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DETERMINANTS OF SOIL NUTRIENT BALANCES AND IMPLICATIONS 
FOR ADDRESSING LAND DEGRADATION AND POVERTY IN UGANDA 
 

Introduction 

Soil erosion and soil nutrient mining are the leading causes of land degradation in 

Uganda (NEMA; Zake, et al.). Declining crop yield has manifested the impact of land 

degradation (Bekunda; Woomer et al.; Wortmann, and Kaizzi). Consequently per capita 

food production in Uganda has been falling in the past 16 years, despite the expanding 

crop acreage (Mungyereza; NEMA; UBOS, 2001). This trend has put at stake livelihoods 

of over 90% of Ugandan farmers. 

 Soil fertility mining in Uganda is among the highest in Sub-Saharan Africa  

(SSA), with an estimated average annual nutrient depletion of 70kg of nitrogen (N), 

phosphorus (P) and potassium (K) (Stoorvogel and Smaling; Wortmann, Kaizzi). The 

effect of the consequent soil fertility mining is a downward spiral of soil fertility, which 

makes the current low-external input crop production unsustainable.  

A number of studies have measured or developed methods of measuring soil 

nutrient flow in SSA (Defoer, et al.; de Jager et al., 1998a & 1998b; Smaling, Stoorvogel 

and Windmeijer; Stoorvogel, Smaling and Windmeijer; Stoorvogel,and Smaling; van den 

Bosch, et al.; Wortmann, and Kaizzi). In this study, we define soil nutrient flow as the 

amount of plant nutrients that flow in and out of a system or area. We will refer to the 

difference between nutrient inflow and outflow as “nutrient balance.” Nutrient flow may 

be measured at different scales, namely, plant, plot, household, water catchment, village, 

district, national, or higher level (Smaling, Stoorvogel and Windmeijer). Another set of 
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studies has evaluated the impact of land management practices on crop production, 

profitability and sustainability (Shepherd, and Soule; van der Pol). A third group of 

studies has analyzed the factors that determine adoption of improved land management 

practices in general (e.g. Grepperud; Pagiola; Tefera, et al.). A fourth set of studies 

consists of soil science experiments that analyze the biophysical factors that influence 

soil nutrient balances or its components (e.g. Bruce, et al.; Defoer, et al.; Giller, et al.,; 

Ikera, et al.; Keeney; Ndakidemi, et al.; Palm, et al.; Sanchez, et al.). These biological 

studies do not analyze socio-economic factors that impact nutrient balances.  

No study known to the authors has done a combined analysis of physical, 

biological and socio-economic factors that determine the nutrient flow and balances at 

household level and this study attempts to fill this gap.  The focus of this study on 

determinants of nutrient balance only, as opposed to land management in general, will 

help to better understand strategies to address soil nutrient depletion, which is one of the 

most important land degradation problems in SSA. Therefore, the main objectives of this 

study are to identify and analyze the socio-economic and biophysical determinants of soil 

nutrient flow; to discuss the policy implications of the findings; and to suggest policies 

and strategies that may be used to address the soil nutrient depletion problem. 

 

The model 

 Factors that are likely to determine soil nutrient flow and balances can be, divided 

into two major groups: (i) biological and ecological (biophysical) factors, and (ii) socio-

economic factors (Harrison and Tisdale). The biophysical factors are, climate, biological, 

physical and chemical characteristics of the soil, topography, altitude, temperature, and 
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biodiversity (Bruce, et al.; de Jager, et al., 1998a; Giller; Keeney). Biophysical factors 

determine the agricultural productivity potential of the soil. Biophysical factors influence 

nutrient balances in many ways. For example nitrogen fixation by tropical legumes may 

be limited by lack of nodules, which may be a result of soil acidity or deficiency of P, 

which is important for nodule formation. Drought can also be a problem as less rainfall 

leads to less N-fixation (Giller, et al.; Wortmann and Kaizzi).  Topography affects soil 

erosion, agricultural activities, vegetation, and biological processes (Voortman, et al.). 

The socio-economic factors that directly influence soil nutrient flows are: fertility 

management practices, level of crop-livestock interaction, (De Jager, et al., 1998a; 

Keeney) and the level of importation and exportation of soil nutrients through crop and 

livestock product sales and purchases. Other socio-economic factors that are likely to 

affect soil nutrient balance are household endowment (physical assets, human, financial 

and social capital); household income activities (sources of income), land tenure, market 

access, population pressure; and policies and institutions  (Boserup; Herweg; 

Mungyereza; Pender et al.; Sserunkuuma, et al.). The socio-economic factors interact 

with the biophysical processes, thereby influencing the nutrient flow directly and 

indirectly. Even though we will analyze and discuss most of these factors, our focus will 

be on the socio-economic factors since policy intervention may be used to influence 

them. 

