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Abstract

The purpose of this paper is to incorporate semiparametric alternatives to

maximum likelihood estimation and inference in the context of unordered multinomial

response data when in practice there is often insufficient information to specify the

parametric form of the function linking the observables to the unknown probabilities.  We

specify the function linking the observables to the unknown probabilities using a very

general flexible class of functions belonging to the Pearson system of cumulative

distribution equations.  In this setting we consider the observations as arising from a

multinomial distribution characterized by one of the CDFs in the Pearson system.  Given

this situation, it is possible to utilize the concept of unbiased estimating functions (EFs),

combined with the concept of empirical likelihood (EL) to define an (empirical)

likelihood function for the parameter vector based on a nonparametric representation of

the sample’s PDF.  This leads to the concept of maximum empirical likelihood (MEL)

estimation and inference, which is analogous to parametric maximum likelihood methods

in many respects.
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1. Introduction

Consider the unordered multinomial response model where outcomes are given in

the form of an experiment consisting of N trials on J-dimensional multinomial random

variables ( ) ( )11 1 1,..., ,..., ,...,J N NJy y y y .  The variable yij, for i = 1,2,….N, exhibits a binary

outcome, where yij = 1 is observed iff the jth choice among J unordered alternatives j =

1,2,….J, is observed on the ith trial, in which case yik = 0 k j∀ ≠  .   It is assumed that the

choice situation is such that the J alternatives are mutually exclusive, so that only one of

the alternatives can be chosen on trial i, and the J alternatives exhaust the choice

possibilities, which then implies that 
J

ij
j=1

y  1, i.= ∀∑

The probability that yij = 1, denoted by Pij, is then related to a set of K explanatory

variables xi. through a link function

Pij(xi.) = P(yij = 1| xi., β ) = Gj(xi., β )                                                            (1.1)

for i = 1,2,….N and j = 1,2,….J, where jβ  is a (K×1) vector of unknown parameters,

1 2 Jvec([ , ,... ])β = β β β  is a column-vectorized representation of model parameters of

dimension (KJ×1), xi.= (xi1, xi2,…., xiK)  is a (1xK) row vector of explanatory variables

values, and ( )G g : R →  [0,1] may be either known or unknown, with the additional

constraint that

         
J

j i.
j=1

( )G∑ x ,β  = 1, i∀  .                                                                                          (1.2)
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The explanatory variables, xi., could be allowed to change by choice alternative, but we

focus on a basic case where they do not.

Define the noise term ijε  as

ij   ε ≡ yij - E[yij|xi.] = yij  - j i.(G , )x β

where E[yij|xi.] = j i.(G , )x β  because of the Bernoulli marginal distribution of the yij

variable.  The data sampling process relating to observed choices can then be represented

as

              yij = Pij(xi.) + ijε  = j i.(G , )x β ) + ijε .                                                                  (1.3)

where the ijε ’s are assumed to be independent across observations i = 1,2,….N, the ijε ’s

are bounded between [-1,1], and E[ ijε xi.] = 0.

When the parametric functional form of j i.(G , )x β  is known, maximum likelihood

(ML) estimation is possible, and a specific functional choice has often been

j i.(G , )x β = J

k 2

i k.

1

1 + e
=

∑ x β
       for j = 1

              = J

k 2

i j

i k

x .

.

e

1 + e
=

∑ x

β

β
        for j = 2,3,….J                                                           (1.4)

where 1β  has been normalized, without loss of generality, to a zero vector for purposes of

parameter identification.  The definition in (1.4) satisfies the required properties in (1.2)

and defines the Multinomial Logit (ML) response model applied frequently in practice.

Similarly, a Multinomial Probit (MNP) model results when a multivariate normal

distribution is used in specifying the distribution of the noise component of (1.3).
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However, when J is large, the probit model is computationally difficult except when the

number of alternative choices is restricted to 3 or less. If the distribution underlying the

likelihood specification is in fact the correct parametric family of distributions underlying

the sampling process, then the estimator is generally unique, consistent and

asymptotically normal.  However, the economic theories that motivate these models

rarely justify any particular probability distribution for the noise term .

Attempts to introduce flexibility into the specification of  ( )G g have been

problematic in applications.   Supposing ( )G g is a polynomial of order d, some

trigonometric function, or some other flexible functional form, the flexibility added to the

estimation problem may introduce unbounded likelihood functions on parameter space

boundaries, multiple local maxima, and/or non-concavities that make numerical

maximization of the log likelihood function difficult or impossible.

Semi-parametric methods of estimation provide an alternative approach, such as

Ichimura (1993) who demonstrates a least squares estimate of β  which requires ijε  to be

independent of xi., ruling out endogeneity and/or measurement error.  Klien and Spady

(1993) developed a quasi-maximum likelihood estimator for the case in which Yij is

binary.  These estimators are consistent and asymptotically normal under regularity

conditions.  But these estimators share the disadvantage of being difficult to compute

because they involve nonlinear optimization problems whose objective functions are not

necessarily concave or unimodel.  Using an information theoretic formulation, Golan,

Judge, and Perloff (1996) demonstrate a semiparametric estimator for the traditional

multinomial response problem that has asymptotic properties in line with parametric
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counterparts.  But a potential draw back to their method is that the Pij’s have no direct

parametric functional link to the xi.’s which makes prediction difficult or impossible.

To cope with the preceding modeling issues one can hedge against

misspecification when the form of the link function ( )G g is unknown by giving ( )G g a

flexible form that satisfies (1.2) and that defines a legitimate multinomial response model

globally.  One might model each dichotomous decision outcome as a Bernoulli process

(marginally) and then model the whole vector outcome, .iy , as a multinomial process.

One possibility for parameterizing the probabilities in these processes is the set of  CDFs

belonging to the highly flexible Pearson system of distributions, which themselves satisfy

(1.2).   The criteria for identifying different members of the Pearson system of functions

can be expressed parametrically in terms of a (2x1) ξ  vector of unknown parameters.

When ( )G g is unknown, the sampling process would then be modeled as

              yij = Pij (xi.) + ijε  = j i.(G , , )x β ξ  + ijε .                                                               (1.5)

The overall objective of this paper is to seek a semiparametric basis for

recovering β  in (1.5) by utilizing the concept of unbiased estimating functions (EFs)

combined with the concept of empirical likelihood (EL) to define an empirical likelihood

function for the parameter vector.  This leads to the concept of maximum empirical

likelihood estimation of the multinomial choice model.  The EL shares the sampling

properties of various nonparametric methods based on resampling of the data, such as the

bootstrap.  However, in contrast to the resampling methods, EL works by optimizing a

continuous concave and differentiable function having a unique global maximum, which

makes it possible to impose side constraints on the parameters that add information to the

data.
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The paper is organized as follows. Section 2 reviews the Pearson system of

density and cumulative distribution functions.  In section 3, we state the extremum

estimation problem and investigate the asymptotic properties of the estimator.  In section

4, we examine EL estimation in the multinomial choice problem.  In section 5, we present

some Monte Carlo results relating to the sampling properties of the estimator. Concluding

remarks summarizing the major implications of the paper are given in section 6.

2. Pearson’s System of Frequency-Curves

The probability distributions contained in the system of curves proposed by Karl

Pearson are found as the solutions of the differential equation

              
2

0 1 2

1

y

dy a x

dx b b x b x

−=
+ +

                                                                                      (2.1)

where y in this context is the probability density function (PDF) evaluated at x. The

motivation by Pearson (1895) of the derivation of the distributions from (2.1) is difficult,

as well as difficult to access, and so we provide a brief and more direct overview of the

portion of the derivation that is particularly relevant to the objectives of this paper.

