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IMPOSING CURVATURE AND MONOTONICITY ON FLEXIBLE FUNCTIONAL 

FORMS: AN EFFICIENT REGIONAL APPROACH 

 

 

 

Abstract 

In many areas of economic analysis, economic theory restricts the shape as well as other 

characteristics of functions used to represent economic constructs. Obvious examples are the monotonicity 

and curvature conditions that apply to utility, profit, and cost functions. Commonly, these regularity 

conditions are imposed either locally or globally. Here we extend and improve upon currently available 

estimation methods for imposing regularity conditions by imposing regularity on a connected subset of the 

regressor space. This method offers important advantages over the local approach by imposing theoretical 

consistency not only locally, at a given evaluation point but also within the whole empirically relevant 

region of the domain associated with the function being estimated. The method also provides benefits 

relative to the global approach, through higher flexibility, which generally leads to a better model fit to the 

sample data compared to the global imposition of regularity.  

Specific contributions of this paper are (a) to increase the computational speed and tractability of 

imposing regularity conditions in estimation, (b) to provide regularity preserving point estimates, (c) to 

avoid biases existent in previous applications, and (d) to illustrate the benefits of the regional approach via 

numerical simulation results. 
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1. Introduction 

In many areas of economic analysis regularity conditions, derived by economic theory, 

restrict the shape of the mathematical functions used to model technology and/or economic 

behavior. Examples are curvature and monotonicity restrictions which apply to indirect utility, 

expenditure, production, profit, and cost functions. During the last thirty years it has become 

standard to use second-order flexible functional forms for empirical analyses, such as the Translog 

and the Generalized Leontief, which have the ability to attain arbitrary local elasticities at one 

point in the regressor space. Recently, higher (than second) order series expansions, such as the 

Fourier and the Asymptotically Ideal Production Model (AIM), have been suggested (e.g. 

GALLANT and GOLUB, 1984; BARNETT, GEWEKE and WOLFE, 1991, KOOP, OSIEWALSKI and 

STEEL, 1994). These representations promise a better fit to the data as they transition from local to 

global flexibility and as the order of the expansion increases. Even more recently nonparametric 

estimation techniques that account for shape restrictions (originally proposed by HILDRETHS, 

1954) have garnered increasing attention in the literature (MATZKIN, 1994, TRIPATHI 2000, AÏT-

SAHALIA and DUARTE, 2003). The advantage of such an approach is that no assumption about a 

parametric functional form, or a series expansion thereof, has to be imposed. However, this 

advantage comes at the cost of lower asymptotic convergence rates as well as sometimes unknown 

asymptotic distributions. Given these potential disadvantages, in this paper we focus on the 

problem of the estimation of parametric functional forms. 

Unfortunately, the estimated parametric functions that model economic behavior 

frequently violate curvature and monotonicity restrictions and the propensity for such violations 

can increase with the order of flexibility. Violations can lead to ambiguous forecasts and errant 

conclusions about economic behavior. Concerns related to the imposition of regularity conditions 

is as old as the literature on flexible functional forms and represents ‘one of the most vexing 

problems applied economists have encountered’ DIEWERT and WALES (1987).  

In this paper we propose and illustrate a Bayesian estimation procedure for imposing 

regularity conditions via nonlinear inequality constraints. The conditions are imposed on a 
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connected1 subset of the domain of the function being estimated. The connected subset represents 

what we refer to as the empirically relevant region, and is defined by the model analyst. This 

regional approach offers important advantages over the local approach by imposing theoretical 

consistency not only locally at a given evaluation point, but also over the entire empirically 

relevant region of the domain associated with the function being estimated. The method also 

provides benefits relative to the global approach, through higher flexibility derived from being less 

constraining, which generally leads to a better model fit to the sample data compared to the global 

imposition of regularity. In order to underscore the differences between the regional, local and 

global approach, we begin by discussing how previous methods handled the imposition of 

regularity.  

1.1. The global approach 

A widely applied partial solution to the problem of imposing regularity conditions is to 

devise parametric restrictions that impose the curvature conditions globally, i.e. at all values of the 

regressor space (see DIEWERT and WALES, 1987). For most2 flexible functional forms, however, 

such restrictions come at the cost of limiting the flexibility of the functional form with regard to 

representing other economic relationships. For example, under the imposition of global concavity, 

the Generalized Leontief cost function does not allow for complementary relationships among 

inputs.  

As recently noted by BARNETT (2002) and BARNETT and PASUPATHY (2003), the 

‘monotonicity’ regularity condition has been mostly disregarded in estimation, leading to 

questionable interpretability of the resultant empirical economic models. A fundamental difficulty, 

however, is that imposing both curvature and monotonicity can extirpate the property of second 

order flexibility: For the special case of finite linear-in-the-parameters functional forms, which is 

                                                      
1 A connected set is such that any two points in the set can be connected by a continuous curve totally contained in the set. Formally: let 

S be a topological space. X ⊂ S is connected iff we cannot find open sets U, V  ⊂ X such that U ∩ V = ∅ and U ∪ V = X. 
2 An exception is the class of quadratic functional forms, e.g. the Generalized and Symmetric McFadden, on which the curvature is 
easily imposed on the parameters of the Hessian without destroying the flexibility property, as shown by LAU 1978 and DIEWERT and 
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the most common in empirical applications, LAU (1986:pp.1552-57) proved that flexibility is 

incompatible with global regularity if both concavity and monotonicity are imposed. Thus, 

maintaining higher order flexibility requires giving up global regularity (although one might 

maintain local flexibility), which is a fact that does not seem to be generally appreciated in the 

literature on globally flexible functional forms.3  

1.2. The local approach 

The local approach maintains the flexibility property of a functional form if the regularity 

conditions are imposed at one selected point of the regressor space (i.e RYAN and WALES, 1998). 

The risk with this approach is that regularity may be violated in a neighborhood of this selected 

point. Because of this dilemma, the literature on flexible functional forms is characterized by a 

continual investigation for new functional forms that produce relatively large regular regions. 

Nonetheless, for a given data set, searching for alternate forms and applying and testing the 

regularity conditions on a case by case basis becomes an arduous task,4 that can also be rife with 

statistical testing/verification problems. In 1984, GALLANT and GOLUB proposed an inequality-

constrained optimization program to impose regularity conditions locally at each observed 

regressor value. Compared with the global approach, this method generally increases the fit of the 

model to the data. However, two problems remain: (a) the procedure becomes numerically 

difficult for large sample sizes and/or complicated constraints and (b) it is possible that the 

estimated form is irregular at points other than the sample observations. Hence, more general 

                                                                                                                                                                
WALES (1987). However, if one wishes to impose curvature and monotonicity on functional forms, then the restrictions are functions of 
the parameters and the regressor variables. A solution to this problem is the purpose of this paper. 
3 For example, a globally consistent second order Translog reduces the feasible parameter values of its squared terms to be zero, thus 
restricting the functional form to its (second order inflexible) first order series expansion, the Cobb-Douglas, which has constant 
elasticities.  
4 Examples of functional forms investigated are the Minflex Laurent (BARNETT 1985), Extended Generalized Cobb Douglas (MAGNUS 
1979), Symmetric Generalized McFadden and Symmetric Generalized Barnett (DIEWERT and WALES 1987). Furthermore see the cited 
literature in BARNETT, GEWEKE and WOLFE (1991:p.10) and more recently TERRELL (1995, 1996), IVALDI  et al. (1996), FLEISSIG, 
KASTENS and TERRELL (1997, 2000), JENSEN (1997), RYAN and WALES (1998), FISCHER, FLEISSIG and SERLETIS (2001) for studies 
evaluating these mentioned and other competing forms. We recommend BARNETT, GEWEKE and WOLFE (1991: pp.3-15) for an 
extensive and insightful review on the various developments, trials and errors in the history of using flexible functional forms.  
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methods of imposing the regularity conditions are desirable and those which appear to be the most 

promising are summarized below in section 1.3.  

1.3. Towards regional regularity 

In order to circumvent the problem of the estimated form being irregular at points other 

than the sample observations, GALLANT and GOLUB discussed the possibility of imposing 

regularity conditions on a predefined regular region �of the regressor space by outlining a double 

inequality constrained optimization procedure. This regional regularity approach has the 

advantage that flexibility of the functional form can be maintained to a large degree while 

remaining theoretically consistent in the region where inferences will be drawn. In addition, 

imposing regional regularity generally leads to better forecasts than global regularity. However, 

GALLANT and GOLUB did not demonstrate the tractability of this approach and it seems that 

empirical implementation can be formidable with the currently available optimization tools.  

It was not until 1996 that TERRELL advanced ideas relating to the empirical application of 

regional regularity. Instead of explicitly using a constrained optimization algorithm he 

decomposed the problem into a series of steps: First, a convex set �of the domain of the function 

is approximated by a dense grid consisting of thousands of singular regressor values. Second, 

using a Bayesian framework, an unconstrained posterior distribution of the parameter vector E, 

conditional on the endogenous variable y, pu(E|y), is derived that does not incorporate the 

regularity conditions. Third, a Gibbs sampler is used to draw parameter vector outcomes from 

pu(E|y), and an Accept-Reject algorithm is applied to assess regularity for each outcome at all grid 

points. Finally, point estimates are derived and inferences are drawn based on the set of regular 

parameter vectors and its truncated posterior distribution. This procedure has two problems: (a) 

Due to the approximation of the relevant regressor space by the grid, the possibility that the 

function is irregular for some non-grid points cannot be eliminated. In this sense TERRELL does 

not impose regional regularity (on a connected set) but he imposes local regularity at multiple 

singular points. (b) The Gibbs simulator requires sampling from the entire support 4 of the 
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unconstrained posterior pu(E|y). However, this can be time consuming if, as is often the case in 

practice, the regular region is only a small subset of 4 (TERRELL 1996). 

