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MODEL SELECTION CRITERIA USING LIKELIHOOD FUNCTIONS AND
OUT-OF-SAMPLE PERFORMANCE

Model selection is often conducted by ranking models by their out-of-sample
forecast error. Such criteria only incor porate information about the expected
value, whereas models usually describe the entire probability distribution.

Hence, researchers may desire a criteria evaluating the performance of the entire
probability distribution. Such a method is proposed and is found to increase the
likelihood of selecting the true model relative to conventional model ranking
techniques.

Keywords: Model selection, forecasting, heteroskedasticity.

Most empirical economic research entails the specification, estimation, and
evaluation of statistical models. Once amode is specified, estimation is usually
straightforward. Thisis because most econometric research and class lectures focus on
econometric techniques of an assumed model, and there exists a general consensus
among practitioners as to the best estimation techniques for most model settings.
However, the literatures is not quite as clear on the best method(s) of model selection.
Consequently, while estimation of a specified model is more if a science, the act of model
specification is partly an art™.

Unfortunately, results are often sensitive to the choice of functional form and/or
error distribution, hereafter referred to as the “model”. Shumway and Lim provide
excellent examples of how elasticities vary under alternative functional forms. They
summarize the robustness problem by stating (page 275) “ Attempting to narrowly bound
estimates of output supply and input demand elasticity for a given category remains an
exceedingly difficult task. Even using the same data, holding the point of evaluation
constant, and using aternative functional forms with the same number of free parameters
to be estimated, the implied elasticities can vary widely.”

Although little consensus exists regarding the best method of model selection,
most agree models should be ranked by their out-of-sample performance. Thisis because
in-sample statistics are often mideading and arbitrary. Measures of in-samplefit, like the
coefficient of determination, arbitrarily prefer models with the most parameters”.

Adjusts can be made to these measures, but ironically, those adjusts are often
deemed arbitrary and hence are unpopular®. Hypothesis tests are often used to identify
models, but numerous tests can yield conflicting results and alarge amount of pre-testing
may invalidate statistics from the model*. Furthermore, not all models are nested, and
non-nested tests are famous for ambiguous conclusions. The likelihood dominance
procedure provides an unambiguous model ranking, but requires al models to have an
identical number of variables (Anderson et a). Localy flexible functional forms are
championed for their ability to approximate any true functional form, but this
approximation isonly at apoint. Globally flexible functiona forms provide an




approximation at all points, but require numerous parameters thereby impeding the data's
ability to “speak.”

Every measure of model performance using in-sample statistics has at least one
drawback. It isdifficult to find a drawback to using out-of-sample statistics like the out-
of -sample-root-mean-sgquared error (OSRM SE) or average-out-of-sample-absol ute error
(AOSAE) though. Neither will arbitrarily increase of decrease as one adds more
variables and yields an unambiguous ranking to any number and class of models. They
are appropriate under any sample size, as even if the number of observations are small,
cross-validation can be employed for a set of out-of-sample forecasts. Best of all, it has
the intuitive appeal that a model—a model being a hypothesis for the process governing
an economic variable—is evaluated by how it predictsin the “real world”. In this paper,
it is taken as given that out-of-sample statistics are the best measures of model
performance. This paper then asks. What is the best out-of-sample measure for ranking
models? The OSRM SE and AOSAE, though informative, have a potential drawback if
the researcher is interesting in more than just the expected value.

Let y,, be an out-of-sample forecast from Model i (Model i is specified asa
normal distribution) at timet and y; be the true value. The forecast error is then
Y, - Y, and isameasure of how accurate the mean equation is. Suppose the researcher
also had a variance equation which could be used to forecast the variance of ¥, - ;.

One must wonder if alarger forecast error should necessarily penalize the model if the
variance equation predicted alarger error, as both the OSRM SE and AOSAE would.

Consider two models, Models A and B, with identical mean equations but Model
A models the variance as a constant and Model B models it as afunction. If the mean-
equation’s forecasts were identical, the OSRM SE and AOSAE would rank them as
equally valid models. Consider the difference of the AOSAE for two forecasts
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Suppose the forecast error in time t+1 was larger than in time t and suppose the variance
equation in Model B predicted that larger error. It would then seem that Model B
contains more information than Model A and hence should be given a higher ranking.
Recently, researchers have questioned whether model ranking criteria should account for
more than just the mean equation. Dierson and Manfredo propose an innovative
technique for model selection when the researcher is interested in discriminating among
various mean and variance equations for a normal distribution.



