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A Linear Inverse Demand System

Giancarlo Moschini and Anuradha Vissa

We present an inverse demand system that can be estimated in a linear form.
The model is derived from a specification of the distance function which is
parametrically similar to the cost function underlying the Almost Ideal Demand
System. Simulation results suggest that this linear inverse demand system has
good approximation properties.
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tion, duality.

Introduction

The Almost Ideal Demand System (ALIDS) of Deaton and Muellbauer is one of the most
commonly used in applied demand analysis. While the ideal connotation of this model
stems from its aggregation properties, it is arguable that one of the main reasons for its
popularity is the availability of an approximate version of this system that is linear in
the parameters; in fact, it is this linear version of the ALIDS model that is typically
estimated (Heien and Wessells; Gould, Cox, and Perali; Moschini and Meilke). The
purpose of this article is to illustrate how a linear system for inverse demand equations
that resembles the ALIDS model can be derived, and we term this system the Linear
Inverse Demand System (LIDS).'

Inverse demand functions, where prices are functions of quantities, provide an alter-
native and fully dual approach to the standard analysis of consumer demand (Anderson),
and may be more appropriate when quantities are exogenously given and it is the price
that must adjust to clear the market (Barten and Bettendorf). This situation is likely to
be of relevance to modeling agricultural demand using data based on frequent time series
observations (say monthly or quarterly). The chief advantage of using LIDS to model
inverse demands is linearity, which may be useful for some applications (say large demand
systems or systems involving dynamic adjustment). Although the parametric structure of
the model that we present is similar to that of ALIDS, it does not claim the same
aggregation properties. Nonetheless, its simplicity and its approximation abilities, doc-
umented in this article, are likely to make the LIDS model suitable for empirical studies.

Duality and the Linear Inverse Demand System

Commonly used demand systems typically are derived from parameterizations of dual
representations of preferences through the derivative properties. This approach ensures
integrability of the resulting demand equations by construction. To derive an inverse
demand system, one can start either from the direct utility function and exploit Wold's
identity (which yields ordinary inverse demands), or start from the distance (transfor-
mation) function and exploit Shephard's theorem (which yields compensated inverse
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demand functions) (Weymark). As will be clear in what follows, for our purposes it is
better to start with the distance function, an alternative representation of preferences
which has proved convenient in related contexts (Deaton).

If U(q) is the direct utility function, where q denotes the vector of quantities, the
transformation or distance function F(u, q) is implicitly defined by U[q/F(u, q)] - u,
where u is the reference utility level. Under standard regularity conditions, F(u, q) is
continuous in (u, q), decreasing in u, and nondecreasing, concave, and homogeneous of
degree one in q. These properties establish a useful parallel between the distance function
and the cost function C(u, p) derived from the utility-constrained expenditure minimi-
zation problem (where p is the price vector corresponding to q). As Blackorby, Primont,
and Russell put it (p. 27), ". .. except for the direction of monotonicity of the utility
variable, these conditions suggest that C could be interpreted as a transformation function
and F as a cost function."

The parallel features of cost and distance functions are useful because, as emphasized
by Hanoch, they imply that any standard functional form for the cost function can be
applied also to the distance function. 2 The preceding discussion is pertinent to the problem
at hand because the useful linear form of the approximate ALIDS model is made possible
by the specific functional form chosen for the cost function. Exchanging the role of the
variables (u, p) in the PIGLOG cost function of the ALIDS model with the variables (-u,
q) of the distance function, where the negative sign on u emphasizes the opposite monoto-
nicity direction of Fand C relative to the utility index, one obtains the following parametric
specification for F(u, q):

(1) ln(F) = a(q) - ub(q),

where a(q) and b(q) are quantity aggregator functions defined as:

(2) a(q) = ao + , aoln(q) + - C yjln(q3)ln(q),
i i j

(3) b(q)= fo0 qfi.

Because F(u, q) is homogeneous of degree one in q, the following restrictions apply: Zi a,
= 1, j yi = 2;i yi = 0, and ,i fi = 0. Also, without loss of generality, yi = ji (the symmetry
property).

