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Introduction    

Direct disaster payments are considered the least efficient form of agricultural disaster relief 

(Goodwin and Smith, 1995). Several pieces of legislation were passed in the early 1990s in an 

attempt to make the process more market oriented, in particular by tying the payments to crop 

insurance. However, disaster relief is determined on an ad hoc basis by the legislators after a 

disaster occurs. Consequently, the disaster payments have often been a substitute for insurance 

(Gardner, 1994), and the disaster payment allocation has been described as a result of rent 

seeking by interest groups (Schmitz, Furtan, and Baylis, 2002). This process is more transparent 

at the higher levels of fund allocation (Brooks, Cameron, and Carter, 1998). It has been 

suggested that, on the congressional level, legislators are pressed by organized agriculture 

interest groups to subsidize farmers who experienced a disaster. As a result, the disaster payment 

allocation was found to be less dependent on the weather and more on those socio-economic and 

political variables that proxy the lobbying power of interest groups (Garrett, Marsh, and 

Marshall, 2006). 

In this paper, we test a similar hypothesis on the county level. The area chosen for this 

analysis consists of 91 crop producing counties in Georgia. The time period covers 11 years 

(1995-2005). In comparison to the more aggregate analysis, our local weather data is more 

representative of the unfavorable conditions causing agricultural disasters. However, as the 

process of disaster aid allocation at the county level is less transparent, the proxies for political 

forces that may be behind the process are less precise.  

An agricultural disaster occurs when damages and losses due to a natural disaster amount 

to at least a 30-percent production loss of at least one crop in a county. The amount of money 

distributed as disaster payments is substantial: $25.8 billion has been distributed to 2 million 



recipients nationwide during 1985-2005. In 2006, USDA provided $250 million for crop 

disaster, livestock, tree, and aquaculture assistance through five new programs. In the 

Southeastern U.S., the aid for agricultural producers affected by hurricanes in 2005 was $2.8 

billion, and disaster payments to farmers, ranchers and others through eight separate programs to 

producers in Alabama, Florida, Louisiana, Mississippi, North Carolina, and Texas was $1.2 

billion.  

Under perfect information, agricultural disaster payments should be affected only by the 

incidence of catastrophic climate events and the losses they cause. Since it is not always possible 

to measure the exact amount of the losses that a catastrophic event creates, in the absence of 

perfect information, actual payments may be affected by non-climate factors. To address the 

criticisms that payments are biased/inequitable (Environmental Working Group reportss), this 

study tests the hypothesis that both climate related and non-climate variables such as 

local/regional economic, political, and community characteristics affect distributions of disaster 

payments.  

The rest of the paper is structured as follows. Section 2 describes the methodology used 

in the analysis,  Section 3 contains description of the data, Section 4 discusses the results, and 

Section 5 concludes. 

 

2. Methodology 

Following Garret et al. (2006), annual disaster payments (by county) are modeled as a function 

of climate data such as the minimum and maximum temperature during growing season, 

precipitation, and ENSO variables as well as socio-economic variables some of which serve as 



proxies for producers lobbying potential to receive disaster-related payments.  Specifically, the 

model is   

Payacresit = f (α, β1X1it, β2X2it, ai, uit)    (1) 

where Payacres is the crop disaster payments per acre, X1 contains the weather variables, and X2 

contains the socio-economic variables expected to affect county-level crop disaster payments. ai 

is the latent time-invariant variable and uit is the idiosyncratic random error. 

The methodology is dictated by the nature of the cross-sectional time series (panel) data. 

Panel data methods accommodate an unobserved (latent) time invariant variable in the 

fixed/random effect regression framework. Since Garret et al. found that disaster payments on 

the state level was affected by weather independent, and likely time invariant variables applying 

these methods using county level panel data permits estimating correctly the impact of climate 

variables even if weather  independent factors are non-observable.  

