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Abstract

In this paper we propose a fast state-space enumeration based algorithm called TOP-DOWN

to compute the probability mass function of the maximum s-t flow through reliable networks.

The algorithm computes the probability mass function in decreasing order of maximum s-t

flow values in the network states. This order of enumeration makes this algorithm attractive for

reliable networks in which the link reliabilities are high, e.g., in telecommunication networks. We

present our computational experience with the TOP-DOWN algorithm and a limited comparison

with a path-based exact algorithm and show that the TOP-DOWN algorithm solves problems

much faster and is thus able to handle much larger problems than such algorithms.

Keywords: Network Flows; Reliable Networks; Maximum Flows; Exact Computation

1 Introduction

A network N is defined as N = (V, A, s, t), where V = {1, 2, . . . , n} is a finite set of nodes and
A ⊆ V × V is a set of arcs connecting nodes in V , s ∈ V is a pre-defined source node from which
flow in the network originates, and t ∈ V, t 6= s is a pre-defined terminal node at which flow in the
network terminates (see e.g., Ahuja et al. [3]). An arc a ∈ A conventionally has two properties; a
strictly positive capacity value describing the maximum amount of flow that can be sent along that
arc, and a cost value describing the cost of sending a unit of flow through the arc. Flows originating
at s and terminating at t are called s-t flows. A common network flow problem is the maximum
flow problem, in which one is required to determine the maximum amount of s-t flow that can be
sent through a given network.

While modeling practical networks (for e.g., telecommunication networks, logistic networks etc.),
one needs to account for the fact that network components become non-functional from time to time.
This is done by adding a reliability value pi to each arc ai ∈ A, which is the probability that the arc
is functional at a given point in time. Networks which incorporate such reliability values for their
arcs are called reliable networks. A reliable network is thus represented as N = (V, A, s, t, P ), where
P : A→ [0, 1]|A|.

A reliable network exists in one of 2|A| network states, where each state is defined by a partition
of arcs in A into functional and non-functional arcs. The probability of the network being in any
particular state is a function of the reliability values of the arcs. Maximum s-t flow values may differ
from state to state, and hence become random variables in reliable networks.

There is considerable literature on the performance evaluation of reliable networks in terms of
maximum s-t flow. Such networks are often referred to in the literature as stochastic flow networks.
Various measures are used to quantify the performance of a stochastic flow network. The most
popular of these measures is the expected maximum flow through the network (see, e.g., Ball et
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al. [5]). Another popular measure is obtained by defining a threshold value of flow, and finding the
probability that the network will be able to carry at least that much s-t flow (see, e.g., Lee [7],
Aggarwal et al. [1]). The problems of computing both of these measures are NP-hard (see, Provan
and Ball [9]), so both exact and approximate approaches to compute these measures exist in the
literature. However, all evaluation methods for computing expected maximum s-t flows need to
compute (or estimate) the probability mass function of the maximum s-t flow in a given reliable
network. This paper presents an algorithm for the exact computation of the probability mass
function for the maximum s-t flow.

Exact approaches for computing the probability mass function of the maximum s-t flow in order
to evaluate the performance of stochastic flow networks can be broadly classified into two streams;
path based and cutset based methods (see Patra and Misra [8]), and state-space enumeration based
methods (see Alexopoulos [4]). The problem with path based and cutset based methods is that the
number of s-t paths in a network as well as the number of minimal s-t cuts can both be exponential
in the number of arcs (see, e.g., Ball et al. [5]), so that constructing the set of all combinations of
all paths required in path based algorithms as well as the set of all combination of all minimal cuts
in cutset based algorithms are both doubly exponential. Hence these methods are not useful for
finding the distribution of the maximum s-t flow of reasonably sized networks.