From Shephard's theorem, the first derivatives of the distance function yield compen-
sated inverse demands as iri = OF/Oq, = h(u, q), where r, = p,/x is the normalized price
of the ith good (the nominal price divided by total expenditure x). Because at F = 1 the
distance function is an implicit form of the direct utility function, then (1) implies the
utility function U(q) = a(q)/b(q). This, together with the derivative property, implies that
the uncompensated inverse demand functions associated with (1)-(3) can be written in
share form as:

(4) w = a, + iln(qi) - fln(Q),

where w 7riqi is the ith budget share, and ln(Q) is a quantity index defined as ln(Q)
a(q).

The distance function in (1)-(3) has the same parametric structure of the PIGLOG cost
function of the ALIDS model. It should be clear, however, that this distance function is
not dual to the PIGLOG cost function of the ALIDS model. It follows that the aggregation
properties of the ALIDS are not shared by the inverse demand system in (4). Hence, the
attribute "Almost Ideal," used by Eales and Unnevehr and by Barten and Bettendorf to
label (4), is somewhat misleading and does not appear warranted for this inverse demand
model.

Equations (2) and (4) together entail a nonlinear structure for the inverse demand model.
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In practice, however, ln(Q) can be replaced by an index ln(Q*) constructed prior to
estimation of the share system to yield:

(5) wi =a + yln(qj) - ln(Q*).

The resulting set of equations (5) is a linear system of inverse demands, the LIDS model.
Many index formulae for ln(Q*) may be considered here. Similar to the original suggestion
of Deaton and Muellbauer, one may use the geometric aggregator ln(Q*) = Zi wiln(qi),
although other indices (say Diewert's superlative indices) may have better approximation
properties. It should be understood, however, that in general quantities must be properly
scaled for the geometric aggregator to be admissible. This point also applies to the equiv-
alent price aggregator of direct ALIDS models, typically referred to as the Stone price
index.3

The inverse demand system presented here satisfies standard flexibility properties. It
can be verified that the distance function (2)-(4) has enough parameters to be a flexible
functional form for an arbitrary distance function once it is realized that the ordinality
of utility always allows one to put d21n(F)/du2 = 0 at a point.4

The notion of flexible functional form in demand perhaps is defined more usefully in
terms of demand functions (which are ultimately estimated) rather than in terms of the
function representing preferences (which are unobservable). Hence, a flexible inverse
demand system must have enough parameters to approximate, at a point, an arbitrary
set of quantity elasticities and of normalized price levels (i.e., it must provide a first order
local approximation to an arbitrary inverse demand system). If n is the number of goods,
it is verified that (after imposing homogeneity, adding-up, and symmetry) the demand
system (5) has 1/2(n - 1)(n + 4) free parameters [(n - 1) parameters a,, (n - 1) parameters
f, and /2n(n - 1) parameters ij]. These constants could be chosen to represent at a
point an arbitrary set of quantity elasticities [of which 1/2n(n + 1) - 1 are independent
after accounting for homogeneity, adding-up, and symmetry] and an arbitrary set of left-
hand-side shares [of which (n - 1) are independent after accounting for adding-up].

Simulation Results

To illustrate the approximation properties of the LIDS model, we report the results of a
small simulation exercise. Specifically, we generate repeated stochastic realizations from
a known structure and then look at how close the elasticity estimates from LIDS are to
the true ones. Following similar studies by Kiefer and MacKinnon, and Wales, the data
generating model chosen is a Linear Expenditure System (LES). Specifically, shares for a
three-good system are generated using the inverse share equations of LES; that is,

ai[qif(qi - 7.)]
(6) wi ~ aj[q/(q- - )

where i, a, = 1. The quantity data that we use for qj, q2, and q3 are U.S. per-capita demand
of beef, pork, and chicken, respectively, for the period 1960-89. These data, normalized
to equal one at the mean of the sample period, are reported in the appendix.5 The pa-
rameters used are: a1 = .5, a2 = .3, a3 = .2, Y1 = .2, 72 = .3, and 73 = -. 3. From this
structure we generated 250 samples, each with 30 observations, by appending multinormal
disturbances to the shares. The (full) covariance matrix used to generate the multinormal
errors is the same as that used by Kiefer and MacKinnon, and Wales; that is,