The fixed effects (FE) estimation is simply a pooled OLS on data transformed using time 

averages to eliminate the unobserved time-invariant variable assumed to be correlated with the 

regressors (such as socio-economic characteristics or lobby power). This assumption is crucial 

for the estimation technique because, if it does not hold, the fixed effects estimation produces 

inefficient estimators. In the context that the FE is applied here, this assumption is also plausible 

because possible lobby power (or other variables affecting distribution of disaster pay) are likely 

to be correlated with the climate related variables and socioeconomic variables. For example, 

farmers living in areas more prone to disasters will be more likely to organize to seek such 

payments.  

The alternative random effects (RE) estimation allows for time-invariant regressors, such 

as the census data, but it is based on the assumption that the unobserved variable is uncorrelated 



with the other regressors.  In this case, it is difficult to assume that the county-level observations 

are random draws from a large population, so the fixed effects is a preferred approach. In 

addition, while it may be possible that the unobserved variables are uncorrelated with the 

weather variables, they are likely to be correlated with the census variables, such as farm 

concentration or production volumes. Empirical test of this assumptions are done with a 

Hausman test (Wooldridge, 2002, Ch. 10). 

The estimation choice, however, needs to account for the fact that disaster payment data 

used in the analysis are censored – some counties receive zero payments in some years (zero 

payments comprise only 12% of the data). To accommodate this, a Tobit estimation is used. 

While the FE model is in general preferred when counties are used because it is hard to make the 

argument that the counties are drawn from a random distribution, panel data Tobit models with 

fixed effects are inconsistent. These challenges are addressed by estimating fixed effects, random 

effects and Tobit random effect and comparing the results to show how robust the results are. 

Given the small fraction of the censored observations linear FE and RE estimation provide good 

approximations for conditional distributions of the disaster payments (model coefficients) near 

the mean values. These are complemented juxtaposed to the marginal effects at the mean values 

from the Tobit estimation.1 

 

                                                 
1 Finally, although tests do not confirm endogeneity of the regressors, the crop insurance indemnity payments are 
supposed to be determined simultaneously with the disaster payments.  
Future work, therefore, could include estimating a system of equations with 3SLS where, in one equation the 
disaster payments are regressed on the exogenous variables and the indemnities, and in the other the indemnities are 
regressed on the exogenous variables only. This satisfies the requirement to have M-1 (zero/exclusion) restrictions 
in M=2 equations which enables us to derive the structural parameter estimates provided that the system of relations 
and the restrictions are consistent and linearly independent (Judge et al, p616): 
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where Indemacres is crop insurance indemnity payments per acre and the rest of the variables are as defined above.  
 



3. Data Description 

The data for the analysis come from several sources. Data on disaster payments were collected 

from the Environmental Working Group’s Farm Subsidy Database that lists county level 

payments for the period from 1995 to 2005. The payments only include crop related programs 

and not livestock related payments because the focus of the study is on the effects of weather and 

climate and livestock program payments are likely to be affected by different socio-economic 

variables. Accordingly, we metro counties and the counties in the mountainous regions of 

Georgia without significant crop production were excluded. Out of the total of 159 Georgia 

counties, 91 counties located mostly in the southern and central parts of the state and producing 

mostly cotton, peanuts, corn, and soybeans are included. Figure 1 presents the area covered in 

the analysis. The panel dataset is comprised of 1001 observations. 

The payments used in the analysis include Crop Disaster Program Payments, Non-

Insured Assistance Payments, Natural Disaster Payments, Disaster Reserve Assistance Payments, 

Quality Losses Program Payments, Disaster - Quality Adjustment Payments, Disaster 

Supplemental Payments, and Disaster Assistance Payments. All the payments were adjusted for 

inflation using data from the BLS. 

In the context of this paper, the term “disaster payments” pools all of the above 

components. Some of the original annual payments (paydis) were negative (although small in 

absolute value), which was a result of excessive payments made in the previous year. The data 

were adjusted accordingly by applying the negative payments to the previous year.2 Zero disaster 

payments constitute 12% of the data, most of which belong to 1996 and 1998 years. The time 

distribution of the payments for the whole state is shown in Figure 2. Figure 3 shows the total 

annual disaster payments for the sample used in the analysis. Payment distribution is close to the 
                                                 
2 Estimation results are not changed by this adjustment. 



state total, which supports the selection of counties for the analysis and also shows the small 

magnitude of the livestock-related disaster payments. 