Our analysis of the determinants of nutrient flow focuses on inflows and outflows 

that the farmer has control over. Those that the farmer cannot influence significantly are 

not analyzed. The inflows that the farmer can influence substantially are use of mineral 

fertilizers, organic inputs from outside the farm, off-farm grazing, purchased food, and 
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BNF. The nutrient outflows under farmers’ control are exporting harvested crop products 

and residues, soil erosion, and exporting animal products and manure. The determinants 

of these soil nutrient flows will be analyzed using econometric procedures. The 

determinants of the overall nutrient balances for the major macronutrients, namely 

nitrogen, phosphorus, and potassium, will also be analyzed. 

As discussed earlier, the major determinants of land management and hence soil 

nutrient balances can be categorized into two major groups, biophysical and socio-

economic factors. Since we are using a small sample, we estimate a reduced econometric 

model in order to have a fair number of degrees of freedom. The biophysical factors will 

be represented by one variable namely, agricultural potential. The sample households are 

divided into two agricultural potential zones, namely high potential zone with rainfall 

above 1500 mm per year, and low potential zone with rainfall below 1500 mm per year. 

The socio-economic factors will be modeled using the following variables: policies and 

institutions, which will be represented by market access and access to extension services; 

human capital (family labor and education), and household physical assets (farm size and 

distance of parcels from homestead, size of livestock herd - measured in Tropical 

Livestock Units (TLU). A standard animal with live weight of 250 kg is called TLU 

(Defoer, et al.). Average TLU for each livestock category is: Cow = 0.9, oxen = 1.5, 

sheep or goat = 0.20, and calf = 0.25. Other socio-economic factors include primary 

activity of income household head, and crop diversity, which is the number of crops 

grown in a given unit area. Large number of crops grown per unit area, as is the case with 

perennial crop systems in Uganda, is associated with better soil cover, hence less soil 

erosion.  
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We use the same explanatory variables to estimate the determinants of nutrient 

flows and balances. The models used to estimate the determinants of nutrient flow and 

balances are: 

Ini           = f(x1b1 +e1) …………………………….(1) 

Outi        =  f(x2b2 +e2) ……………………………(2) 

Nutbali   =  f(x3b3 +e3) ……………………….…...(3) 

Where:Ini is source i of nutrient inflow, namely chemical fertilizer, organic inputs, off-

farm grazing, purchased food and BNF; 

 Outi is channel i of nutrient outflow, namely exported crop products and residues, 

exported animal products and manure, excrements of animals while grazing off-

farm; and soil erosion; 

 Nutbali is balance of nutrient i, namely N, P, K and total nutrient balance (NPK); 

xi is column vector of factors that affect nutrient flows and their balances; 

bi is the associated row vector of coefficients of nutrient flow and balance 

determinants; and 

 ei is the error term of ith nutrient flow or balance.  

Data: 

Fifty eight farmers were randomly selected from four villages in eastern Uganda 

to collaborate in a soil fertility experiment and a household survey. The biophysical 

characteristics of farm soils were determined by lab analysis of soil samples collected 

from a depth of 0-20 cm. The pH, Organic matter, N, extractable P, exchangeable K and 

Calcium, and texture were measured using the routine soil sample lab analytical method 

according to Foster. 
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Information on farm management practices; crop-livestock interaction; crop 

diversity; and other variables that affect nutrient flow was obtained from the household 

and plot level surveys. These data were used to determine annual nutrient inflows and 

outflows for each plot and the farm as a whole. These flows were then used to compute 

the nutrient balance for each household for one year. We will restrict our analysis to the 

three major macronutrients, i.e. N, P, K. The sources of inflows and outflows used in this 

study are according to de Jager, et al. (1998a) and Smaling, Stoorvogel and Windmeijer. 

The nutrient inflows are mineral fertilizers, organic inputs from outside the farm, grazing 

outside the farm (off-farm grazing), purchased food, atmospheric deposition, biological 

nitrogen fixation (BNF), and sedimentation.  

Contribution of soil nutrient inflow from purchased foods is computed on the 

assumption that household waste will be disposed on crop plots around or near the 

homestead. Household waste include human waste, organic residues from in and around 

the house such as ash from fuelwood and other cooking and heating bio-energy, food 

leftovers, bran from pounded cereals, peelings, etc. Farmers were asked to explain how 

they manage household wastes and then their contribution to soil nutrient inflow was 

computed accordingly. Thus, contribution of household waste to nutrient inflow varied 

from one household to another.  

The major sources of outflows are: exported crop products, leaching, soil erosion, 

exported animal products, excrements of animals grazing off the farm and exported 

manure, crop residue, and gaseous losses. Amount of nutrient outflow was computed 

using the same method as the equivalent inflows. For more details on how soil nutrient 

inflows and outflows were measured, see Nkonya, et al.  
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Estimating the economic impact of soil nutrient depletion on agricultural 

productivity loss would be interesting. However, there are no studies known to authors 

that have measured agricultural productivity loss due to soil nutrient depletion. We 

therefore use a simpler measure to estimate this impact. This measure is called the 

economic nutrient depletion ratio (ENDR) (van der Pol). ENDR is the share of farmers’ 

income derived from mining soil nutrients. Soil nutrient mining is the practice of growing 

crops with insufficient replacement of nutrients taken up by crops. Mathematically,  

ENDR =
GM

NDMV x 100 

where: (NDMV) is nutrient deficit market value, which is the value of nutrients 

mined per hectare if such nutrients were to be replenished by applying 

fertilizer purchased from the cheapest sources.  