The basic idea behind state-space enumeration based method is to generate all the possible
network states and for each network state, to determine the maximum s-t flow in that state, and
the probability that the network will be in that state. The first state-space enumeration based
method for stochastic flow networks was introduced by Douilliez and Jamoulle [6] and was later
implemented by Alexopolous [4]. It was implemented for multi-state networks, where the capacity
of an arc can take multiple values with pre-defined probabilities, and given a threshold value of flow
as input, computed the probability that the maximum s-t flow through the network is at least as
high as that value. Although the algorithm works efficiently for multi-state networks, it reduces
to a basic branch and bound routine for bi-state networks whose arcs can only assume two states,
a functional state, and a non-functional state. Further, in order to use this algorithm to compute
the probability mass function of the maximum s-t flow through a network, one needs to repeatedly
call this algorithm with different threshold values of s-t flow. These multiple calls to the algorithm
with different threshold values result in a lot of duplication of computational effort, rendering the
algorithm an unattractive choice for determining expected maximum s-t flows and for computing
the probability mass function of maximum s-t flow through a network. In this paper, we present an
algorithm called TOP-DOWN for computing the distribution of maximum s-t flow through a reliable
network. Our algorithm is based on lexicographic depth-first enumeration of the state-space.

In this paper, we assume that arc failures are independent of each other. We also assume that
the network has arcs with high reliability, between 0.9 and 1.0. This is a reasonable assumption for
many real life applications, e.g. telecommunication networks. In such networks, a relatively small
proportion of network states contribute a major part to the whole distribution. This is shown in
Table 1 on a network with 25 arcs each having a reliability of 0.9. Notice that probability of the
network being in a state in which 19 or more arcs are functional is more than 99% although those
states account for only 0.73% of the total number of states.

Taking advantage of this fact, the TOP-DOWN algorithm starts with the highest possible maxi-
mum flow and computes the probability that the network would allow this flow. Once, the probability
of the highest flow is computed, the algorithm computes the probability of the next highest flow
and so on, until it satisfies a stopping criterion. In the process, given a suitable stopping rule, it
is capable of generating the complete probability mass function of the maximum s-t flow in the
network. If not allowed adequate time, for networks with high arc reliabilities, it quickly generates
a large portion of the probability mass function.

The paper is organized as follows. In Section 2, we present our algorithm to compute the
distribution of maximum s-t flow through the network exactly. In Section 3, we present the results
of our algorithm on randomly generated test bed and compare its performance with that of a path
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Table 1: Network characteristics for a reliable network with 25 arcs of reliability 0.9

Number of Probability of Percentage of total
functional arcs occurrence number of states

0 < 5× 10−5 < 5× 10−5%
1 < 5× 10−5 0.0001%
2 < 5× 10−5 0.0009%
3 < 5× 10−5 0.0069%
4 < 5× 10−5 0.0377%
5 < 5× 10−5 0.1583%
6 < 5× 10−5 0.5278%
7 < 5× 10−5 1.4326%
8 < 5× 10−5 3.2233%
9 < 5× 10−5 6.0885%
10 < 5× 10−5 9.7417%
11 < 5× 10−5 13.2841%
12 < 5× 10−5 15.4981%
13 < 5× 10−5 15.4981%
14 < 5× 10−5 13.2841%
15 0.0001 9.7417%
16 0.0004 6.0885%
17 0.0018 3.2233%
18 0.0072 1.4326%
19 0.0239 0.5278%
20 0.0646 0.1583%
21 0.1384 0.0377%
22 0.2265 0.0069%
23 0.2659 0.0009%
24 0.1994 0.0001%
25 0.0718 < 5× 10−5%

based method. Finally in Section 4, we summarize our findings and point out directions for future
research.

2 The TOP-DOWN Algorithm

In order to describe our algorithm formally, we first introduce some terminology that is used in the
rest of the paper.

A network state (or simply, state) of a reliable network N = (V, A, s, t, P ) is a representation
of its functional part at any point in time. It is represented by a network NS = (V, AS , s, t) where
AS ⊆ A is the set of arcs which are functional in that state. A reliable network attains one of the
possible 2|A| states at any point in time. The probability of observing N in state NS is given by

∏

ai∈AS

pi

∏

aj∈A\AS

(1− pj),

where pi is the reliability of arc ai for each ai ∈ A.

