flow as Ng,.

Steps:

Step 1: Set S « (). Let Ng, = (v, Ag, 58, t) be the residual network obtained after computing the
maximum s-t flow in Ng,. Replace each state (V, A;,s,t) represented in the Hasse diagram
with (V, A4; \ As, U AG, , s,t) Set C «+ MAX-CUTSET(Ng, ).

Step 2: Use the inclusion-exclusion principle to find p, the total probability of occurence of states
in the Hasse diagram that do not include any arc in a cut in C. Set pg, < p. Go to Step 2.

Step 3: Generate an enumeration tree starting from the network state Ng . For any state Ng =
(V, Ag, s,t) generated, fathom the state if
(a) there exists a cut in A¢ € C such that Ag does not contain any arc in A¢; or
(b) A non-zero flow is possible from s to ¢ through Ag.
If Ng is fathomed due to rule (b), and if Ag is not a superset of the arc set of any other

state in S, then S «— S U {Ng}. If after modifying S in this manner, it is found that there
exists a state N§ € S whose arc set is a superset of any other state in .S, then S «— S\ {Ng}

If Ng is not fathomed, then pg < po + HaieAs i HajeA\AS (1—pj).

Step 4: For each state Ng € S, warmstart the computation of the maximum s-t flow allowed in Ng
from Ng, and associate it with Ng in S.

Step 5: Output (ps,,S) and terminate.

those of more than one states in S*, care is exercised to prevent double counting. At the end of this
step, the algorithm has computed the probability py., that the network exists in a state that allows
a maximum s-t flow of fg,. It has also discovered states of the network that are not members of
frontier but which allow more s-t flow than fg,. It adds these states to frontier, and then removes
any state from frontier whose arc sets are supersets of arc sets of some other state in frontier.
The algorithm then adds the tuple (fs.,pys,) to distribution. If it finds that the total probability
accounted for in distribution is at least p, then it stops and outputs appropriately calculated 100p%
DsR and 100p% CDsR values for N in Step 6. Otherwise, it returns to Step 3 and generates a new
Ng, set.

We illustrate the working of the COMPUTE-RISK algorithm in Example 3 on the network shown
in Figure 1(a).

Example 3 Consider the network in Figure 1(a). Let the reliability of each arc in the network be
0.8. Suppose we want to find the 20% DsR and 20% CDsR for this network. We input the network
and a value of 0.2 to the COMPUTE-RISK algorithm. Step 1 of the algorithm initializes distribution
and frontier to empty lists and sets p. to 0. In Step 2 of the algorithm, it invokes ZERO-FLOW.
ZERO-FLOW returns pp = 0.109 after evaluating the states corresponding to the states colored
gray in Figure 2(a). It also returns the set S which consists of the states with arc sets {a,d}, {b,e},
{a,c,e}, and {b,d, e}. (States with arc sets {a,b,d}, {a,b, e}, {a,c,d}, {a,d, e}, {b,c,e}, {a,b,c,d},
{a,b,¢c,e}, {a,c,d, e}, and {b,c,d, e} are not in S since their arc sets are supersets of the arc sets of
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Algorithm 5 COMPUTE-RISK: An algorithm to compute the bottom 100p% of the distribution
of s-t flow

Input: A reliable network N = {V, A, s,t}; a number p, 0 < p < 1.

Output: The 100p% DsR and 100p% CDsR for N.

Steps:
Step 1: Set distribution < (), frontier «— @, and p. < 0. Go to Step 2.

Step 2: Set (pg,S) «— ZERO-FLOW(N); If py > p, output 100p% DsR = 100p% CDsR = 0 and
terminate. Else set distribution «— distribution U {(0,po)}, frontier — S, p. < po, and go
to Step 3.

Step 3: Choose the set S* of states for which the value of the maximum s-¢ flow is minimum among
states in frontier. Let fs. be the value of the maximum s-t flow in any N; € S*. Set
frontier — frontier \ S*. Go to Step 4.

Step 4: For each state IV; € S*, create a Hasse diagram Hy,. If there are states of N which are
present in more than one of the Hasse diagrams, then remove the nodes corresponding to
these states from all but one of the Hasse diagrams. For each state N; € S*, let (p;, S;) <
SAME—FLOW (N, N;, Hy,). Set distribution « distributionJ{(fs«, >, pi)}, frontier «
frontier U {U;S;}, and p. < pe. + >, pi. Remove all sets from frontier whose arc sets are
supersets of the arc sets of some other states in frontier. Go to Step 5.

