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The purpose of this paper is to incorporate semiparametric alternatives to
maximum likelihood estimation and inference in the context of unordered multinomial
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multinomial distribution characterized by one of the CDFs in the Pearson system. Given
this situation, it is possible to utilize the concept of unbiased estimating functions (EFs),
combined with the concept of empirical likelihood (EL) to define an (empirical)
likelihood function for the parameter vector based on a nonparametric representation of
the sample’s PDF. This leads to the concept of maximum empirical likelihood (MEL)
estimation and inference, which is analogous to parametric maximum likelihood methods

In many respects.
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1. Introduction

Consider the unordered multinomial response model where outcomes are given in

the form of an experiment consisting of N trials on J-dimensional multinomial random
variables (Y., Yoy ) seoes (Yons o Yoo ) - Thevariabley;, for i = 1,2,....N, exhibits a binary
outcome, where y;; = 1 is observed iff the j™ choice among J unordered alternatives j =
1,2,....J, is observed on the i™ trial, in which case yix = 0 Yk # j . It isassumed that the

choice situation is such that the J alternatives are mutually exclusive, so that only one of

the alternatives can be chosen on trial i, and the J dternatives exhaust the choice

J
possibilities, which then impliesthat )y, = 1, Vi.

=1
The probability that y;; = 1, denoted by P;, is then related to a set of K explanatory

variables x;. through alink function

Pi(xi.) = P(y; = 1 xi, B) = G(xi., B) (1.1)

fori=12,...Nandj=12,....J, where 3, isa(Kx1) vector of unknown parameters,

B = vec([B,,B,,.-B,]) isacolumn-vectorized representation of model parameters of
dimension (KJx1), X = (Xi1, Xi2,...., Xik) iSa (1xK) row vector of explanatory variables
values, andG () : R— [0,1] may be either known or unknown, with the additional

constraint that

iej(xi_,ﬁ) =1, Vi . (1.2)



The explanatory variables, x; could be allowed to change by choice alternative, but we
focus on a basic case where they do not.

Define the noise termg; as
g = Vi - Elyixl =y - Gj(x;,B)
where E[yijxi] =G;(x;,B) because of the Bernoulli marginal distribution of the y;;
variable. The data sampling process relating to observed choices can then be represented
as
Yii = Pi(xi) + & = G/(x.,B)) + & (13)

where theg; s are assumed to be independent across observationsi =1,2,....N, the g;'s
are bounded between [-1,1], and E[ ¢; xi] = 0.

When the parametric functional form of G;(x;,[) is known, maximum likelihood

(ML) estimation is possible, and a specific functional choice has often been
_ 1 -
G(x.p)= ——— forj=1

1+ Y elibe

k=2
P

=———  forj=23,....d (1.4)
1+ ) eibe
k=2

where B, has been normalized, without loss of generality, to a zero vector for purposes of
parameter identification. The definition in (1.4) satisfies the required propertiesin (1.2)
and defines the Multinomial Logit (ML) response model applied frequently in practice.
Similarly, aMultinomial Probit (MNP) model results when a multivariate normal

distribution is used in specifying the distribution of the noise component of (1.3).



However, when Jis large, the probit model is computationally difficult except when the
number of alternative choices s restricted to 3 or less. If the distribution underlying the
likelihood specification isin fact the correct parametric family of distributions underlying
the sampling process, then the estimator is generally unique, consistent and
asymptotically normal. However, the economic theories that motivate these models

rarely justify any particular probability distribution for the noise term .

Attempts to introduce flexibility into the specification of G() have been
problematic in applications. Supposing G(«)isapolynomial of order d, some

trigonometric function, or some other flexible functional form, the flexibility added to the
estimation problem may introduce unbounded likelihood functions on parameter space
boundaries, multiple local maxima, and/or non-concavities that make numerical
maximization of the log likelihood function difficult or impossible.

Semi-parametric methods of estimation provide an alternative approach, such as

Ichimura (1993) who demonstrates a least squares estimate of 3 which requires ¢; to be

independent of x;, ruling out endogeneity and/or measurement error. Klien and Spady
(1993) developed a quasi-maximum likelihood estimator for the case in which Yj; is
binary. These estimators are consistent and asymptotically normal under regularity
conditions. But these estimators share the disadvantage of being difficult to compute
because they involve nonlinear optimization problems whose objective functions are not
necessarily concave or unimodel. Using an information theoretic formulation, Golan,
Judge, and Perloff (1996) demonstrate a semiparametric estimator for the traditional

multinomial response problem that has asymptotic properties in line with parametric



counterparts. But a potential draw back to their method is that the P;’s have no direct
parametric functional link to the x;’ s which makes prediction difficult or impossible.

To cope with the preceding modeling issues one can hedge against

misspecification when the form of the link function G(«)is unknown by giving G(+)a

flexible form that satisfies (1.2) and that defines a legitimate multinomial response model
globally. One might model each dichotomous decision outcome as a Bernoulli process

(marginally) and then model the whole vector outcome, y, , as amultinomial process.

One possihility for parameterizing the probabilities in these processes isthe set of CDFs
belonging to the highly flexible Pearson system of distributions, which themselves satisfy
(1.2). The criteriafor identifying different members of the Pearson system of functions

can be expressed parametrically in terms of a (2x1) & vector of unknown parameters.

When G(«)is unknown, the sampling process would then be modeled as

yi =Py () + & =G;(x;,B.8) + &. (1.5

The overall objective of this paper isto seek a semiparametric basis for

recovering B in (1.5) by utilizing the concept of unbiased estimating functions (EFs)
combined with the concept of empirical likelihood (EL) to define an empirical likelihood
function for the parameter vector. This leads to the concept of maximum empirical
likelihood estimation of the multinomial choice model. The EL shares the sampling
properties of various nonparametric methods based on resampling of the data, such asthe
bootstrap. However, in contrast to the resampling methods, EL works by optimizing a
continuous concave and differentiable function having a unique global maximum, which
makes it possible to impose side constraints on the parameters that add information to the

data



The paper is organized as follows. Section 2 reviews the Pearson system of
density and cumulative distribution functions. In section 3, we state the extremum
estimation problem and investigate the asymptotic properties of the estimator. In section
4, we examine EL estimation in the multinomial choice problem. In section 5, we present
some Monte Carlo results relating to the sampling properties of the estimator. Concluding

remarks summarizing the major implications of the paper are given in section 6.