GM is the gross margin from agricultural activities per household. 

ENDR measures the cost of replenishing nutrient depleted, and not the benefit. The 

ENDR will also be used as a measure of soil nutrient depletion or level of sustainability 

of land management practices.   

Explorative analysis of the data was used to determine the distribution of the 

variables and violation of regression assumptions. Data with non-normal error terms or 

those with heavy tails were transformed to normality, avoiding as much as possible to 

drop any observations. Family labor, distance from residence to parcel and farm size 

were positively skewed. A log-transformation normalized their distributions. 

Heteroscedasticity was also observed in all models, hence feasible generalized least 

squares (FGLS) method was used to estimate asymptotically efficient parameters. 
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Results and discussion 

 

Descriptive statistics: 

Only 5% of the sampled households had positive total NPK balances (Table 1). The rest 

of the farmers used land management practices that appear unsustainable for the one-year 

period considered. However, negative balances are possible over a number of years 

because plants use nutrients from the available stock of nutrients. If soil nutrients are not 

replenished, the supply from the available stock will decrease with time. The decline in 

the nutrient pool will lead to decrease in crop yield, which in turn will reduce the rate of 

nutrient depletion since there is less outflow through exported crop products. The 

negative balance over many years is manifesting itself as declining crop yield reported in 

eastern Uganda (Wortmann and Kaizzi). In more degraded areas, the rate of nutrient 

depletion may be lower, and eventually reach an equilibrium, but at very low yields, 

which may not sustain household food needs.  However the time for this to appear will 

depend on the nutrient stock.  

Our estimates of nutrient balances are fairly consistent with other studies in 

Uganda, both using national scale data (Stoorvogel, and Smaling) and another study of 

household level depletion in the same farming systems and region as our case study, i.e. 

maize system in eastern Uganda (Wortmann, and Kaizzi). 

If inorganic fertilizer were used to restore the mined nutrients, it would cost an 

equivalent of a fifth of the farm income, which is estimated at US$823/household per 

year. That is, the ENDR, which shows the share of farm income that is derived from 

mining soil nutrients, is about one fifth of farm income. This implies that if farmers were 
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to use inorganic fertility such that they produce at zero nutrient balance, their farm 

income would be reduced to 80%. However, application of fertilizer in the study area 

leads to substantial yield increase (Kaizzi, et al.). Thus, if weather conditions remain 

constant, crop yield is likely to increase where fertilizer is applied such that farmers 

produce at zero nutrient balance. Consequently, farm income will increase if crop market 

prices remain constant. Hence the large investment required to address soil nutrient 

depletion may be critical only in the first year if weather and market conditions remain 

constant. 

Econometric results 

Determinants of Nutrient Inflows: Human and financial capital; technical assistance; 

distance from plot to residence; agricultural potential; market access; crop diversity; farm 

size and participation in non-farm activities are important determinants of nutrient flows 

and balances. For all four major inflow sources that the farmer has control over--chemical 

fertilizer, off-farm grazing, purchased food and BNF—more family labor availability 

reduces nutrient inflows (Table 2). 

The average distance from the farmer’s residence to her parcels significantly 

reduces the inflow from purchased food and BNF. These results suggest that farmers with 

distant plots are likely to be subsistence farmers, buying less food from the market. The 

negative relationship between BNF and distance to parcel is due to the statistically 

significant negative relationship between distance from homestead to parcel and the 

probability to plant leguminous crops, which contribute to BNF.  

The inflows from off-farm grazing, purchased food, and BNF decrease as one 

moves from high to low agricultural potential zone. The negative association between 
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off-farm grazing and agricultural potential is perhaps due to the low biomass potential in 

the low agricultural potential zone that leads to low quality and quantity of pasture. In the 

case of negative association between purchased food and agricultural potential, farmers 

living in the low agricultural potential zone are more subsistence-oriented households due 

to low crop productivity in such areas  - hence lower income and ability to afford buying 

food. The negative relationship between agricultural potential and BNF was also 

expected since dry conditions limit BNF (Giller, et al.).  

Ownership of livestock (as measured by TLU) reduces the nutrient inflows from 

off-farm grazing but increases inflows from purchased foods. It is not clear why TLU is 

negatively associated with inflow from off-farm grazing since we expected that farmers 

with large herds of livestock would need supplemental grazing on communal or 

neighbors’ grazing lands.  The positive relationship between TLU and nutrient inflow 

from purchased food is consistent with theory since farmers who own large herds of 

livestock are wealthier and hence have higher purchasing power and have less time for 

crop production to meet their subsistence needs.  