.000036 -. 000025 -. 000011
(7) -. 000025 .000049 -. 000024

-. 000011 -. 000024 .000035
(7) .000049 ~~~~-.000024.
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With these data, we estimate five different models 250 times. First, we estimate the
nonlinear inverse demand system of equation (4), and we label this system NLIDS. Similar
to the case of ALIDS discussed by Deaton and Muellbauer, the parameter a0 is virtually
impossible to estimate, so we set a0 = 0.6 Second, we estimate the LIDS model, that is
equation (5) with the geometric index ln(Q*) = zj wjln(qj). Third, as a benchmark, we
estimate the true LES model of equation (6). Note that while LES has five free parameters,
both NLIDS and LIDS have seven free parameters. Finally, for comparison, we estimate
two versions of the inverse translog (ITL) system introduced by Christensen, Jorgenson,
and Lau, and applied by Christensen and Manser, which, after an arbitrary normalization
of parameters, can be written as:

ai + fPijln(q)

(8) J
(8) 1 + Z f 3jln(qj)'

j i

where 2i ai = 1 and fi3 = fji-
It can be verified that the ITL system has eight parameters, one more parameter than

the LIDS model. Hence, ITL has one more parameter than is needed to make it a flexible
(local) approximation to an arbitrary utility, which means that (8) could be suitably
restricted without affecting its flexibility properties. Specifically, one can always find a
monotonic transformation of utility such that i Zj d2U/dln(qi)dln(qj) = 0 at a point. To
make this argument more explicit, let U(q) denote an arbitrary utility function for which,
at a point qO, U/Cdln(q,) = ai and 02 U/dln(qi)dln(qj) = ai. Because U(q) is ordinal, one can
put i a, = 1 without loss of generality. Now consider the monotonic transformation U
= G(U(q)). Then, at the point qO, 2 U/0ln(qi)dln(qj) = (G"aia, + G'aij), where the derivatives
G' and G" are evaluated at U(q°). Hence, at the point qO, Zi j 02U/dln(q)dln(qj) = G" +
G' (2Si 2 ai). If one chooses the transformation G(.) such that, at the point qO, G' = 1 and
G" = -(2,i j ai), then at this point ,i ij d2U/dln(q,)dln(qj) = 0. Because in the translog
utility underlying (8), iv = a2 U/ln(qi)dln(qj), it follows that we can set i Zj 3 = 0 and still
have a local approximation to an arbitrary utility function.7 Given that the translog model
(8) with the normalization Zi Zj fl = 0 achieves what Barnett and Lee called the "mini-
mality" property, the resulting model is termed here the minimal inverse translog (MITL).
Like LIDS and NLIDS (with ao = 0), MITL has seven free parameters.

The approximation properties of the models considered are illustrated in terms of "how
close" the estimated elasticities are to the true elasticities. We consider uncompensated
quantity elasticities (flexibilities) and scale elasticities (in inverse demand analysis the
concept of scale effect, discussed by Anderson, plays a role similar to that of the income
effect of direct demands). Quantity elasticities are defined asij dln(p,)/dln(qj), and scale
elasticities are defined as ei dln[pj(Oq)]/0ln(O). Quantity elasticities for LES are com-
puted as:

(9) = Wi(q - qi

whereas for LIDS and NLIDS they are computed as:

(10) Ei ~ Faj + 2 ykln(qk)) -b
Wi W.i \ k -

and for ITL and MITL they are computed as:

k 3

( 11)i + ikln(qk)
k
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where bi is the Kronecker delta (6 = 1 for i = j and 6b = 0 otherwise). Scale elasticities
are readily computed using (9)-(11) because Ei = j iji