2. Pearson’s System of Frequency-Curves
The probability distributions contained in the system of curves proposed by Karl
Pearson are found as the solutions of the differential equation

ldy_ Lz 2.1)
ydx b,+bx+bx

wherey in this context is the probability density function (PDF) evaluated at x. The
motivation by Pearson (1895) of the derivation of the distributions from (2.1) is difficult,
as well as difficult to access, and so we provide a brief and more direct overview of the

portion of the derivation that is particularly relevant to the objectives of this paper.

2.1 Identifying Probability Distributions in the Family
Multiplying each side of (2.1) by yx" (I, + b x+b,x* ), and then integrating with

respect to x obtains

[ x" (0, +byx+ bzxz)%dx: [ y(a=x)xdx. (2.2)

Integrating the left hand side of (2.2) by parts, treating % as one part, and representing
X

the right hand integral as the sum of two functions yields



X" (B + by X+10,X%) y- [ (nX"y +(N+ Dby X" + (N+ 2)b,x™) ylx = [ayx"dx - [ yx"dx.
If at the ends of the range of the curve the expression

x"(b, +b,x+b,x*)y
vanishes, that is x" (b, + b x+ bzxz)]:f_ . =0 where ry and r, are the extremes of the range
-1

of variation for x, we have
—(n+ Dby, = (N+ by, =a u, — i, (23)
where 1’ denotes the "™ moment of x about the origin.
Examining the moment equation (2.3) for n=0,1,2,3........ g respectively, we get
g+1 equations to solve for a,bo,by,b, in terms of the moments (1), r=0,1,23........ g.
The solution of these simultaneous equations results in the following representation of
(2.2):

ps(uy +3u7)
ldy _ 10uu, =18y’ 1243
yax up(auun -3 p(ua+Suy) L 2 =3 6y,
10uy 1, —18u; — 1245 10uyu; —18u;” —12u5"  10upu, —18u;” —12u5

’2 ’
Defining v,” = =22 , v, =B, =% andw=
2 2

v,+3

we are led to the following expression for the parameters a, by, by, by contained in (2.1):

___ Y b= Y
2(1+ 20) Y21+ 20)
w +2 w
by =~ b, = ————
2(1+ 2w) 2(1+ 2w)



which are valid when -2<w <2 and @ # -.5 (please see appendix for details of the
solution).

Turning now to the integration of (2.1) and the various forms of f(x) that arise, it is
useful to note that:

1. f(x) =0 over the range of values of x when the parameter adhere to the restrictions
presented above.

2. [ f(x)dx =1 must be stisfied.

—oo

3. Itissufficient to consider y, >0 since the curve identified by y,=-cisamirror
reflection of the curve for w,= ¢ with respect to the y-axis.

In general, there are three main types of Pearson curves and ten transition types. The
various types are designed to handle limited or unlimited supports, as well as skewed
or symmetric, bell, U, or J-shaped curves. The criteriaidentifying each type are

expressed in terms of the parameters v, and @ . The mathematical derivation of the

Pearson system of PDFs is given in the book ‘ Frequency Curves and Correlation’ by
W.P.Elderton. But the cumulative distributions of the Pearson system are not readily
available, and are part of the contribution of this paper. The actual forms of the
Pearson curves and their CDF's, restrictions on parameter ranges, and distribution
supports are displayed in table (2.1).

Note that in table (2.1) we make use of the variables that are defined below.

r_"/’s"'\/a r __l//3_\/a
= , I, =

d= vy’ -do(w+2),
1 o0 o0 "8 (w+2)

_(+o), v, 1+20 :_(1+a)) v, A+20
rq_(a))\/a(a))1rn2(a))\/a( )

()]



Z=Xil3,-,t=-ﬁ, M :_(1+2a))’m:1+2a)’
w w w

N:i r :h S = V4a)(a)+2) S:\/E r= Ys V:-1+a) Ys
W, 20 2w 20 2w’ o J-d

Derivations of all tabled results are given in the appendix



Table 2.1. Frequency Curvesand CDFs

Cadculations of
constants and cdf’s

Vi

X+r-is \2
X+Hr+is

No. of type PDF CDF Criterion Remarks see page of appendix
[ ()=
| MAINTYPES | m m s < Therootsr's are
| (X - 1) (r2 - X) ‘ F2)=pix = 2)= Vs, red and opposite signs
z-1 -1<w<0 ;limited Range;
1 ) ]
ﬁ(ml +1, m, + 1)(r2 — rl) M+my+ ry—T; [(a)#-—.S) , generd form of
2+30)y“3 beta-dist.;
e Jv™@-v)™av #4(1+:20)’ (2+0)]  Scewwhen
0 both M’s are positive
has a bell-shaped,
ﬁ(m1 +1,m, +1) when both M's
are negative
= IncompleteBeta(my+1, my+1, rZZ_—rrll ) c\[f;li\]/li"'aped
are of opposite signs has
J-shaped or twisted
J-shaped.
\Y — Unlimited range;
f(X) - l//3¢0, Skew; bell-shaped;
Szm_l a)2>0 No common statistica
2 -m w3< Dist. are of type |V form;
—[(X+I’) + Sz] 4 w)(2+0)
I'(2m-2,v)




Continuation Table 2.1.

Calculations of
stantsand cdf’
No. of type PDF CDF Criterion Remarks gggp:geso?qappenjix
4 )= Fo=px < 2)= 1 Vo Therootsareresl
(x=r)™(x=r,)™ 0<w<2/5 and same sign,
— > ho(0+2), L_mllmlte(_j range
ﬁ(rnl +L_n]1 -m, _1)(r1 — rz)ml m f—t, (2+30)y 2 in one direction
et 71, 4(1+20)? (2+)] I, < X< oo;
{ore] M =m,— =1-i
1 J'V m—m,—2 (1_ V)m2 dv 1-incomplete ew:
5 bell-shaped if
- m;>0;
p(m +1L-m —m, -1 Jshaped if my<0;
thisis called
ﬁeta(ml +1,—n11 —-m, -1 beta prime digt.
n-r
Z—1,
TRANSITION
TYPES
Normal _x2 E(2D)= n(x < 7)= _ - Unlimited range;
f 1 F @=px < 2) . v, = =0 oymmetrical
(X)=—e A bell-shaped.
N2 j ——_e?dx

—oo < X< +o0

- em

10



Continuation Table 2.1.

No. of type PDF

Criterion

Calculations of
constantsand cdf’s
Remarks see page of appendix

(t2 _XZ)M

I f(X):tzM

—t<x<t

“B(M +1,0.5)

F)= pix < 2)=

12
v

t
F)=px<2=1—0.5 jbeta(M + 1,05)
0

t
05 |beta(M +1,0.5)
0

1< ) <0,
and W # 05

Limited range;
aspecial

case of typel;
For -1< (W <-0.5
the curve

is U-shaped,

for -0.5< W <0
the curve

is bell-shaped,
symmetrical..