THE LIKELIHOOD SCORING TECHNIQUE

Dierson and Manfredo propose a method of ranking models they call the
Likelihood Scoring Technique. They note that for linear models of the form

2 vy, =X, b + e, where g, is distributed as normally with a constant variance, the term

3 (9t i yt)/ Y is distributed as a t-distribution with N-K degrees of freedom,
t t

where N is the number of observations used to estimate b , K is the number of
parameters, and V(.) denotes variance. The variance of the forecast can be written as

3) V(- v)=V(Xb- X,b-g)=V(x5-e)=XVE)X V().

Although Dierson and Manfredo only consider the case where V(&) is a constant,
this method easily extends to more general forms by inserting aformulainstead of a
constant for V(&). Dierson and Manfredo suggest a method of model ranking called the
Likelihood Scoring Technique which entails conducting a set of T out-of-sample
forecasts, calculating the following statistic
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by their Likelihood Score (LS) where the highest LS is the best model. The term tr.«(a)
means the t-distribution with N-K degrees of freedom is evaluated at the valuea. This
method is appealing in that, holding the forecasted variance constant, models with higher
forecast errors will receive alower ranking, but a higher forecast error does not
necessarily penalize amode if its variance equation predicted a higher error.

The Likelihood Scoring Technique assumes normality of errors, but researchers
may desire methods which allow different error specifications. We propose a method of
model selection which uses out-of-sample forecasts but allows the user to consider
various mean and variance equations and error distributions. It is based on the concept of
alikelihood function.

THE LIKELIHOOD SCORING TECHNIQUE

Both the OSRM SE and AOSAE only incorporate information regarding each
model’ s expected values. The LST can only be used for normally distributed models.
However, researchers often desire to compare alternative distributional assumptions and,
since models are often expressed in terms of a pdf, may desire to rank models by how
well each model’ s pdf performs out-of-sample, i.e., the researcher may want to pick the
model with the highest probability of generating a set of out-of-sample observations. A
method is developed believed to achieve this. The method is outlined first and is then
followed by an explanation of why the method is valid.



The OSLLF Approach To Model Selection

1) Create a set of models the researcher deems appropriate. Each model must be stated
in terms of a probability density function (pdf) and al pdf’s be afunction of the same
variable (they must all integrate over the same variable).

2) Estimate the parameters of each model using maximum likelihood.

3) Obtain a set of out-of-sample observations. In small samples use cross-validation.
Using the estimated parameters from Step 2, calculate the pdf for each model at each out-
of-sample observation. Denote the pdf for an out-of-sample observation y; as f(y).

4) Sum over In{f(y;)} for all t and pick the model with the highest & In{f(y;)} asthe
superior model. If the number of out-of-sample observations differ across models,
choose the model with the highest average OSLLF. For small samples, one may want to
employ cross validation (which is explained in the ssimulation description).

As an example, consider again two models, Model A wherey; ~ N(Xaiba, Zajaa)
and Modedl B whereIn{yi} ~ N(Xg,bg, Zg;ag). Thefirst step entails specifying the pdf
for each variable such that they integrate over the same variable. Let fa(y) and fg(y) be
the pdf for Models A and B, respectively.
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Step two reqw res maximum likelihood estimation to obtain the parameter estimates
bA,aA, bB,a by maximizing the log-likelihood functions for Models A and B, denoted
LLFa and LLFg, respectively, using N observations.
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Notice when estimating parameters one does not have to worry whether all
likelihood functions are stated in terms of the same random variable (one does not have
to worry whether the pdf’s for all models integrate over the same variable). Finally, Step
3 requires a second set of observations denoted t (t is for out-of-sample observations and i



isfor in-sample observations). Using the estimated parameter values from Step 2, all one
needs to do is plug in the out-of-sample observations into the log-likelihood functions to
obtain an out-of-sample-log-likelihood function (OSLLF) for Models A and B.
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Findly, if OSLLFa > OSLLFg then Model A is superior. Otherwise, Model B is
superior.