Access to extension services significantly influences inflows from purchased food 

and BNF. The positive association between extension contacts and purchased foods may 

be due to better extension services for farmers growing export crops (such as cotton and 

coffee). For example, our data show a positive association between extension contact 

hours and the probability to grow coffee. There are “subject matter specialists” who are 

hired by crop authorities to provide extension services specifically for export crops, 

namely coffee, cotton and tobacco. Certainly this increases the contact with extension 

agents for export crop farmers. Export crop producers are more likely to buy food than 
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food crop producers because they have more cash and may be less likely to produce 

enough food for their subsistence needs. The positive association between BNF and 

extension contact was expected since one of the extension messages is planting 

leguminous crops to promote BNF. 

Education of the household head shows a negative relationship with nutrient 

inflows from off-farm grazing and BNF. Nkonya, et al., 2004 also show that farmers who 

have completed primary education are less likely to apply household residues and mulch 

than those who did not complete primary education. This is consistent with theory that 

education increases farmers’ opportunities to be engaged in non-farm activities. Such 

options may reduce farmers’ incentive to invest efforts in BNF-enhancing technologies or 

grazing animals. Improved market access significantly reduces inflows from off-farm 

grazing and purchased foods. Reduced inflow from off-farm grazing may be due to the 

demand for crop residue and pasture and lack of communal grazing land due to high 

population pressure in high market access areas.  

The likely explanation for the negative impact of market access on nutrient 

inflows from purchased food is that farmers in high market access areas are surplus 

producers hence have less need to buy large quantities of food to supplement their own 

production. This explanation appears to be supported by the large positive effect of 

market access on nutrient outflows through exported crop products (Table 3). The 

nutrient inflow from BNF is also higher in high market access than in low market access 

areas. Controlling for crop diversity, extension contact, agricultural potential and other 

factors, this observation may be explained by the better access to phosphorus fertilizers in 

high market access areas, which improve BNF. It is also possible that there is high 
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demand for leguminous crops in the high market access areas that gives farmers an 

incentive to plant more legumes for sale. Beans and other pulses are in high demand in 

urban areas since they are cheap compared to meat - hence major sources of protein for 

the poor urban population in eastern Africa (CIAT ; Pachico, 1993).  

Controlling for TLU, farm size and other factors, crop diversity decreases soil 

nutrient inflows from off-farm grazing but increases inflows from chemical fertilizer. 

This is likely due to the limited space for off-farm grazing in areas that plant a large 

number of crops, such as the banana/coffee systems. It is interesting to note that crop 

diversity increases nutrient inflow from chemical fertilizer. In Uganda, higher crop 

diversity is probably associated with mixed perennial-annual crop systems that include 

maize, which is the most fertilized crop (Nkonya, et al., 2002). 

We expected that farmers with large farms would have less need to graze their 

animals on common grazing lands or other farmers’ plots. Contrary to our expectation, 

farm size increases nutrient inflows from off-farm grazing (controlling for TLU).  This 

may be due to presence of communal grazing lands in low populated areas where farms 

are larger. Farm size increases nutrient inflows from purchased food probably because of 

its wealth effect, which is likely to increase purchased food. Farm size also increases 

nutrient inflows from BNF perhaps due to the wealth effect that allows farmers to use 

BNF-enhancing land management practices, such as application of phosphorus fertilizer. 

Controlling for market access and other factors, non-farm activities increase 

nutrient inflows from chemical fertilizer and purchased food but reduces BNF. Farmers 

having non-farm activities are likely to have higher cash income for buying chemical 

fertilizer but they are likely to produce less food than their subsistence requirement and 
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hence the need to buy food. The negative association between non-farm activities and 

BNF may be due to less investment in BNF-enhancing management practices by farmers 

having non-farm activities due to their higher labor opportunity costs.   

 

Determinants of Soil Nutrient Outflows: Family labor increases nutrient outflows from 

exported crop residues, soil erosion and exported animal excrement and manure (Table 

3). Larger farm households may have more labor to harvest and sell crop residues and 

greater need for cash. The positive association between family labor and outflows from 

soil erosion suggests that households with larger family labor use more labor-intensive 

and erosive practices such as more tillage or frequent weeding. This is consistent with 

Nkonya et al., (2004) who observed a positive association between family size and soil 

erosion.  

The average distance from residence to the farmer’s parcels increases nutrient 

outflows from crop residues and soil erosion. This may be due to greater theft or grazing 

of residues by neighbors on distant parcels, since owners are too far away to have 

effective control on access to such parcels. More nutrient loss through erosion for distant 

parcels is likely due to use of more erosive practices on distant parcels. For instance, 

results reported by Nkonya et al., (2004) show that farmers are less likely to apply 

manure, compost, mulch or household residues, and are more likely to use slash and burn 

during land preparation on distant parcels. 

