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MODEL SELECTION CRITERIA USING LIKELIHOOD FUNCTIONS AND 
OUT-OF-SAMPLE PERFORMANCE 

 
Model selection is often conducted by ranking models by their out-of-sample 
forecast error.  Such criteria only incorporate information about the expected 
value, whereas models usually describe the entire probability distribution.  
Hence, researchers may desire a criteria evaluating the performance of the entire 
probability distribution.  Such a method is proposed and is found to increase the 
likelihood of selecting the true model relative to conventional model ranking 
techniques. 

 
 Keywords:  Model selection, forecasting, heteroskedasticity.  
 
 Most empirical economic research entails the specification, estimation, and 
evaluation of statistical models.  Once a model is specified, estimation is usually 
straightforward.  This is because most econometric research and class lectures focus on 
econometric techniques of an assumed model, and there exists a general consensus 
among practitioners as to the best estimation techniques for most model settings.  
However, the literatures is not quite as clear on the best method(s) of model selection.  
Consequently, while estimation of a specified model is more if a science, the act of model 
specification is partly an art1. 
 

Unfortunately, results are often sensitive to the choice of functional form and/or 
error distribution, hereafter referred to as the “model”.  Shumway and Lim provide 
excellent examples of how elasticities vary under alternative functional forms.  They 
summarize the robustness problem by stating (page 275) “Attempting to narrowly bound 
estimates of output supply and input demand elasticity for a given category remains an 
exceedingly difficult task.  Even using the same data, holding the point of evaluation 
constant, and using alternative functional forms with the same number of free parameters 
to be estimated, the implied elasticities can vary widely.” 

 
Although little consensus exists regarding the best method of model selection, 

most agree models should be ranked by their out-of-sample performance.  This is because 
in-sample statistics are often misleading and arbitrary.  Measures of in-sample fit, like the 
coefficient of determination, arbitrarily prefer models with the most parameters2.   

 
Adjusts can be made to these measures, but ironically, those adjusts are often 

deemed arbitrary and hence are unpopular3.  Hypothesis tests are often used to identify 
models, but numerous tests can yield conflicting results and a large amount of pre-testing 
may invalidate statistics from the model4.  Furthermore, not all models are nested, and 
non-nested tests are famous for ambiguous conclusions.  The likelihood dominance 
procedure provides an unambiguous model ranking, but requires all models to have an 
identical number of variables (Anderson et al).  Locally flexible functional forms are 
championed for their ability to approximate any true functional form, but this 
approximation is only at a point.  Globally flexible functional forms provide an 
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approximation at all points, but require numerous parameters thereby impeding the data’s 
ability to “speak.” 

 
Every measure of model performance using in-sample statistics has at least one 

drawback.  It is difficult to find a drawback to using out-of-sample statistics like the out-
of-sample-root-mean-squared error (OSRMSE) or average-out-of-sample-absolute error 
(AOSAE) though.  Neither will arbitrarily increase of decrease as one adds more 
variables and yields an unambiguous ranking to any number and class of models.  They 
are appropriate under any sample size, as even if the number of observations are small, 
cross-validation can be employed for a set of out-of-sample forecasts.  Best of all, it has 
the intuitive appeal that a model—a model being a hypothesis for the process governing 
an economic variable—is evaluated by how it predicts in the “real world”.  In this paper, 
it is taken as given that out-of-sample statistics are the best measures of model 
performance.  This paper then asks:  What is the best out-of-sample measure for ranking 
models?  The OSRMSE and AOSAE, though informative, have a potential drawback if 
the researcher is interesting in more than just the expected value. 

 
Let tiy ,ˆ be an out-of-sample forecast from Model i (Model i is specified as a 

normal distribution) at time t and yt be the true value.  The forecast error is then 

tti yy −,ˆ and is a measure of how accurate the mean equation is.  Suppose the researcher 

also had a variance equation which could be used to forecast the variance of tti yy −,ˆ .  

One must wonder if a larger forecast error should necessarily penalize the model if the 
variance equation predicted a larger error, as both the OSRMSE and AOSAE would. 