The procedure is ssimple and can be used to compare numerous types of models.
It can compare various mean and variance equations of a normal distribution or any
alternative distribution. The only requirement is that each model be defined as a pdf
integrating over the same variable (must be a function of the same variable). However,
no rea justification has yet been given asto why thisis avalid procedure or why each
pdf must integrate over the same variable. These two issues are addressed below.

Suppose aresearcher is comparing two models for a dependent variable y, where
y existsin the (1,2) range. For simplicity, assume there is only one out-of-sample
observation. The researcher is considering a normal and alog-normal distribution.
Denote the two pdf’sfor y and In(y) asf(y) and f(In(y)), respectively. These likelihood
function must be stated such that

(8) Of ()dy =1and
(9) Of (In(y))d{In(y)} =1.

Ignoring ranges of the normal distribution with very small probabilities of
occurrence, in order for the probability of y taking on the values 1.01, 1.02, ..., or 1 to
equal one, the likelihood function f(y) must be less than one for every value of y.
However, in order for the probability of In(y) taking on the values In(1.01), In(1.02), ...,
or In(1) to equal one, the likelihood function f(In(y)) must be greater than zero for every
value of In(y). Hence, the likelihood function for the model assuming alog-normal
distribution of y must be greater than the norma model. Simply by transforming the
dependent variable one aters the ranking of models. Obviously, the OSLLF as presented
so far isinadequate for dealing with all models.

A simple adjustment corrects for this though. The problem liesin the
interpretation of the likelihood function. The likelihood function cannot be interpreted as
aprobability, it does not even have to be on the (0,1) interval. The likelihood function
evaluated at any one point is meaningless--but itsintegral is. An out-of-sample



observation of avariabley; and its associated OSLLF vaue is not indicative of the
probability of y; occurring given the model specification and estimated parameters.
However the integral of the OSLLF over therangey: - s and y; + s isindicative of the
probability of y; lying within this range, given the model specification and estimated
parameters. Compare again the two previous models of y where one model assumes
normality and the other assumes log-normality. Let x; = In(y;). Though the comparison
of (8) to (9) is meaningless, one can compare the integral of each distribution for a small
deviations around y;. These integrals are the probability of the out-of-sample observation
Y occurring, given each model’ s specification and estimated parameters.

In(yt+s)
ay O L exp L (x - E{x})" %
e ;

Hence, if (10) islarger than (11), one can say athe normal distribution mode is
more appropriate than the log-normal. Note that since x and y are monotonic
transformations, both integrals can be stated in terms of y using the method of
transformations.
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Finaly, we can let s become very small and then get two likelihood functions that can
meaningfully be compared.

1 1 ®-1 ,0
(14) exp“ W - Biyg) C
2oaelo

\/—Fexpg Inyt E{in(y, }) éytg

Notice the problem before of the likelihood function for In(y;) being greater than zero no
longer exists because that likelihood function is divided by y;. Hence, for likelihood
functions for a series of models with different dependent variables, if the dependent
variables are all amonotonic function of asingle variable, say y:, the method of
transformations must be employed to convert all pdf’sinto pdf’sfor y; (as opposed to
functions of y;).

(15)



Only after this transformation can the OSLLF be used. To get a better idea of
why the OSLLF isavalid criterion, note that the value of a pdf is approximately the
probability of an observation existing in asmall interval divided by the range of that
interval. This comes from the fact that the true probability of y; being observed in the y; -

y; +d
dandy, + dinterval is F(y, +d)- F(y, - d)= of (y)dy where F() isacumulative

y,-d
distribution function (cdf). So long asd issmall, f(y) will be approximately the same
over the entire interval and hence can be approximated by f(y;)dy = f(y;)2d. The choice
of disarbitrary, but for f(y;) to be comparable across models d must be identical across
models implying dy must be identical. If all pdf’sintegrate over the same variable, then
the model with the highest pdf is also the model with the highest probability of
generating the out-of-sample observation. Then, assuming a set of y;'s (a set of out-of-
sample observations) are independent, the model with the highest product of pdf’s across
a set of out-of-sample observations has the highest probability of generating that sample.
Therefore, the model with the highest OSLLF will be the model with the highest
probability of generating the set of out-of-sample observations. Please note that one must
compare log-likelihood functions across models using out-of-sample observations, as log-
likelihood functions using in-sample observations will tend to arbitrarily prefer models
with more parameters.