To overcome the latter problem, GRIFFITHS, O’DONNELL and TAN CRUZ (2000:p.116) 

suggested using a Metropolis-Hastings Accept-Reject Algorithm (subsequently denoted as 

MHARA). Compared to the Gibbs algorithm, MHARA may increase the probability that sampled 

parameter vectors are regular, and therefore may be faster than Gibbs sampling. However, the 

related literature on MHARA5 did not pursue the regional approach further, but rather continued to 

impose local regularity without proving the theoretical consistency on the domain of interest.   

1.4. Objectives and organization  

The principal goal of this paper is to improve upon current methods of imposing regularity 

conditions. Improvement is achieved by pursuing the following two objectives with regard to 

estimated functions: 

(I) economic theory is not violated on a connected subset  which encompasses the 

empirically relevant region of the regressor space, and  

(II) for a given function, the model fit – as judged by any specified scalar measure of fit on 

the regular parameter space – is optimized.  

We promote the application of regional regularity by combining elements of TERRELL’s 

Bayesian approach with the MHARA. This defines an alternative methodology that substantially 

mitigates previous difficulties and inconsistencies in applying the regional regularity concept. New 

features of our proposed method include: 

1. a set of sufficient conditions for which regularity is guaranteed at ‘any’ point in �

(objective I). If these conditions are satisfied, a twofold benefit results:  

i) Imposition of regularity in �does not rely on a grid approximation, and  

                                                      
5 Literature on applications of MHARA include KOOP, OSIEWALSKI and STEEL (1994), O’ DONNELL, SHUMWAY and BALL (1999), 
GRIFFITHS, O’ DONNELL and TAN CRUZ (2000), GRIFFITHS (2003), CHUA, GRIFFITHS and O'DONNELL (2001), CUESTA et al. (2001), 
KLEIT and TERRELL (2001), O'DONNELL, RAMBALDI and DORAN (2001) and  O’ DONNELL and COELLI (2003). 
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ii) the computational speed of the Accept-Reject algorithm is greatly enhanced as 

only a few critical points need to be checked for regularity.  

2. allowing �to be some connected non-convex set, which can significantly increase the model 

fit achievable from estimation (objective II). 

3. demonstrating that the commonly used MHARA sampling technique suffers from an upward 

bias of posterior density values in the neighborhood of the truncation boundary. We provide a 

simple bias-mitigating alternative. 

4. demonstrating that the commonly used posterior mean may be inappropriate as a point 

estimate of model parameters due to the potential violation of regularity conditions. As an 

alternative, we suggest two regularity-preserving point estimates:  

i) the posterior mode 

ii)  the parameter vector that minimizes error loss subject to regularity constraints.  

The organization of the paper is as follows: In section 2, we motivate the methodology and 

outline the estimation procedure in general terms. Section 3 provides a more technical description 

of procedures and discusses the four methodological contributions. Examples using AIM 

functional forms are given in section 4 in order to illustrate the methodology and demonstrate 

empirical relevance. A final section presents conclusions and the appendix contains all necessary 

proofs as well as additional details relating to the implementation of the estimation procedure.  

2. Methodological background 

This section provides a general overview of the regularity conditions to be imposed, the 

Bayesian context of the problem, the Markov Chain Monte Carlo (MCMC) algorithm used, and 

the Accept-Reject algorithm.  

2.1. The cost function example 

For illustrative purposes, consider estimating a system of input demand equations 

imposing a regular region on  the underlying unit cost function, f(p;E), whereby p = [p1, p2,…, pK]T 

∈ S are K input prices, S denotes the orthant of strictly positive prices in ÜK, and E ∈ 4 is the 

parameter vector to be estimated. According to economic theory f(p;E) must be concave and 
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nondecreasing in p (MAS-COLELL, WHINSTON and GREEN, 1995:p.141). The regularity conditions 

to be imposed on a subset  of the price space S can be characterized by H elementary Inequality 

Constraint Functions (ICFs), i  [i1,i2,…,iH]: (S × 4) → ÜH, whereby the restrictions hold 

whenever, for a given E, the ICFs are nonnegative for all prices in the relevant region ,
 

    i(p;E) � 0 ∀ p ∈ . 

For example, if f(p;E) is a twice continuously differentiable, linear homogenous in p unit 

cost function with K = 2 input prices, then the ICFs could be defined as6  

i1 = ∂f(p;E)/∂p1,        i2 = ∂f(p;E)/∂p2,       i3 = – ∂²f(p;E)/∂p1
2       and       i4 = – ∂²f(p;E)/∂p2

2 

Note that previous global and local estimation methodologies differ in the way  is 

defined. If i(p;E) � 0 ∀ p ∈ , we say that regularity is imposed (i) locally if �consists of one or 

more singular disconnected points in S, (ii) globally if �= S, and (iii) regionally if  is some 

connected subset of S. Given the trade off between flexibility, on the one hand, and regularity 

violations on the other, we follow the idea of GALLANT and GOLUB (1984) and consider imposing 

the conditions regionally. For this purpose we now define a particularly relevant .  

Definition 1: The empirically relevant set  is a closed7 and connected subset of S that 

covers the empirically relevant price region, defined as containing all sample observation 

n = 1,…,N as well as any price points c = 1,…,C that will be used for subsequent analyses 

and/or simulations based on the estimated model. 

In contrast to previous practice, we here require �to be a connected set. It rules out the possibility 

that any small irregular region in between two disconnected regular regions can destroy overall 

regularity (see fig. 1). 

-- INSERT FIG. 1 -- 

                                                      
6 Note that nonnegativity of i1 and i2 imposes monotonicity. Nonnegativity of i´3 and i5 imposes negative semi-definiteness on the 

Hessian ∂²f(p;
�

)/∂p∂p ����� ���	��
��� � ������������������������� � ����� f(⋅) the Hessian has rank K – 1, it is not necessary to generate an additional ICF 

to sign the Kth principal minor. 
7 The requirement that is a closed set simplifies the proofs of some later propositions, but is not necessary for any other reason.  
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2.2.  Statistical model and Bayesian context 

Let  

          y = f(P;E) + H                 (1) 

be the empirical specification of the statistical model of interest, whereby y is an M⋅N × 1 vector of 

N observations on M endogenous variables, which represent transformations of N × K observed 

prices P, and E ∈ 4 is an L × 1 unknown parameter vector.8 We assume that H is an M⋅N × 1 

unknown error vector with mean E[H] = 0 and covariance matrix� . Further, 4 is the L-

dimensional parameter space, which, if the regularity conditions are to hold for all values of p in 

, reduces to the L-dimensional regular subset 4R ⊂ 4  defined as9  

           4R_ � �{E: i(p;E) ��0 ∀ p ∈ }.                (2) 

The marginal posterior distribution for E is derived by applying Bayes rule  

          p(E|y, ) ∝ ∫m(E, |y)⋅p(E, _ )d �������������������������������������������(3) 

where m(E, |y) is the likelihood function summarizing the sample information, p(E, _ ) is the 

joint prior distribution on the parameters, given , and p(E|y, ) is the conditional posterior. 

Assuming the standard ignorance prior on the covariance matrix, p( ) = | |-(M*+1)/2, and further 

assuming that E and �are a priori independent, the joint prior is defined as  

                                                          p(E, _ ) = p(E_ )⋅| |-(M+1)/2.                                                   (4) 

In the remainder of the paper we do not impose any additional information in our prior other than 

that needed to account for the economic theory constraints imposed on . Recognizing that the 

definition of the regular parameter set 4R|  is dependent on the choice of , the marginal 

conditional improper10 prior on the E vector is specified as an indicator function  

                                                      
8 Note that the matrix denoted by the capital letter P represents n observations on the lower case price vector p = [p1, p2,… , pK]T. 
9 We use the superscript ‘R’  for a ‘regular’  set, and ‘IR’  for an ‘irregular’  set. E.g. for the irregular parameter space we write � IR. Note 

that generally for any given connected or disconnected set *, �  consists of two disjoint subsets, such that � IR �
* ∪ � R �

* = � . 
10 Note that typically a prior distribution is a function of the parameters only and has the entire parameter space as its domain. In our 

case however p(
� � ) also includes information about the price space as part of its specification. Also, 

|
( )I R

 is technically not a 

“ proper”  prior distribution. It is not normalized to integrate to 1, and moreover, if � R �  does not have finite volume, ∫p(
� � )d

�
 = ∞. 

However our prior effectively indicates the set membership of 
�

, i.e., if it is regular or not, and it is an uninformative prior on � R � .  
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                                                                  p(E_ ) = 
|

( )I R                                                            (5)         

where the prior equals 1 if regularity holds at the value E ∀ p ∈ , and equals 0 otherwise.  

The notation used in (1)-(5) highlights the conditionality upon  because it not only 

determines the applicable domain for f(p;E) but also determines the shape of 4R|  and therefore 

the potential fit of the economic model to the data. In the remainder of the paper p(E|y, ) denotes 

the regularity posterior containing all of the information about the parameters that can be 

extracted from a) economic theory, b) data and c) the chosen model, y = f(P;E) + H, as applicable 

to a given empirically relevant region  of input price space.  