 
Consider two models, Models A and B, with identical mean equations but Model 

A models the variance as a constant and Model B models it as a function.  If the mean-
equation’s forecasts were identical, the OSRMSE and AOSAE would rank them as 
equally valid models.  Consider the difference of the AOSAE for two forecasts 
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Suppose the forecast error in time t+1 was larger than in time t and suppose the variance 
equation in Model B predicted that larger error.  It would then seem that Model B 
contains more information than Model A and hence should be given a higher ranking.  
Recently, researchers have questioned whether model ranking criteria should account for 
more than just the mean equation.  Dierson and Manfredo propose an innovative 
technique for model selection when the researcher is interested in discriminating among 
various mean and variance equations for a normal distribution. 
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THE LIKELIHOOD SCORING TECHNIQUE 
 
 Dierson and Manfredo propose a method of ranking models they call the 
Likelihood Scoring Technique.  They note that for linear models of the form 

(2)  ttt eXy += β̂ where te is distributed as normally with a constant variance, the term 

(3) ( )
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−

ˆ
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is distributed as a t-distribution with N-K degrees of freedom, 

where N is the number of observations used to estimate β̂ , K is the number of 
parameters, and V(.) denotes variance.  The variance of the forecast can be written as 
 

(3)  ( ) ( ) ( ) )(')ˆ(ˆˆˆ tttttttttt eVXVXeXVeXXVyyV +=−=−−=− ββββ . 

 
 Although Dierson and Manfredo only consider the case where V(et) is a constant, 
this method easily extends to more general forms by inserting a formula instead of a 
constant for V(et).  Dierson and Manfredo suggest a method of model ranking called the 
Likelihood Scoring Technique which entails conducting a set of T out-of-sample 
forecasts, calculating the following statistic 
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for a series of models, and ranking the models  

 
by their Likelihood Score (LS) where the highest LS is the best model.  The term tT-K(a) 
means the t-distribution with N-K degrees of freedom is evaluated at the value a.  This 
method is appealing in that, holding the forecasted variance constant, models with higher 
forecast errors will receive a lower ranking, but a higher forecast error does not 
necessarily penalize a model if its variance equation predicted a higher error. 
 
 The Likelihood Scoring Technique assumes normality of errors, but researchers 
may desire methods which allow different error specifications.  We propose a method of 
model selection which uses out-of-sample forecasts but allows the user to consider 
various mean and variance equations and error distributions.  It is based on the concept of 
a likelihood function.   
 

THE LIKELIHOOD SCORING TECHNIQUE 
 

Both the OSRMSE and AOSAE only incorporate information regarding each 
model’s expected values.  The LST can only be used for normally distributed models.  
However, researchers often desire to compare alternative distributional assumptions and, 
since models are often expressed in terms of a pdf, may desire to rank models by how 
well each model’s pdf performs out-of-sample, i.e., the researcher may want to pick the 
model with the highest probability of generating a set of out-of-sample observations.  A 
method is developed believed to achieve this.  The method is outlined first and is then 
followed by an explanation of why the method is valid. 
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The OSLLF Approach To Model Selection 
 
1)  Create a set of models the researcher deems appropriate.  Each model must be stated 
in terms of a probability density function (pdf) and all pdf’s be a function of the same 
variable (they must all integrate over the same variable). 
 
2)  Estimate the parameters of each model using maximum likelihood. 
 
3)  Obtain a set of out-of-sample observations.  In small samples use cross-validation.  
Using the estimated parameters from Step 2, calculate the pdf for each model at each out-
of-sample observation.  Denote the pdf for an out-of-sample observation yt as f(yt). 
 
4)  Sum over ln{f(yt)} for all t and pick the model with the highest ∑tln{f(yt)} as the 
superior model.  If the number of out-of-sample observations differ across models, 
choose the model with the highest average OSLLF.  For small samples, one may want to 
employ cross validation (which is explained in the simulation description). 

 
As an example, consider again two models; Model A where yi ∼ N(XA,iβA, ZA,iαA) 

and Model B where ln{yi} ∼ N(XB,iβB, ZB,iαB).  The first step entails specifying the pdf 
for each variable such that they integrate over the same variable.  Let fA(y) and fB(y) be 
the pdf for Models A and B, respectively. 
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Step two requires maximum likelihood estimation to obtain the parameter estimates 

BBAA αβαβ ˆ,ˆ,ˆ,ˆ  by maximizing the log-likelihood functions for Models A and B, denoted 
LLFA and LLFB, respectively, using N observations. 
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Notice when estimating parameters one does not have to worry whether all 

likelihood functions are stated in terms of the same random variable (one does not have 
to worry whether the pdf’s for all models integrate over the same variable).  Finally, Step 
3 requires a second set of observations denoted t (t is for out-of-sample observations and i 
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is for in-sample observations).  Using the estimated parameter values from Step 2, all one 
needs to do is plug in the out-of-sample observations into the log-likelihood functions to 
obtain an out-of-sample-log-likelihood function (OSLLF) for Models A and B. 
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Finally, if OSLLFA > OSLLFB then Model A is superior.  Otherwise, Model B is 
superior. 
 
 The procedure is simple and can be used to compare numerous types of models.  
It can compare various mean and variance equations of a normal distribution or any 
alternative distribution.  The only requirement is that each model be defined as a pdf 
integrating over the same variable (must be a function of the same variable).  However, 
no real justification has yet been given as to why this is a valid procedure or why each 
pdf must integrate over the same variable.  These two issues are addressed below. 