Ranking models by their OSLLF is an improvement to existing model selection
criteriaand is desirable for severa reasons. Firgt, it employs out-of-sample observations
which are not subject to arbitrary manipulation. While the OSRMSE and the AOSAE
only compare models by the performance of their expected values, the OSLLF compares
models by their entire pdf. Hence, the ability of models to reflect changing variances and
skewness will be reflected in the model selection. The OSLLF can be used to compare a
large number of models of diverse types (a much larger number than in-sample statistics
can compare). Finaly, the OSLLF picks the model with the highest probability of
generating the set of out-of-sample observations. In addition to its theoretical and
practical justifications, the OSLLF was tested in simulations to determine its usefulness
in picking the correct model relative to the OSRMSE, AOSAE, and the LST. Whether
simulation results can be extended to real settingsis questionable. The generadlity of
simulations is always suspect. Regardless, simulations are the only way to compare these
four model ranking criteria discussed in this paper and will provide more information
regarding the best model ranking criteria than was previoudy available.

SIMULATION DETAILS

The god isto make the ssimulations as genera as possible. Therefore, awide
variety of models are used. Let the dependent variable be denoted y and the independent
variablesinfluencing y be X, X2, X3, X4, Xs. Any X; may affect y in a non-linear manner,
thus interaction effects between x; and x; " 1,j are considered. The vector of possible
explanatory variables are [1,X1, X2, X3, X4, Xs, X12, X22, X32, X42, X52, X1X2, X1X3, X1X4, X1Xs,
X2X3, X2Xa, X2Xs, X3X4, X3Xs, XaXs]. Let X be the matrix of [1,X1, X2, Xa, Xa, X5, X12, X2°, Xa%,
X42, X52, X1X2, X1X3, X1X4, X1X5, X2X3, X2X4, X2oXs5, X3X4, X3X5, X4X5] for all observations and



X (1:j) represent amatrix with the 1% through j™ columns of X. Though the value of j is
chosen randomly across smulations, and it is assumed the exact value of | within any
simulation is known by the researcher.

The true mean equation within asimulation is defined asy = X (1:j) b(L;j) for j =
(1)
o _ X -

6, ..., 21 where x;"’ is the Box-Cox transformation x; , where each x; is

transformed using the samel , | can take randomly the values 0, .5, 1 and the value of |
is not known by the researcher within asimulation®. The variance equation may take on
three forms; Form 1 (s=1) is a constant, Form 2 (s=2) follows V() = exp{ao + axi" '}
and Form 3 (s=3) follows V(€) = exp{ao + a:x." %" '} 2. All errors are assumed to be
normal. The true variance equation varies randomly across each ssimulation and is not
known by the researcher within a ssimulation.

The goal of the ssimulated researcher isto use the OSRM SE, the AOSAE, the
LSM, and the OSLLF in choosing which model to use. The researcher knows the mean
and variance equations both take one of three forms, resulting in 9 candidate models. In
the case of a constant variance, the simulated researcher employs OL S estimation such
that(16) Bi = (x" '@ ) x®a: j))'lx‘I '(1: j)ywherei denotes Models 1, 2, and 3.
Models hereafter are denoted by M(I ,s) where| isthe value used in the Box-Cox
transformation and s denotes which variance equation was used. Models M(l ,s= 2, 3)
were estimated using a two-stage least squares estimator. First, an OL S regress identical
to (16) was performed. The corresponding residuals were squared, naturally logged, and
regressed against x,'? and x, %" for Models M(l ,s=2) and M(l ,s=3), respectively. For
both models, the estimate of ap was changed to ap + 1.2704 to maintain consistency
(Greene). Then, the estimated parameters of the variance equation were used to estimate
the variance for each observation and then incorporated into a Weighted-L east-Squares
Estimator of the mean-equation parameters.

The estimated mean- and variance-equation parameters were then used to conduct
out-of-sample forecasts. Simulations were constructed such that the sample size, the
error magnitude, and the j in X(1:j) were chosen randomly to provide a wide range of
settings. In each simulation the four model ranking criteria 1) OSRM SE 2) AOSAE 3)
LSM 4) OSLLF where calculated and used to deem one of the 9 candidate models as
“most likely the true model.” The estimated true model for each criterion is then
evaluated to access the likelihood of choosing the correct model.