2.3. Markov Chain Monte Carlo and Accept-Reject algorithm  

We now turn towards the simulation technique used to generate outcomes from the regularity 

posterior p(E|y, ), which are then used to obtain point estimates and to draw posterior inferences. 

One possible method is to approximate posterior expectations numerically by applying a Markov 

Chain Monte Carlo technique. For example, a Metropolis-Hastings algorithm can be used to 

generate J (pseudo-) random outcomes, b(j), j = 1,… ,J from p(E|y, ) on the support 4R. The 

outcomes are then used to approximate posterior expectations via the appropriate empirical 

estimates, e.g. J-1∑ =

J

j 1
(j))g(b  for approximating E[g(E)]. The estimates converge to the true 

expectations as J increases. 11 

To account for the regularity prior p(E_ ), the simulator should ensure that any drawn 

parameter vector b(j) implies regularity of f(p;E) for every point p in the predefined set , i.e. b(j) ∈ 

4R_  ∀ j. Since there are an infinite number of points in , they cannot all be checked explicitly. 

In general the connectedness can be approximated by a fine grid denoted by the disconnected set 

g ⊂ �which consists of possibly tens-of-thousands of equidistant distinct points.12 Within the 

MCMC an Accept-Reject algorithm is then implemented to guarantee that ∀ b(j) the regularity 

                                                      
11 See literature cited in footnote 13 for useful introductions into MCMC methods.  
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conditions hold for any single grid point, i.e. that b(j) ∈ 4R_ g ∀ j, whereby 4R_ g is the 

approximated regularity posterior support, which will tend towards the actual set 4R_ � the finer 

the approximation grid g. In order to circumvent the approximate nature of this representation, in 

a later subsection we identify problem conditions under which checking certain key points in  

will guarantee overall regularity ∀ p ∈ .  

3. Regionally regular estimation procedure 

This section describes our proposed method for estimating f(p;E) subject to the nonlinear 

inequality constraints i(p;E) � 0 ∀ p ∈ . To start we provide a complete stepwise description in 

box 1. The procedure consists of three parts: pre-analysis of the problem (step 1 to step 4), 

application of the MHARA (step 5 to step 11) and inferences based on the regularity posterior 

(step 12). In the subsections to follow, we explain the objectives of the steps that are nonstandard13 

and develop necessary technical details.  

3.1. Pre-Analysis: selection of regular region and approximation grid 

The pre-analysis provides necessary information for the subsequent application of the 

MHARA especially the definition of the prior distribution p(E, ) = 
|

( )I R : The regularity 

conditions (defined by economic theory) are identified (step 2), the empirical relevant region  is 

chosen by the researcher (step 3) and subsequently approximated by a grid g (step 4). 

                                                                                                                                                                
12 I.e. in the case of a hyperrectangle g is defined as a) selecting Q equidistant values between the vertices of , min

kp  and max
kp  as 

q
kp  = min

kp  + (q-1)Q-1( max
kp  –  min

kp ) ∀ q ∈ {1,… , Q} and using all possible Q⋅K combinations of prices to generate g. 

13 Step 1, Step 5, Step 10 and Step 11 are not further elaborated on because their content is either obvious from the explanation given in 
box 1, or they are part of the conventional Metropolis-Hastings algorithm, which we assume the reader to be familiar with. In order to 
keep it is as uncomplicated as possible we outline the simplest way of implementing the Markov Chain. Other procedures like multiple 
chains and other proposal distributions are suggested in the literature. The reader is referred to CHIB and GREENBERG (1996), 
RICHARSON and SPIEGELHALTER (1996), ROBERT and CASELLA (1999) or CHEN, SHAO and IBRAHIM (2000) for a further discussion of 
appropriate modifications of the Metropolis-Hastings algorithm. 
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Box 1: The 12-step procedure – pre-Analyses (1)-(4), MAHRA (5)-(11), inference (12)  
Step 1 Estimate y = f(P;E) + H without imposing inequality constraints to obtain the unconstrained 

estimate bu of E as well as the estimated L × L covariance matrix cov(bu). 

Step 2 Define the ICFs that characterize the regularity conditions for the function being estimated. 

Step 3 Define  according to definition 1. If the proposed region is not convex, define a sequence 
of I convex subsets i such that  = 1

I

ii=* .  

Step 4 Selection of evaluation points: Analyze for the hth ICF, ih(p;E), which properties I to property 
V hold ∀ (p,E) ∈ (  × 4) and define gh according to table 1. Repeat step 4 ∀ h. 

Step 5 Initialize the Markov Chain with a regular parameter vector: If bu ∈ 4R, set b(0) = bu else 

b(0) = 0. Set j = 0. 

Step 6 Generate a candidate b(*) by the proposal distribution ⋅p(b(*);b(j)), whereby  is to be set so 

that approximately 25%-50% of the regular draws b(*) become accepted in step 10. 

Step 7 If b(*) is irregular at the vertices of , go to step 6. 

Step 8 Repeat step 4, but instead of evaluating the ICFs conditional on (p,E) ∈ (  × 4), evaluate 

the ICFs ∀ (p,b(*)) ∈ (  × b(*)), i.e. conditional on the last draw b(*). 

Step 9 If b(*) is regular in g, calculate r = p(b(*)|y, )/p(b(j)|y, ), else go to step 6. 

Step 10 if r > 1, b(j+1) = b(*) else  

 if Uniform(0,1) ��r, b(j+1) = b(*), else b(j+1) = b(j). 

Step 11 Increment j by j = j+1. Go to step 6, until j = J+S, whereby S
j

j
1

)( }{ =b  are the burn-in draws to 

be discarded after the final loop such that SJ
Sj

j +
+= 1

)( }{b  are the outcomes to be considered for 

constructing p(E|y, ). 

Step 12 Analyze p(E|y, ), i.e. calculate point estimates and perform inferences.  

The dotted arrows indicate backward jumps in the algorithm which are conditional on the fact that the last drawn parameter vector b(*) is 
irregular. The number of times these jumps occur is unknown prior to the estimation. In contrast, the loop indicated with the solid arrow 
is proceeded J+S times.  

Step 2: The regularity conditions of f(⋅) are to be translated into H ICFs, i  [i1,i2… ,iH], such 

that economic theory holds whenever i(p;E) � 0. An illustrative example for the case of 

monotonicity and curvature restrictions was given in section 2.1.  

Step 3: In contrast to defining  as one convex hyperrectangle (as in TERRELL 1996), it can be 

advantageous to define �as any connected (possibly non-convex) set. In order to see this, consider 

first the following adaptation of a well-known result from optimization theory:  

Lemma 1: Let * be any subset of the regressor space S and let s: 4R_ * → Ü1 be any 

scalar function.   

If 1* ⊂ 2*, then R R
*1 *2

max ( ) max ( )s s
∈ ∈

≥ . 
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Suppose s(E) is any scalar goodness of fit measure maximized when estimating the model. The 

lemma then states that the resulting fit of the estimated model imposing regularity in 1* is at least 

as good as the fit imposing regularity in 2*, given that 1* ⊂ 2*. This suggests defining  as 

small as possible. Instead of defining a hyperrectangle,  could be reduced to only cover N data 

and any additional C points used in subsequent analysis of the model. In order to apply the 

subsequent methodology, the resulting in general non-convex �needs to be decomposed into I 

convex subsets i ∀ i = 1,… ,I, such that  = 1

I

ii=* .14 In the context of applying the methodology 

(see section 4) it turns out that it is practical to construct �as I = N+C line segments connecting 

all empirically relevant points thereby promising an increased fit of the estimated model to the 

data.  

Whereas step 3 focused on the selection of , the next issue concerns the construction of 

the evaluation grid g, which is conditional on a given set .  

Step 4: As outlined in section 2.3,  is approximated by g and regularity is explicitly 

checked for a high number, say Q, of grid points. It remains uncertain, however, if the selected Q-

grid is dense enough to avoid irregularity that may occur in between grid points.  

The purpose of step 4 is to identify conditions under which it will be guaranteed that if 

certain key areas or singular points in  are regular, then other areas of interest are regular as well. 

This may allow for a reduction of regularity checks to a number Q*< Q that  

a) improve the computational speed of the algorithm and  

b) maintain the accuracy of the approximation obtained from the original Q-grid.  

In order to identify those conditions the following properties relating to f(p;E), , and ih are 

exploited: 

                                                      
14 Since some nonconvex supersets cannot be decomposed into a finite union of convex subsets, the requirement to define each subset 

i to be convexly shaped limits the generality of the construction of possible regular regions. However, such nonconvex sets can be 
arbitrarily well approximated for large I. For applied work we propose nonconvex sets which circumvent this problem, see the “ string 
approach”  in section 4.2.  
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Property I: ih has property I, iff each of the K derivatives, ∂ih/∂pk, is continuous and either ≤ 0 ∀ p 

∈ �or ≥ 0 ∀ p ∈ . The signs may however be different across the K derivatives. 

Property II:� �is a closed and connected hyperrectangle constructed such that each of its sides is 

parallel to one of the K price-axes. 

Property III: ih has property III, iff the derivative with respect to at least one price (say the mth 

price) is continuous and either ∂ih/∂pm ≥ 0 ∀ p ∈ �or ∂ih/∂pm ≤ 0 ∀ p ∈ .  

Property IV: ih is quasiconcave in p and �is convex. 

Property V: f(p;E) is twice continuously differentiable and homogenous in p. 

Table 1 below summarizes six cases for constructing sufficient “ evaluation sets” , h, for 

the hth ICF, where the� h’ s are proper subsets of� . Depending on the properties I-V h can take 5 

different forms defined as follows:  

(1) Bh
 = bd( ) denotes the boundary of .  