The per county crop disaster payments were divided by the total harvested crop acres in a 

county. The resulting per acre payment data (payacre) is more suitable for the analysis of the 

payment distribution. Figure 4 shows the average per acre crop disaster payments for the sample 

used in the analysis in 2005 dollar equivalent.  

The weather data were collected from the Florida State University’s Center for Oceanic-

Atmospheric Prediction Studies (COAPS) database provided by the South Eastern Climate 

Consortium (SECC). The database includes daily observations on minimum and maximum daily 

temperature and (cumulative) precipitation from all weather stations in Georgia. As there are 

fewer stations than counties and the stations’ location is not always representative of a county, a 

list of weather station – county correspondence compiled by the SECC meteorologists was used 

to assign the weather observations to counties. 

As the analysis is done on relatively aggregate data (not “bottom-up” construction), the 

temperature data is used to approximate the probabilities (or incidences) of freezes and the 

precipitation data to approximate the positive (watering) and negative (flooding) effects of rain. 

Rather than using absolute minimum temperature, which is not representative of the damage 

caused by freezes, we constructed a panel data set of the first and fifth percentile of the minimum 

daily temperatures for the whole year (min1pc and min5pc) and for the growing and harvesting 

season defined as mid-March to mid-November (min1pcgs and min5pcgs), corresponding to the 

major crops grown in the state. Table 1 describes the temperature variables showing that the 

percentages roughly correspond to the freezing points (slightly below 32F ensures frost damage).  



 The little variation in the variables over the 11 year period is natural and suggests that 

the payment data has to be very sensitive to minimum temperatures in order for this variable to 

be significant. Similarly, 99th and 95th percentiles of the maximum annual and growing season 

daily temperatures (max99pc, max99pcgs, max95pc, and max95pcgs) were constructed to reflect 

possible damages from heat as well as benefits from solar radiation (necessary for plant growth). 

Cumulative precipitation is calculated for the whole year and the growing season (rain 

and raings). Squared cumulative precipitation is included to reflect the negative effect of 

excessive rain on crop yields (possibility of flooding). 

The ElNino Southern Oscillation (ENSO) data used for grouping the yield series was 

constructed by the SECC climatologists from FSU and UFL specifically for the purpose by 

adjusting the monthly ENSO indices to reflect the ENSO conditions prevailing during the crops’ 

growth season, not calendar time. The importance of the ENSO phases comes from the 

meteorological research findings that, in general, the weather is more variable during non-neutral 

ENSO years (LaNina and ElNino) and, in the Southeast and particularly in the Southcentral 

Georgia, LaNina years are usually relatively dryer and hotter. The expectation is thus that the 

ENSO dummies (el, la, and ne) should matter for disaster payments. The 1995-2005 time period 

contains only 2 El Nino and 2 La Nina years. Apart from the ENSO dummies, we also use 

annual dummies. 

We did not include data on official disaster (area) declarations, number of payment 

applications, etc for two reasons. One is simultaneity: such data are likely to be endogenous (i.e., 

determined   by the same variables as the payments). The other is that, even if it were not, 

disaster declaration data would be just a more precise substitute for the weather/climate data. 



Data that serve as proxies for possible lobbying or local political power of farm groups 

on the county level were collected from the disaster payment census of agriculture. The last two 

censuses were conducted only in 2002 and 1997, but that does not preclude using them in the 

analysis as the data are largely time invariant (2002 census is more complete and time relevant). 