SIMULATION RESULTS

If the model was chosen at random, the researcher would have a 1/9 = .1 chance
of picking the correct model. While three of the four criteriaimproved this probability,
the improvement was small, as shown by Table 1. The OSLLF yielded the highest
percentage of times picking the correct model and the LSM yielded the lowest. A series
of t-tests were conducted for each pair of criteriato determine if they were significantly
different and are given in Table 2. Only the LSM and the AOSAE were not significantly



different from one another, concluding the OSLLF is the superior model selection
criterion for the 4,000 ssimulations. Whether this result is extendable to other settingsis
guestionable, but the ssimulations do provide some guidance whereas before there was
none.

T-tests were al'so conducted to determine if using any criteria are better than
choosing the model at random. Test results are shown in Table 3. Only the LSM was not
significantly different than choosing the model at random. Although the probability of
selecting the correct model using the OSRMSE, AOSAE, or the OSLLF was not greatly
above 1/9, they are significantly greater implying they are useful.

Simulations were conducted for various error sizes, model types, parameter
values, and sample sizes which yield somewhat general implications. However, the
simulation assumed only nine possible functional forms and the researcher knew each of
these nine. In redlity, the number of possible modelsislarge and researchers could never
evaluate each one. Such assumptions needed to be made to conduct simulations though,
and although results will not be extendable to al possible settings a researcher may face,
they do provide some degree of guidance, whereas in the past there was none.

If researchers wish to evaluate various types of functional forms for the mean and
variance of a process and hypothesis tests cannot be used, various model ranking criteria
are available. Although in-sample statistics may provide some information regarding
which model(s) are most adequate descriptions of an economic process, out-of-sample
model performance will be the most reliable. Most commonly used model ranking
criteriaare the OSLLF and the AOSAE, however, no one has of yet evaluated which of
the two are superior. The LSM has recently been proposed as a useful criteria, but again,
how it compares to the OSRM SE and the AOSAE has not been evaluated. Though
useful, these three measures do not explicitly evaluate the performance of the variance
equation, which may be desired if data displays non-spherical errors.

The OSLLF, AOSAE, and the LSM automatically penalize models with larger
forecast errors, but it was argued this penalty should not be automatic if the variance
equation predicted alarger error. If researchers are specifying both a mean and variance
equation, it was argued that the model ranking criteria should evaluate them
simultaneoudly. It was shown the LSM can be extended to include a variance equation.
An additional criteria, the OSLLF, was suggested as an aternative criteria Both the
LSM and the OSLLF simultaneously evaluate the mean and variance equation and hence
may improve model selection. To test whether thisis true, simulations were conducted.

The LSM was found to be uninformative, as picking amodel at random has the
same probability of picking the correct model. In order of highest to lowest performance,
the best measures are the OSLLF, OSRM SE, AOSAE, and either the LSM or arandom
pick. The probability of picking the correct model using the OSLLF, OSRMSE, and the
AQOSAE are significantly higher than arandom pick and each other. Though not
necessarily extendable to all cases, asarule of thumb, the OSLLF is the best method of
simultaneously ranking various mean equations, variance equations, and error
distributions. Simulations results suggest that, although these criteria are useful, model



selection remains difficult, as the best criteria has only a small chance of picking the
correct model.
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FOOTNOTES

1) Asapercent of total econometric lectures, the amount given to model specification is
small. Opinions as to the best methods tend to vary, hence, the method of model
specification is mostly chosen by the researcher’ s beliefs and experience and not by the
replication and confirmation of research.

2) The coefficient of determination and the sum-of-squared errors can be set to one and
zero, respectively, by setting the number of independent variables equal to the number of
observations.

3) Such adjustments are; the adjusted coefficient of determination and information
measures based on the Kullback Information Criteria, such as the Akaine Information
Criteria (AIC) and the Bayesian Information Criteria (BIC). While the AIC and BIC are
often employed in time-series models, they are rarely used to rank econometric models.

4) For example, if aresearcher chose amodel by removing variables with low

significance, the remaining t-ratios are not statistics because the probability of them being
significant are 100%.
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TABLE 1.
PERCENT OF TIME MODEL SELECTION CRITERIA PICKED THE
CORRECT MODEL

Out-of-Sample-Root- Average-Out-of- Likelihood Scoring Out-of-Sample
Mean-Squared Error Sample-Absolute Error Method Likelihood Function
4,000 Smulations
14% 13% 12% 16%
TABLE 2.