2.1  Identifying Probability Distributions in the Family

Multiplying each side of (2.1) by yxn ( )2
0 1 2b b x b x+ + , and then integrating with

respect to x obtains

              n 2
0 1 2x ( ) ( ) ndy

b b x b x dx y a x x dx
dx

+ + = −∫ ∫ .                                                     (2.2)

Integrating the left hand side of (2.2) by parts, treating 
dx

dy
 as one part, and representing

the right hand integral as the sum of two functions yields
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)(x 2
210

n xbxbb ++ y- ∫ ∫ ∫ ++ −=++++ dxyxdxayxydxxbnxbnbn nnnn 11
210

1-n ))2()1(x( .

If at the ends of the range of the curve the expression

                             )(x 2
210

n xbxbb ++ y

vanishes, that is n 2
0 1 2

2

1

r

x = r
x ( )  = 0b b x b x + +   where r1 and r2 are the extremes of the range

of variation for x, we have

              1 2 1 1( 1) ( 2)n n n nn b n b aµ µ µ µ+ +′ ′ ′ ′− + − + = −                                                          (2.3)

where nµ′  denotes the nth moment of x about the origin.

 Examining the moment equation (2.3) for n = 0,1,2,3……..q respectively, we get

q+1 equations to solve for a,b0,b1,b2 in terms of the moments ( rµ′ ), r = 0,1,2,3……..q.

The solution of these simultaneous equations results in the following representation of

(2.1):

2
3 4 2

3 2
2 4 2 3

2 2 2
22 2 4 3 3 4 2 2 4 3 2

3 2 3 2 3 2
2 4 2 3 2 4 2 3 2 4 2 3

( 3 )

10 18 121
.

(4 3 ) ( 3 ) 2 3 6

10 18 12 10 18 12 10 18 12

x
dy

y dx
x x

µ µ µ
µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ

′ ′ ′+
−

′ ′ ′ ′− −
=

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − −
+ +

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − −

2 2
2 3 4 34

3 1 4 23 2
42 2

2 3 6
Defining  ,    and ,

3

µ ψ ψµψ β ψ β ω
ψµ µ

′ ′ − −= = = = =
′ ′ +

we are led to the following expression for the parameters a, b0, b1, b2 contained in (2.1):

3 3
1

0 2

                                               b
2(1 2 ) 2(1 2 )

2
                                             b

2(1 2 ) 2(1 2 )

a

b

ψ ψ
ω ω

ω ω
ω ω

= − =
+ +

+
= =

+ +
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which are valid when -2<ω <2 and ω ≠ -.5 (please see appendix for details of the

solution).

Turning now to the integration of (2.1) and the various forms of f(x) that arise, it is

useful to note that:

1. f(x) ≥ 0 over the range of values of x when the parameter adhere to the restrictions
presented above.

2. ∫
+∞

∞−

= 1)( dxxf  must be satisfied.

3. It is sufficient to consider 3ψ ≥ 0 since the curve identified by 3ψ = -c is a mirror

reflection of the curve for 3ψ = c with respect to the y-axis.

In general, there are three main types of Pearson curves and ten transition types .  The

various types are designed to handle limited or unlimited supports, as well as skewed

or symmetric, bell, U, or J-shaped curves.  The criteria identifying each type are

expressed in terms of the parameters 3ψ  and ω .  The mathematical derivation of the

Pearson system of PDFs is given in the book ‘Frequency Curves and Correlation’ by

W.P.Elderton.  But the cumulative distributions of the Pearson system are not readily

available, and are part of the contribution of this paper. The actual forms of the

Pearson curves and their CDF’s, restrictions on parameter ranges,  and distribution

supports are displayed in  table (2.1).

Note that in table (2.1) we make use of the variables that are defined below.

ω
ψ

2
3

1

d
r

+−
= , 

ω
ψ

2
3

2

d
r

−−
= , d = 2

3 4 ( 2)ψ ω ω− + ,

3
1

(1 ) 1 2
( ) ( )m

d

ψω ω
ω ω
+ += − , 3

2

(1 ) 1 2
( ) ( )m

d

ψω ω
ω ω
+ += − − ,
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z = xi jβ ,  t = -
ω
d

, )
21

(
ω

ω+−=M , m =
ω

ω21+
,

3

2

ψ
=N , 

ω
ψ
2

3=r , 1

4 ( 2)

2
s

ω ω
ω

+
=   3 3--d 1+

s= ,  r = ,  v = - . 
2 2 d

ψ ψω
ω ω ω −

Derivations of all tabled results are given in the appendix
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Table 2.1. Frequency  Curves and CDFs

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

MAIN TYPES
I

f(x)=

1
1221

21

21

21

))(1,1(

)()(
++−++

−−
mm

mm

rrmm

xrrx

β
r1<x<r2

F(z)= p(x ≤ z)=

)1,1(

)1(

21

0

12

1

21

++

−∫
−
−

mm

dvvv
rr

rz

mm

β
= IncompleteBeta(m1+1, m2+1, 

12

1

rr

rz

−
−

)

2
3
2

3 0,
1 0

[ .5,
(2 3 )

4(1 2 ) (2 )]

ω
ω

ω ψ
ω ω

ψ ≠
− < <

≠−
+

≠ + +

The roots r’s are
real and opposite signs
;limited Range;
general form of
beta-dist.;
skew;when
both M’s are positive
has a bell-shaped,
when both M’s
are negative
has a U-shaped,
when M’s
are of opposite signs has
J-shaped or twisted
J-shaped.

IV

2m-1
m2 2

vi
2

f(x)= 

s
(x+r)  s

(2m-2,v)

x+r-is

x+r+is

−
 + Γ

 
  

2
3

3 0,
0

4( )(2 )

ω
ψ

ω ω

ψ ≠

+

f

p

Unlimited range;
Skew; bell-shaped;
No common statistical
Dist. are of type IV form;
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

VI f(x)=

+∞<<
−−−−+

−−
++

xr

rrmmm

rxrx
mm

mm

1

1
21211

21

21

21

))(1,1(

)()(

β

F(z)= p(x ≤ z)=  1

)1,1(

)1(

211

0

2
2

21

221

−−−+

−
−

∫
−
−

−−−

mmm

dvvv
rz

rr

mmm

β

=1-incomplete

)

,1,1(

2

21

211

rz

rr

mmmeta

−
−

−−−+β

2
3

2
3

2

3 0,
0 2 /5

4 ( 2),
(2 3 )
4(1 2 ) (2 )]

ω
ψ ω ω

ω ψ
ω ω

ψ ≠
< <

> +
+ ≠
+ +

The roots are real
and same sign;
unlimited range
 in one direction

+∞<< xr1 ;

skew;
bell-shaped if
m1>0;
J-shaped if  m1<0;
this is called
beta prime dist.

TRANSITION
TYPES
Normal

+∞<<∞−

=
−

x

exf
x

2

2

2

1
)(

π

F(z)= p(x ≤ z)=

dxe
xz

2

2

2

1 −

∞−
∫ π

3   = 0ψ ω= Unlimited range;
symmetrical,
bell-shaped.
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

II

txt

Mt

xt
xf

M

M

<<−
+

−= + )5.0,1(

)(
)(

12

22

β

for z >= 0;

F(z)=p(x ≤ z)= 1 ∫
−

+−
2

2

1

0

)5.0,1(5.0
t

z

Mbeta

and for z < 0.