The data can be used in the random effects panel data regressions, fixed effects panel data 

regressions when interacted with annual dummies, and in the tobit models. Understandably there 

are no perfect indicators of the ambiguous (often alleged to be significant) lobbying power of 

small farm groups that may lead to inequitable and distorted distribution of agricultural 

payments. One of the best candidates is perhaps the disaster payment concentration (collected 

from the EWG’s Farm Subsidy Database). The variables represent the percentage of the total 

disaster payments for a county in a given year distributed to the top one or five percent of the 

recipients (pmt1pc and pmt5pc respectively). These can be the proxies for the political 

(redistributive) power of the farm lobby (or influential/connected producers) only if we assume 

that such power is associated with small groups and that these groups, apart from getting a 

disproportionately bigger share of the available disaster payments, are also capable of increasing 

a county payments’ total. Figure 5 shows the distribution of the crop disaster payments in 

Georgia by the proportion of their recipients over 1995-2005. It is clearly not uniform, but 

neither are the disaster incidences. 

Crop insurance indemnity payment data were collected from the USDA’s FSA database. 

This variable is included because crop insurance is often the eligibility requirement for the 

disaster payments and also because the indemnities are more strictly dependent on the actual 

yield/crop losses. Negative correlation between agricultural disaster payments and crop 

insurance would suggest that the market-oriented policies are working, while positive correlation 



would suggest that disaster aid complements insurance. The evidence on this so far has been 

mixed. (Wright, B., & Hewitt, J. (1994) and Schmitz, A., Just, R., & Furtan, H. (1994).  

County level agricultural census data include a number of socio-economic indicators that 

may approximate the “payment extracting” power of agricultural producers only to a certain 

extent. However, better data (such as perhaps data on the matching between the actual loss and 

the payment received and on the composition of the county Farm Service Agencies) are not 

available, and the span of the payment data is not long enough to use time-series analysis. 

Sevaral variables from the 2002 agricultural census were used. Bigfarmshare (the share of farms 

with more than 1,000 acres (about 7.5% on average) is used as a proxie for the lobbying power 

and farm concentration in a county; farms__number_( number of farms in a 

county),land_in_farms (average size of farm in acres), harvshare (share of harvested cropland), 

irrigatedacreshare (share of irrigated cropland), operatorfarm (share of operators whose primary 

occupation is farming), operatorother (opposite of the above), bigfarmsaleshare (share of farms 

with sales of more than $100,000), estimated_ market_value_of_land  (estimated market value of 

land and buildings per acre in a county). Proxies for wealth are 

estimated_market_value_of_all_ma (estimated market value of all machinery and equipment per 

farm),  govpmtacre_net (in $1,000’s all government payments net of the disaster payments per 

acre of harvested cropland, with a positive coefficients showing ability of payment extraction), 

market_value_of_agricultural_pro (market value of agricultural production per farm with a 

negative coefficient indicating a large disaster magnitude; and a positive coefficient indicating 

that money goes to the rich), net_cash_farm_income_of_operati1 per farm, 

total_farm_production_expenses_1 (per farm): another proxy production intensity. 



Again, these variables serve as only remote proxies for the factors that determine disaster 

payments apart from the elements (factors not represented by the elements). Significance of any 

(group) of the above variables would perhaps let us suggest an explanation.  

 

4. Discussion of the results 

Table 3 presents the results from several regression specifications that include weather-related as 

well as most relevant socio-economic variables. The first two columns present results from 

specification where only weather variables are included, with the first column containing results 

from a fixed effect model and the second column presenting results from a tobit regression 

model. Models 3 through 6 include proxies for non-weather related factors, most importantly the 

percentage of agricultural disaster payments going to the top one percent of the recipients for 

potential incumbency or political clout of individual counties and also indicators of farm 

concentration (average farm size).  Model 4 also adds the share of the irrigated harvested 

cropland to control for soil productivity and Model 5 adds the share of big farms (over 1,000 

acres) as a proportion of total farms. Models 5 and 6 are results from Tobit estimation, while 3 

and 4 are fixed effects results.  

Since some of the census variables were not available for every county, some 

observations were lost in those regressions. Both FE and Tobit models show similar results. 