(2) The K × 1 price vector zh is one vertex of the hyperrectangle . Given the proof of 

proposition 1b in the appendix, which vertex out of the 2K vertices must be explicitly 

checked (for the sign of ih) depends on the signs of the derivatives of the ICF: If ∂ih/∂pk ≤ 0 

∀ p ∈ , then the kth element of z is max
kp  and if ∂ih/∂pk ≥ 0 ∀ p ∈ , then the kth element of 

z is min
kp .  

(3) Zh = [z1, z2,… , 
2Kz ]h is a K × 2K matrix of all vertices of the hyperrectangle .  

(4) Sh ⊂ B is one side of the hyperrectangle. Considering the proof of proposition 1b and 

corollary 2b in the appendix it follows that Sh is orthogonal to the mth price-axis. Further 

details on the construction of the grid Sgh are given in the appendix.  

(5) S* ⊂ B is a set that can be viewed as a “ shield”  bounding � from below, i.e. from the 

perspective of rays emanating from the origin 0 ∈ S (see the illustrations in Fig. 2). In order 

to define S*, let l(0,y) be a straight line through the origin 0 and through y ∈ S, then S* = 

{p ∈ bd( ): ∀ M if M ∈ bd( )∩l(0,p), then ||p|| ≤ ||M||}.  
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-- INSERT FIG. 2 AND  INSERT TABLE 1 -- 

Considering the above five definitions of the possible forms of h, the six cases in table 1 should 

be read row-wise as follows:  

For cases 1 – 5: Suppose for the hth elementary ICF, ih, the properties (designated by +) hold: 

ih ≥ 0 ∀ p ∈ �iff ih ≥ 0 ∀ p ∈ h (whereby h takes the form as indicated in the column ‘ h’ ). 

Case 6: Suppose property V holds. Then for all ICFs i*(⋅) that impose nonnegative slope, 

nonpositive slope, concavity and/or convexity: i*(⋅) ≥ 0 ∀ p ∈ �iff i*(⋅) ≥ 0 ∀ p ∈ S*. 

The first five cases are independent of the type of regularity conditions to be imposed.  

Case 6 is less general but applies to all ICFs which impose monotonocity and curvature, (and thus 

suits the cost-function example) in which case only the shield S* has to be evaluated. 

Of particular interest are the cases 2 and 5, which hold frequently when enforcing the 

monotoniciy and first principal minor constraints. In these cases h is defined as one vertex zh 

(case 2) or all vertices Zh (case 5) of , which leads to the maximum reduction in the number of 

explicit regularity checks, enhancing the computational speed of MHARA substantially. For 

example in case 5, if �is a hyperrectangle and K = 3, then Q*= 2K = 8 < Q.  

In practice all infinite h must be approximated by an hth evaluation grid gh. For example, 

the boundary evaluation set Bh = bd( ) is approximated by an evaluation grid Bgh ⊂ B, and Sh and 

*
hS  are approximated by Sgh and *

ghS  respectively. Conversely zh and Zh are finite evaluation sets 

that do not require the approximation subindex ‘g’ . This leads to the following useful result: 

Proposition 5: If for all b(j) case 2 or 5 hold ∀ h, then ∀ p ∈  f(p;b(j)) is regular.  

3.2. The Metropolis-Hastings Accept-Reject algorithm and mitigating posterior bias 

Steps 6 to 11 of the procedure apply the MHARA, which provides J random draws from 

the regularity posterior p(E|y, ). We elaborate on some of these steps below. 
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 Step 6: b(*), a candidate for the jth+1 vector in the MCMC sequence SJ
j

j +
=1

)( }{b , is generated 

by a symmetric proposal distribution ·p(b(*);b(j)).15 One possibility for drawing outcomes from 

p(b(*);b(j)) that accounts for linear equality constraints on parameters (e.g. for the symmetry 

condition on the Hessian ∂²f(p;E)/∂p∂p ) is to use the multivariate normal distribution 

N(b(j),cov(bu)) to generate the L × 1 vector b(**), and then to calculate  

b(*) = b(**) – cov(bu)⋅RT⋅(R⋅cov(bu)⋅RT)-1⋅(R⋅b(**) – r), 

whereby R is a V × L design matrix and r is a V × 1 vector chosen appropriately to impose V linear 

equality restrictions on b(*).  

 Step 7 and 9: Step 7 is inserted to save computing time associated with step 8 for vectors 

b(*) that are already irregular at the vertices of . If b(*) is identified to be irregular (either after step 

7 or 9), b(*) must be discarded and a new b(*) drawn in step 6 (see the dotted arrows in box 1) using 

the last regular draw b(j) as the mean of the symmetric proposal distribution ·p(b(*),b(j)). This is 

repeated until b(*) ∈ 4R| g. The ‘discarding’  is necessary to avoid an upward bias of the regularity 

posterior density values in the neighborhood of the truncation boundary.16 

To our knowledge in all previously published descriptions of the MHARA17 it was 

common to repeatedly include the last regular b(j) as an outcome of the simulated regularity 

posterior as b(j+1) = b(j) until b(*) ∈ 4R| . This practice, however, distorts the simulated regularity 

posterior in the peripheral region of 4R|  close to the truncation boundary to 4IR| . This is due to 

                                                      
15 The term proposal distribution stems from the fact that ·p(b(*);b(j)) proposes a new candidate b(*) for the next state b(j+1). Generally 
the proposal distribution is defined to be symmetric around the previous accepted point b(j), in which case the tuning parameter  !#" $
be set that between 25%-50% of the regular draws b(*) are accepted in step 10. The optimal acceptance rate depends on the number of 
parameters estimated, see ROBERT and CASELLA (pp.281-283: 2002) for a recent discussion.  

16 Since the bias arises independently if sampling from % R|  or from % R| g, we will drop the subindex ‘g’  for the explanation. 

17 Among others, the studies of O’ DONNELL, SHUMWAY and BALL (1999), GRIFFITHS, O'DONNELL and TAN CRUZ (2000), GRIFFITHS 

(2003), CHUA, GRIFFITHS and O'DONNELL (2001), and CUESTA et al. (2001), O'DONNELL, RAMBALDI and DORAN (2001) did not 
account for this bias.  
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the fact that the probability of drawing an irregular b(*) is higher, the closer the last regular draw 

b(j) is to the frontier of 4IR| .18  

 To complete step 9, if the drawn parameter vector b(*) is regular ∀ p ∈ g, calculate19  

                                                                r = p(b(*)|y, )/p(b(j) |y, ).               (6) 

Finally note that step 7 and the ‘else condition’  of step 9 (see the dotted arrows in box 1) 

approximate the behavior of the indicator function 
|

( )I R  by subtracting 4IR_ g (instead of 

4IR_ ) from 4. In order for MHARA to more closely emulate 
|

( )I R , step 8 can be 

implemented.  

Step 8: The same procedure applies as in step 4, with the modification that f(⋅) and i(⋅) are 

evaluated conditionally on the drawn parameter vector b(*). To save computing time, if gh = Zh or 

gh = zh in step 4, the hth evaluation of step 8 can, of course, be skipped.  

3.3. Point estimates: inconsistency of the mean and two alternatives 

Step 12: Steps 1 to 11 generated J outcomes of p(E|y, g), which can now be used to derive 

point estimates and to draw posterior inferences. Finite sample inferences such as posterior 

moments and highest posterior density regions can be directly computed using well-known Monte 

Carlo techniques.  

As far as we are aware, all previous studies applying MCMC and Importance sampling to 

impose regularity conditions define the point estimate of E as the mean E[E] of the regularity 

posterior.20 However, this may result in regularity violations, as indicated in the following 

proposition.  

                                                      
18 Denote the relevant peripheral region close to or on the boundary % IR|  as % b| and denote the simulated posterior as p̂ . Then the 

bias arises of the form p̂ ( & b|y, , without ‘discarding’) > p( & b|y, ) for & b ∈ % b| . A numerical example illustrating the bias by 

comparing the previous to the above simulation technique can be found in WOLFF, HECKELEI and MITTELHAMMER (2003). 

19 E.g. in the case of a normal SUR model (6) becomes [|(N-L) ' (*)|/|(N-L) ' (j)|]-N/2 which can be derived from the definition of the 

unconstrained posterior pu( & |y) ∝ ∫ ( ( & , ' |y)| ) -(M+1)/2d '  and the fact that it is directly proportional to p( & |y, ) by p( & |y, ) ∝ |(N-L) ' |N/2, 

(ZELLNER, 1971:p.243). Cancelling out the normalizing constants and factoring out the exponents -N/2 yields [|(N-L) ' (*)|/|(N-L) ' (j)|]-N/2. 
20 These include BARNETT, GEWEKE and WOLFE (1991), KOOP, OSIEWALSKI and STEEL (1994, 1997), TERRELL (1996), TERRELL and 

DASHTI (1997), O’ DONNELL, SHUMWAY and BALL (1999), GRIFFITHS, O'DONNELL and TAN CRUZ (2000), CHUA, GRIFFITHS and 
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Proposition 6: Let p(E|y, ) be the regularity posterior with parameter support 4R_ . If an 

inequality constraint is a nonlinear function of E, then E[E] = ∫E⋅p(E|y, )dE can reside in either 

4R_ �or 4IR_ , and thus f(p;E[E]) can lose the property of being regular for some p ∈ . 