A Hasse diagram for the network N based at state NK = (V, AK , s, t) is a directed graph
with 2|AK | nodes, where a node, say j, represents a state Nj = (V, Aj , s, t) of the network such
that Aj ⊆ AK , and an arc connects the node representing state NS1

= (V, AS1
, s, t) to the node
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representing NS2
= (V, AS2

, s, t) if and only if AS2
is obtained by deleting one arc from AS1

. Network
state NK is called the base of the Hasse diagram.

Example 1 Figure 1 shows a network with five arcs and its Hasse diagram based at the state
({1, 2, s, t}, {a, b, c, d, e}, s, t). In the network, node s represents the source node and node t represents
the terminal node. In the Hasse diagram, the node corresponding to the state NS = (V, AS , s, t) is
labeled by the arc set AS .

s

1

2

t

arc a;
cap = 3

arc e;
cap = 7

arc d;
cap = 4

arc c;
cap = 6

arc b;
cap = 5

(a) A five arc network

{a,b,c,d,e}

{a,b}

{c,d,e}{a,c,e}{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{b,c,d,e}{a,c,d,e}{a,b,d,e}{a,b,c,e}{a,b,c,d}

{}

{b}{a}

{d,e}{b,c}{a,e}{a,d}{a,c}

{e}{d}{c}

{b,d} {b,e} {c,d} {c,e}

{b,d,e}{b,c,e}{b,c,d}{a,d,e}

(b) The Hasse diagram of the network based at ({1, 2, s, t}, {a, b, c, d, e}, s, t)

Figure 1: A network and its Hasse diagram

The TOP-DOWN algorithm to compute the probability mass function of maximum s-t flow
through the network is a state-space enumeration algorithm. It outputs a list called pmf which
contains tuples of the form (fi, pi) where fi is a flow value, and pi is the probability that the input
reliable network will be in a state that allows a maximum s-t flow of fi. The basic idea behind this
algorithm is the following. Given a reliable network N = (V, A, s, t, P ), TOP-DOWN finds out the
maximum s-t flow possible through (V, A, s, t). It then identifies all network states for which the
maximum s-t flow has this value. It does this by searching the Hasse diagram for the network, based
at state (V, A, s, t). During the search, a child state is generated from a parent state by removing an
arc from the arc set of the parent state, and backtracking is achieved be replacing the arc that was
removed. Since the Hasse diagram is a graph and not a tree, the TOP-DOWN algorithm performs
a lexicographic depth-first search on states represented in the Hasse diagram.

W.P. No. 2009-10-01 Page No. 5



IIMA • INDIA

Research and Publications

For this, the arcs in the reliable network are arranged as follows. Each arc is deleted in turn from
the network (V, A, s, t) and the maximum s-t flow is computed in the resulting network. This flow is
taken as a score corresponding to the arc deleted. The arcs are then ordered in non-decreasing order
of the scores. Let the ordering of the arcs after this arrangement be (a[1], a[2], . . . , a[|A|]). If during
the search, a network state Nj = (V, Aj , s, t) is reached by removing arc a[k] from its parent state,
then while examining child states of Nj , TOP-DOWN only looks at states that can be obtained by
removing one of the arcs a[k+1] through a[|A|] from Nj . This prevents any network state from being
examined more than once by the TOP-DOWN algorithm.

The TOP-DOWN algorithm operates by maintaining several lists. The pmf list is a list of
tuples of the form (fi, pi) which stores the (partial) probability mass function that the algorithm
computes. In each tuple, fi denotes a value of maximum s-t flow, and pi denotes the probability
that the network will be in a state for which the maximum s-t flow is fi. While examining states
with a maximum s-t flow of fi, the enum list stores network states in which the maximum s-t flow is
fi, and lowerflow list stores a subset of the network states in which the maximum s-t flow is lower
than fi. Periodically TOP-DOWN removes states from lowerflow in which the maximum s-t flow
is the highest among the states in lowerflow, and puts them in a list called candidate and clears
enum.