Step 5: If p. < p go to Step 3. Else, replace the the tuple (fg.,>.;p;) in distribution with
(fsws2_;Pi — (pc —p)) and go to Step 6.

Step 6: Let (f*,-) = max{(f,-) : (f,-) € distribution}. Output f* as the 100p% DsR for the reliable
network N. Let p* = {p : (f*,p*) € distribution}. Replace (f*,p*) in distribution with

(f*,p—pc). Output
Z fi < pi/p

(fi,pi)Edistribution

as the 100p% CDsR for the reliable network N and terminate.

other states in S.) Since 0.109 < 0.2, the algorithm adds the tuple (0,0.109) to distribution, and
all the states in S are added to frontier. The minimum value of maximum s-t flow among states
in frontier is 3 units. COMPUTE-RISK chooses the two states {a,d} and {a,c,e} in frontier
which allow a maximum s-t flow of 3 units, removes them from frontier and adds them to S*. In
Step 4, the algorithm examines the maximum s-t flow in the states in S* and other sets whose arc
sets are supersets of the arc sets of some state in S*, while making sure that no state is evaluated
more than once. The union of the Hasse diagrams while examining all the states in S* is shown in
Figure 3(a) while the Hasse diagrams evaluated with base (V,{a,d}, s,t) and (V,{a,c,e},s,t) are
shown in Figures 3(b) and 3(c) respectively.

On examining these states, the COMPUTE-RISK algorithm observes that the probability of the
network allowing a maximum s-t flow of exactly 3 units is 0.225, and the new states that could be
added to frontier are those with arc sets {a,b,d, e} and {a,b, c,d, e}. However, since the arc set of
the state (V,{b,e},s,t) in frontier is a subset of the arc sets of both these states, these states do
not finally become members of frontier. So in Step 5, the algorithm adds the tuple (3,0.225) to
distribution. At this point, p. = 0.334, which is more than p = 0.2, and hence the algorithm moves
to Step 6. In Step 6, the COMPUTE-RISK algorithm outputs 3 units as the 20% DsR. It replaces
the tuple (3,0.225) in distribution by (3,0.2 —0.109), i.e., (3,0.091), and outputs the 20% CDsR as
(0 % 0.109 + 3 x 0.091)/0.2) = 1.365 units. |

]
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{a.d}

{a,d}

(b) Hasse diagram for (V, {a,d}, s, t)

{ab,c.e {a,c,d,e}

{a,c,e}

(c) Hasse diagram for (V,{a,c,e},s,t)

Figure 3: Hasse diagrams evaluated for states in S*

3 Computational experience

Papers in the literature that deal with performance measurement for reliable networks do not involve
extensive computational experiments. Hence we could not find benchmark instances on which to
evaluate the performance of the COMPUTE-RISK algorithm. We therefore generated three types
of random networks to test the performance of this algorithm.

The first type of networks is called completely random networks. In these networks, a unit square
is taken, and two nodes, designated as source and terminal nodes, are placed at the bottom left and
top right corner of the square respectively. A pre-determined number of nodes are then randomly
scattered on the square. Each node is connected to a random number of nodes among those which
are relatively close to it. In order to ensure that the source and the terminal nodes are connected,

S ——
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Figure 4: The probability mass function for the maximum s-t flow in a random layered network with
24 arcs

a path is artificially provided from the source to the terminal node, passing through some of the
other nodes. The second type of networks is called random layered networks. In these networks,
the nodes apart from the source and the terminal nodes are arranged in layers. The source node is
connected to all nodes in the first layer, and all nodes in the last layer are connected to the terminal
node. Each node in a layer except the last layer is connected to a random number of nodes in the
next layer. The third type of networks is called random grid networks. In these networks, the nodes
apart from the source and the terminal nodes are arranged in the form of a grid. The source node is
connected to all the nodes in the first column of the grid and all the nodes in the last column of the
grid are connected to the terminal node. Each node in the grid is connected to its adjacent nodes in
the same column and to the nodes adjacent to it in the next column. A more detailed description
of the method of constructing random layered and grid networks is available in Ahuja et al. [12].

Each arc in the networks thus formed is assigned an integer capacity randomly chosen from the
interval [500, 1000] if it is not connected to the source or the terminal node, and from the interval
[50000, 100000] if it connects either the source or the terminal node. The reliability of each arc
is chosen randomly from the interval [0.5,0.9]. An illustrative probability mass function for the
maximum s-¢ flow in these types of networks is given in Figure 4.