11



Continuation Table 2.1.

Calculations of
constantsand cdf’s
No. of type PDF CDF Criterion Remarks see page of appendix
11 — F(2)= < 2= Unlimited range
f(X) @ 1p<x NZ()NH) w, =0 monedrecion
~NZ N\ NZ - Nx NZ-1 _u. N2-1 = for N°>1
e N" e ™(N+X) > j e'u” “du ®=0 is a bell-shaped,
F( N 2) F(N ) 0 for N’< 1
=incompl ete gamma(N(N+z),N?) isaJ-shaped;
—N<x<N itisgammadist.
v Unlimited range
' £ (x) < (2r(M=D)*™ o= plx<2)= Soears i one drection,
= r A 2 aped;
& r(2m-1) ¥ssta(2+e) itisan
2r (m-1) Inverse gaussan
-2r(m-1)
—-2m z+r
*(x+r)e j W 2e dw
—I < X< +oo __ 0
Ir2m-1)

=1-incomplete gamma(2m-1,2r(m-1)/z+r)

12



Continuation Table 2.1.

Calculations of
constantsand cdf’'s
No. of type PDF CDF Criterion Remarks see page of appendix
2m-1,_,2 2y-m
VIl f (X) — Si (X + i ) forz>0; v, = 0 Unlimited range;
B(m-0.5,0.5) F@)= px < 2)=1- ’ symmetrical,
R 2 0= 0 bell-shapec;
. special case
00 <X <Aoo 0.5incomplete beta(zsl—2 ,m-0.5,0.5) of typelV;
S +Z an important
distribution
. belonging
andfor z<0; to thisfamily
isthe (central) t-
F2)=p(x < 2)= dist.
2
. S
0.5incompl ete beta( > >
S +Z

m-0.5,0.5)

13



Continuation Table 2.1.

Calculations of
constantsand cdf’s
No. of type PDF CDF Criterion Remarks see page of appendix
VIl — 1-2m Limited range;
f (X) (Z_ rl) Vs> 0 J-shaped;
(1-2m)(x—r,)™>" FA=px<2= (r,—r,)2" ®<-0.5, ts)‘ljsglfj case of
(r,—r)™"" (2+30)y,’" =
< X<, 4L+ 2w)° (2+ w)
1-2m>0
-2m
1X _ (1_ 2m)(r2 B X) 1-2m Limited range;
f (X) - (r —r )1—2m _ (r2 — Z) Vs> 0 J-shaped;
2 1 F@)=p(x < 2)= (r2 - r1)1—2m -05<w<0,
rn <X<r, 2
(2+3w)y;" =
41+ 20)* (2 + w)
X f(x)=e® F(z)=1- eV 2 _ Limited range
_1<x< Foo l//3 - 4’ inone
_ direction;
®=0 J-shaped;
special case of

14



Continuation Table 2.1.

Calculations of
congtantsand cdf’s
No. of type PDF CDF Criterion Remarks see page of appendix
-2m
Xl f(X) — (2m 1)(X - !i']) F@)=p(x < 2)= W, > 0, Unlimited
rhn—r,)" 1-2 range
Uimt) 1o (2R O<w<2/5 inane
< X< Hoo 1-2m ) ;
- — J-shaped.
(=) (2+30)y’= P
41+ 2w)* (2 + w)
X (_X+ rz)nrb V. 0 Limited range;
X—n 3= Twisted J-
f(x) = = shaped;
ﬁ(mz+L—mz+1)(—r1+r2) Special case
of typel.
< X<Ir,

15



2.2. Using Pearson Family Distributions to Model Multinomial Choice

Regarding the use of the Pearson system for specifying models of multinomial

choice, first recall that the choice probabilities P; = G,(x,,B)e [0,1],j=1,....J, must

adhere to the adding up condition (1.2), as ) P, = ). G,(x,,p) = 1. Inprinciple, any

J J
=1 =1
nonnegative valued function, # (x;.B) , can be used to define a legitimate specification of

G(+) using the specification

5(x.P) (2.4)

> 3,0¢.8)

Pj=G,(x.,B) =

For example, the special case of the multinomial logit model follows upon setting

xi.Bj

d(x;.,B) = e, Analternativewould beto let #(x,,B) = F(x,,B), with F, (+) being a

member of the flexible family of curves contained in the Pearson system of CDF's.
Letting & = (y, , )" denotethe unknown parameters of the Pearson system, the choice of

probability specification would then be

F(x ,B,
Pj = G;(x;,B.¢) = J](X'—BE) (2.5)

ZF]'(XL’B7 E_»)

3. Empirical Likelihood Problem Formulation and Solution

Consider the statistical model defined by (1.1), yij = G;(x;,B) + g;. Wewill later

assume that the functional form of G(-)isderived from (2.5) and one of the CDFsin the

16



Pearson system, and note that in any case E[ ¢; [xi.] = 0. Inorder to recover information

relating to P; and 3, we examine the general concept of empirical likelihood in the case

of iid data. Inthis estimation context, the joint empirical probability mass function is of

the form Hdi , Where g, fori=1,...n, represent empirical probability or sample

i=1
weights that are associated, respectively, with the n random sample vector outcomes of

the multinomial choice process, (Yiy,..., ¥i3 ), i =1,...,n.. To define the value of the

empirical likelihood function for 6 , where 6= vec([B 1, B2, B3.-.- BJ]) isacolumn-

vectorized representation of model parameters with dimension ((KJ) x 1), the 6, 'sare

selected to maximize H5i , Subject to data-based constraints defined in terms of

i1
moment equations

E[h(Yi.,xi,0)] = E[( hy(Yi1,Xi,0), h(Yiz, Xi,0),.... ha(Yiznxi,0)] =[0].

In the context of estimating equation parlance, h(Y. , xi., 6 ) isavector of
unbiased estimating functions relating to the population random vector Y. For now we
are considering general forms of the moment equations, but later we will consider
different conceptual formulations of the moment equations which are more specific to the

multinomial choice model. Anempirical representation of the moment condition based

on empirical likelihood sample weightsis given by E;[h(Y x,6] = Y &h(y, x,,6) =0,

i=1
where 0 isasdefined above, Y isinterpreted to have the empirical distribution

0.=P(Y =yi),i=1....... n, and E;[.] denotes an expectation taken with respect to the

empirical probability distribution {,,5,,.....5,} .

n

17



The empirical likelihood maximization step chooses the joint empirical
probability distribution Héi for Y that assigns the maximum possible probability to the
i=1

sample outcomes y actually observed, subject to constraints provided by the empirical
moment equations. The constraints serve to introduce 6 into the estimation problem.
The empirical likelihood function for 6 can be defined by maximizing the empirical

likelihood conditional on the value of 6 , and then substituting the constrained maximum

value of each &, say §,(8;y) into [ 6, , yielding afunctionof 6 asLe (6;y) =

i=1

Si (0;y). At this point, the empirical likelihood function operates like an ordinary

i=1
parametric likelihood function for estimation and inference purposes as long as the
estimating functions are unbiased and thus have zero expectations, have a finite

variances, and are based on independent or weakly dependent data observations. In

particular, maximizing Le. (6;y) through choice of 6, defines the maximum empirical

likelihood (MEL) estimator of the parameter vector 0 .