While the FE model is in general preferred when counties are used because it is hard to make the 

argument that the counties are drawn from a random distribution, panel data Tobit models with 

fixed effects are inconsistent. Thus, random effects (GLS) transformation, is used results 

whenever the time invariant census data are included. The unobserved variable is absorbed in the 

error term and the estimation involves a GLS transformation of the data followed by OLS 



estimation. In all our regressions, the random effects estimator (lambda) ranges from 0.06 to 0.20 

showing that a large fraction of the unobserved effect is left in the error term. 

The models were also chosen to avoid multicolinearity among certain variables (for 

example average farm and number of farms). The models are corrected for heteroscedasticity by 

using robust standard errors. The residuals were also tested for serial correlation (possible due to 

weather data). The coefficient at the AR(1) parameter was very small and negative. Fitting cross-

sectional time series linear models using feasible GLS did not change the results.  

Perhaps the most important and notable result is that weather variables explain best 

county level disaster payments in the state of Georgia. In particular, a one percent drop of the 5th  

percentile of the minimum temperature is associated with about 1-1.5 dollars per acre increase in 

the disaster payment (replacing the percentile with the number of days with min temperatures 

below the freezing point produces a comparable estimate). Similarly, a one degree increase in the 

95th percentile of the highest temperature increases the disaster payment by 1 to 1.5 dollars per 

acre, perhaps due to drought. Cumulative precipitation has a non-linear impact on per acre crop 

disaster payments. More rain is beneficial as it improves yields but precipitation beyond (37.8”) 

is associated with higher disaster payments. Comparing this to the average precipitation of 47.4” 

suggests that, on average, the area gets more than enough precipitation (also, the average share or 

irrigated harvested cropland is 24%).  

Among the most interesting results are those on the impact of ENSO phases. While we do 

not find that El Nino years are associated with increased disaster payment, we find that a La Nina 

year is associated with about 15.5 to 17 more dollars per acre in such a year compared to a 

neutral year. These results are consistent with meteorologists’ assertions that La Nina years are 

generally drier and hotter in the Southeast. The implication of these findings are that, since it has 



been argued that global warming will increase the incidence of El Nino and La Nina, one could 

expect that at least in the Southeast agricultural  disaster payments will be also increase. Given 

the increasing predictive power of such forecasts, the results may be used to better plan for such 

occurrences.3 

The results also show that current disaster pay schemes are not substitutes but (weak) 

complements to insurance payments. This perhaps reflects the requirement to have insurance 

payment in order to qualify for disaster payment but it also shows that one dollar increase in 

indemnity payment is associated with seven more cents of disaster pay on per acre basis.  

A note on possible simultaneity of the crop insurance indemnity payments is in order. 

Similar to disaster payments, the indemnities are triggered by low crop yields which, in turn are 

caused by adverse weather. Oftentimes, having crop insurance is a prerequisite for eligibility for 

disaster payments. However, unlike disaster payments, indemnities are strictly yield dependent, 

i.e., are not likely to be influenced by the lobbying power of farm groups or distributed on ad hoc 

basis. On the one hand, there is a strong reason to expect the indemnity variable to be 

endogenous (simultaneity between disaster and indemnity payments). On the other, regardless of 

the common disaster payment eligibility requirement of having crop insurance, indemnities may 

be treated as additional exogenous variable reflecting factors other than weather that affect crop 

yields. In order to find out whether either of the two relationships is dominant, a simple 

engdogeneity test was performed. It uses fitted residuals from regressing indemnity payments per 

acre on the weather variables as a variable in regressing the per acre disaster payments on the 

indemnities and the weather variables. The coefficient at the fitted residuals was insignificant 

suggesting that insurance payments are not endogenous, sparing the need to use an instrumental 

                                                 
3 Replacing the ENSO dummies with the dummies for 1998 and 1999 – the years when legislation was passed that 
temporarily increased the amount of disaster payments (Garrett et al., 2006) – have significant coefficients but of 
opposite signs. 



variable for indemnities, which would be hard to find.4  

The disaster payment concentration data has been suggested as a good proxy for equity in 

payment distribution (EWG). We suggest two possible reasons for high payment concentration. 