We propose two alternative estimators that, in addition to imposing regularity (objective 

I), maximize a model fit measure s(E) on 4R_ g, as indicated by Lemma 1 (objective II). Our first 

suggestion for an estimator is best motivated under the assumption of Gaussian noise. The second 

is motivated independently of the noise probability distribution.  

Under the assumption of a normal error distribution, we suggest selecting the mode  

E(mode)  = { }
R

g

garg max ( | , )p
∈

\ . 

of the regularity posterior as the point estimate to maximize model fit subject to the regularity 

conditions. To motivate E(mode), note that the information contained in the normal unrestricted 

posterior pu(E|y) ∝ |(N-L)6|-N/2 (see ZELLNER 1971:p.243) is strictly monotonically related to the 

generalized variance of the fit | |-1, which can be used as a goodness of fit indicator. In fact, 

BARNETT (1976) proved that the minimization of | | is equivalent to Maximum Likelihood (ML) 

estimation in the case of the nonlinear normal classical SUR model. Since (N-L) and the exponent 

-N/2 are fixed constants, the minimization of | | over E ∈ 4 produces the exact same result as the 

maximization of pu(E|y) over E ∈ 4. So long as no other prior than the regularity prior is applied, 

we have that p(E|y, ) ∝ pu(E|y)⋅
|

( )I R  ∝ |(N-L)6|-N/2 for E ∈ 4R| . Thus the normal classical 

inequality-constrained-ML estimator generates a point estimate that is numerically equivalent to 

the mode of p(E|y, ). In order to approximate the solution based upon the MCMC outcomes 

( )
1{ }j J S

j S
+
= +b , one can simply compare the values pu(b(j)|y) ∀ j resulting from the MHARA as 

b(mode) = { }/ 2( )

( )b

| ( ) |argmax N j

j
N L −− Σ . 

                                                                                                                                                                
O’DONNELL (2001), KLEIT and TERRELL (2001), CUESTA et al. (2001), ADKINS, RICKMAN and HAMEED (2002), O’DONNELL, 
RAMBALDI and DORAN (2001) and O’DONNELL and COELLI (2003). 
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An alternative estimator, which is not tied to Gaussian errors, can be based on a loss 

function (LF) criteria over 4R_ g. The estimator would be defined by solving  

{ }R
g* R

g

(LF ) *
g|

|
arg min || || ( | , )dpϕ

ϕ∈
∈

= −∫ \  

which minimizes the posterior weighted deviation over E ∈ 4R, where ||⋅||ϕ is some vector norm21 

measuring the distance between two points within 4R. For example, with the standard Euclidean 

norm ||⋅||2 2

( )

(LF ) 1 ( ) ( ) ( ) ( )
1

arg min ( ) ( )
j

J j i j i
i

J −
=

′= − −∑
b

b b b b b  which minimizes the empirical-

MCMC analogue to the expected squared LF subject to the regularity constraints.  

We reemphasize that if cases 2 or 5 of table 1 apply ∀ h, then (LF )ϕb  and b(mode) are 

members of the regular set 4R|  and hence both estimators are regularity-preserving (proposition 

5). Conversely, if cases 2 and 5 do not hold, then without further knowledge one cannot exclude 

that the estimates belong to the irregular set 4IR| . Nevertheless, the following fact can be 

supportive: If Q → ∞, i.e. the number of equidistant grid points of g goes to infinity, and i(·) is 

continuously differentiable, then any point estimate ˆ ∈ 4R_ g is such that f(p; ˆ ) is almost 

everywhere in �regularity-retaining. 

The proposed methodology is general enough to be adopted in both the Bayesian and the 

Classical framework. In the Classical framework one could maximize a likelihood function subject 

to (non-)linear inequality constraints represented by the ICFs and the point estimate is the mode of 

the MCMC-simulated likelihood, which generally will be identical to the mode, E(mode), of the 

regularity posterior. The suggested LF criterion, leading to (LF )ϕ , is typically motivated from the 

Bayesian perspective and has no direct Classical analogue.  

                                                      
21 Given an N-dimensional x a general vector norm ||x||ϕ, for ϕ = 1,2,…  is a nonnegative defined as ||x||ϕ = [

N
n 1=Σ |x|ϕ]1/ϕ. The special case 

||x||∞ is defined as ||x||∞ = max|xn|. The most commonly encountered vector norm is the Euclidian norm, given by ||x||2 = [
N
n 1=Σ x2]1/2.  
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4. Numerical Examples 

This section illustrates the proposed methodology by estimating a cost function subject to 

regularity conditions. For comparison purposes we re-estimate and extend some of the simulation 

experiments provided in the work of TERRELL (1995).22 In the first subsection local, global and 

regional regularity approaches are compared based on a specified convex set . The purpose of 

the second subsection is to demonstrate the effects of shrinking the size of .  

4.1.  Experiment I - convex cube  

4.1.1. Data Generation 

We now briefly describe the design of the simulations.23 The true data generation process is 

formulated by the well-known CES cost function fCES(p;αk, ) = [ 3
1=Σ k ak

1/(1- )⋅pk
- * (1- )](1- )/- . As in 

TERRELL, no stochastic error term is added. The derivatives result, by Shephard’ s Lemma, in K = 

3 input demand functions,  

     xk = ∂fCES/∂pk = [αk⋅fCES/pk]1/(1- )                (7) 

Following TERRELL, the data set for the first experiment (table 2) contains N = 64 observations, 

consisting of all combinations of the values 0.5, 0.8333, 1.1666 and 1.5 generated by K = 3 input 

prices. By (7) this produces 64⋅3 true input demand levels, where xk is 64 × 1 with k = 1, 2, 3. 

4.1.2. Estimation and Evaluation 

The purpose of the first experiment is to assess potential advantages of the regional 

approach compared to the local and global approach both in terms of model fit and the propensity 

for regularity violations. The normal SUR system of K = 3 input demand functions, 

kx̂ = kk p∂∂ /)ˆ;()( Pf AIMτ + ûk is estimated, whereby ûk = kx̂ – xk represents the 64 × 1 approximation 

                                                      
22 The model is kept rather basic which simplifies notation and interpretation of the results related the imposition of the regularity 
conditions. However, generalizations are straightforward, e.g., output, as another explanatory variable, could be added while 
simultaneously imposing that f is convex and monotone increasing in output, as it is required by economic theory, in addition to the 
restrictions which are imposed with respect to p.  
23 For further details about the simulation set-up, the reader is referred to TERRELL (1995). 
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error vector to the ‘true’  data generation process (7), L < N 24 and kx̂ is the estimated kth 64 × 1 

input demand vector derived from the Asymptotically Ideal Production Model, AIM( ), with  

fAIM(1) = 3
1=Σ k βkpk + β4p1

1/2p2
1/2 + β5p1

1/2p3
1/2β6 + β6p2

1/2p3
1/2 

fAIM(2) = 3
1=Σ k βkpk + β4p1

3/4p2
1/4

 + β5p1
3/4p3

1/4 + β6p1
1/2p2

1/2 + β7p1
1/2p2

1/4p3
1/4 + β8p1

1/2p3
1/2  

                       + β9p1
1/4p2

3/4 + β10p1
1/4p2

1/2p3
1/4 + β11p1

1/4p2
1/4p3

1/2
 + β12p1

1/4p3
3/4

 + β13p2
3/4p3

1/4
  

                       + β14p2
1/2p3

1/2 + β15p2
1/4p3

3/4, 

which are homogenous of degree one, constant returns to scale unit cost functions.25 

As in TERRELL (1995), the performance of the AIM( ) is evaluated over the cubic region 

 = {p: p ∈ 3
1=×k [.5, 1.5]} by defining a grid g ⊂  of 20 equidistant prices for each input. 

Thus in total g consists of Q = 20⋅20⋅20 = 8000 points, q = 1,… .,Q. This grid is used to compute 

(a) the maximum approximation error, MAEk = ˆarg max{ },
ˆ ˆsgn{ } max{ }

qk
q

qku k q
u u⋅ , and (b) the average 

absolute approximation error, AAAEk = Q-1
1

ˆ| |
Q

qkq
u

=∑ , over all Q points, where ûqk = 
q̂kx – xqk is the 

difference between the predicted input demand, estimated by the AIM( ), and the (true) CES input 

demand of equation (7). Then pursuing our objective II of optimizing the model fit MAE and 

AAAE values close to zero are preferred.  

4.1.3. Results 

-- INSERT TABLE 2 AND INSERT FIG. 3 -- 

The model fit measures, as well as the percentages of regularity violations of the grid 

points for the local, global and regional approach are displayed in table 2. In the first two columns 

                                                      
24 This requirement is due to an important recent proof by GRIFFITHS, SKEELS and CHOTIKAPANICH (2002), ensuring a bounded solution 

for the unconstrained maximum likelihood function. They remark that heretofore most authors incorrectly assumed that N > M and N ≥ 

max{Lm} is sufficient, with Lm being the number of parameters of the mth equation, m = 1,… ,M.  
25 A functional form is second order flexible, if it is capable of being locally equivalent to the true function in level, gradient, and 

Hessian at one given point in the price domain + . This is the case for the AIM(1), which is equivalent to the well known Generalized 

Leontief. Through series expansions the order of flexibility can be increased to locally coincide with the true function at higher than 

second order derivatives. The AIM(2) maintains the flexibility order three. Asymptotically, → ∞, these forms converge globally to the 

true function. For a further discussion and definitions about second order flexibility see e.g. BARNETT (1983). For the concept and 
applications of globally flexible functional forms, see e.g. GALLANT and GOLUB (1984), TERRELL (1995) or BARNETT, GEWEKE and 
WOLFE (1991). 
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we repeat TERRELL’ s (table 1 and 2, pp.9-10:1995) simulation experiment, and the last two 

columns apply the method described in section 4.  