 
Suppose a researcher is comparing two models for a dependent variable y, where 

y exists in the (1,2) range.  For simplicity, assume there is only one out-of-sample 
observation.  The researcher is considering a normal and a log-normal distribution.  
Denote the two pdf’s for y and ln(y) as f(y) and f(ln(y)), respectively.  These likelihood 
function must be stated such that 
 

(8) ∫ = 1)( dyyf and 

(9) { }∫ = 1)ln())(ln( ydyf . 

 
Ignoring ranges of the normal distribution with very small probabilities of 

occurrence, in order for the probability of y taking on the values 1.01, 1.02, …, or 1 to 
equal one, the likelihood function f(y) must be less than one for every value of y.  
However, in order for the probability of ln(y) taking on the values ln(1.01), ln(1.02), …, 
or ln(1) to equal one, the likelihood function f(ln(y)) must be greater than zero for every 
value of ln(y).  Hence, the likelihood function for the model assuming a log-normal 
distribution of y must be greater than the normal model.  Simply by transforming the 
dependent variable one alters the ranking of models.  Obviously, the OSLLF as presented 
so far is inadequate for dealing with all models. 
  

A simple adjustment corrects for this though.  The problem lies in the 
interpretation of the likelihood function.  The likelihood function cannot be interpreted as 
a probability, it does not even have to be on the (0,1) interval.  The likelihood function 
evaluated at any one point is meaningless--but its integral is.  An out-of-sample 
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observation of a variable yt and its associated OSLLF value is not indicative of the 
probability of yt occurring given the model specification and estimated parameters.  
However the integral of the OSLLF over the range yt - σ and yt + σ is indicative of the 
probability of yt lying within this range, given the model specification and estimated 
parameters.  Compare again the two previous models of y where one model assumes 
normality and the other assumes log-normality.  Let xt = ln(yt).  Though the comparison 
of (8) to (9) is meaningless, one can compare the integral of each distribution for a small 
deviations around yt.  These integrals are the probability of the out-of-sample observation 
yt occurring, given each model’s specification and estimated parameters. 
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Hence, if (10) is larger than (11), one can say a the normal distribution model is 

more appropriate than the log-normal.  Note that since x and y are monotonic 
transformations, both integrals can be stated in terms of y using the method of 
transformations. 
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Finally, we can let σ become very small and then get two likelihood functions that can 
meaningfully be compared. 
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Notice the problem before of the likelihood function for ln(yt) being greater than zero no 
longer exists because that likelihood function is divided by yt.  Hence, for likelihood 
functions for a series of models with different dependent variables, if the dependent 
variables are all a monotonic function of a single variable, say yt, the method of 
transformations must be employed to convert all pdf’s into pdf’s for yt (as opposed to 
functions of yt).   
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Only after this transformation can the OSLLF be used.  To get a better idea of 
why the OSLLF is a valid criterion, note that the value of a pdf is approximately the 
probability of an observation existing in a small interval divided by the range of that 
interval.  This comes from the fact that the true probability of yt being observed in the yt - 

δ and yt + δ interval is ( ) ( ) ∫
+

−

=−−+
δ

δ

δδ
t

t

y

y

tt dyyfyFyF )(  where F(.) is a cumulative 

distribution function (cdf).  So long as δ is small, f(y) will be approximately the same 
over the entire interval and hence can be approximated by f(yt)dy = f(yt)2δ.  The choice 
of δ is arbitrary, but for f(yt) to be comparable across models δ must be identical across 
models implying dy must be identical.  If all pdf’s integrate over the same variable, then 
the model with the highest pdf is also the model with the highest probability of 
generating the out-of-sample observation.  Then, assuming a set of yt’s (a set of out-of-
sample observations) are independent, the model with the highest product of pdf’s across 
a set of out-of-sample observations has the highest probability of generating that sample.  
Therefore, the model with the highest OSLLF will be the model with the highest 
probability of generating the set of out-of-sample observations.  Please note that one must 
compare log-likelihood functions across models using out-of-sample observations, as log-
likelihood functions using in-sample observations will tend to arbitrarily prefer models 
with more parameters.   