Nutrient loss through exportation of crop products and residue and soil erosion is 

significantly higher in the low agricultural potential zone than in the high agricultural 

potential areas. However, controlling for livestock ownership and other factors, nutrient 

 13



losses through exportation of animal manure is less in low potential areas than in high 

potential areas. The negative association between agricultural potential and nutrient loss 

through exportation of crop products was contrary to a priori expectation. We expected 

high yields in the high potential areas, hence likelihood of exporting more agricultural 

surplus. This observation may be due to tendency of the poor farmers in marginal areas to 

sell agricultural products and their residues due desperate need for cash.  

The negative association between exportation of nutrients through crop residues 

and agricultural potential may also be explained by fuelwood shortage in low potential 

areas, which forces farmers to use crop residues for cooking. The negative impact of 

agricultural potential on nutrient loss through soil erosion is likely due to less vegetation 

in the low potential areas, which leaves the soils unprotected, hence more erosion.  

The positive association of agricultural potential and nutrient loss through 

exportation of animal excrement and manure may be explained by the higher probability 

of applying manure in the high altitude zones, which are of high potential, than in the low 

altitude areas (Nkonya, et al., 2004). This implies farmers in the high agricultural 

potential zones have a market for manure and hence more likely to export than those in 

the low potential zones. 

TLU significantly reduces nutrient losses through exportation of crop products 

and residues, soil erosion and exportation of animal manure. However, it slightly 

increases nutrient losses through animal grazing. Farmers with more animals are likely to 

depend less on crop production, hence produce less crops and residues for sale. Less crop 

production for farmers with more livestock may also explain the negative impact of 

livestock on nutrient losses through soil erosion. This is because in the absence of 
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overstocking, which is not a serious problem in the study villages, crop production is 

likely to lead to more soil erosion than livestock production. For instance, Tefera, et al. 

observed that croplands are more vulnerable than pastureland to soil erosion because 

croplands are repeatedly tilled and left without adequate vegetative cover.  However, 

nutrient loss through animal grazing increases slightly with TLU perhaps because having 

large TLU increases the probability for a farmer to live in an area where many other 

farmers raise equally large number of livestock. This in turn increases the probability for 

neighbors’ livestock to feed on farmer’s fields.    

Contact with extension agents reduces nutrient losses through crop residues, 

perhaps due to the extension messages that advise farmers not to remove crop residues in 

order to reduce soil erosion. However, contact with extension agents increases nutrient 

losses through soil erosion and exportation of animal manure. The association between 

nutrient loss through soil erosion and contact with extension may be due to tendency of 

farmers to adopt one technology at a time (stepwise adoption), as observed by Byerlee 

and de Polanco. In this case, farmers may adopt more erosive technologies such as higher 

weeding frequency for cotton, which increase soil vulnerability to erosion, without 

adopting soil conservation measures.  

Education of household head is associated with lower nutrient losses for all four 

channels of outflow but only losses through exportation of crop products and animal 

manure are statistically significant. The negative association of nutrient loss through 

exportation of crop products and level of education of household head suggests that better 

educated farmers are likely to export less nutrients through crop product exportation since 

they produce less crops for sale. This is consistent with Nkonya et al. (2004) who showed 
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that better educated farmers use less intensive land management practices, which in turn 

lead to lower yields. As observed earlier, better-educated farmers also have the 

opportunity to be engaged in non-farm activities, which compete for labor with 

agricultural production. This also leads to less crop production and hence less marketable 

surplus under imperfect labor market condition. 

Better market access increases nutrient loss through exportation of crop products 

and residues, and soil erosion. This was expected since in high market access areas, 

farmers are likely to produce more crops for sale, hence exporting more nutrients. 

Farmers in high market access areas are also more likely to find a market in urban areas 

for their crop residues, which leads to additional nutrient loss through exportation of crop 

residues and the consequent soil erosion. Controlling for TLU and other factors, the 

negative association between loss of nutrients through animal manure exportation and 

market access suggests that labor in the high market access areas is too expensive to use 

animal manure. Nkonya et al. (2004) also showed that farmers in the high market access 

areas use less household waste on their farms.  

As expected, crop diversity reduces nutrient loss by reducing soil erosion since it 

increases soil cover, hence likely to retard soil erosion. Our data show a strong 

association between crop diversity and the probability to plant perennial crops. This is 

expected as farmers who grow coffee and banana always plant companion crops such as 

pulses. The resulting improved soil cover retards erosion in areas with coffee/banana 

cropping systems. Crop diversity also reduces exports of crop residue and manure. This is 

due to greater need for using crop residues for mulching and manure for applying on 

banana/coffee plots, the cropping system that has the highest crop diversity. 
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Farm size increases soil nutrient loss through greater export of crop products and 

residue because larger farms produce larger surpluses for sale or giving away. 

Participation in non-farm activities leads to higher losses of nutrients through crop 

product exportation but reduces nutrient loss through soil erosion. These results support 

the findings in Table 2 where we observed that non-farm activities enhance use of 

chemical fertilizer, which in turn increase crop yield and hence nutrient loss through 

exportation of crop products. It is also possible that farmers with non-farm income 

sources are well-off (Barrett, Reardon and Webb) and hence sell more crops that they 

produce in order to buy food products that they do not produce. Results on association of 

soil erosion and non-farm income are consistent with Nkonya et al. (2004) who observed 

that households with wage or salary income as their primary income source were more 

likely to use slash and burn, which was found to be associated with less erosion since 

farmers using slash and burn are in areas with better vegetative cover – hence less 

erosion.  