F(z)= p(x ≤ z)=

∫
−

+
2

2

1

0

)5.0,1(5.0
t

z

Mbeta

3  ψ  = 0,

-1< ω  < 0,

and ω  ≠  0.5

Limited range;
a special
case of type I;
For –1< ω <-0.5
the curve
is U-shaped,
 for –0.5< ω <0
 the curve
is bell-shaped,
symmetrical..
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

III

2 2 2 1

2

( )

( )

( )

N N Nx N

f x

e N e N x

N

N x N

− − −

=

+
Γ

− < <

F(z)= p(x ≤ z)=

2
( )

1
2

0

1

( )

N N z
u Ne u du

N

+
− −

Γ ∫
=incomplete gamma(N(N+z),N2)

3  0 

 = 0

ψ
ω

f
Unlimited range
 in one direction;
for N2>1
is a bell-shaped,
 for N2< 1
 is a J-shaped;
 it is gamma dist.

V 2 1

2 ( 1)
2 x

(2 ( 1))
(x)

(2 1)

*(x )

x

m

r m
m r

r m
f

m

r e

r

−

− −
− +

−=
Γ −

+
− < < +∞

F(z)= p(x ≤ z)=

1

2 ( 1)

2 2

0

(2 1)

r m

z r
m ww e dw

m

−
+

− −

−
Γ −

∫

=1-incomplete gamma(2m-1,2r(m-1)/z+r)

2
3

3 0,
0 2/ 5

4 (2 )
c

ψ ω ω

ψ >
< <

= +

Unlimited range
 in one direction;
 bell shaped;
it is an
inverse gaussian
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

VII
2 1 22

1 1( )
( )

( 0.5,0.5)

m ms x s
f x

m

x

β

− −+=
−

−∞ < < +∞

for z > 0;

F(z)= p(x ≤ z)=1-

0.5incomplete beta(

2
1

2 2
1

s

s z+
,m-0.5,0.5)

and for z < 0;

F(z)= p(x ≤ z)=

0.5incomplete beta(

2
1

2 2
1

s

s z+
,

m-0.5,0.5)

3  = 0

 0

ψ
ω f

Unlimited range;
symmetrical,
bell-shaped;
special case
 of type IV;
an important
distribution
belonging
 to this family
is the (central) t-
dist.
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

VIII

2
1

1 2
2 1

1 2

( )

(1 2 )( )
             

( )

1 2 0

m

m

f x

m x r

r r

r x r

m

−

−

=
− −

−
< <

− >

F(z)= p(x ≤ z)= 

1 2
1

1 2
2 1

( )

( )

m

m

z r

r r

−

−
−
−

3

2
3

2

0,

0.5,

(2 3 )

4(1 2 ) (2 )

ψ
ω

ω ψ
ω ω

>
< −

+ =

+ +

Limited range;
J-shaped;
special case of
type I.

IX

21

21
12

2
2

)(

))(21(
)(

rxr

rr

xrm
xf

m

m

<<
−

−−
= −

−

F(z)= p(x ≤ z)=

1 2
2

1 2
2 1

( )
1

( )

m

m

r z

r r

−

−
−−
−

)2()21(4

)32(

,05.0

,0

2

2
3

3

ωω
ψω

ω
ψ

++

=+

<<−
> Limited range;

J-shaped;

X f(x)=e-(x+1)

-1<x< +∞
F(z)=1- e-(z+1) 2

3  = 4,

 = 0

ψ
ω

Limited range
 in one
direction;
J-shaped;
special case of
III.
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Continuation Table 2.1.

No. of  type PDF CDF Criterion Remarks

Calculations of
constants and cdf’s
see page of appendix

XI
2

2
1 2

1 2

1

(2 1)( )
f(x)

( )

m

m

m x r

r r

r x

−

−

− −=
−

< < +∞

F(z)= p(x ≤ z)=

m

m

rr

rz
21

21

21
2

)(

)(
1

−

−

−

−−

)2()21(4

)32(

,5/20

,0

2

2
3

3

ωω
ψω

ω
ψ

++

=+

<<
> Unlimited

range
 in one
direction;
J-shaped.

XII 22

1

2 2 1 2

1 2

( )
f(x)

( 1, 1)( )

mx r

x r

m m r r

r x r

β

− +
−=

+ − + − +
< <

3  0

 =0

ψ
ω

≥ Limited range;
Twisted J-
shaped;
Special case
of type I.
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2.2. Using Pearson Family Distributions to Model Multinomial Choice

Regarding the use of the Pearson system for specifying models of multinomial

choice, first recall that the choice probabilities Pij = [ ]j i.(  0,1G , )∈x β , j = 1,….J, must

adhere to the adding up condition (1.2), as 
J J

ij j i.
j=1 j=1

P  = (  = 1.G , )∑ ∑ x β   In principle, any

nonnegative valued function, j i( . )ϑ x β , can be used to define a legitimate specification of

( )G g using the specification

                              Pij = j i.
j i. J

j i.
j=1

( )
(   .

( )
G

ϑ

ϑ

,
, ) ≡

,∑
x

x
x

β
β

β
                                            (2.4)

For example, the special case of the multinomial logit model follows upon setting

j i.
i j.

( )  e .ϑ , ≡
x

x
β

β   An alternative would be to let j i. j i.) = F , )ϑ ,(x (xβ β , with ( )jF g being a

member of the flexible family of curves contained in the Pearson system of CDF’s.

Letting ξ = ( 3ψ  , )ω ′  denote the unknown parameters of the Pearson system, the choice of

probability specification would then be

Pij = j
j i. J

j
j=1

i.

i.

F ( )
G ( )  .

F ( )

, ,
, , ≡

, ,  ∑
x

x
x

β ξ
β ξ

β ξ
                                              (2.5)

3.  Empirical Likelihood Problem Formulation and Solution

Consider the statistical model defined by (1.1), yij = j i.(G , )x β  + ijε .  We will later

assume that the functional form of ( )G g is derived from (2.5) and one of the CDFs in the
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Pearson system, and note that in any case E[ ijε |xi.] = 0.  In order to recover information

relating to Pij andβ , we examine the general concept of empirical likelihood in the case

of iid data.  In this estimation context, the joint empirical probability mass function is of

the form ∏
=

n

i
i

1

δ ,  where iδ , for i = 1,…n, represent empirical probability or sample

weights that are associated, respectively, with  the n random sample vector outcomes of

the multinomial choice process, ( )1,..., , 1,..., .i iJy y i n= . To define the value of the

empirical likelihood function for θ , where ≡θ  vec([β 1, β 2, β 3,… β J]) is a column-

vectorized representation of model parameters with dimension ((KJ) ×  1), the iδ ’s are

selected to maximize ∏
=

n

i
i

1

δ , subject to data-based constraints defined in terms of

moment equations

E[h(Yi.,xi., θ )] = E[( h1(Yi1,xi., θ ), h2(Yi2, xi., θ ),…. hJ(YiJ,xi., ′))]θ  = [0].