 
Ranking models by their OSLLF is an improvement to existing model selection 

criteria and is desirable for several reasons.  First, it employs out-of-sample observations 
which are not subject to arbitrary manipulation.  While the OSRMSE and the AOSAE 
only compare models by the performance of their expected values, the OSLLF compares 
models by their entire pdf.  Hence, the ability of models to reflect changing variances and 
skewness will be reflected in the model selection.  The OSLLF can be used to compare a 
large number of models of diverse types (a much larger number than in-sample statistics 
can compare).  Finally, the OSLLF picks the model with the highest probability of 
generating the set of out-of-sample observations.  In addition to its theoretical and 
practical justifications, the OSLLF was tested in simulations to determine its usefulness 
in picking the correct model relative to the OSRMSE, AOSAE, and the LST. Whether 
simulation results can be extended to real settings is questionable.  The generality of 
simulations is always suspect.  Regardless, simulations are the only way to compare these 
four model ranking criteria discussed in this paper and will provide more information 
regarding the best model ranking criteria than was previously available. 

 
SIMULATION DETAILS 

 
 The goal is to make the simulations as general as possible.  Therefore, a wide 
variety of models are used.  Let the dependent variable be denoted y and the independent 
variables influencing y be x1, x2, x3, x4, x5.  Any xi may affect y in a non-linear manner, 
thus interaction effects between xi and xj ∀ i,j are considered.  The vector of possible 
explanatory variables are [1,x1, x2, x3, x4, x5, x1

2, x2
2, x3

2, x4
2, x5

2, x1x2, x1x3, x1x4, x1x5, 
x2x3, x2x4, x2x5, x3x4, x3x5, x4x5].  Let X be the matrix of [1,x1, x2, x3, x4, x5, x1

2, x2
2, x3

2, 
x4

2, x5
2, x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5] for all observations and 
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X(1:j) represent a matrix with the 1st through jth columns of X.  Though the value of j is 
chosen randomly across simulations, and it is assumed the exact value of j within any 
simulation is known by the researcher. 

 
The true mean equation within a simulation is defined as y = X(λ)(1:j) β(1:j) for j = 

6, …, 21 where xi
(λ) is the Box-Cox transformation 

λ

λ
λ 1)(

)( −
= i

i

x
x , where each xi is 

transformed using the same λ, λ can take randomly the values 0, .5, 1 and the value of λ 
is not known by the researcher within a simulation5.  The variance equation may take on 
three forms; Form 1 (s=1) is a constant, Form 2 (s=2) follows V(e) = exp{α0 + α1x1

(λ)}2 
and Form 3 (s=3) follows V(e) = exp{α0 + α1x1

(λ)x2
(λ)}2.  All errors are assumed to be 

normal.  The true variance equation varies randomly across each simulation and is not 
known by the researcher within a simulation.   

 
The goal of the simulated researcher is to use the OSRMSE, the AOSAE, the 

LSM, and the OSLLF in choosing which model to use.  The researcher knows the mean 
and variance equations both take one of three forms, resulting in 9 candidate models.  In 
the case of a constant variance, the simulated researcher employs OLS estimation such 

that(16) ( ) yjXjXjXi ):1():1()':1(ˆ )(1)()( λλλβ
−

= where i denotes Models 1, 2, and 3.  

Models hereafter are denoted by M(λ,s) where λ is the value used in the Box-Cox 
transformation and s denotes which variance equation was used.  Models M(λ,s = 2, 3) 
were estimated using a two-stage least squares estimator.  First, an OLS regress identical 
to (16) was performed.  The corresponding residuals were squared, naturally logged, and 
regressed against x1

(λ) and x1
(λ)x2

(λ) for Models M(λ,s=2) and M(λ,s=3), respectively.  For 
both models, the estimate of α0 was changed to α0 + 1.2704 to maintain consistency 
(Greene).  Then, the estimated parameters of the variance equation were used to estimate 
the variance for each observation and then incorporated into a Weighted-Least-Squares 
Estimator of the mean-equation parameters. 
  

The estimated mean- and variance-equation parameters were then used to conduct 
out-of-sample forecasts.  Simulations were constructed such that the sample size, the 
error magnitude, and the j in X(1:j) were chosen randomly to provide a wide range of 
settings.  In each simulation the four model ranking criteria 1) OSRMSE 2) AOSAE 3) 
LSM 4) OSLLF where calculated and used to deem one of the 9 candidate models as 
“most likely the true model.”  The estimated true model for each criterion is then 
evaluated to access the likelihood of choosing the correct model.   

 
SIMULATION RESULTS 

 
 If the model was chosen at random, the researcher would have a 1/9  = 1. chance 
of picking the correct model.  While three of the four criteria improved this probability, 
the improvement was small, as shown by Table 1.  The OSLLF yielded the highest 
percentage of times picking the correct model and the LSM yielded the lowest.  A series 
of t-tests were conducted for each pair of criteria to determine if they were significantly 
different and are given in Table 2.  Only the LSM and the AOSAE were not significantly 
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different from one another, concluding the OSLLF is the superior model selection 
criterion for the 4,000 simulations.  Whether this result is extendable to other settings is 
questionable, but the simulations do provide some guidance whereas before there was 
none.   
 T-tests were also conducted to determine if using any criteria are better than 
choosing the model at random.  Test results are shown in Table 3.  Only the LSM was not 
significantly different than choosing the model at random.  Although the probability of 
selecting the correct model using the OSRMSE, AOSAE, or the OSLLF was not greatly 
above 1/9, they are significantly greater implying they are useful. 