In the sections ahead we provide more details relating to the EL procedure in the
lid case ahead, which will further motivate the general concepts involved and will also
serve to define additional notation. In particular, we provide details regarding how one
utilizes the EL concept to perform maximum empirical likelihood (MEL) estimation of

parameters for the statistical model y;; = G,(x;,B)+ ¢; in(1.5). We also discuss how to

test hypotheses and generate confidence regions and bounds based on the EL function,
including the use of the generalized empirical likelihood ratio (GELR) for inference

purposes. Finally, we extended the EL principle to the case where the data are

18



independent but not identically distributed. We then specialize the formulation to provide

estimates of the parameters of the multinomial choice model in section 4.

3.1. Nonparametric Likelihood Functions
Consider the inverse problem of using a random sample outcome
Y=(Yirs oo Yag oo Yotseows Yoy ) = (Yise-y,)” to recover an estimate of the PDF of Y. In

this nonparametric setting, a nonparametric likelihood function can be defined whose

arguments are not parameters but entire probability densities or mass functions as
LEy) = [[fy) i=1......3 (3.1.1)
i=1

The nonparametric maximum likelihood (NPML) estimate of f(y,) is defined by

fly) = arg max [L )1 = f(y) = arg max ([ T(y,) 1. (3.1.2)
i=1

The solution to (3.1.2) defines an empirical probability mass function of the multinomial
type that represents discrete probability masses assigned to each of the finite number of

observed sample outcomes, where 6, = f(yi) >0 Vi .

The preceding maximum likelihood problem (3.1.1) and (3.1.2) can be
represented as a nonparametric maximum likelihood problem of finding the optimal

choice of ¢, ’sinamultinomial-based likelihood function, as

o= [81,82, ....... ,Sn] = arg ;nax[HSi] = arg ;nax[ZIn(Si ). (313
i=1 i=1

If the &, s are unrestricted in value, (3.1.3) will have no solution since the objective

function would be unbounded, and so a normalization condition on the ¢, ’s is imposed.

19



n
In the case at hand, the constraint Z 0, =1 isanatural normalization condition on the
i=1

0.'s, along with nonnegativity.

3.2 Empirical Likelihood Function for o

The likelihood (3.1.1) is devoid of the parameter vector 6 and so it cannot be used to
distinguish likely from unlikely values of a parameter vector 6 . Linkage between the
data, y = (Vi YoreeeYrgYo ) = Yo,y ) , the population distribution F(y), and
the parameter of interest, 6 , isaccomplished through the use of unbiased estimating
functions to define estimating equation constraints on the NPML problem. Information
about 6 isconveyed by the estimating function in expectation or moment form E[h(Y ,
X, 6 )] =0, which defines constraints on the NPML problem that generates the
empirical likelihood function. Given that the expectation is unknown because F(y) is

unknown, an estimated empirical probability distribution is applied to observed sample

outcomes of h(Y , x, © ), to define an empirical expectation Y Sh(y, X .6) = 0 that
i=1

approximates E[h(Y , x, 6 )] = 0 and that can be used in forming an empirical moment

equation. The system of mequationshg (Y ,x, 0 ) = Z&h(yi_,xi_,e) =0, when

=
viewed in the context of estimating equations for 0 , is generally underdetermined, just-
determined, or over-determine for identifying a ((KJ) x 1) vector 6 , depending on
whether m <, =, or > KJ, respectively. The choice of the unknown §,’sis solved by
maximizing the empirical likelihood objective function, and in the process, the estimating

equations are reconciled to yield a solution for 6 (assuming a feasible solution exists).

20



The log-empirical likelihood function for 6 isdefined as

IN[Lec(O ;y)] = max[ZIn(é)st Zéh(y, X ,0)=0and 25 1} (3.2.1)

i=1 i=1
I mposing both the normalization condition on the J,’s and the empirical moment

constraints, the solution to the problem of finding the NPML estimate of In(f(y)) is thus

defined in terms of the choice of nonnegative J, s that maximize Zln(éi) subject to the

i=1
constraints Y &=1 and > Sh(y,.x,,8) = 0. The Lagrange function associated with the
i=1 i=1
constrained optimization problem is given by
L(8,7mA)= [Z'n(@) -n(Q.6,-1) -1 Y Gh(y; ;.0 )]- (322
i=1 i=1 i=1

Solving for the optimal 8, nand A in the Lagrange form of the problem (3.2.2)
and then substituting optimal values for & into the objective function of the
maximization problemin (3.2.2), a specific functional form for the EL function in terms
of 6 can bedefined. In particular, first note that the first-order conditions with respect

tothe 6, 'sare

dINLE@.7.A) _ 11 i

% hy(y; X .0) -7 = 0, Vi. (3.2.3)

Also, from the equality 35 W:o and E;[h(Y ,x, 0 )] =
i=1

Y &h(y; ;. .6) = 0 it follows that

i=1

3 g 2nt@.n.) a'”L(S’””‘) %n-nzo , (3.2.4)

i=1 i

21



and thus 7 = 1. The resulting unique optimal 6, weights implied by (3.2.3) can be then

be expressed as the following function of 6 and A,
5 -1
@(e,x)={n[21jhj(yi_,xi_,e)+1ﬂ : (3.2.5)
j=1

Substituting (3.2.5) into the empirical moment equations Zdih(yi_,xi_,e) = 0 produces a

i=1

system of equationsthat A must satisfy as follows:

Zn:&h(yi_,xi_,e) - Zn“n1{{iﬂjhj(yi_,xi_,e)+lﬂ h(y.x.6) = 0. (3.2.6)

Under regularity conditions, Qin and Lawless (1994,pp.304-5) show that a well-defined
solution for A in (3.2.6) exists. However, the solution A (6 ) isonly an implicit function

of 6 , which we denotein general by

_ 1 1 _
A(0)= ag {H;(lﬂ'h(yi_,xi_,e)J h(y, ,x;,8) =0 ] (3.2.7)