  In the context of estimating equation parlance, h(Yi. , xi. , θ ) is a vector  of

unbiased estimating functions relating to the population random vector Y.  For now we

are considering general forms of the moment equations, but later we will consider

different conceptual formulations of the moment equations which are more specific to the

multinomial choice model.  An empirical representation of the moment condition based

on empirical likelihood sample weights is given by [ ]E ( , ,h Y xδ θ  = 
n

i i. i.
i=1

( , , ) = δ∑ h y x 0θ ,

where θ is as defined above , Y is interpreted to have the empirical distribution

iδ = P(Y = yi.), i = 1…….n, and Eδ [.] denotes an expectation taken with respect to the

empirical probability distribution { }1 2 n, ,.....δ δ δ .
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The empirical likelihood maximization step chooses the joint empirical

probability distribution ∏
=

n

i
i

1

δ  for Y that assigns the maximum possible probability to the

sample outcomes y actually observed, subject to constraints provided by the empirical

moment equations. The constraints serve to introduce θ  into the  estimation problem.

The empirical likelihood function for θ  can be defined by maximizing the empirical

likelihood conditional on the value of θ , and then substituting the constrained maximum

value of each iδ , say i � � �\
)

 into ∏
=

n

i
i

1

δ , yielding a function of θ  as LEL ( );yθ  =

n

i
i=1

� � �∏ \

)

.  At this point, the empirical likelihood function operates like an ordinary

parametric likelihood function for estimation and inference purposes as long as the

estimating functions are unbiased and thus have zero expectations, have a finite

variances, and are based on independent or weakly dependent data observations.  In

particular, maximizing LEL ( );yθ   through choice of θ , defines the maximum empirical

likelihood (MEL) estimator of the parameter vector θ .

In the sections ahead we provide more details relating to the EL procedure in the

iid case ahead, which will further motivate the general concepts involved and will also

serve to define additional notation.  In particular, we provide details regarding how one

utilizes the EL concept to perform maximum empirical likelihood (MEL) estimation of

parameters for the statistical model yij = j i.(G , )x β + ijε   in (1.5).  We also discuss how to

test hypotheses and generate confidence regions and bounds based on the EL function,

including the use of the generalized empirical likelihood ratio (GELR) for inference

purposes.  Finally, we extended the EL principle to the case where the data are
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independent but not identically distributed. We then specialize the formulation to provide

estimates of the parameters of the multinomial choice model in section 4.

3.1. Nonparametric Likelihood Functions

Consider the inverse problem of using a random sample outcome

( )11 1 1 1. .= ,..., ,..., ,...,  ( ,..... )J n nJ ny y y y ′=y y y to recover an estimate of the PDF of Y.  In

this nonparametric setting, a nonparametric likelihood function can be defined whose

arguments are not parameters but entire probability densities or mass functions as

                        L(f;y) = 
n

i=1
i.f( )∏ y    j = 1……J                                                    (3.1.1)

The nonparametric maximum likelihood (NPML) estimate of i.f( )y  is defined by

f
f̂( ) = arg maxy [L(f;y)] = 

f
f̂( ) = arg maxy [

n

i=1
i.f( )∏ y ].                                               (3.1.2)

The solution to (3.1.2) defines an empirical probability mass function of the multinomial

type that represents discrete probability masses assigned to each of the finite number of

observed sample outcomes, where iδ = f(yi.) > 0 ∀ i .

  The preceding maximum likelihood problem (3.1.1) and (3.1.2) can be

represented as a nonparametric maximum likelihood problem of finding the optimal

choice of iδ ’s in a multinomial-based likelihood function, as

              
n n

1 2 n i i
i=1i=1

ˆ ˆ ˆˆ  = � ��������� � �� DUJ�PD[> @� � DUJ�PD[[ ln( �@
′ 

  ∑∏ .                  (3.1.3)

If the iδ ’s are unrestricted in value, (3.1.3) will have no solution since the objective

function would be unbounded, and so a normalization condition on the iδ ’s is imposed.
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In the case at hand, the constraint 1
1

=∑
=

n

i
iδ  is a natural normalization condition on the

iδ ’s, along with nonnegativity.

3.2 Empirical Likelihood Function for θ 

The likelihood (3.1.1) is devoid of the parameter vector θ  and so it cannot be used to

distinguish likely from unlikely values of a parameter vector θ .  Linkage between the

data, y = 11 1J n1 nJ 1. . ( y ,...y ,...,y ,...y  )  ( ,..... )n
′ ′= y y , the population distribution F(y), and

the parameter of interest, θ , is accomplished through the use of unbiased estimating

functions to define estimating equation constraints on the NPML problem.  Information

about θ  is conveyed by the estimating function in expectation or moment form E[h(Y ,

x , θ  )] = 0 , which defines constraints on the NPML problem that generates the

empirical likelihood function.  Given that the expectation is unknown because F(y) is

unknown, an estimated empirical probability distribution is applied to observed sample

outcomes of h(Y , x , θ  ), to define an empirical expectation 
n

i
i=1

i. i.( , , ) = δ∑ h y x 0θ  that

approximates E[h(Y , x , θ  )] = 0 and that can be used in forming an empirical moment

equation.  The system of m equations hEL(Y , x , θ  ) ≡  
n

i
i=1

i. i.( , , ) = δ∑ h y x 0θ , when

viewed in the context of estimating equations for θ , is generally underdetermined, just-

determined, or over-determine for identifying a  ((KJ) ×  1) vector θ , depending on

whether m < , =, or > KJ, respectively.  The choice of the unknown iδ ’s is solved by

maximizing the empirical likelihood objective function, and in the process, the estimating

equations are reconciled to yield a solution for θ  (assuming a feasible solution exists).
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The log-empirical likelihood function for θ  is defined as

ln[LEL( θ ;y)] ≡  
n n n

i i i
i=1 i=1 i=1

i. i.max ln( ) s.t. (y , ,  ) =  and = 1δ δ δ 
  
∑ ∑ ∑h x 0

δ
θ ,                 ( 3.2.1)

Imposing both the normalization condition on the iδ ’s and the empirical moment

constraints, the solution to the problem of finding the NPML estimate of ln(f(y)) is thus

defined in terms of the choice of nonnegative iδ ’s that maximize 
n

i
i=1

ln( �∑  subject to the

constraints 
n

i
i=1

 �∑  and 
n

i
i=1

i. i.(y , , ) = δ∑ h x 0θ .  The Lagrange function associated with the

constrained optimization problem is given by

L( ηδ, , λ ) ≡  
n n n

i i i
i=1 i=1 i=1

i. i.ln( )  - ( - 1 ) - ( , ,  )δ η δ δ ′  
∑ ∑ ∑ h y xλ  θ .                                   (3.2.2)

Solving for the optimal and , η δ  λ  in the Lagrange form of the problem (3.2.2)

and then substituting optimal values for δ  into the objective function of the

maximization problem in (3.2.2), a specific functional form for the EL function in terms

of θ  can be defined.  In particular, first note that the first-order conditions with respect

to the iδ ’s are

J

j j
j 1i

i . i .
ln ( 1 1

( , , ) -   ,  i.
n

L η λ η
δ δ =

∂ = − = ∀
∂ ∑ y x 0

δ λ θh
i

, , )
                                             (3.2.3)

Also, from the equality  0  
(ln

1

=
∂

∂∑
=

n

i
i

L

i

),,
δ

ηδ and E [h(Y , x , θ  )] =

n

i i. i.
i=1

( , , ) = δ∑ h y x 0θ  it follows that

 0   -n 
n

1
   

(ln

1

==
∂

∂∑
=

η
δ

ηδ
n

i
i

L

i

),,
, (3.2.4)
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and thus η  = 1. The resulting unique optimal iδ  weights implied by (3.2.3) can be then

be expressed as the following function of  θ and λ ,

              

1
J

i j j
j 1

i. i.( n h ( , , )  1δ λ
−

=

  
= +  

   
∑ y xθ λ θ, )   .                                                       (3.2.5)

Substituting (3.2.5) into the empirical moment equations 
n

i
i=1

i. i.( , , ) = δ∑ h y x 0θ  produces a

system of equations that λ  must satisfy as follows:

n

i
i=1

i. i.( , , )δ∑ h y x θ  = 

1
n J

1
j j i. i.

i=1 j 1
i. i.n h ( , , )  1  ( , ,λ

−

−

=

  
+ =  

   
∑ ∑ y x h y x 0� � �θ θ) .                  (3.2.6)

Under regularity conditions, Qin and Lawless (1994,pp.304-5) show that a well-defined

solution for λ  in (3.2.6) exists.  However, the solution λ ( θ ) is only an implicit function

of θ , which we denote in general by

              λ ( θ ) = 
n

i=1
i. i.

i. i.