A possible issue, in light of the arguments presented in Green and Alston, is whether
(10) is an appropriate formula for LIDS. It is verified easily that under procedures we
have followed (that is, scaling the right-hand-side variables, and setting a0 = 0), each
parameter of LIDS will approximate the corresponding parameter of NLIDS. Thus, for-
mula (10), which is derived from NLIDS, is appropriate for LIDS as well. An alternative
for LIDS, which is consistent with taking ln(Q*) as given in estimation, is to use:

(12) w- -
wi Wi

To investigate what may be called the "local" approximation properties of the model,
elasticities were computed at the mean point (at which qi = 1 V i), and summary statistics
are reported in table 1.8 The first column of table 1 reports the elasticities, at the mean
point, of the true LES model used to generate the data. Then, for each ofLES, ITL, MITL,
NLIDS, and LIDS we report the mean, computed over the 250 replications, of the esti-
mated elasticities at the mean point, and the root mean square error (RMSE) of each of
these estimated elasticities. Also, for each model we report the average RMSE for the 12
elasticities involved.

All models seem to provide a reasonable approximation. As expected, the best results
are obtained by estimating the true LES model. The performances of LIDS, NLIDS, and
MITL are similar, with an average RMSE roughly double that of the true model. The fact
that MITL does better than ITL perhaps may seem surprising. The reason is that the
restriction (i 2,j j = 0) is not rejected; when estimating ITL, the empirical distribution
of the quantity (,i 2j ri) over the 250 replications had a mean of .4 and a standard
deviation of 1.7. Maintaining the restriction (,i Zj i, = 0) in MITL results in a considerable
efficiency gain (the average absolute t-ratio for the five independent fli in MITL over the
250 replications was about 3, whereas the average absolute t-ratio for the six independent
fijs in ITL was about 1.4).

Table 1 makes it clear that the linear approximation made possible by the use ofln(Q*)
instead of ln(Q) is very good, as LIDS and NLIDS produce virtually identical results. In
the context of ALIDS for direct demands, it is believed that the use of the Stone index
is likely to produce good approximations because prices typically are highly correlated
(Deaton and Muellbauer). In our application, however, the data are not very correlated:
the coefficient of correlation between q, and q2 is -. 25, between q, and q3 is .05, and
between q2 and q3 is .27. Yet the approximation made possible by the use ofln(Q*) appears
quite good, suggesting that it is robust to the design matrix of the exogenous variables.

Although the results of table 1 are encouraging as to the approximation properties of
LIDS, and consistent with the notion that all the models considered (apart from the true
model) are capable of providing a local approximation to an arbitrary demand system,
the question arises as to "how local" these results are. If the inverse demand system is
to be used for forecasting or welfare analysis, one would want to be reassured that the
approximation abilities of the model extend to a reasonably wide range of the data. To
investigate this issue, we consider what we term the "extended" approximation properties
of the models. Specifically, we evaluate true and estimated elasticities at each of the 30
sample points, and for each of the 12 elasticities we compute the mean square error over
the resulting 7,500 estimates (30 sample points for 250 replications).

The square roots of such mean square errors, and their average over all 12 elasticities,
are reported in table 2.9 The approximation abilities of MITL, NLIDS, and LIDS hold
up very well in this extended analysis, with the average RMSE increasing only by .004
relative to the approximation at the mean point (up 6.6%). For these models the average
RMSE is still roughly twice the RMSE of the true LES model. ITL, on the other hand,
shows a much larger increase (up .02 or 30%) in the average RMSE relative to the result
at the mean. Again, the restriction (2i ,j fij = 0) seems very fruitful in terms of improving
the efficiency of the translog inverse demand system.
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Table 2. Extended Approximation Properties

Elasticity LES ITL MITL NLIDS LIDS

---------- ----------------------------------------- R M SE -------------------------------------------- ------
El1 .024 .045 .029 .030 .030
E12 .030 .043 .036 .036 .036
E13 .005 .013 .009 .009 .009
E21 .026 .051 .040 .041 .042
E22 .053 .086 .071 .069 .069
E23 .005 .017 .015 .016 .016
E31 .026 .140 .096 .101 .106
E32 .030 .132 .104 .107 .110
E33 .033 .062 .043 .048 .049
El .041 .069 .050 .051 .052
E2 .063 .104 .087 .087 .089
E3 .047 .277 .169 .178 .186
Avg. .032 .087 .062 .064 .066

Note: Entries are RMSEs over all 30 sample points.