Suppose the TOP-DOWN algorithm starts the lexicographic search at a network state Ni in
the candidate list, which allows a maximum s-t flow of fi. There are two outcomes possible when
TOP-DOWN evaluates the maximum s-t flow in a state Nj . Either the maximum s-t flow allowed
in the state is fi, or it is lower. In the former case, the TOP-DOWN algorithm adds the state to
enum and continues to search the appropriate child states of Nj . In the latter case, the algorithm
does not search the child states of Nj and copies Nj to lowerflow for possible future processing.

Once TOP-DOWN has finished exploring all states in candidate, it computes the cumulative
probability of occurrence of all states in enum. This is the probability that the network will be
in a state which allows a maximum s-t flow of fi. The algorithm then checks the network states
in lowerflow, picks states which admit the highest value of maximum s-t flow among them and
transfers them to another list called candidate. Assuming that the termination condition for the
TOP-DOWN algorithm is not reached, it performs another iteration, exploring states in candidate.

An algorithm such as the one described above can be terminated through various stopping
criteria. For example, it can be terminated once all the states of the network have been evaluated.
In this case, the algorithm outputs the complete probability mass function of the maximum s-t flow
through the reliable network. It can also be terminated once it has run for a pre-specified amount
of time. We use the following criterion to terminate the TOP-DOWN algorithm. We specify a value
p, such that 0 ≤ p ≤ 1 to TOP-DOWN and terminate the algorithm when it has obtained the
top 100p% of the distribution of maximum s-t flows. We believe that such a stopping rule makes
the TOP-DOWN algorithm attractive when evaluating large networks in the absence of adequate
computation time. The remaining portion of the probability mass function of the maximum s-t
flow can be estimated by other means, for example, through sampling. We formally describe the
TOP-DOWN algorithm in Algorithm 1.

An enhancement that significantly improves the performance of the TOP-DOWN algorithm is the
use of a warmstart mechanism (see Sharma and Ghosh [11]) in Step 2 of the TOP-DOWN algorithm
to compute the maximum s-t flow in states that it explores during the lexicographic search. The
basic idea behind warmstart is to not compute the maximum s-t flow afresh for all network states,
but to use the residual network obtained after computing the maximum s-t flow in another state
with a large number of common arcs to determine the maximum flow in a state. Consider two
network states Ni = (V, Ai, s, t) and Nj = (V, Aj , s, t) such that Ai = Aj ∪ {a}. Assume that the
maximum s-t flow has been computed in Ni as fi, and the residual network after this computation
is N r

i . If there is no flow through arc a in N r
i , then the maximum s-t flow in state Nj is clearly fi

and the residual network N r
j is obtained by deleting arc a from N r

i . If a transmits a flow, say fa

in N r
i , then the arc a is removed from N r

i . fa is added as a positive excess flow to the tail node of
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Algorithm 1 The TOP-DOWN algorithm

Input: A reliable network N = {V, A, s, t}; p, 0 ≤ p < 1.

Output: The top 100p% of the probability mass function of the maximum s-t flow in N .

Steps:

Step 1: For each arc in ai ∈ A, compute ti ← maximum s-t flow in (V, A\{ai}, s, t). Arrange arcs in
A in non-increasing order of ti values. (This is the ordering of arcs used in the lexicographic
search in Step 2.) Set pmf ← {}, lowerflow ← {}, fi ← maximum s-t flow allowed in N

and candidate← (V, A, s, t). Go to Step 2.

Step 2: For each state NS ∈ candidate, perform a lexicographic depth-first search on the Hasse dia-
gram starting at the node representing NS in the Hasse diagram. Child states are generated
by deleting a single arc from the arc set of the parent state following the lexicographic search
order. The maximum s-t flow is computed for the child state. If it is equal to fi, then the
child state is copied to the enum set and its children are explored by the search. If it is less
than fi, then the state is added to lowerflow. Go to Step 3.