1 1
 arg   ( , , ) =  .

n 1+ ( , , )

  
   ′   

∑ h y x 0
h y xδ

θ
λ θ

                        (3.2.7)

The solution λ ( θ ) is continuous and differentiable in θ under regularity conditions.

Substituting the optimal Lagrangian multiplier values λ ( θ ) into (3.2.5) allows

the empirical probabilities to be represented in terms of θ  as iδ ( θ ) ≡  iδ [ θ , λ ( θ ) ]

= 

-1
J

j j
j=1

i. i.n ( )h ( , , ) + 1λ
  
  
   

∑ y xθ θ .  Then, substitution of the optimal δ ( θ ) values into

the (unscaled) objective function )ln(
1

∑
=

n

i
iδ  in (3.2.1) yields the expression for the log-

empirical likelihood function evaluated at θ  given by

              Ln[LEL( θ ;y)] = -
n

i=1
i. i.ln(n[1+ ( ( , , )])′∑ h y xλ θ ) θ .                                                     (3.2.8)
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3.3 Maximum Empirical Likelihood Estimator

We can define a maximum empirical likelihood (MEL) estimator for θ  by

choosing the value of θ  that maximizes the empirical likelihood function (3.2.1), or

equivalently maximizes the logarithm of the EL function as follows:

              [ ]ˆ arg max ln( ( , , )) .ELL= Y x
θ

θ  θ                                                                       (3.3.1)

The MEL estimator, θ̂ EL, is an extremum estimator whose solution is not generally

obtainable in closed form because the λ ( θ ) of the EL function (recall (3.2.7)) is not a

closed-form function of θ , and thus numerical optimization techniques are most often

required to obtain outcomes of the MEL estimator.  We could also obtain the MEL

estimate of θ  as the solution ELθ̂  to the system of equations

EL ( , , ) = E ( , , ) δh y x h y  xθ θ
1

i. i.
ˆ ( , , ) = 

n

i
i

δ
=

= ∑ h y x 0θ

where

 îδ  ( ELθ̂ ) ≡  iδ [ θ̂ EL, λ ( θ̂ EL) ] = 

1
J

j EL j EL
j 1

i. i.
ˆ ˆn ( h ( , , )  1λ

−

=

  
+  

   
∑ y xθ θ ) ,               (3.3.2)

for i = 1,…,n. Therefore, the MEL method of estimation can be viewed as a procedure for

combining the set of estimating functions i. i.( , , )h y x θ , i = 1,…….n, into a vector-

estimating equation EL ( , , )h y  x θ  that can be solved for an estimate of θ .

Qin and Lawless (1994) show that the usual consistency and asymptotic normality

properties of extremum estimators hold for the MEL estimator under regularity

conditions related to the twice continuous differentiability of ( , , )h y  x θ with respect to θ 
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and the boundedness of h and its first and second derivatives, all in a neighborhood of the

true parameter value 0θ  .  They also assume that the row rank of

( , , )
E

 ∂
 ∂  

h y  x

0θ

θ
θ

equals the number of parameters in the vector θ  (Qin and

Lawless,1994,p.305-6).  These conditions lead to the MEL estimator’s being consistent

and asymptotically normal with limiting distribution

              ( ) ( )
1

2
EL 0

ˆn  - N ,
d

→ 0 θ θ Σ                                                                                (3.3.3)

where

1
1( , , ( , , 

 = E E ( , , ( , , E
0

0 0

−
−    ∂ ) ∂ )  ′) )       ′∂ ∂        

h Y x h Y x 
h Y x h Y x 

θ
θ θ

θ θΣ θ θ
θ θ

.      (3.3.4)

The covariance matrix Σ  of the limiting normal distribution can be consistently

estimated by

EL

EL

1n n

i i EL EL
i=1 i=1ˆ

1

n

i
i=1 ˆ

i. i.
i. i. i. i.

i. i.

( , , ˆ ˆ ˆ ˆ( , , ( , , ˆ  =

        

( , , ˆ             ,

δ δ

δ

−

−

 ∂ )   ′  ) ) ∂    


′ ∂ )  × ∂   

∑ ∑

∑

h y x  
h y x  h y x  

h y x  

θ

θ

θ
θ θ

Σ θ

θ
θ

                         (3.3.5)

where the îδ ’s are the same as defined via (3.3.2).  By substituting n-1 for îδ ’s in (3.3.5),

an alternative consistent estimate is defined, which amounts to applying probability

weights based on the empirical distribution function instead of the empirical probability

weights generated by the empirical likelihood.  The îδ  probability weight estimates

obtained from the EL procedure would be generally more efficient in finite samples if the
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estimating function information is unbiased.  The normal limiting distribution of ELθ̂

allows asymptotic hypothesis tests and confidence regions to be constructed.

3.4 Optimal Estimating Functions

An optimal estimating function is an unbiased estimating function having the smallest

covariance matrix.  Godambe (1960) was the first to suggest that the vector estimating

function be standardized as

              s

( , , 
( , , ( , , 

 ∂ )  ) = Ε )  ∂  
h Y x 

h Y x h Y x 
−1

θ
θθ  θ

θ
                                              (3.4.1)

so that the multivariate optimal estimating function, or OptEF, is then the unbiased

estimating function that minimizes , in the sense of symmetric positive definite matrix

comparisons, the covariance matrix

    

[ ] [ ]
-1

s

-1

( , , 
cov ( , , = E  E ( , , ( , , 

( , , 
                                   E . 

 ∂ )   ′) ) )  ∂  

 ∂ )  ×   ′∂  

h Y x 
h Y x h Y x h Y x 

h Y x 

θ θ

θ

θθ θ θ
θ

θ
θ

                     (3.4.2)

In the special case in which ( , , )h y  x θ  is actually proportional to, or a scaled version of

the log of the score or gradient vector function corresponding to a genuine likelihood

function, it follows under the standard regularity conditions applied to maximum

likelihood estimation that

              -
2( , , lnL( , , 

E   E
 ∂ ) ∂ )  ∝ −   ′∂ ∂ ∂   

h Y x Y x 
θ θ

θ θ
θ θ θ

                                               (3.4.3)
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and

              [ ] lnL( , , lnL( , , 
E ( , , ( , ,   E  ,

 ∂ ) ∂ )′) ) ∝  ′∂ ∂ 

Y x Y x 
h Y x h Y x θ θ

θ θθ θ
θ θ

           (3.4.4)

where the expectations on the right-hand sides of (3.4.3) and (3.4.4) are equal.  In this

case (3.4.2) becomes

              

1
2

s

lnL( , , 
cov( ( , ,  -E

−
  ∂ ))) =   ′∂ ∂  

Y x 
h Y x θ

θθ
θ θ

,                                              (3.4.5)

which is recognized as the usual ML covariance matrix and the CRLB for estimating the

parameter vector θ .  This provides an OptEF finite sample justification for ML

estimation in the case of estimating a vector of parameter θ  and is analogous to the

Gauss-Markov theorem justification for LS estimation.