 
Simulations were conducted for various error sizes, model types, parameter 

values, and sample sizes which yield somewhat general implications.  However, the 
simulation assumed only nine possible functional forms and the researcher knew each of 
these nine.  In reality, the number of possible models is large and researchers could never 
evaluate each one.  Such assumptions needed to be made to conduct simulations though, 
and although results will not be extendable to all possible settings a researcher may face, 
they do provide some degree of guidance, whereas in the past there was none. 

 
If researchers wish to evaluate various types of functional forms for the mean and 

variance of a process and hypothesis tests cannot be used, various model ranking criteria 
are available.  Although in-sample statistics may provide some information regarding 
which model(s) are most adequate descriptions of an economic process, out-of-sample 
model performance will be the most reliable.  Most commonly used model ranking 
criteria are the OSLLF and the AOSAE, however, no one has of yet evaluated which of 
the two are superior.  The LSM has recently been proposed as a useful criteria, but again, 
how it compares to the OSRMSE and the AOSAE has not been evaluated.  Though 
useful, these three measures do not explicitly evaluate the performance of the variance 
equation, which may be desired if data displays non-spherical errors. 

 
The OSLLF, AOSAE, and the LSM automatically penalize models with larger 

forecast errors, but it was argued this penalty should not be automatic if the variance 
equation predicted a larger error.  If researchers are specifying both a mean and variance 
equation, it was argued that the model ranking criteria should evaluate them 
simultaneously.  It was shown the LSM can be extended to include a variance equation.  
An additional criteria, the OSLLF, was suggested as an alternative criteria.  Both the 
LSM and the OSLLF simultaneously evaluate the mean and variance equation and hence 
may improve model selection.  To test whether this is true, simulations were conducted. 

 
The LSM was found to be uninformative, as picking a model at random has the 

same probability of picking the correct model.  In order of highest to lowest performance, 
the best measures are the OSLLF, OSRMSE, AOSAE, and either the LSM or a random 
pick.  The probability of picking the correct model using the OSLLF, OSRMSE, and the 
AOSAE are significantly higher than a random pick and each other.  Though not 
necessarily extendable to all cases, as a rule of thumb, the OSLLF is the best method of 
simultaneously ranking various mean equations, variance equations, and error 
distributions.  Simulations results suggest that, although these criteria are useful, model 
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selection remains difficult, as the best criteria has only a small chance of picking the 
correct model. 
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FOOTNOTES 
 
1)   As a percent of total econometric lectures, the amount given to model specification is 
small.  Opinions as to the best methods tend to vary, hence, the method of model 
specification is mostly chosen by the researcher’s beliefs and experience and not by the 
replication and confirmation of research. 
 
2) The coefficient of determination and the sum-of-squared errors can be set to one and 
zero, respectively, by setting the number of independent variables equal to the number of 
observations. 
 
3)  Such adjustments are; the adjusted coefficient of determination and information 
measures based on the Kullback Information Criteria, such as the Akaine Information 
Criteria (AIC) and the Bayesian Information Criteria (BIC).  While the AIC and BIC are 
often employed in time-series models, they are rarely used to rank econometric models. 
 
4) For example, if a researcher chose a model by removing variables with low 
significance, the remaining t-ratios are not statistics because the probability of them being 
significant are 100%. 
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TABLE 1. 
PERCENT OF TIME MODEL SELECTION CRITERIA PICKED THE 

CORRECT MODEL 
 

Out-of-Sample-Root-
Mean-Squared Error 

 

Average-Out-of-
Sample-Absolute Error 

Likelihood Scoring 
Method 

Out-of-Sample 
Likelihood Function 

4,000 Simulations 
14% 

 
13% 12% 16% 

 
TABLE 2. 