 

Determinants of N, P, K and NPK Balances: After studying the determinants of the 

inflows and outflows, we turn to the analysis of the determinants of nutrient balances of 

the three major nutrients, namely N, P, K, and their total, NPK. This analysis helps us to 

understand the overall effects of socio-economic and physical factors on nutrient 

balances.  

The impact of family labor on nutrient balances is mixed. It significantly 

increases the nutrient balances for N but reduces K and overall NPK balances (Table 6). 

This is due to its negative effect on most nutrient inflows and positive effect on most 
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outflows, as discussed above. Distance from residence to parcel has a positive impact on 

N but a negative effect on K. This may be due to a higher level of chemical fertilizer 

application on distant parcels than those around residence (Table 2). However, it is 

uncommon for farmers to apply potassium-rich chemical fertilizers such as muriate of 

potash or potassium sulphate. K-rich manure and household residues are more likely to 

be applied on parcels closer to residence, because of the high cost involved in 

transporting such bulky materials to distant plots. Plots around the homestead benefit 

from household waste thrown regularly after cleaning the home or animal confinement 

structures.  

Households in the high agricultural potential areas report significantly higher 

nutrient balances than those in the low potential areas, suggesting that crop production in 

the high potential areas is more sustainable than in low potential areas. This follows from 

the results reported in Table 2 and 3 and Nkonya et al. (2004) who noted that farmers in 

the low potential areas experience more loss of nutrients through soil erosion, are less 

likely to apply chemical fertilizer or adopt BNF-enhancing technologies than those in the 

high potential areas. Kaizzi, et al. also observed similar results. 

 TLU increased significantly the balances for N, P, K and NPK. As noted in the 

nutrient flow analysis, farmers with more livestock also export less nutrients through 

marketed crop surplus and residues, and have less soil erosion (Table 3). Farmers with 

more livestock also import more food, which increases nutrient inflows (Table 2). 

We observe a significant negative impact of contact with extension agents on N 

and NPK balances. This is perhaps due to the stepwise adoption of technologies, whereby 

the farmers adopt improved crop varieties without applying fertilizer. To verify this, we 
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ran a regressions for nutrient balances of N, P, K and NPK including a quadratic 

specification of extension contact hours ((ext) and (ext)2) as explanatory variables. We 

observed a U-shaped relationship of nutrient balances with extension. This relationship 

was significant for the two most limiting nutrients, namely, N, and P equations. Hence 

initially, there is more soil depletion, which bottoms out and then nutrient balances start 

increasing with extension contact hours as adoption of soil fertility management 

technologies increase. Currently, access to extension services is poor. Among the 58 

farmers considered in this paper, 62% did not have extension contact in 2000. Among 

those who had extension contact, only 25% had more than 4 contact hours in the entire 

year. Undoubtedly this is a little time for farmers to understand rather complex 

technologies like soil-fertility practices. MAAIF and MFPED and UBOS (2002) also note 

the inadequate extension services in most districts of Uganda. Only 11.4% of households 

received extension services in 1998. Hence, at low number of extension contact hours, as 

is the case now, farmers are likely to adopt improved crop varieties without soil fertility 

technologies.  

The present research suggests that inadequate extension services are likely to 

initially contribute to unsustainable land management practices if farmers adopt improved 

crop varieties without adopting soil fertility management practices that would restore the 

additional nutrients utilized by the high yielding varieties. This appears to be supported 

by some field observations. For instance Ssali (personal communication, 2002) noted that 

farmers complained that productivity of plots previously planted with improved varieties 

decreased substantially. Controlling for non-farm activities and other factors, farmers 

having secondary or higher education have higher nutrient balances than those with lower 
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education. This follows from the soil nutrient flow results and suggests that better 

education is likely to contribute to more sustainable crop production.  

Market access significantly reduces balances of N, P, K and NPK, suggesting that 

farmers closer to markets mine their soils more than those further away from markets. 

This can be explained by the outflow results (Table 3), which show market access 

increases nutrient loss through exportation of crop products and residues, and soil 

erosion.  This observation supports Woelcke, et al. who noted that commercially oriented 

farmers in eastern Uganda had worse soil nutrient depletion than subsistence farmers. 

This implies that improved access to market may induce farmers to practice unsustainable 

land management for the sake of short-term profit-making objectives, as noted by 

Angelsen; and Lipton.  These findings call into question the assumption of the Plan for 

Modernization of Agriculture (PMA) that improvement in infrastructure and markets will 

not lead to unsustainable land management problems, at least in the near term. 