T-TESTSFOR DIFFERENCESIN PERCENT OF TIMES CORRECT MODEL 1S
CHOSEN
Out-of-Sample- Average-Out-of-  Likelihood Scoring Out-of-Sample
Root-Mean- Sample-Absolute Method Likelihood
Squared Error Error Function

Test statistic for the null hypothesis that the percent of times the correct model is
chosen for the criteria in column minus the criteriain row is equal to zero

i

R(-R), PR P) 2cov(D,D))

Test Statistic? is

T T T

Out-of-Sample- - -2.71 -3.14 3.33
Root-Mean-
Squared Error

Average-Out-of- ~ ——-—--- e -1.19 5.23
Sample-Absolute
Error

Likelihood Scoring - e e 7.05
Method

Out-of-Sample - e e e
Likelihood
Function

=

a) D;=1if criterioni picked the correct model and zero otherwiseand P = é D, /T . Subscriptsi and
i=1

j refer to the criterion in the corresponding column and row, respectively. The covariance term isincluded

because two criteria may perform better under identical settings. For instance, the LSM and OSLLF may

both perform better if there is heteroskedasticity, hence they may be correlated.
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TABLE 3.
T-TESTSFOR PERCENT OF TIMES CORRECT MODEL ISCHOSEN FOR
EACH CRITERION ISSIGNIFICANTLY BETTER THAN CHOOSING MODEL

AT RANDOM
Out-of-Sample- Average-Out-of-  Likelihood Scoring Out-of-Sample
Root-Mean- Sample-Absolute Method Likelihood
Squared Error Error Function

Test statistic for the null hypothesis that the percent of times the correct model is
chosen for the criterion is significantly higher than 1/9.

siceis - /9
Test Statistic” is ————
R
T
551 3.15 1.68 9.07

a) 5, isthe percent of time criterion i selected the correct model.
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APPENDIX A
SIMULATION DESCRIPTION

Dependent Variable: y
Independent Variables Affecting y: Xi, X2, X3, X4, X5 = X

Step 1: Generating Data on X and Parameter Values

The variables x1, X2, X3, and xs were chosen randomly from a normal distribution with a
mean of 100 and a standard deviation of 20. The unconditional distribution of X4 is the
same, however, it was set to have a correlation of .3 with xa.

x; ~ N(100,20%) fori =1, 2, 3, 5.
X4~ N(100 + .3(x3-100),{ 20%(1-.3%)})

Step 2: Generate Model and Sample Size

The process of y isgiven by y = X" )(L:j)b(L;j) + e and is described below. The matrix
X(1:;j) isamatrix containing x;'s. The superscript (I ) signifies that each x; undergoes a
Box-Cox transformation. The value of lambda used for the Box-Cox transformation is
chosen randomly. It may take the values .01, .5, or 1 with an equal probability. Each x;
istransformed asx"? = (x' - 1)/ . Let X© =[lxa", ..., %", a2 .., [xs" T2,

XU %0 L xa M%), 3 xs), L U x5! )] where I denotes a column of ones. Then,
X)(1:j) contains the first j columns of X". For instance, X! (1:6) =

[lexa® ) ") %) ) xs® ] and X(1:22) = [1ex1??, ..., x5, [ 72, s 12 xR,
X%, %%, L xa %], Thevalue of j cantakeon 6, ..., 21; each with an
equal probability. Next, the parameter vector mapping X (L) into the expected value
of yisb(1:j). Letb =[bobib2bsbsbsbiz b2 b32042 bs2 bitz bitz bz biis bizz biza Dizs biza
biss biss]” Where bizs denotes the parameter corresponding to the interaction term x,¢ 'xs" .
The vector b(1:j) then contains the first j rows of b.

The moments of each parameter are:

bo ~ N(10000,100%); by ~ N(10,3%); b, ~ N(20,6%); bs ~ N(15,4%); bs ~ N(8,22);

bs ~ N(18,5%); b1 ~ N(.01,.005%); bx, ~ N(.001,.005%); b3, ~ N(.03,.008?);

b.> ~ N(.004,.0002%); bs, ~ N(.0005,.00004%); biz» ~ N(.001,.005%); bi13 ~ N(.0001,.0005%)
bizs ~ N(.0005,.005%); bi1s ~ N(.0008,.0002%); bis ~ N(.00001,.00005°);

bizs ~ N(.001,.0005%); bizs ~ N(.01,.005%); biss ~ N(.0003,.0001%);

biss ~ N(.00025,.00005%); biss ~ N(.0025,.003?)