T-TESTS FOR DIFFERENCES IN PERCENT OF TIMES CORRECT MODEL IS 
CHOSEN  

 
 Out-of-Sample-

Root-Mean-
Squared Error 

 

Average-Out-of-
Sample-Absolute 

Error 

Likelihood Scoring 
Method 

Out-of-Sample 
Likelihood 
Function 

 Test statistic for the null hypothesis that the percent of times the correct model is 
chosen for the criteria in column minus the criteria in row is equal to zero 

 

Test Statistica is 

T

DD

T

PP

T

PP

PP

jijjii

ji

),cov(2)1()1(
−

−
+

−

−
 

 
Out-of-Sample-

Root-Mean-
Squared Error 

 

------- -2.71 -3.14 3.33 

Average-Out-of-
Sample-Absolute 

Error 
 

------- ------- -1.19 5.23 

Likelihood Scoring 
Method 

 

------- ------- ------- 7.05 

Out-of-Sample 
Likelihood 
Function 

 

------- ------- ------- ------- 

a)  Di = 1 if criterion i picked the correct model and zero otherwise and TDP
T

i
ii ∑

=

=
1

.  Subscripts i and 

j refer to the criterion in the corresponding column and row, respectively.  The covariance term is included 
because two criteria may perform better under identical settings.  For instance, the LSM and OSLLF may 
both perform better if there is heteroskedasticity, hence they may be correlated. 
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TABLE 3. 
T-TESTS FOR PERCENT OF TIMES CORRECT MODEL IS CHOSEN FOR 

EACH CRITERION IS SIGNIFICANTLY BETTER THAN CHOOSING MODEL 
AT RANDOM 

 
Out-of-Sample-

Root-Mean-
Squared Error 

 

Average-Out-of-
Sample-Absolute 

Error 

Likelihood Scoring 
Method 

Out-of-Sample 
Likelihood 
Function 

Test statistic for the null hypothesis that the percent of times the correct model is 
chosen for the criterion is significantly higher than 1/9. 

 

Test Statistica is 

T

PP

P

ii

i

)1(

)9/1(

−

−
 

 
5.51 3.15 1.68 

 
9.07 

a) iP is the percent of time criterion i selected the correct model. 
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APPENDIX A 
SIMULATION DESCRIPTION 

 
Dependent Variable: y 
Independent Variables Affecting y:  x1, x2, x3, x4, x5 = x 
 
 
Step 1:  Generating Data on x and Parameter Values 
 
The variables x1, x2, x3, and x5 were chosen randomly from a normal distribution with a 
mean of 100 and a standard deviation of 20.  The unconditional distribution of x4 is the 
same, however, it was set to have a correlation of .3 with x3. 
 
xi ∼ N(100,202) for i = 1, 2, 3, 5. 
x4∼ N(100 + .3(x3-100),{202(1-.32)}) 
 
Step 2:  Generate Model and Sample Size 
 
The process of y is given by y = X(λ)(1:j)β(1:j) + e and is described below.  The matrix 
X(1:j) is a matrix containing xi’s.  The superscript (λ) signifies that each xi undergoes a 
Box-Cox transformation.  The value of lambda used for the Box-Cox transformation is 
chosen randomly.  It may take the values .01, .5, or 1 with an equal probability.  Each xi 
is transformed as ( ) λλλ 1)( −= ii xx .  Let X(λ) = [Ic,x1

(λ), …, x5
(λ), [x1

(λ)]2,…, [x5
(λ)]2, 

x1
(λ)x2

(λ), …, x1
(λ)x5

(λ), x2
(λ)x3

(λ), …,x4
(λ)x5

(λ)] where Ic denotes a column of ones.  Then, 
X(λ)(1:j) contains the first j columns of X(λ).  For instance, X(λ)(1:6) = 
[Ic,x1

(λ),x2
(λ)

,x3
(λ),x4

(λ),x5
(λ)] and X(λ)(1:21) = [Ic,x1

(λ), …, x5
(λ), [x1

(λ)]2,…, [x5
(λ)]2, x1

(λ)x2
(λ), 

…, x1
(λ)x5

(λ), x2
(λ)x3

(λ), …,x4
(λ)x5

(λ)].  The value of j can take on 6, …, 21; each with an 
equal probability.  Next, the parameter vector mapping X(λ)(1:j) into the expected value 
of y is β(1:j).  Let β = [β0 β1 β2 β3 β4 β5 β12 β22 β32 β42 β52 βi12 βi13 βi14 βi15 βi23 βi24 βi25 βi34 

βi35 βi45]’ where βi25 denotes the parameter corresponding to the interaction term x1
(λ)x5

(λ).  
The vector β(1:j) then contains the first j rows of β. 
 