For our experiments we coded the COMPUTE-RISK algorithm in C, compiled it using the gcc
4.4 compiler and run it on a Intel Core 2 Quad Q8300 processor with 3GB DDR2 SDRAM running
Linux. The problem sizes considered for our experiments, measured in terms of the number of arcs
in the network, are given in Table 1. For each combination of network type and problem size, we
created 20 network instances. The results reported in this section are the averages of the results
from all 20 instances.

Table 1: Problem sizes considered in the computational experiments

Network type Average number of arcs

Completely random networks 21, 27, 33, 39, 52, 66, 77, 90, 104
Random layered networks 24, 30, 36, 48, 56, 68, 80, 92, 110
Random grid networks 24, 30, 36, 43, 54, 65, 76, 94, 110
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In our first experiment, we examined our claim that DsR and CDsR values are indeed useful
to decision makers while choosing among alternate reliable network configurations. We chose 20
instances each of completely random networks with 21 arcs, random layered networks with 24 arcs,
and random grid networks with 24 arcs, and evaluated 15% DsR, 15% CDsR, expected maximum
s-t flows, and the probability that the network allows a s-t flow which is more than 95% of the
maximum s-t flow it will allow when all arcs in the network are functional. We hypothesised that
the correlations between the downside risk measures and the other two measures are not very high; if
they are, then it implies that the existing measures measure downside risks anyway. Our results with
completely random network instances is shown in Table 2. From the table we see that the correlation
values are indeed not very high, suggesting that existing measures do not measure downside risks
effectively.

Table 2: Correlation between four different performance measures on completely random reliable
networks with 21 arcs

Expected Upside flow
15% DsR  15% CDsR  max-flow  probability

15% DsR 1.000

15% CDsR 0.379 1.000

Expected max-flow 0.591 0.427 1.000

Upside flow prob. 0.361 0.146 0.199 1.000

We next ranked the 20 instances separately on the four measures, assigning a rank of 1 to the
best instance according to that measure and a rank of 20 to the worst. We present the top three
ranked instances as per the different performance measures in Table 3.

Table 3: The top three ranks among the 20 completely random reliable networks with 21 arcs based
on four different performance measures

Expected Upside flow
Rank 15% DsR  15% CDsR  max-flow  probability

1 6 20 6 6
2 2 6 15 13
3 4 18 4 17

It is interesting to see that apart from Instance 6 which appears among the top three ranks on all
four measures, and Instance 4, which appears among the top three ranks in two of the measures, no
other instance occupies any of the top three ranks based on more than one parameter. This clearly
justifies the need for downside measures while evaluating reliable networks.

Our results for random layered networks and random grid networks are similar to the results
shown above. The only difference between those results and the ones for completely random networks
is that in both those types of networks, there was a very significant positive correlation between the
DsR and CDsR values. However, the correlation between the downside risk measures and the other
measures remains low, and sometimes becomes negative. We do not report those results here for
the sake of brevity.

In our second experiment we computed 100p% DsR values for smaller instances of the three
types of networks for p values of 0.05, 0.10, 0.15, and 0.20. In several of the instances evaluated,
the 100p% DsR values turn out to be 0, implying that in the bottom 100p% of the network states
in these networks, the source node s is not connected to the terminal node ¢. Table 4 presents the
number of instances out of the 20 generated, where this situation was observed.

]
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Table 4: Number of instances in which the source and terminal nodes are disconnected in downside
states

Number Instances in which 100p% DsR = 0

Network type ofarcs p=005 p=0.10 p=0.15 p=0.20
Completely random 21 17 9 5 5
networks 27 17 12 8 5
Random layered 24 20 20 16 6
networks 30 20 20 16 9
Random grid 24 20 19 16 13
networks 30 20 20 16 12
25
20
§ 15
% 10 —
=
5
0 T T T T T
0.00 0.20 0.40 0.60 0.80 1.00
Value of p

Figure 5: The variation of time required to compute 100p% DsR and 100p% CDsR with p in a
random layered network with 24 arcs

From Table 4 we see that the chances of the source and terminal nodes in random layered and
random grid instances being disconnected is higher than for completely random instances. This
leads us to conclude that in critical networks where downside risks are important, it is better not to
choose layered or grid configurations if possible.