As expected, crop diversity appears to contribute to more positive (or less 

negative) nutrient balances, suggesting the need to encourage farmers to plant intercrop 

systems.  It may be the case that intercropping is more common in perennial crop 

systems, which may have less nutrient depletion problems. This appears to reduce soil 

erosion (Table 3) and increases probability of application of chemical fertilizers (Table 

2). Farm size is negatively related to nutrient balances, implying that larger farmers have 

higher levels of nutrient depletion than smaller farms. As pointed out earlier, this may be 

due to the ability of larger farms to produce more marketable crop surplus, which exports 

soil nutrients off the farm without adequate replenishment. Smaller farms are likely to 
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produce less for sale and are more likely to buy food to supplement their subsistence 

needs. This reduces soil nutrient depletion from small farms. 

Households having a non-farm primary activity are likely to have more 

sustainable crop production than those with agriculture as a primary activity. As observed 

earlier, this is likely due to their ability to buy fertilizer and food. Though the paper 

generated interesting results, the sample of 58 households used in this paper is small and 

it forced authors to estimate reduced econometric equations in order to have reasonable 

degrees of freedom. Future studies need to involve a bigger sample of farmers from 

different farming systems and land tenure systems of the country. This will allow better 

estimates of the status of nutrient depletion in Uganda.  

Conclusions and policy implications 

Using nitrogen (N), phosphorus (P) and potassium (K) balances as indicators of 

sustainability of agricultural production, the present research shows that only 5% of 

households in eastern Uganda practice sustainable land management. This confirms the 

serious soil nutrient depletion, whose value of replenishment is about 20% of household 

income. These findings pose a big challenge to policy makers, planners and others who 

are involved in environmental conservation and developing sustainable agricultural 

production. This is because buying inorganic fertilizer to replenish mined nutrients 

appears to be an unaffordable alternative, at least in the short-run. The findings of the 

present research confirm the heavy reliance of Ugandan farmers on soil fertility mining to 

provide for their livelihoods.  

Strategies for reducing fertilizer prices need to be sought in order to make it more 

affordable to the resource-poor farmers. The expensive inorganic fertilizer technology 
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needs to be complemented with cultural practices that are affordable, feasible, and 

compatible with local farming systems. For instance, the present research observed that 

farmers with more livestock have higher nutrient balances than those with fewer.  

In order to reduce the loss of nutrients through erosion, efforts to promote 

adoption of soil and water conservation (SWC) methods need to be increased. Crop 

diversity appears to retard soil erosion. This suggests that soil fertility technologies 

developed should also take into account the need for intercropping crops with legumes in 

order to increase BNF and obtain other benefits of intercropping. As noted by Bekunda, 

et al., most fertilizer recommendations are based on mono-crops, while most farmers in 

Uganda realize the benefits of crop diversity and hence intercrop.  Hence soil fertility 

recommendations need to take into account the intercropping practices that farmers 

normally use.   

We note in the present research that limited contact with extension agents is likely 

to lead farmers to initially adopt high-yielding varieties without fertilizer. Hence 

emphasis of extension services needs to be directed to both new crop varieties and the 

fertility problem. Even this may not be a solution in the short run due to the stepwise 

technology adoption behavior of smallholder farmers and limited resources to hire more 

extension officers. This points to the need for the few extension agents to increase the 

content of extension messages to include seed and fertility-enhancing technologies. In the 

long run, more extension agents need to be hired in order to increase contact hours, which 

in turn will increase the likelihood of adopting both types of technologies.  

 Our results indicate that farmers in the low agricultural potential areas deplete 

more soil nutrients than those in high potential areas, as a result of more serious soil 
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erosion, and exportation of crop products and residue. This suggests the need to 

emphasize soil and water conservation practices that would check soil erosion, and a need 

to discourage farmers from harvesting crop residues. The low agricultural potential areas 

should also be regarded as environmentally fragile, hence targeted for soil and water 

conservation campaigns. 

It appears that non-farm activities contribute to decreasing soil nutrient depletion. 

Thus, promoting non-farm activities may be a “win-win” development strategy, reducing 

land degradation while helping to improve incomes. To increase the competitiveness of 

non-farm activities, farmers’ skills in making non-farm products need to be increased 

through training them in polytechnic and vocational schools based in rural areas. 

Education also appears to improve soil nutrient balances. However, education also 

reduces the probability to adopt labor-intensive technologies that improve nutrient 

balances. This suggests the need to introduce agricultural sciences in primary and 

secondary school curriculum in order to educate future farmers on sustainable crop 

husbandry practices. Farmers in high market access areas have lower nutrient balances 

than those in low market access areas. Market improvement should be accompanied with 

efforts to improve extension and other agricultural services such that it does not lead to 

more severe nutrient depletion.  
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Table 1: Nutrient Balances in Farm Plots, Eastern Uganda. 
 