Step 3: If
∑

i:(fi,pi)∈pmf pi ≥ p, go to Step 4. Else, set pi ← the probability of N being in any of the

states in enum, and pmf ← pmf ∪{(fi, pi)}. Set fi ← maximum value of the maximum s-t
flow allowed in any state in lowerflow; candidate← {NS : maximum s-t flow in NS = fi},
enum← {}. Go to Step 2.

Step 4: Choose (fm, pm) ∈ pmf such that fm = max{fi : (fi, pi) ∈ pmf}. Let p =∑
i:(fi,pi)∈pmf pi − pm. Replace (fm, pm) with (fm, p− p) in pmf . Output pmf and termi-

nate.

a and as a negative excess flow to the head node of a. Then using an augmenting path algorithm,
an attempt is made to redirect the excess flow from the tail node to the head node. This can lead
to one of two situations; either all the excess flow can be re-routed, or only a portion f , 0 ≤ f < fa

can be re-routed. If all the excess flow is re-routed, then then the maximum s-t flow in Nj remains
fi, and the residual network after the re-routing is the correct residual network N r

j . If only f units
of flow can be re-routed, then this re-routing is first achieved. Next a flow of (fa− f) is routed from
the tail of a to s, and the same amount of flow is routed from t to the head of a. The maximum s-t
flow in Nj is fi − (fa − f). The residual network for state Nj is the residual network obtained after
all the re-routing is executed in N r

i . From our experiments we have observed that this warmstarting
process is particularly effective when evaluating the maximum s-t flow in network states for large
networks when both states have a lot of functional arcs in common.

We illustrate the working of the TOP-DOWN algorithm on the reliable network shown in Fig-
ure 1(a) in the Example 2.

Example 2 Consider the network shown in Figure 1(a). Assume that all arcs have a reliability of
90%. On this network, the TOP-DOWN algorithm first arranges the arcs in the sequence (b, e, a, d, c).
Using this sequence of arcs, the lexicographic search tree corresponding the Hasse diagram for the
network based at (V, S, s, t), where V = {1, 2, s, t} and A = {a, b, c, d, e}, is shown in Figure 2.

TOP-DOWN starts by evaluating the maximum flow in the the state (V, A, s, t) as 8 units. It
then tries to find the states in the Hasse diagram which have a flow of 8 units. The search tree it
generates is shown in Figure 3. The numbers on each of the nodes denote the maximum s-t flow
possible in the states that they represent. The nodes colored black correspond to the states that
have a flow of 8 units. The states corresponding to these nodes are added to the enum list. The
nodes colored gray correspond to the states which are connected to states having flow of 8 units, but
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{a,b,c,d,e}

{a,b}

{c,d,e}{a,c,e}{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{b,c,d,e}{a,c,d,e}{a,b,d,e}{a,b,c,e}{a,b,c,d}

{}

{b}{a}

{d,e}{b,c}{a,e}{a,d}{a,c}

{e}{d}{c}

{b,d} {b,e} {c,d} {c,e}

{b,d,e}{b,c,e}{b,c,d}{a,d,e}

Figure 2: The lexicographic search tree corresponding to the network of Figure 1(a)

8 3 573

8

{a,b,c,d,e}

{c,d,e}{a,b,c}

{b,c,d,e}{a,c,d,e}{a,b,d,e}{a,b,c,e}{a,b,c,d}

pmf after Step 1 is {(8, 0.6561)}

Figure 3: The search tree generated in the first iteration of the TOP-DOWN algorithm

which have a flow of less than 8 units. These are put in lowerflow at the end of the iteration. At
the end of the iteration state (V, {a, b, c, e}, s, t) is removed from lowerflow and added to candidate.

Figure 4 presents the search tree explored in the remaining iterations that the TOP-DOWN
algorithm executes while computing the probability mass function of the network in Figure 1(a).
The contents of the pmf list storing the probability mass function are also presented in the figure.