One is the local character of crop failures and disastrous conditions affecting only a small 

number of producers. In this case, higher per acre payments could be associated with higher 

payment concentration. Another is the ability of a few to extract the payments. In this case, 

higher per acre payments are associated with higher concentration only if the ability to extract 

them also implies the ability to bias their allocation on the county level. In light of this, even the 

data on chronic disaster aid recipients cited by the EWG is not a strong indicator of unfair play. 

Our results show that none of the three indicators of payment concentration used in the analysis 

(% of total received by the top 1%, 5%, and 10% of the recipients) are significant in any 

regressions, suggesting that the observed high payment concentration is not associated with the 

total amount of payments received by a county, i.e., the “appropriative” power of the top 

payment recipients does not affect apportioning of disaster assistance to the counties. Similarly, 

the indicators of farm concentration, the share of big farms and the average farm size (something 

that proxies the power of farm groups) do not matter in any of the models. The share of irrigated 

crop acreage is also insignificant, which at least agrees with the result suggesting that there is no 

lack of rainfall and therefore drought is a less likely reason for disaster. 

Another important result is that the explanatory power of the latent time invariant 

variable in both FE and RE models is quite small. The “fraction of variance due to ai” is  
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4 Estimation of the system of equations in (2) produced results identical to the FE estimation. 



 where a and u are the panel level and random components of the error term. Table 3 

shows that the fraction of variance due to the unobserved (allegedly political) factors is much 

smaller than 1. Larger values would indicate a presence of unobserved but important factor other 

than weather affecting the disaster payments. This, together with the insignificance of the non-

weather related variables, suggests that the weather and climate related factors alone explain 

most of the crop disaster payments at the county level. Therefore, while there might be 

discrepancies in disaster fund allocations at state level, once the money is available at the county 

level, it is distributed according to actual damage. 

In summary, contrary to the countrywide study which found that non-weather related 

factors also affected distribution of agricultural disaster payments and that lobbying power and 

congressional committee representation mattered, we did not find any impact of non-weather 

related factors on the county level within the state of Georgia. All the variables described in the 

data section were experimented with but in no specification did we find that non-weather related 

factors affect performance. Thus it could be concluded that at least at county level there is no 

effect of lobbying and political preferences. 

One of the reasons for lack of significance in socioeconomic variables is a possible 

selection bias: the counties were selected for analysis on the basis of their agricultural production 

volume (i.e., the top crop producers in the state) because of insufficiency and sketchy character 

of the data on small producers. However, crop disaster payments are non-negative in counties 

with even little agricultural production. It is more likely that payments to counties with little 

production are more dependent on farm size distribution, payment concentration, and other 

socioeconomic variables. Exclusion of these small producers may have downplayed the 



importance of payment structure and farm concentration. We plan to extend the analysis by 

including more counties. 

 

 

5. Conclusions 

Preliminary estimation results show consistency over the alternative models used in the analysis. 

The most important observation is that the weather variables (temperature and precipitation) are 

highly significant. Moreover, the ElNino Southern Oscillation phase dummies are the most 

significant variables and explain a large portion of the variation in the crop disaster payments. 

The socio-economic variables originally hypothesized to serve as proxies for lobbying power of 

farm groups and other abilities to draw crop disaster payments are not significant in the 

estimation. Moreover, both fixed and random effects models show relative insignificance of the 

latent time-invariant variable suggesting that the “behind the scenes” forces affecting disaster 

payment distribution on the county level are minimal. This does not negate the existing 

criticisms of inequitable distribution of the payments but supports the hypothesis that counties in 

the sample are not discriminated in the payment distribution process. 
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Figure 1 

 
Figure 2 

 

1995  $18,667,210 

1996  $564,370 

1997  $3,013,620 

1998  $557,003 

1999  $98,425,933 

2000  $74,214,080 

2001  $105,317,080 

2002  $23,779,736 

2003  $80,796,726 

2004  $10,274,847 

2005  $78,419,581 

 