Soil 
Nutrient 

Share of Farmers 
with positive 
nutrient balances 

Mean 
nutrient 
balance

Std deviation 
of nutrient 
balance 

Economic 
nutrient depletion 
ratio (ENDR)  

 % -- Kg per hectare -- % 
Nitrogen 12.07 -48.02 48.20 10.70 
Phosphorus 39.66 -10.80 18.24 2.70 
Potassium 34.48 -51.09 82.40 5.80 
NPK 5.17 -100.01 122.79 19.20 

 
 
Table 2: FGLS regression of determinants of soil nutrient inflows  

Coefficients of source of soil nutrient inflow Determinant of soil nutrient 
inflow Chemical 

fertilizer 
Off-farm 
grazing 

Purchased 
food 

Ln(BNF) 

Ln(family labor) -0.60 -0.51*** -3.71*** -0.16*** 
Ln(Distance from residence to 
parcel) 

0.65z -0.01 -0.77** -0.09*** 

Agricultural potential (Low=1, 
High=0) 

-2.47z -2.52*** -5.93*** -0.89*** 

Tropical livestock unit (TLU)1 -0.58 -0.24*** 4.48*** -0.01 
Had extension contact? (yes=1, 
no=0) 

1.45 0.28* 12.82*** 0.24*** 

Education (secondary or higher 
education=1, otherwise=0) 

5.22z -2.55*** -5.31 -0.35*** 

Market access (high=1, 
otherwise=0) 

-0.27 -1.39*** -11.26*** 0.27*** 

Crop diversity (# of crops grown) 1.19* -0.56*** 0.22 0.04** 

Ln(farm size) 0.62 0.66** 5.30*** 0.15*** 
Primary activity (non-farm=1, 
otherwise=0 

65.57*** -0.35 10.18*** -0.50** 

Constant -3.00z 7.00*** 0.38 3.40** 
# of observations (households) 54 54 54 54 
Prob > χ2 0.000 0.000 0.000 0.000 
Notes: Asterisks denote associated coefficient is significant at: P<0.05 (*);  P<0.01 (**) and P<0.001 (***)  

z Implies associated coefficient is significant at P<0.100  
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Table 3: FGLS regression of determinants of soil nutrient outflows 
Coefficients for soil nutrient outflows Determinants of soil nutrient 

outflows Exported 
crop 
products 

Exporte
d crop 
residues 

Off-farm 
animal 
excrement 

Animal 
manure 
exported 

Soil 
erosion 

Ln(family labor) 10.17 2.12*** 0.07 1.27** 1.69**
Ln(Distance from home to parcel) 1.48 0.42** -0.02 -0.36* 1.04***
Agricultural potential (Low=1, 
high=0) 

74.60*** 3.86*** -0.11 -18.29*** 15.05***

Tropical livestock unit (TLU)1 -6.92*** -0.27*** 0.07* -1.39*** -1.19***
Had extension contact? (yes=1, 
no=0) 

-5.18 -1.19* 0.21 12.65*** 2.80***

Education (secondary or higher 
education=1, otherwise=0) 

-20.31** -0.11 -0.03 -11.89*** -0.32

Market access (high=1, 
otherwise=0) 

131.32*** 3.76*** 0.09 -20.88*** 28.97***

Crop diversity (# of crops grown) 1.59 -0.71*** 0.01 -0.79* -1.19***
Ln(farm size) 25.20*** 1.77*** 0.19 -0.77 0.81
Non-farm as primary activity of 
household head? Yes=1, no=0 

49.77*** 0.42 0.64 -1.17 -8.11**

Constant -41.41*** -1.77** -0.37 31.57*** 1.59
# of observations (households) 54 54 54 54 54
Prob >  χ2 0.000 0.000 0.023 0.000 0.000
Notes: Asterisks denote associated coefficient is significant at: P<0.05 (*);  P<0.01 (**) and P<0.001 (***)   
 
Table 6: FGLS regression of determinants of soil nutrient balances 

Coefficients Determinant of nutrient balance 
N balance P Balance K Balance NPK Balance 

Ln(family labor) 11.45*** -1.28 -13.46** -22.84***
Ln(distance from home to parcel) 3.98*** 0.37 -2.77** -0.32
Agricultural potential (Low=1, 
High=0) 

21.65*** -15.81*** -101.89*** -50.36***

Tropical livestock unit (TLU) 4.41*** 0.84*** 3.80*** 16.18***
Had extension contact? (yes=1, 
no=0) 

-17.95*** -1.08 23.73*** -25.23*

Education (secondary or higher 
education=1, otherwise=0) 

13.01 4.99 -13.34 37.11*

Market access (high=1, 
otherwise=0) 

-22.53*** -22.19*** -107.99*** -125.40***

Crop diversity (# of crops grown) -0.16 1.57*** -5.56** 8.83**
Ln(farm size) 6.18* -2.84*** -9.38* -28.82**
Primary activity (non-farm=1, 
otherwise=0) 

50.44*** 12.10*** -8.55 28.72**

Constant -74.95*** 7.18 139.85*** -31.84*
# of observations (households) 53 39 40 54
Prob >  χ2 0.000 0.000 0.000 0.000
Notes: Asterisks denote associated coefficient is significant at: P<0.05 (*);  P<0.01 (**) and P<0.001 (***)   
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