3 Computational experience

We performed computational experiments with the TOP-DOWN algorithm, and present the results
of our experiments in this section. We did not find any set of benchmark instances for reliable
networks in the literature, and hence generated random layered and random grid networks, two
types of random networks suggested as difficult networks for maximum s-t flow problems in Ahuja
et al. [2]. Random layered networks are acyclic, while random grid networks include directed cycles.
We provide a detailed description of these networks in this section. We also compare the performance
of the TOP-DOWN algorithm with PATRA, an algorithm proposed by Patra and Misra [8]. The
PATRA algorithm is based on enumerating all the s-t paths in the network and is designed for
acyclic networks. So the comparison between TOP-DOWN and PATRA is carried out only on
random layered networks.
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3 573

{c,d,e}{a,b,c}

{b,c,d,e}{a,c,d,e}{a,b,c,e}{a,b,c,d}

{a,b,e}

pmf after Step 2 is {(8, 0.6561), (7, 0.0656)}

5

5

3 53

{c,d,e}{a,b,e}{a,b,c}

{b,c,d,e}{a,c,d,e}{a,b,c,d}

{b,e}

{b,d,e}{b,c,e}

5 5

pmf after Step 3 is {(8, 0.6561), (7, 0.0656), (5, 0.0883)}

3 3 3 00

0 3 0

33

{c,d,e}{a,c,e}{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{a,c,d,e}{a,b,c,d}

{a,e}{a,d}{a,c}

0

{c,d}

{b,c,d}{a,d,e}

3 0

pmf after Step 4 is {(8, 0.6561), (7, 0.0656), (5, 0.0883), (3, 0.1612)}

00

0 0 0 0 00

0 0 000

0

{a,b}

{c,d,e}{a,b,c}

{}

{b}{a}

{d,e}{b,c}{a,e}{a,c}

{e}{d}{c}

{b,d} {b,e}

0 0

{c,d} {c,e}

{b,c,d}

0

pmf after Step 5 is {(8, 0.6561), (7, 0.0656), (5, 0.0883), (3, 0.1612), (0, 0.0288)}

Figure 4: The search tree generated in the next four iterations of the TOP-DOWN algorithm
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Random layered networks are networks characterized by three parameters, the width (W ) of the
network, the length (L) of the network, and the outdegree (K) of all nodes in the network except
the source and terminal nodes. The number of nodes in such a network is n = LW + 2. All nodes
other than the source node s and the terminal node t are arranged in L layers, each containing W

nodes. The source node s is connected to all the nodes in the first layer, and all the nodes in the last
layer are connected to the terminal node t. Each node in a particular layer, except the last layer, is
connected to a random set of K nodes in the next layer.

Random grid networks are networks characterized by two parameters, the width (W ) of the
network and the length (L) of the network. The number of nodes in such a network is n = LW + 2.
The nodes except the source node s and the terminal node t are arranged in a rectangular L ×W

grid. The source node s is connected to all the nodes in the first column of the grid, and all the
nodes in the last column are connected to the terminal node t. The node in the ith row and jth
column is connected to the nodes in the i− 1th and i + 1th rows in column j, and to the nodes in
the i− 1th, ith, and i + 1th rows in column j + 1 if such nodes exist.

For both these types of networks, arcs connecting from s or to t are assigned capacities randomly
as integers in the range [50000, 100000]. For the remaining arcs capacities are assigned randomly as
integers in the range [500, 10000]. All arcs are assigned reliabilities randomly in the range [0.9, 1.0].

We used nine network configurations of each of the two types of networks in our experiments. A
network configuration for a random layered network is a tuple of the form (L, W, K), while that for
a random grid network is a tuple of the form (L, W ). The details of the configurations used in our
experiments are given in Table 2.