The EL empirical moment constraints defined in terms of the conditional-on- θ 

optimum empirical probability weights are given by

[ ]
n

EL i
i=1

i. i.
ˆˆ( , ,  E ( , ,  ( , ( , ,  =  

           

δ) ≡ ) ≡ , ) )∑h Y x h Y x Y x h y x  0δθ θ θ θ

and these empirical moment constraints can be interpreted as vector estimating equations.

The EL provides a method for forming a convex combination of n (m ×  1) estimating

functions, i. i.( , , )h y   x θ , for i = 1,…,n.  Thus, we want to investigate whether a particular

combination of the n estimating functions used in the MEL approach is in some sense the

best combination.  Consider the class of estimation procedures that can be defined by a

combination of the estimating equation information as

n

i=1
i. i.( , , ) , ( , , ) = τ ≡ ∑h Y  x (x h y   x 0θ τ θ) θ                                                          (3.4.6)
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where ,(xτ θ)  is a ( (KJ) ×  m) real-valued function such that the ((KJ) ×  1) vector

equation ( , , )h Y  xτ θ  = 0 can be solved for the (K×  1) vector θ  as ˆ ( )yτθ .

McCullagh and Nelder (1989,p.341) show that the optimal choice of τ, in the

sense of defining a consistent estimator with minimum asymptotic covariance matrix in

the class of estimators for θ  defined as solutions to (3.4.6), is given by

              [ ] 1( , , )
( , ) = E cov( ( , , ))

−∂ 
 ∂ 

h y  x
x h y  x

θτ θ θ
θ

 ,

(3.4.7)

where Y denotes the random variable whose probability distribution is the common

population distribution of the Yi’s.  In case the Y’s are independent, but not identically

distributed, we have

1

i
i. i.

i. i. i.

(y , , )
( ) = E cov( (y , , ))

−∂      ∂ 

h   x
x h   x

θ
τ ,θ θ

θ

(3.4.8)

and 
n

i
i=1

i. i. i.( , , ) ( , , ) = ≡ ∑h Y  x (x h y   x 0θ τ , θ) θ .  Using the optimal definition of iτ  in

(3.4.8) defines an estimator for θ  that has precisely the same asymptotic covariance

matrix as the MEL estimator (3.3.4) because, given the unbiased nature of the estimating

equations, i. i.cov (y , ,  =  ) h   x θ i. i. i. i.E (y , , (y , ,   ′) ) h   x h   xθ θ θ (McCullagh and

Nelder,1989, p.341).
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4.  EL Estimation in the Multinomial Choice Problem

In this section we examine an extended illustrative example demonstrating the setup

of the MEL approach to estimating the parameters of a multinomial choice model.

In this application, the form of the unbiased estimating functions for θ is given by

              
i

n

i .
i=1

i i. i.( , , ) , (y , , ) ≡ ∑h Y  x (x h   xτ θ τ θ) θ                                                           (4.1.1)

where

i1 1 i.

i2 2 i.

i3 3 i.
i.

iJ J i.

2 2
i1 i1 1 i. 1 i. 1 i.

2 2
i2 i2 2 i. 2 i. 2 i.

ii . i.

y (

y (

y (

y (

y  2y ( ( (

y  2y ( ( (

(y , , ) = y

G

G

G

G

G G G

G G G

− , ) 
 

− , ) 
 − , ) ′ 
         .
 

        . 
 − , ) 

− , ) + 2 , ) − , )

− , ) + 2 , ) − , )

x

x

x
x

x

x x x

x x x

h   x

e

β

β

β

β

β β β

β β β

θ 2 2
3 i3 3 i. 3 i. 3 i.

2 2
iJ iJ J i. J i. J i.

 2y ( ( (

y  2y ( ( (

G G G

G G G

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − , ) + 2 , ) − , )
 
                      . 

                       . 
 − , ) + 2 , ) − , )
 
 
 
 
 
 
 
 
   

x x x

x x x

β β β

β β β

                              (4.1.2)
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and i. i.(y , , )h  x θ  is a vector of dimension ((KJ+J) ×  1), and recall that e  denotes the

Hadamard (elementwise) product. Taking into consideration the adding up condition in

(1.2), which implies that there are redundant moment equations among the (KJ+J)

equations, we reformulate (4.1.2) and represent i. i.(y , , )h  x θ  with dimension ((K(J-1)+(J-

1)) ×  1) as follow

i2 2 i.

i3 3 i.

i4 4 i.
i.

iJ J i.

2 2
i2 i2 2 i. 2 i. 2 i.

2 2
i3 i3 3 i. 3 i. 3 i.

i. i. i

y (

y (

y (

y (

y  2y ( ( (

y  2y ( ( (

(y , , ) = y

G

G

G

G

G G G

G G G

− , ) 
 − , ) 
 − , ) ′ 

        . 
         .
  − , ) 

− , ) + 2 , ) − , )

− , ) + 2 , ) − , )

x

x

x
x

x

x x x

x x x

h   x

e

β
β
β

β

β β β

β β β

θ 2 2
4 i4 4 i. 4 i. 4 i.

2 2
iJ iJ J i. J i. J i.

 2y ( ( (

y  2y ( ( (

G G G

G G G

 
 
 
 
 
 
 
 
 
 
 
 
 
 − , ) + 2 , ) − , ) 
                      . 

                       . 
 − , ) + 2 , ) − , )
 
 
 
 
 
 
 
 
   

x x x

x x x

β β β

β β β

                              (4.1.3)

and j i.(G , )x β  denotes the conditional expectation of Yij given xi., j i. ij i.(  = E( y )G , )x xβ .

In the context of multinomial choice problem, j i.(G , )x β denotes the conditional-on- xi.

probability of choosing alternative j for observation i. For the sake of expositional clarity,

we henceforth consider the special case of the multinomial logit model upon setting
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 Gj = j i.(G , )x β = 
i.

J

k 2

k

1

1 + e
=

∑ x β
               for j = 1

                       = 
i. j

i. k
J

k 2

e

1 + e
=

∑

x

x

β

β
                for j = 2,3,…..J                                              (4.1.4)

 We emphasize that j i.( )G ,x β  could be any link function of flexible form that satisfies

(1.2) and that defines a legitimate multinomial response model globally.  Later we will

consider j i.( )G ,x β  as being formed from CDFs in the Pearson system, which themselves

satisfy (1.2).