After these parameter values are simulated, each parameter is multiplied by 20*") and

then multiplied by one with a 50% chance and by —1 with a 50% chance. After the vector
b is simulated, the expected value of y is then denoted as X (1:j)b(1;j).
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For each mean equation there are three potential variance equations; two with and one
without heteroskedasticity. A random variable sis created which equals 1, 2, or 3 with
equal probability. If s= 1 the variance equals a constant. If s= 2 the variance equals
[exp(ao + ax1"))]? and if s= 3 the variance equals [exp(ao + awxi" %! ]2, First,
consider the case where s =1 and there is no heteroskedasticity. The varianceis set to be
aproportion of mx(1:))b(L:j) where mX" (1:j) is the sample mean vector of X" (L1;j).
Let g be arandom variable which may take on the values .05, .06, ..., .25 with equal
(1/25) probability. The varianceis set to equal [gmX")(1:j)b(1:))]?

In the case where s = 2, the variance equation equals [exp(ao + a1x1)]>. A lower bound
for x; is 40" and an upper bound is 160"°. A random variablet is created which takes
onthevalues1, 1.01, 1.02, ..., 2 with equal (1/100) probability. The error varianceis
allowed to be decreasing and increasing in x; with equal probability. The values of ag
and a; depend on whether the variance is increasing or decreasing in Xi.

Case 1. Error VarianceisIncreasingin x;

In this case, the parameter vector a = [ao a1] is set such that exp(ao + a:40") = (gmx ()
(1:)b(1:j))? and exp(ao + a1160")) = (tgmx ") (1:j)b(L:j))>

Case 2: Error Varianceis Decreasing in x;

In this case, the parameter vector a = [ao a4] is set such that exp(ao + a,40")) =
(tgmX(L:j)b(1:}))? and exp(ao + a1160"%) = (gmX)(L:))b(1:)))>.

After a has been solved for the model is complete. The model isthen said to be
y = X"(L:j)b(1;) + ewhere e ~ N(0,exp{ao + arx1"}).

If s= 3 and the variance is exp{ao + a1x:" 'x2" '}, the lower bound for x," %! is
40"40") and the upper bound is 160! 160",

Case 1. Error VarianceisIncreasingin x;

In this case, the parameter vector a = [ao a1] is set such that exp(ao + a;40" 40" =
(gmx") (L:;)b(1:}))? and exp(ao + a:160"7160")) = (tgmx ") (1:j)b(1:j))>

Case 2: Error Varianceis Decreasing in x;

In this case, the parameter vector a = [ao a4] is set such that exp(ao + a,40"40")) =
(tgmX(L:j)b(1:}))? and exp(ao + a116017160")) = (gmx ! (L:;j)b(L;j))%

After a has been solved for the model is complete. The model isthen said to be

y = XO(L:))b(L;j) + ewhere e ~ N(O,exp{ao + apxi x. }).
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The 9 candidate models are then described by the three possible values for | and the three
different variance specifications (s = 1, 2, and 3). Each model can then be denoted
M(l ,9).

Step 4: Generating the Data

Dataon X! has already been generated. Dataony is then generating by simulating
values of e from anormal distribution with a zero mean and variance as described above.
The sample size is may take the values n = 30, 40, ..., 120, 1000, 1500, 2000 with equal
probability. The “dataset” is then the collection of y’sand x;’s.

Step 5: Estimation of Candidate M odels

All estimations are conducted using Weighted Least Squares, except for the candidate
models with a constant variance. For the three candidate models with a constant

variance, M(l =1, 2, or 3, s=1), the estimateiis b = (X ) (L: jy X (1: )] ' X @: j)y.