Table 2: Structural configurations of test problems

Type of network Configuration Number of nodes Number of arcs
(W, L, K)

Layered (3, 4, 2) 14 24
(3, 5, 2) 17 30
(3, 6, 2) 20 36
(4, 6, 2) 26 48
(4, 5, 3) 22 56
(4, 6, 3) 26 68
(4, 7, 3) 30 80
(4, 8, 3) 34 92
(5, 11, 2) 57 110

Grid (2, 3) 8 18
(2, 5) 12 30
(2, 6) 14 36
(3, 4) 14 43
(3, 5) 17 54
(3, 6) 20 65
(3, 7) 23 76
(4, 6) 26 94
(4, 7) 30 110

For each configuration, we generated 20 random instances. The results reported in this paper
are results averaged over these 20 instances. For each instance, we kept p = 1 for TOP-DOWN so
that the algorithm can compute the entire probability mass function. However since most of these
instances are quite large, the times taken to generate the complete probability mass functions are
prohibitively large. So we set an additional execution time-based stopping criterion that terminated
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Table 3: Performance of the TOP-DOWN algorithm on random layered networks

Fraction of the Execution
Configuration No. of No. of pmf⋆ generated time (in sec.)

(W,L,K) Nodes Arcs Mean SD Mean SD

(3,4,2) 14 24 1.0000 0.0000 23.89 9.57
(3,5,2) 17 30 0.9937 0.0043 600.02 0.00
(3,6,2) 20 36 0.8924 0.0405 600.02 0.00
(4,6,2) 26 48 0.4753 0.0859 600.02 0.00
(4,5,3) 22 56 0.3419 0.0326 600.02 0.00
(4,6,3) 26 68 0.1545 0.0278 600.02 0.00
(4,7,3) 30 80 0.0815 0.0184 600.02 0.00
(4,8,3) 34 92 0.0441 0.0078 600.02 0.00
(5,11,2) 57 110 0.0175 0.0052 600.02 0.00

⋆: probability mass function

TOP-DOWN after running for 600 seconds. The experiments were run on a Dell machine with Core
2 Quad processors with 3GB 800MHz Dual channel DDR2 SDRAM running Linux. The algorithms
were written in C and compiled with a gcc 4.3 compiler.

Table 3 summarizes the results from our experiments with the TOP-DOWN algorithm on layered
networks. The first column of the table refers to the configuration of the instances for which results
are tabulated. Columns 2 and 3 provide the number of nodes and the number of arcs in networks
with the given configuration. Columns 4 and 5 report data about the fraction of the probability mass
function of the maximum s-t flow that the algorithm could compute within the stipulated time, with
column 4 reporting the average and column 5 reporting the standard deviation over all 20 instances
with that configuration. For example, among the 20 instances with configuration (3,5,2) i.e., with
17 nodes and 30 arcs, the TOP-DOWN algorithm could, on average, compute the top 99.37% of
the complete probability mass function of the maximum s-t flow, and the standard deviation of
these probability values across the 20 instances was observed to be 0.43%. Columns 5 and 6 provide
the average and standard deviation of the execution time taken for the 20 instances. For the same
configuration, i.e. (3,5,2), we see that the average of the execution times was 600.02 seconds and the
standard deviation was 0, implying that TOP-DOWN could not compute the complete probability
mass function of any of the instances within the stipulated time.

From the table, we observe that the TOP-DOWN algorithm obtains the complete probability
mass function of the maximum s-t flow in only the set of instances with the smallest number of arcs.
As the number of arcs in the problem instance increases, the percentage of the total probability
mass function that the algorithm could compute reduces exponentially.

Since random layered networks are acyclic, they could also potentially be solved by the PATRA
algorithm. We input these instances to the PATRA algorithm, and ran it with the same stopping
rules as the TOP-DOWN algorithm. We found out for the smallest of the configurations, i.e.
configuration (3,4,2) with 14 nodes and 24 arcs, the PATRA algorithm could only obtain 58.34%
of the complete probability mass function of the maximum s-t flows on average with a standard
deviation of 23.07%. The average time taken was 600.63 seconds with a standard deviation of 0.97
seconds. The PATRA algorithm could obtain the complete probability mass function for only two of
the 20 instances. For configurations that resulted in larger networks, the PATRA algorithm could not
compute all combinations of all the s-t paths that it generated within the stipulated time limit,and
hence could not compute any part of the probability mass function of the maximum s-t flow in these
networks. Thus the TOP-DOWN algorithm is clearly superior to the PATRA algorithm.