The OptEF estimator is in the general class of estimating equations based on the

estimating functions of the form (4.1.1) characterized by the solution to

( )
N

-1i. i.
i. i. i. i.

i=1

 ( , , )
( , , ) = E (( , , ))  = i

 ∂  
  ∂  

∑Opt

h y   x
h y   x h y   x 0

θ
θ Φ θ

θ
    (4.1.5)

where i. i. ( , , )
E

∂ 
 ∂ 

h y   x θ
θ

is a matrix of dimension ((K(J-1) )×   (K(J-1)+(J-1))) as

i. i. ( , , )
E

∂ 
 ∂ 

h y   x θ
θ

=

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 i. 3 i. 4 i. 32 4
2 3 4

2 i. 3 i. 4 i. 32 4
2 3 4

2 i. 3 i. 4 i. 32
2 3

4

G G G GG G
   2G 1  2G 1  2G 1

G G G GG G
   2G 1  2G 1  2G 1

G G G GG
   2G 1  2G

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4

′ ′ ′−∂ −∂ −∂ ∂∂ ∂− − −
∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′−∂ −∂ −∂ ∂∂ ∂− − −
∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′−∂ −∂ −∂ ∂∂ − −
∂ ∂ ∂ ∂ ∂

x x x

x x x

x x x

β β β β β β

β β β β β β

β β β β β
[ ] [ ]4

4

G
1  2G 1

4

 
 
 
 
 
 
 ∂ −
 ∂ β

                   (4.1.6)

where
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j i.j
i. J J

j j

k=2 k=2

i. j j

j i.j
i. j k

k k

i. j i. j

i. k i. k

G ( ,G e e
 =  1 -  

1 e 1 e

G (1 G )  j 2

G ( ,G
 = G G     for k j and k

   
   ∂ )∂ ′    

∂ ∂   + +     
′ − ∀ ≥

∂ )∂
′ ≠

∂ ∂

∑ ∑

x x

x x

x
 = x  =

                               = x

x
 = - x

β β

β β

β
β β

β
β β

>1

                                     (4.1.7)

j i.

i. i. j j
j

j i.

i. i. j k
k

G
 = G (1 G )  j 2

                =    0                   for j=1

G
 - G G          for k j and k > 1

 

′ ∂   ′ − ∀ ≥
∂

′ ∂   ′= ≠
∂

x
x x

x
x x

β

β

                                                         (4.1.8)

and iΦ = ( )i. i.( , , )cov h y   x θ  = i. i. i. i.E ( , , ) ( , , )  ′   h y   x h y   xθ θ θ is the covariance matrix of

(Yij|xi.) having dimension ((K(J-1)+(J-1) ×  (K(J-1)+(J-1)).  Given the 0-1 dichotomous

outcomes of the Yij’s, note that

E(Yij
n) = j i.(G , )x β  for every positive integer n.

Also, given that the Yij’s must sum to 1, it follows that

E(Yij
n Yik

m) = 0      for every m and n positive integers greater than one

                                = - j i.(G , )x β k i.(G , )x β             for m=n=1.

 In order to define the OptEF, note that the covariance matrix of any [Yi1,.. YiJ,

(Yi1-G1)
2, … (YiJ-GJ)

2] vector in this multinomial choice problem is given by
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i

G (1 G ) 2G G 2G G G (1 G )(1 2G ) G G 1 4G G G 1 4G  2 2 i. i. 2 3 i. i. 2 4 i. i. 2 2 2 i. 2 3 3 i. 2 4 4 i.
2G G G (1 G ) 2G G G G 1 4G G (1 G )(1 2G ) G G 1 4G2 3 i. i. 3 3 i. i. 3 4 i. i. 2 3 2 i. 3 3 3 i. 3 4 4 i.
2G G2 4 i. i

′ ′ ′ ′ ′ ′− − − − − − −

′ ′ ′ ′ ′ ′− − − − − − −

′−

=
x x x x x x x ( - )x ( - )x

x x x x x x ( - )x x ( - )x

x x

Φ

2G G G (1 G ) G G 1 4G G G 1 4G G (1 G )(1 2G ). 3 4 i. i. 4 4 i. i. 2 4 2 i. 3 4 3 i. 4 4 4 i.
2G (1 G )(1 2G ) G G 1 4G G G 1 4G G (1 G )(2G 1) G G [2G (1 4G ) (1 2G )] G G [2G (1 4G ) (1 2G )]2 2 2 i. 2 3 2 i. 2 4 2 i. 2 2 2 2 3 2 3 3 2 4 4 2 2

G G2 3

′ ′ ′ ′ ′− − − − − −

′ ′ ′− − − − − − − − − − − −

−

x x x x ( - )x ( - )x x

x ( - )x ( - )x

21 4G G (1 G )(1 2G ) G G 1 4G G G [2G (1 4G ) (1 2G )] G (1 G )(2G 1) G G [2G (1 4G ) (1 2G )]3 i. 3 3 3 i. 2 4 2 i. 2 3 2 3 3 3 3 3 3 4 4 3 3
G G 1 4G  G G 1 4G G (1 G )(1 2G ) G G [2G (1 4G ) (1 2G )] G G [2G (1 4G2 4 4 i. 3 4 4 i. 4 4 4 i. 2 4 4 2 2 3 4 4 3

′ ′ ′− − − − − − − − − − −
′ ′ ′− − − − − − − −

( - )x x ( - )x

( - )x ( - )x x 2) (1 2G )] G (1 G )(2G 1)3 4 4 4

 
 
 
 
 
 
 
 
 
 
 − − − −  

(4.1.7).

By substituting (4.1.3) through (4.1.9) in (4.1.5) we have constructed an optimal

estimating function of the form



33

( )( )i . i .
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i . i .
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i3 3 i.

y (
i4 4 i.

i.
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iJ J i.
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i2 i2 2 i. 2 i. 2 i.
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 
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β
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3 i.

2 2y  2 y ( ( (
i4 i4 4 i. 4 i. 4 i.

2 2y  2y ( ( (
iJ iJ J i. J i. J i.

G

G G G

G G G

 
 
 
 
 
 
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 
 
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
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(4 .1 .9 )
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 that can be used in the constrained optimization problem of (3.2.2).

If the . ’i sε  are iid, each with extreme value distribution, then the special case of

the multinomial logit model is defined as in (4.1.4) and the  log-likelihood function of the

multinomial logit model can be specified as

                
n J J

ij i. j
i=1 j 2 k 2

i.ln( ( )) = y [ ] - ln(1 + e )jL
= =

 
;  

 
∑ ∑ ∑ x

y x
β

β β                                         (4.1.10)

where Gj(xi.β ) = 1J

k=2

i. j

i. k

e
 and [ ].

1 + e
≡

∑

x

x
0

β

β
β

Solving the first-order conditions of (4.1.10) obtains

              
n

i. ij j i.
i=1j

ln( ( ))
 = (y  G ( )) = 

L∂ ; ′ −
∂ ∑y

x x 0
β β

β
, for  j = 2,…..J   .                       (4.1.11)

Note that the ( , , )Opth Y  x θ  in (4.1.5) can be specified to represent the first-order

conditions (4.1.11) and therefore

              ( , , )Opth Y  x θ  = 

i2 2 i.

i3 3 i.n

i.
i=1

iJ J i.

y  G (x , )

y  G (x , )

 .

.

y  G (x , )

− 
 − 

′ 
 
 
 − 

∑ xe

β
β

β

                                                (4.1.12).