Total  $494,030,185 

 
 
 
 
 
 
 
 



 
Figure 3 

Total Disaster Payments for the Sample

$0

$20,000,000

$40,000,000

$60,000,000

$80,000,000

$100,000,000

$120,000,000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

 
 
Figure 4 

Av. Payments per Acre, $
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Figure 5 
1995-2005 Crop Disaster Payment Distribution, GA (% of total)
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Table 1 
Variable Obs Mean Std. Dev. Min Max 
min1pc 994 21.37 3.58 9 31 
min1pcgs 994 29.25 3.77 16 39 
min5pc 994 28.13 2.91 19 36 
min5pcgs 994 36.00 3.67 26 47 
 
Table 2 
Variable Obs Mean Std. 

Dev. 
Min Max 

      
payacresALT 1001 14.94 18.41 0 118.70
indemacres 900 29.17 30.48 0.004 206.61
min5pc 994 28.12 2.90 19 36
max5pc 994 50.63 4.32 38 63
Rain 994 4739.63 1042.43 894 7708
      
rain2 994 2.35E+07 9338298 799236 5.94E+07
El 1001 0.18 0.39 0 1
La 1001 0.18 0.39 0 1
pmt1pc 847 10.51 4.59 4 30
irrigateda~e 979 0.24 0.16 0.003 0.64
      
land_in_fa~s 1001 315.78 182.25 74 992
bigfarmshare 1001 0.07 0.06 0.002 0.26
 
 
 
 



 
 
Table 3 
 FE Tobit, RE RE RE Tobit, RE Tobit, RE 
Constant -22.763 2.923 5.386 5.785 9.359 9.226 
 (1.42) (0.23) (0.53) (0.56) (0.68) (0.67) 
indemacres 0.08 0.075 0.072 0.071 0.072 0.072 
 (3.57)*** (2.96)*** (2.42)** (2.39)** (2.57)** (2.57)** 
min5pc -2.619 -1.885 -1.155 -1.155 -1.859 -1.859 
 (7.56)*** (4.61)*** (3.82)*** (3.81)*** (4.23)*** (4.23)*** 
max5pc 2.401 1.489 1.196 1.185 1.505 1.507 
 (7.89)*** (5.45)*** (5.40)*** (5.09)*** (5.00)*** (5.02)*** 
rain -0.7 -0.008 -0.008 -0.008 -0.010 -0.010 
 (2.69)*** (2.26)** (2.45)** (2.43)** (2.66)*** (2.66)*** 
rain2 0.008 0.000 0.000 0.000 0.000 0.000 
 (2.75)*** (2.08)** (2.13)** (2.10)** (2.55)** (2.55)** 
el 1.864 -0.091 2.594 2.613 -0.229 -0.232 
 (1.20) (0.05) (1.47) (1.48) (0.11) (0.12) 
la 15.150 15.850 15.285 15.299 17.097 17.099 
 (8.30)*** (8.08)*** (7.94)*** (7.95)*** (8.17)*** (8.17)*** 
pmt1pc   -0.244 -0.249 -0.288 -0.291 
   (1.44) (1.47) (1.18) (1.20) 
Avg f Size    -0.005 -0.005 -0.005 -0.005 
   (1.09) (1.13) (0.35) (0.78) 
Irrigated    1.492   
    (0.25)   
bigfarmshare     3.394  
     (0.07)  
Observations 897 897 771 771 771 771 
Number of 
countyn 

90 90 76 76 76 76 

R-squared 0.25      
R2_O 0.1600  0.2124 0.2124   
R2_B 0.0012  0.0647 0.0676   
R2_W 0.2518  0.2401 0.2400   
fraction of 
variance due 
to ai 

0.236 0.265 0.013 0.013 0.274 0.274 

Robust t statistics in parentheses       
*significant at 10%; ** significant at 5%; *** significant at 1%    
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