The solution A (6 ) is continuous and differentiable in 6 under regularity conditions.
Substituting the optimal Lagrangian multiplier values A (6 ) into (3.2.5) alows

the empirical probabilities to be represented intermsof 6 as d, (0 ) = 6,[6 ,A (0 )]

-1
J

= [n[zf/lj ©)h;(y; .. ,0) + 1)] . Then, substitution of the optimal & (6 ) valuesinto
=

the (unscaled) objective function Zln(d) in (3.2.1) yields the expression for the log-

i=1

empirical likelihood function evaluated at 6 given by

LlLa(® )] =~ IN(L+A(6 Yh(y, %, 8)]). (3.28)
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3.3 Maximum Empirical Likelihood Estimator

We can define a maximum empirical likelihood (MEL) estimator for 6 by
choosing the value of 6 that maximizes the empirical likelihood function (3.2.1), or

equivalently maximizes the logarithm of the EL function as follows:
6 =arg max[In(L, (6,Y,X))]. (3.3.1)
0
The MEL estimator, § g, is an extremum estimator whose solution is not generally
obtainable in closed form because the A (6 ) of the EL function (recall (3.2.7)) isnot a

closed-form function of 6 , and thus numerical optimization techniques are most often

required to obtain outcomes of the MEL estimator. We could also obtain the MEL

estimate of 6 asthe solution éEL to the system of equations

he (Y,%,8) =E;h(y,x,0) = Y Sh(y;,x,6) =0
i=1

where

Si ( éEL) = 5i[ éEL1 7\f(éEL)] = |:n[i/1](éEL)hj(yi_1Xi.1éEL)+1):| ) (3-3-2)

fori=1,...,n. Therefore, the MEL method of estimation can be viewed as a procedure for
combining the set of estimating functions h(y; ,x; ,0) ,i=1,....... n, into a vector-
estimating equation hg, (y,X,0) that can be solved for an estimate of 6 .

Qin and Lawless (1994) show that the usual consistency and asymptotic normality
properties of extremum estimators hold for the MEL estimator under regularity

conditions related to the twice continuous differentiability of h(y, x,0) with respect to 06
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and the boundedness of h and its first and second derivatives, all in a neighborhood of the

true parameter value 6, . They also assume that the row rank of

E[ah(y,x,e)
0

}equalsthe number of parametersin the vector 6 (Qin and
e()

Lawless,1994,p.305-6). These conditions lead to the MEL estimator’s being consistent

and asymptotically normal with limiting distribution

1

n? (6, -eo)iN(o,z) (3.3.3)
where
1 _[ancey,x,0) o aney.x.o 1T
2_{E{TJ[E[MY,X,e)h(Y,x,e) 9]] E[Teoﬂ . (334

The covariance matrix X of the limiting normal distribution can be consistently

estimated by

0, - oh(y,,x; ,0
s (vi. %, ,0)
X= 26

- i=1

N . . -1
]|: Sh(y;., % 0 )h(y;, X, ’eEL),:|
éEL I::L

(3.3.5)

-1
’

] )
éEL

where the 3, 's are the same as defined via (3.3.2). By substituting n™* for 3, 'sin (3.3.5),

i=1

n . dh(y;,X; ,0)
: [Z@T

an alternative consistent estimate is defined, which amounts to applying probability

weights based on the empirical distribution function instead of the empirical probability
weights generated by the empirical likelihood. The 3, probability weight estimates

obtained from the EL procedure would be generally more efficient in finite samples if the
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estimating function information is unbiased. The normal limiting distribution of éEL

allows asymptotic hypothesis tests and confidence regions to be constructed.

3.4 Optimal Estimating Functions
An optimal estimating function is an unbiased estimating function having the smallest
covariance matrix. Godambe (1960) was the first to suggest that the vector estimating

function be standardized as

hS(Y,x,e):[Ee [Wﬂ h(Y,x,0) (34.1)

so that the multivariate optimal estimating function, or OptEF, is then the unbiased
estimating function that minimizes, in the sense of symmetric positive definite matrix

comparisons, the covariance matrix

oh(Y,x, )
00

y [Ee[ah(v,x,e)ﬂ'l_
00’

In the special case in which h(y, x,0) isactually proportional to, or a scaled version of

cov[h (Y, x,0)]= |:Ee|: ﬂ E, [h(Y,x,0)h(Y,x,0)]

(3.4.2)

the log of the score or gradient vector function corresponding to a genuine likelihood
function, it follows under the standard regularity conditions applied to maximum

likelihood estimation that

h(Y ’InL(Y
[P [ ] @43
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and

(3.4.4)

E, [n(Y,Xx,0)h(Y,Xx,0)] o Ee[a 'nL(a\g,x,e)a |nL(a\€():x,e)] |

where the expectations on the right-hand sides of (3.4.3) and (3.4.4) areequal. Inthis

case (3.4.2) becomes

cov(h.(Y, X, )= |:-Ee [WH , (3.4.5)

which is recognized as the usual ML covariance matrix and the CRLB for estimating the
parameter vector 6 . This provides an OptEF finite sample justification for ML
estimation in the case of estimating a vector of parameter 6 and is analogous to the
Gauss-Markov theorem justification for LS estimation.

The EL empirical moment constraints defined in terms of the conditional-on- 6

optimum empirical probability weights are given by

he (Y,%,0)= E;[h(Y,x,0)]= i&(e,v,x)h(yi_,xi_ ,0)=0

i=1

and these empirical moment constraints can be interpreted as vector estimating equations.
The EL provides a method for forming a convex combination of n (m x 1) estimating
functions, h(y; ,x; ,8), fori=1,...,n. Thus, we want to investigate whether a particular
combination of the n estimating functions used in the MEL approach is in some sense the
best combination. Consider the class of estimation procedures that can be defined by a

combination of the estimating equation information as

h.(Y,x,0)= Zn:r(x,e)h(yi_ ,X,0) =0 (3.4.6)
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where 1(x,0) isa( (KJ) x m) real-valued function such that the ((KJ) x 1) vector
equation h_(Y, x,0) = 0 can be solved for the (K x 1) vector 6 as 6_(y).