First the demand system is estimated subject to local concavity and monotonicity 

constraints guaranteeing regularity for the underlying AIM( ) cost function at pM = [1,1,1], i.e. at 

the mean of . Compared to the other columns, the local approach provides the best model fit 

statistics but violates the regularity conditions in the neighbourhood of pM (leading to regularity 

violations of about 20% of the grid points), which is illustrated in fig. 3. It is particularly 

instructive to note that the monotonicity violations are substantially more frequent than the 

concavity violations, which is disconcerting given that TERRELL, and in fact most researchers in 

similar previous studies, did not check for monotonicity violations (see BARNETT, 2002).  

In the column ‘global regularity’  economic theory holds globally on S through the 

imposition of nonnegativity constraints on all the AIM parameters E (as in TERRELL, 1995) which 

confirms numerically the result of lemma 1 by showing a decreased model fit.  

The last two columns show the MHARA26 results imposing the regularity conditions 

regionally on . First we take the mean – as is commonly done – as the point estimate for E. As 

one might expect this ‘regional mean approach’  leads to improved model fit measures compared to 

the global approach (e.g. a reduction of the AAAE by 33.6% and 69.7% and a reduction of the 

MAE by 38.1% and 71.6% in the case of the AIM(1) and AIM(2) respectively). However, only the 

mode, as the point estimate for E, guarantees regional regularity within  (proposition 6). Results 

from the ‘mode approach’  are displayed in the last column of the table, confirming the theory 

outlined in section 3 that the model fit statistics are always superior to the ‘mean approach’ , 

leading to a further reduction in the AAAE of 1.7% and 7.2% and to a reduction in the MAE of 

8.7% and 2.3% for the AIM(1) and AIM(2), respectively.  

Concerning the computational efficiency of the algorithm, it is worthwhile to note that 

instead of the full evaluation grid of 8000 points, due to the properties I to V, for all H ICFs the 

                                                      
26 For MCMC sampling in the context of the normal SUR model, we want to refer to the very useful exposition by GRIFFITHS (2003). 
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maximum of 1142 grid points of the set *
gS  ⊂ g had to be evaluated only. Furthermore, for the 

AIM(1) often only one vertex had to be assessed. This significantly decreased the computational 

burden compared to previous approaches. 

Summarizing table 2, imposing local regularity increases the model fit in all specifications 

at the cost of violating monotonicity and concavity within , which produces estimation results 

that are problematic in terms of economic interpretation and further analysis. Imposing regional 

regularity solves this problem and still significantly increases the model fit compared to the global 

approach. Moreover, apart from its appealing regularity preserving property, it seems relevant for 

model fit to use the mode instead of the mean. 

4.2. Experiment II – comparison between convex and nonconvex  

The purpose of this subsection is to analyze model performance for different definitions of  

based on empirically relevant price sets.  

-- INSERT TABLE 3 AND INSERT FIG. 4 -- 

The experimental design is based on the same (true) data generation process as in the previous 

subsection. However, instead of using the 64 observations, N = 26 data points are (randomly) 

selected from  = {p: p ∈ 3
1=×k [.5, 1.5]}, under the restriction that a) the smallest and the largest 

values are (again) elements of the boundary of , i.e. min
kp  = 0.5 ∀ k and max

kp  = 1.5 ∀ k and that 

b) the points do not belong to three convex subsets that are eliminated from . Suppose further 

that the purpose of the estimated model is to analyze C = 4 (policy) scenarios, and that the scenario 

prices are exogenously determined at 2 points within  and at 2 points outside of .27 Then, a 

natural goal is to estimate the function such that all N + C price points are regular (objective I) and 

that the model fit is as good as possible (objective II).  

To evaluate the influence of different definitions of  the empirically relevant regions are 

chosen to be  

                                                      
27 The values of these 4 prices together with the 26 data points are provided in the appendix part C).  
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(a) , as before approximated by 8000 grid points g and  

(b) string = 29

1 ii=* , which covers all 30 = I + 1 price points by connecting 29 straight lines i, 

i = 1,...I, between pM (which is one of the C selected scenario points) and each of the remaining 

N + C – 1 prices. We chose to approximate each line i by ig by taking 20 equidistant grid points 

between pM and the ith price point, leading to a total of 580 grid points for g only. Further, due to 

exploiting properties I-V, the evaluation grid could be reduced to 520 points, which is displayed in 

fig. 4. Furthermore, for the AIM(1), the grid could be further reduced to just 30 evaluation points, 

Zh, for assessing monotonicity and the sign of the first order leading principal minor. We refer to 

(a) as the ‘cube approach’  and (b) as the ‘string approach’ . 

In table 3, performance-statistics are evaluated at (i) the N = 26 observed price points, denoted as 

Ng, (ii) the C = 4 out of sample forecasts, Cg and (iii) the 8000 grid points g. 

The first two estimation methods, ‘local regularity’  and ‘global regularity’ , serve as a 

reference to the more interesting numerical results of the last three columns, in which comparisons 

between imposing the regularity conditions on g versus imposing the regularity conditions on 

string
g are provided: The main result is that the model fit measures are significantly improved, 

favoring the string approach, which suggests that it is worth reducing the size of . Reductions in 

approximation errors can be achieved of over 40% and 83% for the AIM(1) and AIM(2), 

respectively. Further details on these percentages are presented in the last column.  

We also supply performance statistics for the string approach evaluated over the cube grid g. 

We do not necessarily advocate such an approach (i.e. defining  on a subset of the region where 

subsequent inferences will be drawn). We rather include these results28 to again emphasize the 

trade off between flexibility and regularity: The regional regularity approach can become useless 

when  does not cover the empirically relevant region (because it is likely that outside of  

regularity will be violated as is the case for AIM(1) and AIM(2)). This example underscores the 

                                                      
28 It is also interesting to see that even though the model fit statistics of the ‘string approach’  are clearly superior to the ‘cube approach’  
when evaluated on N

g, this is not necessarily true when evaluated over the cubic region  g, (i.e. in the case of the AIM(2) the change 
in approximation errors are negative). The demand quantities for the out of sample prices in \ string are calculated by (7). 
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advisability of considering the definition 1 carefully. In particular it is to be assumed that it is 

known prior to the estimation at which ranges of the data the model shall generate forecasts. Then 

we argue that, once it is ensured that the empirically relevant price set is regular, it is not 

particularly important if the function is irregular immediately outside the boundary of  because 

inferences will not be drawn from those regions. 

5. Conclusion 

In this paper we have developed a procedure for estimating parametric functions subject to 

regularity conditions derived from economic theory that are imposed on a regular region of the 

function’ s domain defined by the analyst. Our method leads to improved model fit, and is also 

computationally much faster and more efficient than previous approaches while imposing both 

curvature and monotonicity on the entire selected region of the regressor space. In fact the 

generality of the method makes it applicable as a new procedure for the broader problem of 

estimating regression functions subject to nonlinear inequality constraints.  

Our numerical examples illustrate that the tractability of the estimation procedure is 

enhanced through a reduction in the number of regularity checks required in the estimation 

process. Another objective was to improve in- and out-of-sample forecasts. The theoretical and 

numerical results provide evidence that the model fit statistics significantly improve by a) using 

the posterior mode of the parameters and/or by b) allowing the desired regular region, , to be 

some connected non-convex set. We further noted that the commonly used Metropolis Hastings 

technique suffers from a bias of posterior density values. Finally we demonstrated that the 

commonly used posterior mean may be inappropriate as a point estimate. For both of the latter 

problems we suggested simple consistent alternatives.  

It will be instructive to apply this estimation methodology empirically to estimate supply 

and demand systems, and other economic models requiring curvature, quasi-convexity or 

monotonicity restrictions. Also, it would be interesting to compare these results with the currently 

developing new techniques in nonparametric estimation that attempt to impose shape restrictions. 

This is to be explored in future research. We hope that the methods and results demonstrated in 
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this paper promote tractability and facilitate efficiency in the analysis of regularity-preserving 

economic models. 

Appendix:  

The appendix is divided into three parts. Part A) contains the proofs of the propositions 

outlined in table 1 and some further explanations. Part B) lists the remaining proofs of Lemma 1, 

proposition 5 and proposition 6 and Part C) provides the data used in section 4.2. 

Part A): Proof of propositions outlined in table 1 and further explanations 

Before we prove the cases outlined in table 1 we need to introduce two further set 

definitions. (1) For any given MCMC outcome b(*) ∈ 4, the orthant of strictly positive prices S can 

always be partitioned into two disjoint subsets, SR|b(*) ∪ SIR|b(*) = S. We say that f(p;b(*)) is well 

behaved on the regular price set SR|b(*) = {p : i(p; b(*)) ��0 ∀ p ∈ S}. (2) Since we are particularly 

interested in the behavior of the function within the set , let us define R� � R|b(*) = {p : i(p; b(*)) 

��0 ∀ p ∈ } ⊂ SR|b(*). It has the following features: If f(p;b(*)) is regular ∀ p ∈ , then R = . 

In general, however, R ⊂ . For propositions 1a) to 2b) and 4, we prove sufficiency by 

contrapositive. To prove necessity is trivial and is omitted.  