The moments of each parameter are: 
β0 ∼ N(10000,1002); β1 ∼ N(10,32); β2 ∼ N(20,62); β3 ∼ N(15,42); β4 ∼ N(8,22);  
β5 ∼ N(18,52); β12 ∼ N(.01,.0052); β22 ∼ N(.001,.0052); β32 ∼ N(.03,.0082); 
β42 ∼ N(.004,.00022); β52 ∼ N(.0005,.000042); βi12 ∼ N(.001,.0052); βi13 ∼ N(.0001,.00052)  
βi14 ∼ N(.0005,.0052); βi15 ∼ N(.0008,.00022); βi23 ∼ N(.00001,.000052);  
βi24 ∼ N(.001,.00052); βi25 ∼ N(.01,.0052); βi34 ∼ N(.0003,.00012);  
βi35 ∼ N(.00025,.000052); βi45 ∼ N(.0025,.0032) 
 
After these parameter values are simulated, each parameter is multiplied by 20(1-λ) and 
then multiplied by one with a 50% chance and by –1 with a 50% chance.  After the vector 
β is simulated, the expected value of y is then denoted as X(λ)(1:j)β(1:j). 
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For each mean equation there are three potential variance equations; two with and one 
without heteroskedasticity.  A random variable s is created which equals 1, 2, or 3 with 
equal probability.  If s = 1 the variance equals a constant.  If s = 2 the variance equals 
[exp(α0 + α1x1

(λ))]2 and if s = 3 the variance equals [exp(α0 + α1x1
(λ)x2

(λ))]2.  First, 
consider the case where s = 1 and there is no heteroskedasticity.  The variance is set to be 
a proportion of mX(λ)(1:j)β(1:j) where mX(λ) (1:j) is the sample mean vector of X(λ) (1:j).  
Let g be a random variable which may take on the values .05, .06, …, .25 with equal 
(1/25) probability.  The variance is set to equal [gmX(λ)(1:j)β(1:j)]2 

 
In the case where s = 2, the variance equation equals [exp(α0 + α1x1)]

2.  A lower bound 
for x1 is 40(λ) and an upper bound is 160(λ).  A random variable τ is created which takes 
on the values 1, 1.01, 1.02, …, 2 with equal (1/100) probability.  The error variance is 
allowed to be decreasing and increasing in x1 with equal probability.  The values of α0 
and α1 depend on whether the variance is increasing or decreasing in x1. 
 
Case 1:  Error Variance is Increasing in x1 
 
In this case, the parameter vector α = [α0 α1] is set such that exp(α0 + α140(λ)) = (gmX(λ) 
(1:j)β(1:j))2 and exp(α0 + α1160(λ)) = (τgmX(λ) (1:j)β(1:j))2. 
 
Case 2:  Error Variance is Decreasing in x1 
 
In this case, the parameter vector α = [α0 α1] is set such that exp(α0 + α140(λ)) = 
(τgmX(1:j)β(1:j))2 and exp(α0 + α1160(λ)) = (gmX(λ)(1:j)β(1:j))2. 
 
After α has been solved for the model is complete.  The model is then said to be 
 
y = X(λ)(1:j)β(1:j) + e where e ∼ N(0,exp{α0 + α1x1

(λ)}). 
 
If s = 3 and the variance is exp{α0 + α1x1

(λ)x2
(λ)}, the lower bound for x1

(λ)x2
(λ) is 

40(λ)40(λ) and the upper bound is 160(λ)160(λ). 
 
Case 1:  Error Variance is Increasing in x1 
 
In this case, the parameter vector α = [α0 α1] is set such that exp(α0 + α140(λ)40(λ)) = 
(gmX(λ) (1:j)β(1:j))2 and exp(α0 + α1160(λ)160(λ)) = (τgmX(λ) (1:j)β(1:j))2. 
 
Case 2:  Error Variance is Decreasing in x1 
 
In this case, the parameter vector α = [α0 α1] is set such that exp(α0 + α140(λ)40(λ)) = 
(τgmX(1:j)β(1:j))2 and exp(α0 + α1160(λ)160(λ)) = (gmX(λ)(1:j)β(1:j))2. 
 
After α has been solved for the model is complete.  The model is then said to be 
 
y = X(λ)(1:j)β(1:j) + e where e ∼ N(0,exp{α0 + α1x1

(λ)x2
(λ)}). 
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The 9 candidate models are then described by the three possible values for λ and the three 
different variance specifications (s = 1, 2, and 3).  Each model can then be denoted 
M(λ,s). 
 
Step 4:  Generating the Data 
 
Data on X(λ) has already been generated.  Data on y is then generating by simulating 
values of e from a normal distribution with a zero mean and variance as described above.  
The sample size is may take the values n = 30, 40, …, 120, 1000, 1500, 2000 with equal 
probability.  The “dataset” is then the collection of y’s and xi’s. 
 
Step 5:  Estimation of Candidate Models 
 
All estimations are conducted using Weighted Least Squares, except for the candidate 
models with a constant variance.  For the three candidate models with a constant 

variance, M(λ=1, 2, or 3, s=1), the estimate is ( ) yjXjXjX ):1():1()':1(ˆ )(1)()( λλλβ
−

= . 
 