McCullagh and Nelder (1989,p.341) show that the optimal choice of t, inthe
sense of defining a consistent estimator with minimum asymptotic covariance matrix in

the class of estimatorsfor 6 defined as solutionsto (3.4.6), is given by

oh(y, x,0)

1(x,0) = E[ "

][cov(h(y X0,

(3.4.7)

where Y denotes the random variable whose probability distribution is the common
population distribution of the Yi’s. In casethe Y’s are independent, but not identically

distributed, we have

oh(y; ,X,6)

T, (X;,0) = E[ 8

-1
][cov(h(yi_ %;,0)) |
(3.4.8)
and h,(Y,X,0) zZri(xi_,e)h(yi_ ,X; ,0) = 0. Using the optimal definition of 7, in
i=1

(3.4.8) defines an estimator for 6 that has precisely the same asymptotic covariance
meatrix asthe MEL estimator (3.3.4) because, given the unbiased nature of the estimating
equations, cov[ h(y, ,x;,0)| = E,[h(y; ., x,,8)h(y; ,x;,8)'| (McCullaghand

Nelder,1989, p.341).
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4. EL Estimation in the Multinomial Choice Problem

In this section we examine an extended illustrative example demonstrating the setup
of the MEL approach to estimating the parameters of a multinomial choice model.

In this application, the form of the unbiased estimating functions for 6 isgiven by

h (Y. x8)= 37 (. Oh(y; % ,6)

(4.1.1)
where
[ Vi —Gy(X;,B) |
Yio = G, (%, B)
Yis = G5(x; ,B) OXi_,
Yis —G,(%,B)
yi12_ 2yilGl(Xi.7B)+2G12(Xi.7B)_G1(Xi.7B)
Vi = 2YG;(%,,B) +2G," (X, ,B) = G, (x,.B)
h(yi. %i.,8) = | Via = 2YGs(x,,B) +2Gy (X, )~ G;(%,,B)
yiJ2 - 2yiJGJ(Xi.7B) + ZGJZ(XL’B)_GJ(XL’B)
(4.1.2
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and h(y; ,X;,0) isavector of dimension ((K}J) x 1), and recall that © denotesthe
Hadamard (elementwise) product. Taking into consideration the adding up condition in
(1.2), which implies that there are redundant moment equations among the (K J+J)
equations, we reformulate (4.1.2) and represent h(y; ,X; ,0) with dimension ((K(J1)+(J

1)) x 1) asfollow

[ Yi =G, (X, B)
Yis = G;(%;.,B)
Yis =G, (X, B) K

Yiu—Gy(Xi,B)
Yio' = 2,6, (%, B) +2G,” (%;,B) - G, (.. B)
Yia — 2aG3(X.B) + 2G5 (%;,B) — Gs(X,. B)
h(y. . %.0) = | Vi" = 2Y,G,(%,,B)+2G,”(x,.B)—G,(X,.)

Vi = 2y,G,(X,B) +2G, (%, B) — G,(x,,B)

(4.1.3)

and G;(x; ,p) denotesthe conditional expectation of Yj; givenxi, G;(x;,B) = E( y”|xi_).
In the context of multinomial choice problem, G;(x;,B) denotes the conditional-on- x;.

probability of choosing alternative j for observation i. For the sake of expositional clarity,

we henceforth consider the special case of the multinomial logit model upon setting
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1

Gj:Gj(Xi.aB): 3 . forj=1
1+ Zexi'ﬁ"
k=2
exi.Bj _
= - forj=23,.....J (4.1.9)

J % B
1+ e™™
k=2
We emphasize that G;(x; ,[§) could be any link function of flexible form that satisfies

(1.2) and that defines a legitimate multinomial response model globally. Later we will
consider G;(x;,) as being formed from CDFsin the Pearson system, which themselves
satisfy (1.2).

The OptEF estimator is in the general class of estimating equations based on the

estimating functions of the form (4.1.1) characterized by the solution to

v [ (ahy,,%,0)) .
Mo (V5 %,.0) = ZH%]@) (s ,xi_,e»] =0 (4159)

where E[W}isam&rix of dimension ((K(J1) )x (K(F1)+(J}1))) as

E[ 2 hty, ,xi_,e)):
00
[-0[G,x'] -0[Gx/] —-9[G,X] 9G, (26, 1] oG, (26, 1] oG,
9B, B, B, B, TP, T B,
—0 [szi,.] —0 [Gsxi,.] —0 [G4Xi,.] an aGs [ZG _1] aG4
B; P, aB; I, B, 7 0B,
—0 [GZXI,] —0 [GSXI,] —0 [G4X|,] an aGS [2G3 _1] aG4 [2G4 _1]
B, B, B, B, 9P, B, |

126, 1]

(4.1.6)

[2G,-1]

[26,-1]

[2G,-1]

where
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aGi — an(Xi_lﬁ) =X-/ exi-Bi L exi.Bj

al3i aBi ) 1+iexi.l3k 1+iexi'ﬁk
k=2 k=2
=X/G,1-G,) V=2 (4.1.7)
G, dG (X, _
9B, B,
| Gx
u =xXG,1-G,) V=2
B
=0 for j=1
(4.1.8)
| Gx
[aB] I.]: -Xi.xi,.Gij fork#jandk>1
k

and @ =cov(h(y; ,x,6)) =E,[h(y; ,x,8)h(y; ,x.8)'] isthe covariance matrix of
(Yij[xi) having dimension ((K(JF1)+(J-1) x (K(J1)+(JF1)). Given the 0-1 dichotomous
outcomes of the Yj;'s, note that

E(Yii") = G;(x;,B) for every positive integer n.
Also, giventhat the Y;;'s must sumto 1, it follows that

E(Y;" Yi™) =0  for every mand n positive integers greater than one

=-G,(%,,B) G (x;.B) for m=n=1.
In order to define the OptEF, note that the covariance matrix of any [Yis,.. Yij,

(Yi-Gy)?, ... (YirGy)? vector in this multinomial choice problem is given by
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b =

G, (1-G,)x; X, ~2G,Ggx; X ~2G,G % X, G, (1-G,)(1-2G )X, ~G,G3(1-4G3)X, ~G,G,(1-4G )X,
—2G,Ggx; X G3(1-Gg)x; X —2G4G % X ~G,G4(1-4G,)x| G4(1-Gg)(1-2G4)X| ~G4G,(1-4G x|
-2G,G % X, ~2G G % X G, (1-G4)x% X, -GG (1-4Gy )X, -GG, (1-4G3)x G4 (1-G, )(1-2G 4)x|

G,(1-G,)(1-2G,)X  ~G,Gg(1-4G,)X  —G,G,(1-4G,)X Gy (1-G»)(2G,-1)? G,G3[2G, (1-4G3)-(1-2G3)] G,G4[2G ,(1-4G,)~(1-2G,)]
~G,G3(1-4G3)X  Gg(1-G3)(1-2G3)X  ~G,G4(1-4G,)X  G,G3[2G, (1-4G3)~(1-2G3)] Gg(1-G3)(2Gg-1)2 G3G,[2G 4(1—4(323)—(1—263)]
|-GG, (1:4G)X  —GgG,(1-4G, )X Gy (1-G4)(1-2G,)X  G,G4[2G,(1-4G,)-(1-2G,)] G3G4[2G,(1-4G5)~(1-2G3)] G4(1-G4)(2G,-Y)