Proposition 1a:  

          ∂ih/∂p1 ≥ 0 ∀ p ∈  {or ∂ih/∂p1 ≤ 0 ∀ p ∈ }      

          ∂ih/∂p2 ≥ 0 ∀ p ∈  {or ∂ih/∂p2 ≤ 0 ∀ p ∈ }      

Suppose          :        :         :   
          :        :        : 
          ∂ih/∂pK ≥ 0  ∀ p ∈  {or ∂ih/∂p2 ≤ 0 ∀ p ∈ }    

Iff B ⊂ R
h , then R

h  = .  

Proof of Proposition 1a29: Suppose not, then ∃ p* ∈ IR\B with ih(p*) < 0. Further ∃ pB = 

[ B B B
1 2, ,..., Kp p p ]T ∈ B which has the following property:  

                                                      
29 The ‘or statements in the parenthesis {}’  of property I are to be read as follows: in each kth row either the statement without 
parenthesis or the statement within the parenthesis is true, except for the case that the derivative is zero on . We explicitly allow that 
the signs across the K derivatives may be different. In the proof it then applies, that whenever in the kth row of property I the derivative 

is nonnegative, then in the kth row B
kp  ≤ *

kp . And equivalently, for nonpositive derivatives it applies B
kp  ≥ *

kp . 

(Property I holds)  
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B * B *
1 1 1 1{or }p p p p≤ ≥  
B * B *
2 2 2 2{or }p p p p≤ ≥  

:  : 
B * B *{or }K K K Kp p p p≤ ≥  

From property I it follows that ih(pB) ≤ ih(p*). Finally, since ih(pB) ≤ ih(p*) < 0 it follows that pB ∈ 

IR
h . Hence B ⊄ R

h .               Q.E.D. 

We conclude that only B ⊂ �has to be evaluated if property I holds. In practice, however, 

we cannot check for the connected set but approximate it by Bg, thus still running the risk of 

violating regularity in the neighborhood of the points in Bg. Fortunately however, in many 

applications we can apply the results of the following proposition. 

Proposition 1b: Suppose property I and property II hold. Iff z = [ min{max} min{max} min{max}
1 2, ,..., Kp p p ]T 

∈ R
h , then R

h  = . 

Proof of Proposition 1b: Suppose not, then ∃ p* ∈ IR\{z} with ih(p*) < 0 and by property I (see 

proposition 1a) ∃ pB ∈ B with ih(pB) ≤ ih(p*), hence pB ∈ BIR. From property II it follows that ∃ 

one vertex point z = [z1, z2,… ,zK]T with the following property:  

B B
1 1 1 1{or }z p z p≤ ≥  

B B
2 2 2 2{or }z p z p≤ ≥  

:  : 
B B{or }K K K Kz p z p≤ ≥  

Hence ih(z) ≤ ih(pB) ≤ ih(p*) < 0. So z ∈ IR
h .                 Q.E.D. 

Since – under the conditions property I and property II – whenever 

[ min{max} min{max} min{max}
1 2, ,..., Kp p p ]T ∈ R

h , then R
h  = , we conclude that only this single vertex 

point has to be checked.30 For some ICF’ s the conditions of property I may however not hold. In 

that case the following result further greatly simplifies the Accept-Reject algorithm.  

Proposition 2a: Suppose ∂ih/∂pm ≥ 0 ∀ p ∈  {or ∂ih/∂pm ≤ 0  ∀ p ∈  } and ∂ih/∂p-m can take any 

value (property III). Iff B ⊂ R
h , then R

h  = .  

                                                      
30 In case is defined as the union of I i, then the sum of vertices [z1, z2,… ,zI] are to be checked. 
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For the proof we need the following notation: Partition the K × 1 vector p* ∈  into the singular 

*
mp  and the K -1 × 1 vector *

m−p  and similarly partition pB ∈ B into B
mp  and B

m−p . 

Proof of Proposition 2a: Suppose not, then ∃ p* ∈ IR\{B} with ih(p*) < 0. Further 

∃ pB = [ B B B
1 2, ,..., Kp p p ]T ∈ B which has the following property: 

B
mp  ≤ *

mp    {or B
mp  ≥ *

mp } 

B
m−p  = *

m−p    

By property III it follows that ih(pB) = ih(
B
mp , B

m−p ) ≤ ih(
*
mp , *

m−p ) = ih(p*) < 0. Hence B ⊄ R
h . 

                          Q.E.D. 

Note that the assumptions of property III are much weaker than of property I and will hold 

for a wide set of common flexible functional forms and their respective ICFs, in which case we 

can omit checking the interior of . Similarly to proposition 1b, the following will further enhance 

the speed of MHARA.  

Corollary 2b: Fix the mth price axis from property III.  Let S ⊂ B ⊂  be that side of the 

hyperrectangle, which is orthogonal to the mth
 price-axis and for which pm

S = min{max}
mp  ∀ 

( S
mp , S

m−p ) ∈ S. Suppose property II and property III hold. Iff S ⊂ R
h , then R

h  = .  

Proof of Corollary 2b: The proof follows the same logic as the proof of proposition 1b.       Q.E.D. 

In other words, if property II and III hold, then it is only necessary to evaluate S which is the side 

of the hyperrectangle orthogonal to the mth price-axis and on which the value of pm
 is either a) 

smallest, in the case that ∂ih/∂pm ≥ 0 or b) largest, in the case that ∂ih/∂pi ≤ 0. For illustration, see 

fig. A1.  

-- INSERT FIG. A1 -- 
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The following proposition provides sufficiency conditions to check only the extreme points e
hZ  of 

a convex set . 31 The result does not rely on property II and is hence more general than case 5 of 

table 1. If  is a hypercube, then e
hZ  is equivalent to the 2K vertices defined in section 3.1 as Zh.32  

Proposition 3: Suppose property IV holds. Iff e
hZ  ∈ R

h , then R
h   � .  

Proof of Proposition 3: A quasi-concave function ih has the property that its upper contour set Uω 

= {p: ih ≥ ω, p ∈ , ω ∈ Ü1} is convex. R
h  = {p: ih ≥ 0, p ∈ } is an upper contour set U0 

evaluated at ω = ih = 0 such that e
hZ ∈ R

h  (by assumption). Since, by property IV, �is convex it 

follows that R
h  = U0 ∩  is convex (since the intersection of convex sets is convex). Finally, 

since any convex set is connected and e
hZ ∈ R

h , it follows that R
h  = .           Q.E.D. 

Remarks: In order to identify quasiconcavity of property IV, in practice it is useful to make use of 

the bordered Hessians of i(⋅), see e.g. SIMON  and BLUME (pp.523-531:1994).   

Proposition 4: Suppose the regularity conditions to be imposed belong to a subset of the following 

properties: (a) nonpositive slope, (b) nonnegative slope, (c) convexity, or (d) concavity. Suppose 

property V holds. Iff S* ∈ R then R = . 

Proof of Proposition 4: Suppose not, then ∃ p* ∈ IR\S* for which either (a) nonpositive slope, 

(b) nonnegative slope, (c) convexity, or (d) concavity is violated.  

First suppose monotonicity, (a) or (b), is violated at p*. Then at least one element 

∂f(p*)/∂pk of the K × 1 gradient vector ∂f(p*)/∂p is wrong in sign. By the property of a 

homogenous of degree α function, α ∈ Ü1, we have ∂f(tp*)/∂p = tα-1∂f(p*)/∂p ∀ t > 0. This 

implies that the signs of the elements of the gradient vector evaluated at tp* do not change relative 

to the gradient vector evaluated at p*, and hence any tp* is irregular as well. Consequently, also 

                                                      
31 ze is an extreme point of  iff ze , ⋅p1 + (1- - . 2, ∀ p1, p2 ∈ / ∈ (0, 1), implies ze = p1 = p2.  

32 If i is defined as a part of a hyperplane in 0 , the number of vertices might be different from 2K. For example, in the case that i has 

the form of a line, we just have two instead of 2K vertices, the starting and the ending point of the line. 
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irregular is the point pS* ∈ S*∩l(0,p*) at which the ray through the origin and p* intersects with 

shield S*. 

Now suppose curvature, (c) or (d), is violated at p*. Then the Hessian evaluated at p*, 

H|p*, does not maintain the correct semi-definiteness. Again, by the property of homogenous 

functions we have ∂f²(tp*)/∂p∂p′ = tα-2∂²f(p*)/∂p∂p �∀ t > 0. Since H|tp* only differs from H|p* by 

the multiple tα-2 the definiteness of the matrices is identical, hence tp* ∈ IR ∀ t > 0. 

Consequently, the point pS* ∈ S*∩l(0,p*) is also irregular.              Q.E.D.  

Part B): Proof of lemma 1, proposition 5 and proposition 6 

Proof of Lemma 1: The proof follows immediately from the definition of 4R| * = {E: i(p;E) ��0 

∀ p ∈ *, E ∈ 4} which implies that ceteris paribus, the larger the constraining set * ⊂ S, the 

smaller is the support 4R, i.e. if 1* ⊂ 2*, then 4R| 1* ⊃ 4R| 2*. Consequently, maximizing s(E) 

over the smaller set  4R| 2* can only lead to objective values equal or smaller than as maximizing 

s(E) over 4R| 1*. 

Proof of proposition 5: The proof follows directly from the propositions 1b and proposition 3 and 

noting that if the evaluation sets are finite, the regularity posterior can be simulated with support 

4R|  = 4R| g, i.e., regularity is guaranteed on the connected set ∀ p ∈ �and there is no reliance 

on an arbitrary approximation grid. 