In our last experiment we computed the maximum value of p for which the COMPUTE-RISK
algorithm outputs 100p% DsR and 100p% CDsR values within 10 minutes of execution time. These
p values vary from instance to instance, so in Table 5 we present the average of the p values over all
20 instances for different combination of network type and network size. The p values obtained for
different instances of completely random reliable networks were found to be more varied than for
random layered and grid networks, since the topologies of the former type of networks were more
varied than those of the latter.

From the table, we observe that within 10 minutes of execution time, the COMPUTE-RISK
algorithm can find the complete probability mass function for only the smallest of the instances.
Thereafter, the value of p for which the COMPUTE-RISK algorithm can compute the 100p% DsR
and 100% CDsR within 10 minutes decreases sharply with increasing values of p. We also observe
that for a network instance of a given size, the time required to compute 100p% DsR. and 100p%
CDsR increases at an increasing rate as the value of p increases (see Figure 5). From these runs we

]
W.P. No. 2009-09-02 Page No. 1



IIMA e INDIA
Research and Publications

Table 5: Percentage of the probability mass function of maximum s-t flow computed by COMPUTE-
RISK in 10 minutes

Number Percentage Standard

Network type of arcs  computed deviation
Completely random 21 100.00% 0.00%
networks 27 85.97% 34.28%

33 25.19% 32.25%

39 6.15% 5.62%

52 1.78% 1.92%

66 0.94% 0.87%

77 1.19% 1.17%

90 1.57% 2.00%

104 0.95% 1.27%

Random layered 24 100.00% 0.00%
networks 30 25.75% 7.07%
36 5.99% 2.00%

48 1.42% 0.70%

56 1.28% 0.45%

68 1.52% 1.02%

80 1.67% 0.99%

92 1.63% 0.92%

110 0.46% 0.41%

Random grid 24 100.0% 0.00%
networks 30 25.10% 7.32%
36 22.16% 6.75%

43 5.87% 2.37%

54 4.92% 2.25%

65 4.53% 1.82%

76 4.91% 2.50%

94 1.74% 0.99%

110 1.62% 0.97%

see that for most problem instances with more than 40 arcs, within 10 minutes of execution time,
the COMPUTE-RISK algorithm was successful only in identifying network states which had zero
s-t flow. This leads us to conclude that meaningful downside risk information about problems of
these sizes can only be obtained after more execution time. For these sizes of problems however, the
COMPUTE-RISK algorithm can be used to evaluate the 2-terminal connectivity. If the COMPUTE-
RISK algorithm returns the aggregate probability of zero maximum s-t flow as pg, the solution to
the 2-terminal connectivity problem for that network is (1 — py).

4 Summary and directions for future work

In this paper we introduced the concept of downside risk of reliable networks and proposed two
measures, downside risk (DsR) and conditional downside risk (CDsR), to evaluate such risks. We
argued that for reliable networks that model critical operations, it is important to factor in downside
risks while evaluating alternative network configurations. We considered the problem of sending the
maximum amount of flow from a pre-designated source node to a pre-designated terminal node in a
reliable network, and explained why extensions of existing algorithms based on evaluating all possible
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paths and all possible cuts in a network are not practical for computing downside risk measures in
reasonable sized networks.

In Section 2 we proposed COMPUTE-RISK, a state-space evaluation based algorithm to compute
DsR and CDsR values in reliable networks. Our algorithm is an enhancement of the naive state-
space enumeration algorithm in that it makes use of arc-disjoint cuts, and warmstarts maximum
flow computation for one network state based on the residual network obtained after computing the
maximum flow computation flows in another state.

In Section 3 we presented our computational experience with the COMPUTE-RISK algorithm.
We first showed that the DsR and CDsR have low correlation with the existing measures of network
performance. This leads us to conclude that downside risk information is not being properly cap-
tured while evaluating reliable network performance using conventional measures. We then showed
that layered and grid networks in general have worse downside performance than completely ran-
dom networks. We finally showed that the COMPUTE-RISK algorithm can compute DsR and
CDsR values for reasonably sized reliable networks in reasonable time and the evaluate 2-terminal
connectivity for larger networks.

The work in this paper can be extended in several directions. One immediate extension would be
to study other network flow problems on reliable networks and develop similar algorithms which look
at downside risk measures. Another research direction would be to form hybrid algorithms involv-
ing simulation which would compute reasonable accurate network performance measures for large
networks. A third direction would be to develop algorithms that embed algorithms like COMPUTE-
RISK to design reliable networks for critical applications.
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