For the six candidate models with heteroskedasticity a Two-Stage Weighted Least 
Squares is used.  The first stage consists of the OLS estimation 

( ) ):1():1()':1(ˆ )(1)()(
1 jXjXjX λλλβ

−
=  and the corresponding residual vector 

yXe −= β̂ .  Each element in the e vector is then squared and then its natural logarithm is 

taken.  If the specified error variance is V(e) = exp{α0 + α1x1
(λ)}, each squared residual is 

naturally logged and regressed against an intercept and x1
(λ) to obtain estimates of α0 and 

α1.  The estimated standard deviation of the error term is then 

{ }( ) σαα λ =++
2/1)(

100 ˆ2704.1ˆexp x .  Each observation of y and X(λ)(1:j) is then divided by 

σ and is denoted y* and X(λ)(1:j)*, respectively.  If the specified error variance is V(e) = 
V(e) = exp{α0 + α1x1

(λ)x2
(λ)}, natural logarithm of each squared residual is regressed 

against a constant and x1
(λ)x2

(λ) to obtain estimates of α0 and α1.  The estimated standard 

deviation of the error term is then { }( ) σαα λλ =++
2/1)(

1
)(

100 ˆ2704.1ˆexp xx .  Again, each 

observation of y and X(λ)(1:j) is then divided by σ and is denoted y(λ)* and X(λ)(1:j)*, 
respectively.  Finally, the Weighted Least Square Estimate is 

( ) **):1(*):1()*':1(ˆ )(1)()( yjXjXjX λλλβ
−

= . 
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Step 6:  Calculating the Model Selection Criteria: 
 
Out-of-sample-root-mean-squared error (OSRMSE) and average-out-of-sample-absolute 
error (AOSAE) are two model selection criteria used which do not take into account the 
variance equation.  These two measures are calculated as 
 

( )

T

yy

OSRMSE

T

t
tt∑

=

−
= 1

2ˆ

and 

∑
=

−
=

T

t

tt

T

yy
AOSAE

1

ˆ
where t is an out-of-sample forecast, y is the true value, and ŷ is 

the prediction. 
 
How LSM and OSLLF is calculated depends on how the variance is specified.  If the 
variance is modeled as a constant, its estimate is 
 

KN

e
eV

N

i
i

−
=

∑
=1

2

)(ˆ  where K is the number of parameters estimated and i = 1, …, N denote in-

sample residuals.  The LSM and OSLLF measures for Models M(λ,s=1) are 
 

( )( )∑
=

−−














+

−
=

T

t
lt

tt
KT

XXXXeV

yy
tLSM

1 )(1)()()( ''1)(ˆ

ˆ

λλλλ
 and 

 

( ) ( )∑
= 






 −

++−=
T

t

tt

eV

yy
eVOSLLF

1

2

)(ˆ2

)ˆ(
)(ˆln

2

1
2ln

2

1
π .   

For Models M(λ,s=2) the LSM and OSLLF are calculated as  
 

{ }[ ] ( )( )∑
=
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ˆ

λλλλλαα
and 
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
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and for Models M(λ,s=3) are 
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How out-of sample forecasts were conducted depends on the sample size.  If the sample 
size is less than 60 cross-validation is used.  This entails a number of different 
simulations, within each simulation, equal to the sample size.  For instance, if the sample 
size is 30, the first out-of-sample forecast is conducted by estimating the parameters in 
the mean and variance equation using observations 2 through 30 and forecasting the first 
observation.  Then, the parameters are estimated using observations 1 and 3 through 30 
and forecasting the second.  This continues until the last observation is dropped, the 
parameters are estimated using observations 1 through 29, and the last observation is 
forecasted.  The parameters used in the calculation of OSRMSE, AOSAE, LSM, and 
OSLLF are then different for each cross-validation.  If the sample is greater than 60, the 
first half is used to estimate the parameters and the second half employs those parameters 
in out-of-sample forecasts. 
 
Step 7:  Model Selection: 
 
Within each simulation, each model selection criterion; OSRMSE, AOSAE, LSM, and 
OSLLF, are used to pick the superior model.  The model chosen by the OSRMSE and the 
AOSAE is the model with the lowest OSRMSE and AOSAE.  The model picked by the 
LSM and the OSLLF is the model with the highest LSM and OSLLF.   
 
Step 8:  Determining the Performance of Each Criteria 
 
Simulations were conducted as described above 4,000 times.  The OSRMSE, AOSAE, 
LSM, and OSLLF are judged by the percent of times they picked the correct model.  
Since there were nine possible models, a criteria is judged as informative if it picks the 
correct model with a frequency significantly greater than 1/9.  Then, t-tests are conducted 
for each pair to determine if one picks the correct model at a significantly higher rate than 
another.  How the tests were conducted is described in Tables 2 and 3. 
 
 
 

   

 