(4.1.7).
By substituting (4.1.3) through (4.1.9) in (4.1.5) we have constructed an optimal

estimating function of the form
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N h(v. . X 1
hope(y  x,0) = ;[E(W](Cov(h(yi.1Xi.1e))) hy, x;,0)| =

X X[ G, (1-G ) X x{ G436, X, X{ G 4G, x{ G, (1-G,)[26,-1] -xi’_G3GZ|:2(5371:| X{ GG 4[2G,4-1]
X, X G,Ggy X X{ G3(1-Gy) X X{ G 4Gy -xi_Gst[Zszl] xi_G3(1—G3)[ZG371:| -xi_G4Gs[ZG471:| [of
X, X{ G 4G, X, X[ GGy X X[ G, (1-G ) -xi_G4GZ[Zszl:| -xi’_G4(53|:2(5371:| xi_G4(1—G4)[ZG471:|
n
Y =0 (4.1.9)

Yio =G (X ,B)
Yig = C3(xi P
Via=Ca P gy -
Yig=Cy(x-B)

Yip® = 29,8, (%; . B) + 26,7 (x; .B) =G, (x; .B)
2 2
Yiz” = 2¥i3C3 (X .B)+2G57(x; .B) - G5 (x; .B)

Via® = 21484 X; B+ 26,7 (x; .B) = Gy (x; )

Vig® = 2413850 )+ 26 ) (x; .B) = B 3x; B
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that can be used in the constrained optimization problem of (3.2.2).
If the €, 's areiid, each with extreme value distribution, then the special case of

the multinomial logit model is defined as in (4.1.4) and the log-likelihood function of the

multinomial logit model can be specified as

In(L(B:y)) = Z[Zy”[x B.l- In(l+2e'ﬁ' )} (4.1.10)

i=1| j=2

exi.Bj
where Gj(xi.) = ————— and B, =[0].

1+ Zexi.ﬁk
k=2
Solving the first-order conditions of (4.1.10) obtains

aln(L(B y)) _ ZX (y;— G,(xB) =0,for j=2...J . (4.1.11)

Note that theh,,, (Y, x,0) in (4.1.5) can be specified to represent the first-order
conditions (4.1.11) and therefore

Yio— GZ(XiJB)—
n Yis— G3(Xi.1B)
hop (Y ,X,8) = > : ox (4.1.12).

i=1

Y= Gy(xi,B)
The solution for B obtained from (4.1.11) or (4.1.12) isthe optimal estimating function
(OptEF) estimator for 3. The estimating function given by (4.1.12) is asymptotically
optimal in the sense that it solves the problem of seeking the unbiased estimating function
that produces the consistent estimating equation (EE) estimator of 3 with the smallest

asymptotic covariance matrix. Furthermore, the ML estimator has the finite sample

optimality property of representing the estimating function (4.1.12) with the smallest



standardized covariance matrix. We emphasize that these optimality results are predicted
on the assumption that the logistic-extreme value distribution assumption underlying the
likelihood specification isin fact the correct parametric family of distributions underlying
the data sampling process. It is also useful to note that (4.1.3) subsumes (4.1.12) and the
asymptotic covariance matrix of the MEL estimator generally becomes smaller (by a
positive definite matrix) as the number of estimating equations on which it is based

increases (Qin and Lawless, 1994, Corollary 1).

4.1 Adding Flexibility to the EL Formulation
In this section we introduce flexibility into the specification of G(+) by adding

parameters to index members of the class of Pearson Family distributions. While we
focus on the Pearson class here, we emphasize that any other class of distributions could
be used. The criteriafor identifying different members of the system of Pearson

distributions can be expressed parametrically interms of a (2x1) vector, & ,of
parameters, so that G,(x; ,0) = G;(x; ,B,§) where 6= vec([B,.B,,......3,,¥;,®]) isa

column-vectorized representation of model parameters now of dimension ((KJ2) x 1).

Hence, the aternative formulation of unbiased estimating functions for 6 isof the form
h: (Y,x,0)= ZTi (x.0h(y; ,%;,0) (4.2.1)
i=1

where
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[ Yio = G,(%,,B,€)
Yis = Gs(%,,B,6)
Yia _G4(Xi.’B’E.») .’

Yis —Gy(Xi.B,8)
Vi — 2Y,G,(X,B,E) +2G, (X, B,E) — G, (%, B.E)
Yia = 2Gs(Xi.B.E) +2G,” (%, B, &) — Gy (x,.,B,E)
h(y; . %;,8) = | Yia” = 2Y:4G4(%;.B,8) +2G,” (X, ,B.&) — G, (X, B, &)

yi\]2 - 2yiJGJ(Xi.7 B? E_,) + 2G‘J2 (Xi.7 B? E_,) - GJ(Xi.7 B? E_,)

(4.2.2)

and G;(x;,B,&) again denotes the conditional expectation of Y;; given xi. In the context
of multinomial choice problem, G, (x;,B,&) denotesthe conditional-on- x;. choice

probability. The OptEF estimator is in the general class of estimating equations based on

the estimating functions of the form (4.2.1) characterized by the solution to

Nop (¥ %) = i[E[W}(cov(h(yi_ %.8))) "hey, ,xi_,e)] =0 (423

where E[

W}s now a matrix of dimension ((K(J1)+2 ) x (K(J-1)+(J-1))),

where, for exampleinthe caseof J=4,
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E[ @ h(y,..x,.0) ):
foLs)

—_a[szi/.] _a[Gsxi/.] _a[G4Xi,.] an [ZG _1]
9B, 9B, B, B,
_a[GZXi,.] _a[Gsxi,.] _a[G4Xi,.] an [2G _1]
9P, 9B, B, B,
_a[GZXi,.] _a[GSXi,.] —a[G4Xi’.] an [ZG _1]
9B, B, B, B,
_a[GZXi,.] _a[GSXi/.] _a[G4Xi/.] an [ZG _1]
o, o, w, oy,
_a[GZXi,.] _a[GSXi/.] _a[G4Xi/.] an [ZG _1]

D 0w do  dw - °

3G, 3G,

2 2
96, 3G
[2G3 _1] s [2G4 _1]
9B, 9B,
3G, 3G
[2G3 _1] s [2G4 _1]
B, B,
3G, 3G
[2G, -1] £24[2G, -1]
oy, Yy,
9G, G
2G,-1 412G, -1
aw [ G3 ] aw [ G4 ]_‘

and @, =cov(h(y, ,.6)) =E,[h(y, ,x.8) h((y, ,x,,8))'| isthe

((K(F1D)+(F1) x (K(F1)+(3F1)) covariance matrix of (Yijxi).