The results of our computational experiments with the TOP-DOWN algorithm on random grid
networks is presented in Table 4. The structure of the table is identical to that of Table 3. The
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Table 4: Performance of the TOP-DOWN algorithm on random grid networks

Fraction of the Execution
Configuration No. of No. of pmf⋆ generated time (in sec.)

(W,L) Nodes Arcs Mean SD Mean SD

(2,3) 8 18 1.0000 0.0000 0.21 0.03
(2,5) 12 30 0.9907 0.0055 600.02 0.00
(2,6) 14 36 0.8490 0.0422 600.02 0.00
(3,4) 14 43 0.6373 0.0737 600.02 0.00
(3,5) 17 54 0.3393 0.0629 600.02 0.00
(3,6) 20 65 0.1832 0.0220 600.02 0.00
(3,7) 23 76 0.1010 0.0160 600.02 0.00
(4,6) 26 94 0.0408 0.0106 600.02 0.00
(4,7) 30 110 0.0165 0.0057 600.02 0.00

⋆: probability mass function

description of the problems being solved is provided in the first three columns of the table, the
fourth and fifth columns present data about the fraction of the probability mass function that the
TOP-DOWN algorithm could compute within the specified time limit of 600 seconds, and columns
6 and 7 give details about the execution times taken. Here too we observe that the TOP-DOWN
algorithm could obtain the complete probability mass function in the set containing the smallest
of the instances, and for larger instances, the percentage of the probability mass function that the
algorithm could compute reduces exponentially with problem size.

Since the random grid instances contain cycles, the PATRA algorithm cannot be applied to
compute the probability distribution functions of the maximum s-t flow in these instances.

4 Summary and directions for future work

In this paper, we examined the problem of computing the probability mass function of maximum
s-t flows in reliable networks, i.e. those in which arcs are functional with a given probability. Such
reliable networks are more realistic models of practical situations than conventional networks. The
probability mass function of the maximum s-t flow is essential to compute measures to compare
reliable networks. We proposed a lexicographic depth-first search algorithm called TOP-DOWN
that enumerates the states of the network. Noting that arc reliabilities are high in many practical
networks, e.g., telecommunication networks, our proposed algorithm searches the state-space of
reliable networks starting from a state in which all arcs are functional. Because of this, even if it is
prematurely terminated, TOP-DOWN can output a large fraction of the probability mass function
of maximum s-t flows in reasonably sized networks. The TOP-DOWN algorithm uses a warmstart
mechanism to minimize the time required to compute the maximum s-t flows in the network states
that it examines. The warmstart mechanism is one that uses the residual network obtained after
examining a network state to quickly compute the maximum s-t flow in a state with a largely
similar arc set. This is particularly useful for evaluating the probability mass functions in high
performance networks, like modern telecommunication networks. We report our experience with
implementing the TOP-DOWN algorithm and running it on randomly generated networks. Based
on our experience, we conclude that the TOP-DOWN algorithm is far more effective than existing
algorithms while computing the probability mass functions of reliable networks.

There are several directions in which this research can be taken forward. Our computational
experience showed us that the TOP-DOWN algorithm, while much faster than existing algorithms,
is not capable of computing the complete probability mass function for large networks. So there
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is a necessity for generating hybrid algorithms to compute the complete probability mass function
for such networks. One such approach would hybridize the TOP-DOWN algorithm with an effi-
cient simulation algorithm. Another approach could hybridize the TOP-DOWN algorithm with the
COMPUTE-RISK algorithm as presented in Sharma and Ghosh [10] which computes the probability
mass function starting with states that permit low s-t flows. A general direction of future research
is in the development of similar algorithms for other network flow problems.
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