The solution for β  obtained from (4.1.11) or (4.1.12) is the optimal estimating function

(OptEF) estimator for β .  The estimating function given by (4.1.12) is asymptotically

optimal in the sense that it solves the problem of seeking the unbiased estimating function

that produces the consistent estimating equation (EE) estimator of β  with the smallest

asymptotic covariance matrix.  Furthermore, the ML estimator has the finite sample

optimality property of representing the estimating function (4.1.12) with the smallest
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standardized covariance matrix.  We emphasize that these optimality results are predicted

on the assumption that the logistic-extreme value distribution assumption underlying the

likelihood specification is in fact the correct parametric family of distributions underlying

the data sampling process. It is also useful to note that (4.1.3) subsumes (4.1.12) and the

asymptotic covariance matrix of the MEL estimator generally becomes smaller (by a

positive definite matrix) as the number of estimating equations on which it is based

increases (Qin and Lawless,1994, Corollary 1).

4.1 Adding Flexibility to the EL Formulation

In this section we introduce flexibility into the specification of ( )G g by adding

parameters to index members of the class of Pearson Family distributions.  While we

focus on the Pearson class here,  we emphasize that any other class of distributions  could

be used. The criteria for identifying different members of the system of Pearson

distributions can be expressed parametrically in terms of a  (2 1)× vector, ξ ,of

parameters, so that j i. j i.G ( , ) G ( , , )=x xθ β ξ  where 1 2 3 vec([ , ,....... , , ])J ψ ω≡θ  β β β  is a

column-vectorized representation of model parameters now of dimension ((KJ+2)×  1).

Hence, the alternative formulation of unbiased estimating functions for θ is of the form

              
n

i i. i. i.
i=1

( , , ) , ( , , ) ≡ ∑h Y  x (x h y   xθ τ θ) θ                                                          (4.2.1)

where
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                   (4.2.2)

and j i.(G , , )x β ξ  again denotes the conditional expectation of Yij given xi.  In the context

of multinomial choice problem, j i.(G , , )x β ξ  denotes the conditional-on- xi. choice

probability. The OptEF estimator is in the general class of estimating equations based on

the estimating functions of the form (4.2.1) characterized by the solution to

( )( )
N -1i. i.

i. i. i. i. i. i.
i=1

 ( , , )
( , , ) = E cov ( , , ) ( , , )  = 

 ∂  
  ∂  

∑Opt

h y   x
h y   x h y   x h y   x 0

θ
θ θ θ

θ
      (4.2.3)

where ij i. (y , , )
E

∂ 
 ∂ 

h   x θ
θ

is now a matrix of dimension ((K(J-1)+2 )× (K(J-1)+(J-1))),

where , for example in the case of J = 4 ,
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                  (4.2.4)

and iΦ = ( )i. i.cov ( , , )h y   x θ  = i. i. i. i.E ( , , ) (( , , )  ′  ) h y   x h y   xθ θ θ is the

((K(J-1)+(J-1) ×  (K(J-1)+(J-1)) covariance matrix of (Yij|xi.).

 In order to define the OptEF, note that the covariance matrix of any [Yi1,.. YiJ, (Yi1-G1)
2,

… (YiJ-GJ)
2] vector in this multinomial choice problem is given by (again for an

illustrative case where J = 4)
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′ ′ ′− − − − − − − − − − − −
′ ′ ′− − − − − − −

( - )x x ( - )x

( - )x ( - )x x 2(1 4G ) (1 2G )] G (1 G )(2G 1)4 3 3 4 4 4

 
 
 
 
 
 
 
 
 
 
 − − − − −  

By substituting (4.2.4) and (4.2.5) in (4.2.3) we have constructed an optimal estimating

function that can be used in the constrained optimization problem of (3.2.2).
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5. Sampling Experiments

We performed a Monte Carlo experiment to estimate a Multinomial Logit (ML) response

model where 1β  has been normalized, without loss of generality, to a zero vector for

purposes of parameter identification and there existed four choice alternatives. The x data

were all generated iid from the uniform distribution having support on the interval

( )5,5− . The logistic distribution was used to generate the choice probabilities underlying

the data sampling process. The link function used to model the multinomial choice

problem was Pearson X. The parameters of the latent variable equations underlying the

Multinomial Logit model are given by

21 31 41

2 22 3 32 4 42

23 33 43

0.1 0.4 0.7

   = 0.2 ,   = 0.5 ,  and  = 0.8

0.3 0.6 0.9

 

β β β           
           = β = β = β           
           β β β           

β β β
 .

The results of the Monte Carlo experiment, for 200 repetitions of the sampling

experiment, are displayed in Table 1. The results suggest that the EL estimation

procedure produces reasonably accurate estimates of the model parameters.  As the

sample size increases, the mean square error decreases, indicative of the consistency of

the EL estimator. The means of the estimates for the 200 Monte Carlo replications are

very close to the true values of the model parameters for sample sizes ≥ 500, suggesting

that for all practical purposes, the EL estimators are producing near-unbiased estimates of

the parameters. For smaller sample sizes, there is some indication that the parameter

estimates are biased to some degree, although the degree of bias is relatively small.

Overall, the estimates were quite accurate across all sample sizes, and accurate for large
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sample sizes, and would appear to be useful from an empirical application application

perspective.

Table 1.  Monte Carlo Results: Multinomial Choice Model with Four Alternatives1

Sample Sizes

Parameter TrueValue  50 100 200 250 300 500 600 700

21β 0.1 0.115 0.134 0.121 0.127 0.096 0.094 0.106 0.093

22β 0.2 0.212 0.216 0.209 0.209 0.208 0.198 0.199 0.197

23β 0.3 0.307 0.306 0.319 0.311 0.298 0.296 0.301 0.301

31β 0.4 0.436 0.439 0.457 0.425 0.412 0.410 0.399 0.421

32β 0.5 0.523 0.533 0.523 0.530 0.521 0.509 0.506 0.504

33β 0.6 0.629 0.618 0.634 0.628 0.627 0.610 0.611 0.608

41β 0.7 0.739 0.720 0.751 0.747 0.698 0.708 0.707 0.719

42β 0.8 0.856 0.851 0.852 0.834 0.832 0.814 0.815 0.804

43β 0.9 0.956 0.945 0.963 0.941 0.935 0.917 0.908 0.910

1MSE(β ) 0.531 0.519 0.459 0.292 0.283 0.149 0.130 0.114

1) Values below the sample size indicators are the sample means of the estimates for 200
MC repetitions of the experiment.

We also note that the computation of the estimates for this 4-dimensional choice

model was relatively quick with effectively no numerical difficulties when finding

solutions.  We also note that the discrepancy in some of the parameters may be due to the

fact that we have used numerical gradients instead of analytical gradients in solving the

EL optimization problem.  Analytical gradients could serve to speed convergence further,

and would also allow solutions to higher levels of tolerance, potentially further increasing

the accuracy of the parameter estimates.
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6. Concluding Remarks

This paper has presented a flexible semiparametric methodology for estimating

multinomial choice models. The parameter estimates from the Monte Carlo results appear

quite reasonable and demonstrate the potential usefulness of the proposed approach. The

estimates obtained by this procedure are consistent and asymptotically normal. However,

our consistent estimator will generally not be fully efficient. Nonetheless, because of the

computational difficulties associated with more efficient estimators, the empirical

tractability of the method for estimating a system of multinomial choice models for large

data sets and for relatively large dimensional choice sets is very attractive in empirical

practice. Moreover, in practice, there is often insufficient information to specify the

parametric form of the function linking the observable data to the unknown choice

probabilities, in which case a fully efficient method of estimating the model parameters

will generally remain unknown in any case. In such cases, the flexible Pearson family of

parametric distributions may be useful as a basis for a flexible specification of a link

function.
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Appendix: Derivation of CDFs of the Pearson Family of Distributions
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