(4.2.4)

In order to define the OptEF, note that the covariance matrix of any [Yix,.. Yis, (Yi-G1)?,

... (YirGy)? vector in this multinomial choice problem is given by (again for an

illustrative case where J = 4)

(0]

I
Gp(1-Go)x; X,
—2G,Go% X
—2G,G 4% X,

G, (1-G,)(1-2G,)x|

~G,G5(1-4G3)x

—2G,G3%; X,
G3(-G3)x; .
—2G3G % X,

76263(1-462)Xi'_

G3(1-Gg)(1-2G3)X  ~G,G4(1-4G,)X  G,G3[2G, (1-4Gg)~(1-2G3)]
|-GG, (1:4G)X  —GgG,(14G, )X G4 (1-G4)(1-2G,)X  G,G4[2G,(1-4G,)-(1-2G,)] G4G4[2G,(1-4G4)~(1-2G3)] G4(1-G,)(2G,-1)?

—2G,G 4% X;.
—2G36,% X
Gy (-G y)%; X,

-GG 4(1-4G )X

G, (1-G,)(1-2G )X
~G,G4(1-4G,)X|
-GG (1-4Gy)X,

Gy (1-G»)(2G,-1)?

~G,G3(1-4G3)X,
G4(1-Gg)(1-2G4)X]
~G3G, (1-4G3)x,

(4.2.5)
~G,G,(1-4G )X,
~G4G,(1-4G x|

G4 (1-G,)(1-2G 4)x|

G,G3[2G, (1-4G3)-(1-2G3)] G,G4[2G ,(1-4G,)~(1-2G,)]

Gg(1-G3)(2Gg-1)2

G3G,4[2G 4 (1-4G3)-(1-2G3)]

By substituting (4.2.4) and (4.2.5) in (4.2.3) we have constructed an optimal estimating

function that can be used in the constrained optimization problem of (3.2.2).
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5. Sampling Experiments
We performed a Monte Carlo experiment to estimate a Multinomial Logit (ML) response
model where 3, has been normalized, without loss of generality, to a zero vector for

purposes of parameter identification and there existed four choice alternatives. The x data

were all generated iid from the uniform distribution having support on the interval
(-5,5). Thelogistic distribution was used to generate the choice probabilities underlying
the data sampling process. The link function used to model the multinomial choice

problem was Pearson X. The parameters of the latent variable equations underlying the

Multinomial Logit model are given by

B, 01 Ba 0.4 B 0.7
B,= [Bx|=]02|,B3= [P |=[05]|, andB, =|B,, | =08
B, 0.3 Bas 0.6 B 0.9

The results of the Monte Carlo experiment, for 200 repetitions of the sampling
experiment, are displayed in Table 1. The results suggest that the EL estimation
procedure produces reasonably accurate estimates of the model parameters. Asthe
sample size increases, the mean square error decreases, indicative of the consistency of
the EL estimator. The means of the estimates for the 200 Monte Carlo replications are
very close to the true values of the model parameters for sample sizes > 500, suggesting
that for all practical purposes, the EL estimators are producing near-unbiased estimates of
the parameters. For smaller sample sizes, there is some indication that the parameter
estimates are biased to some degree, although the degree of biasis relatively small.

Overall, the estimates were quite accurate across all sample sizes, and accurate for large
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sample sizes, and would appear to be useful from an empirical application application

perspective.

Table 1. Monte Carlo Results; Multinomial Choice M odel with Four Alternativest

Sample Sizes
Parameter | TrueValue | 50 | 100 | 200 250 | 300 500 600 700
B, 0.1 0.115 | 0.134 | 0.121 | 0.127 | 0.096 | 0.094 | 0.106 | 0.093
B., 0.2 0.212 | 0.216 | 0.209 | 0.209 | 0.208 | 0.198 | 0.199 | 0.197
B 0.3 0.307 | 0.306 | 0.319 | 0.311 | 0.298 | 0.296 | 0.301 | 0.301
B., 0.4 0.436 | 0.439 | 0.457 | 0.425 | 0.412 | 0.410 | 0.399 | 0.421
B., 0.5 0.523 | 0.533 | 0.523 | 0.530 | 0.521 | 0.509 | 0.506 | 0.504
B, 0.6 0.629 | 0.618 | 0.634 | 0.628 | 0.627 | 0.610 | 0.611 | 0.608
B 0.7 0.739 | 0.720 | 0.751 | 0.747 | 0.698 | 0.708 | 0.707 | 0.719
B 0.8 0.856 | 0.851 | 0.852 | 0.834 | 0.832 | 0.814 | 0.815 | 0.804
B 0.9 0.956 | 0.945| 0.963 | 0.941 | 0.935 | 0.917 | 0.908 | 0.910
MSE(B) 0.531 | 0.519 | 0.459 | 0.292 | 0.283 | 0.149 | 0.130 | 0.114

1) Values below the sample size indicators are the sample means of the estimates for 200
MC repetitions of the experiment.

We also note that the computation of the estimates for this 4-dimensional choice
model was relatively quick with effectively no numerical difficulties when finding
solutions. We also note that the discrepancy in some of the parameters may be due to the
fact that we have used numerical gradients instead of analytical gradientsin solving the
EL optimization problem. Analytical gradients could serve to speed convergence further,
and would also alow solutions to higher levels of tolerance, potentially further increasing

the accuracy of the parameter estimates.

39




6. Concluding Remarks

This paper has presented a flexible semiparametric methodology for estimating
multinomial choice models. The parameter estimates from the Monte Carlo results appear
quite reasonable and demonstrate the potential usefulness of the proposed approach. The
estimates obtained by this procedure are consistent and asymptotically normal. However,
our consistent estimator will generally not be fully efficient. Nonetheless, because of the
computational difficulties associated with more efficient estimators, the empirical
tractability of the method for estimating a system of multinomial choice models for large
data sets and for relatively large dimensional choice setsis very attractive in empirical
practice. Moreover, in practice, there is often insufficient information to specify the
parametric form of the function linking the observable data to the unknown choice
probabilities, in which case a fully efficient method of estimating the model parameters
will generally remain unknown in any case. In such cases, the flexible Pearson family of
parametric distributions may be useful as a basis for aflexible specification of a link

function.
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Appendix: Derivation of CDFs of the Pear son Family of Distributions
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