For the six candidate models with heteroskedasticity a Two-Stage Weighted Least
Squaresisused. Thefirst stage consists of the OL S estimation

b, = (x GOa:jp)yxTa: j))'lx‘I '(1: j) and the corresponding residual vector

e=Xb - y. Each element in the e vector is then squared and then its natural logarithm is
taken. If the specified error varianceis V(e) = exp{ao + a1x1" )}, each squared residual is
naturally logged and regressed against an intercept and x," to obtain estimates of ao and
ai1. The estimated standard deviation of the error term is then

(expf, +1.2704+4,x}}'* =s . Each observation of y and X (L) is then divided by
s and is denoted y* and X" )(1:j)*, respectively. If the specified error varianceis V(e) =
V(e) = exp{ao + ax:" %"}, natural logarithm of each squared residual is regressed

against a constant and x," 'x," to obtain estimates of ag and a;. The estimated standard

deviation of the error term is then (exp{ei0 +1.2704 +8 x" ' x{ )})“2 =s . Again, each

observation of y and X (1:j) is then divided by s and is denoted y ** and X )(1:j)*,
respectively. Finally, the Weighted Least Square Estimate is

b= (X0 @ xOa: ) XO: )y
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Step 6: Calculating the Model Sdlection Criteria:

Out-of-sample-root-mean-squared error (OSRM SE) and average-out-of-sample-absolute
error (AOSAE) are two model selection criteria used which do not take into account the
variance equation. These two measures are calculated as

9 [~ 2
a.-v)

OSRMSE = || T and

AOSAE = a |y yt| wheret is an out-of-sample forecast, y isthe true value, and yis
t=1

the prediction.

How LSM and OSLLF is calculated depends on how the variance is specified. If the
variance is modeled as a constant, its estimate is

&
. ae
V(e) = ﬁ where K is the number of parameters estimated andi =1, ..., N denotein-

sampleresiduas. The LSM and OSLLF measures for Models M(l ,s=1) are

& 0
Y- Y -

g\/V(e)(HX") X (1) X")) X"))

LSM = atT K . and

g il 1 7 (yt yt) U
OSLLF =-3 i=In(2p)+=Inlv ACASE LY AN
tazl}Z n( ) 2 n( (e)) ZV( e)

For Models M(l ,s=2) the LSM and OSLLF are calculated as

1 & Y-y 2
LSM = q t,. -t ~and
a KéJ expfd, +d X + X (X X O] T x0)
g1 C(J-y)? #
osu_LF_-{j}l+§ )+ 2ol v, )]+ 2[exp{6}0+alx1"t)}%

and for Models M(l ,s=3) are
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;. € Y- i
LM =&t t = N < -and
ta:l T Ké\/ exp{é’l\l'*'é\le(,lt)xg,t)}]-*_xt(l)(x(l)I*x(l)*)_lxl(l)l)aan

T ¥
OS.LF =-3 I
=11

1 1 S s () G-y’ s
> |n(2p)+ > |n([eXp{a0 Ta X X, }])+ Zlexp{éot'*'éltxflt)xg,t)”%

How out-of sample forecasts were conducted depends on the sample size. If the sample
sizeislessthan 60 cross-validation isused. This entails a number of different
simulations, within each simulation, equal to the sample size. For instance, if the sample
sizeis 30, the first out-of-sample forecast is conducted by estimating the parametersin
the mean and variance equation using observations 2 through 30 and forecasting the first
observation. Then, the parameters are estimated using observations 1 and 3 through 30
and forecasting the second. This continues until the last observation is dropped, the
parameters are estimated using observations 1 through 29, and the last observation is
forecasted. The parameters used in the calculation of OSRMSE, AOSAE, LSM, and
OSLLF are then different for each cross-validation. If the sample is greater than 60, the
first half is used to estimate the parameters and the second half employs those parameters
in out-of-sample forecasts.

Step 7: Model Selection:

Within each ssimulation, each model selection criterion; OSRMSE, AOSAE, LSM, and
OSLLF, are used to pick the superior model. The model chosen by the OSRM SE and the
AOSAE is the model with the lowest OSRMSE and AOSAE. The model picked by the
LSM and the OSLLF is the model with the highest LSM and OSLLF.

Step 8: Determining the Performance of Each Criteria

Simulations were conducted as described above 4,000 times. The OSRMSE, AOSAE,
LSM, and OSLLF are judged by the percent of times they picked the correct model.
Since there were nine possible models, a criteriais judged as informative if it picks the
correct model with afrequency significantly greater than 1/9. Then, t-tests are conducted
for each pair to determine if one picks the correct model at a significantly higher rate than
another. How the tests were conducted is described in Tables 2 and 3.
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