Proof of proposition 6: The proof follows directly by noting that for nonlinear inequality 

constraints the constraint set 4R is not necessarily convex. Hence linear combinations over 4R can 

reside outside of 4R. 
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Part C): Input price observations and out of sample points used for experiment II 

26 × 3 input price observation matrix P 
 n   input price 1 input price 2 Input price 3 

1 0.59404 0.56000 0.55000 

2 0.52200 0.68344 0.84049 

3 0.55812 1.05000 1.18890 

4 0.57451 1.49900 1.46040 

5 0.94357 0.54122 0.81883 

6 0.69551 0.78415 0.60475 

7 0.82898 0.78613 0.73893 

8 0.84189 1.15940 1.09310 

9 0.80024 1.49740 1.45910 

10 1.12530 0.56597 1.08850 

11 1.15600 0.95502 1.37150 

12 1.38970 1.04470 0.64871 

13 1.21790 1.38860 0.76997 

14 1.02370 1.21050 1.34420 

15 1.09690 1.44260 1.47270 

16 1.46630 0.58908 1.30410 

17 1.44160 1.02990 1.41120 

18 1.41350 1.14770 1.47790 

19 1.38970 1.41070 0.61131 

20 1.48110 1.43560 0.79465 

21 1.48060 1.34620 1.06060 

22 1.43460 1.42840 1.46580 

23 0.50000 0.50000 0.50000 

24 1.50000 1.50000 1.50000 

25 1.50000 0.50000 1.50000 

26 0.50000 1.50000 1.50000 
    

C =  4 scenario input price vectors 
 c   input price 1 input price 2 input price 3 

1 1.00000 1.00000 1.00000 

2 1.28870 1.26140 0.87679 

3 3.00000 3.00000 3.00000 

4 4.39890 1.76720 3.91230 
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Appendix of figures and tables 

Fig 1: Irregular function 

Fig. 1 depicts an example where 
p includes all observed data 

points (each dot represents an 
observed (cost, price) 
combination used for estimating 
the cost function), and sim 
includes the region at which 
inferences will be drawn for 
simulation purposes. However,  
= p ∪ sim violates the 
requirement that it is one 
connected set. The graph shows 
that imposing concavity and 
monotonicity at both regions p 
and sim does not necessarily 
generate overall regularity and 
can lead to spurious forecasts 
because costs must not decline 
with rising input prices.  

 

Table 1: Sufficient conditions for defining the evaluation set as a subsets of � 
Case Property 

I 
Property 

II 
Property 

III 
Property 

IV 
Property 

V h  
Support generated 

by the hth grid Proposition 

1 +     boundary 
Bh 

 4R|Bgh  ⊃ 4R_ �� 1a 

2 + +    one vertex 
zh 

 4R|zh  = 4R_ �� 1b 

3   +   boundary 
Bh 

 4R|Bgh  ⊃ 4R_ �� 2a 

4  + +   side  
Sh 

 4R|Sgh  ⊃ 4R_ �� 2b 

5  +  +  all vertices 
Zh 

 4R|Zh  = 4R_    3  

6     + shield  
S*  

 4R|S*  ⊃ 4R_ �� 4 

Symbol h is a placeholder for Bh, Sh, S*, zh, and Zh. For the proofs of the statements in the table see section A1 of the appendix.  

price 

cost 

p sim 
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Fig. 2: Illustrations of evaluation grids for the Accept-Reject algorithm  

 

To the left, an example of a shield S* ⊂  is displayed. To the right the shield grid Sg* ⊂  = {p: p ∈ 3
1=×k [.5, 1.5]} which we 

also use for the second principal minor test for the AIM(2) in section 4.  

 

Fig. 3: Violations on the price grid g in the case of the local regularity approach  

In 19.09% of the grid points monotonicity is violated (left cube) and in 3.11% concavity is violated (right cube). Each black 
dot is one grid point where violation occurs.  
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Table 2: Global, regional and local approach - comparison based on AIM cost functions(1) 

Estimation Approach 
Regional Regularity Model 

Forecast Error and 
Regularity Violations 

evaluated over g 
Local 

Regularity(2)  
Global 

Regularity(2) Mean Mode 

 AAAE 0.05208 0.14395 0.095523 0.093291 

MAE -0.19692 0.469 0.29045  0.28540 

Concavity Violations 0% 0% 0% 0% 
AIM(1) 

Monotonicity Violations 17.33% 0% 0% 0% 

AAAE 0.02056 0.13266 0.040248 0.036739 

MAE -0.07563 0.40808 0.11591 0.10759 

Concavity Violations 3.11% 0% 0% 0% 
AIM(2)  

Monotonicity Violations 19.09% 0% 0% 0% 

(1) Experiment based on table 1 and table 2 of Terrell (1995): True data generation process: CES technology with 
parameter settings ai = 1;  = 0.75. In order to provide a benchmark for the average and largest error, the CES-input 
demand data xk have, as in TERRELL (1995), mean of 8000-1 8000

1=Σ g xgk = 0.2552 ∀ k and standard deviation of std(xk) = 
0.2230 ∀ k over the evaluation grid g. 

(2) Some considerable differences exist between our and TERRELL’s (1995) results. (a) Local Regularity AIM(2): Instead of 
3.11% TERRELL found 1.6% of concavity violations. (b) He calculated error statistics in the column ‘global approach’ which 
are about 3-4 times higher for the AAAE and 1.5 times higher for the MAE than our results: AIM(1): AAAE = 0.64146, MAE 
= -0.84186; AIM(2): AAAE = 0.47073, MAE = -0.63968. After careful consideration, we believe that the results in our table 
are the correct ones. 

 

 



 

Forecast Error / 
Regularity Violations

evaluated at Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

 AAAE 0.0316 0.0363 0.0174 0.1655 0.1521 0.1416 0.1008 0.0992 0.1080 0.0358 0.0394 0.0209 64.54% 60.27% 80.63%
MAE 0.0953 0.0909 -0.0477 0.4199 0.4591 0.4885 0.1906 0.2037 0.4243 0.1056 0.1217 -0.0622 44.62% 40.27% 85.33%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 11.54% 0.00% 0.00% 0.00%

 AAAE 0.0095 0.0181 0.0174 0.1118 0.1513 0.1102 0.0794 0.1006 0.1121 0.0143 0.0313 0.0277 81.97% 68.91% 75.27%
MAE -0.0192 0.0502 0.0326 -0.1944 0.4220 0.2526 -0.1294 0.2037 0.2487 -0.0284 0.0888 -0.0538 78.01% 56.42% 78.34%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0467 0.0472 0.0484 0.1484 0.1447 0.1425 0.0971 0.0952 0.1094 0.0483 0.0491 0.0467 50.26% 48.40% 57.35%
MAE -0.2797 -0.2886 -0.2963 0.4202 0.4594 0.5360 -0.2920 -0.2843 0.4357 -0.2734 -0.2560 -0.2698 6.37% 9.93% 38.08%

Concavity Violations 0.00% 0.00% 0.00% 0.00%
Monotonicity Violations 32.66% 0.00% 0.00% 28.01%

 AAAE 0.0042 0.0039 0.0025 0.1514 0.1382 0.1299 0.0470 0.0475 0.0459 0.0070 0.0082 0.0055 84.99% 82.83% 88.02%
MAE -0.0165 -0.0115 0.0111 0.3838 0.4051 0.4167 0.1256 0.1185 0.1259 -0.0199 -0.0272 -0.0192 84.16% 77.02% 84.78%

Concavity Violations 15.39% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0024 0.0028 0.0035 0.0962 0.1353 0.0936 0.0286 0.0465 0.0527 0.0013 0.0024 0.0024 95.49% 94.90% 95.52%
MAE -0.0078 -0.0093 0.0111 -0.1764 0.3911 0.2189 -0.0522 0.0992 0.1110 -0.0020 0.0033 -0.0028 96.26% 96.64% 97.44%

Concavity Violations 25.00% 0.00% 0.00% 0.00%
Monotonicity Violations 0.00% 0.00% 0.00% 0.00%

 AAAE 0.0142 0.0151 0.0133 0.1369 0.1329 0.1296 0.0470 0.0470 0.0432 0.0153 0.0154 0.0155 67.54% 67.12% 64.18%
MAE 0.3782 0.4073 -0.3278 0.3865 0.4082 0.4350 0.1391 0.1298 0.1287 0.1459 0.1335 0.1044 -4.93% -2.85% 18.86%

Concavity Violations 26.46% 0.00% 0.00% 11.30%
Monotonicity Violations 0.69% 0.00% 0.00% 9.90%

Simulation experiment based on table 1 and table 2 of Terrell (1995): True Data Generation Process: CES technology with parameter settings a i  = 1;  = 0.75.

Estimation Approach

Local Regularity,        
imposed at pM Gobal  Regularity imposed on g                         

(cube approach)
imposed on string

g                

(string approach)

Regional Regularity
Model Model Performance Statistics

Percentage change in  error 
statistics of the string 

approach relative to the 
cube approach

C
g

g

AIM(1)

AIM(2)

g

N
g

N
g

C
g

 

Table 3: Local, global, regional cube and regional string approach - comparison based on AIM cost functions 
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Fig. 4: The String grid string
g 

 

Fig A1: ICF level sets ih =  -1 and ih =  0 in price space S 

If property II and property III hold, p* is irregular, and ∂ih/∂p3 ≥ 0, then the boundary side S facing towards the p1–p2 level 

contains irregular points pB ∈ SIR ⊂ S as well. SIR is shaded in red. The set ⊂ 1  is indicated by the cube.  
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