Conclusion

In this article we have illustrated a linear specification for an inverse demand system.
This specification is based on a distance function which has a parametric structure similar
to the PIGLOG cost function underlying the ALIDS model commonly used for direct
demand models. The approximation properties of the new model were illustrated with a
simulation exercise. Of course, although the results presented are useful in terms of ranking
the models used relative to the performance of the true model, the actual size of the
approximation error (say, the average RMSE) cannot be generalized because it depends,
among other things, on the design matrix of right-hand-side variables, on the structure
and parameters of the true model, and on the signal-to-noise ratio of the stochastic terms.

The simulation results show that the new (nonlinear) inverse demand system derived
from the chosen parametric specification of the distance function performs well relative
to the true model, and very similar to that of an (appropriately restricted) inverse translog
demand system. Moreover, the linear version of the new inverse demand system, which
we have termed LIDS, results in a good approximation to the nonlinear model. The
simplicity of LIDS is likely to make it a useful specification for empirical analysis, es-
pecially in applications where linearity is appealing (for example, in dynamic demand
systems). Because the derivation of LIDS parallels that of ALIDS for direct demand
systems, the simulation results reported in this article are somewhat more general and
could be interpreted, with minor modifications, as evidence of the approximation prop-
erties of ALIDS models, and as supporting the linear version of ALIDS as a good ap-
proximation to the nonlinear ALIDS.

[Received July 1991; final revision received April 1992.]

Notes

1 After the first draft of this article was completed, a paper by Eales and Unnevehr, giving a similar derivation
of the linear inverse demand system, came to our attention. They call this system the "Inverse Almost Ideal
Demand System," and use it to model U.S. quarterly meat demand. Barten and Bettendorf also allude to an
"Almost Ideal Inverse Demand System," but they do not provide an explicit derivation.

2 Hanoch formalizes this parallel further by developing the concept of"symmetric" duality, which in our case
requires defining the distance function in terms of (1/u, q) rather than (u, q). In Hanoch's words, this approach
allows "... 'getting two for the price of one' in the search for useful functional forms" (p. 111).

3 The Stone index fails what Diewert calls the "commensurability test," which defines a fundamental property
of index numbers. This property requires that the index should be invariant to the choice of units of measurement.
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It is clear that the Stone index, or equivalently the geometric aggregator ln(Q*) = Zi wiln(q,), is not invariant to
the choice of units of measurement. This problem arises when one uses natural units (i.e., pounds or metric
tons). In such a situation, an easy way to get around the problem is to scale prices (or quantities for LIDS) by
dividing through by the mean. When one aggregate indices with a common base, such as in Deaton and
Muellbauer, the problem clearly does not arise.

4 A similar argument applies to the ALIDS model (Deaton and Muellbauer, p. 313).
5 These data are from U.S. Department of Agriculture sources. The sample means were 78.417 lbs./capita

(retail cut equivalent) for beef, 60.037 lbs./capita (retail cut equivalent) for pork, and 44.283 lbs./capita (ready-
to-cook weight) for chicken.

6 Fixing a0 basically entails a local normalization of the utility function at the point q, = 1 (the mean point
in our case).

7 The direct demand system derived from an indirect translog utility function also has one more parameter
than the linear ALIDS model (or the nonlinear ALIDS with ao set to some constant). In this context, imposing
the restriction ,i ,Zj p, = 0 reduces the indirect translog utility function to be a member of the PIGLOG family
of preferences, thereby giving it desirable aggregation properties (Lewbel).

8 Given that we are evaluating elasticities at the point q, = 1, the distinction between formulae (10) and (12)
for LIDS is immaterial, as the two formulae reduce to the same expression at this point.

9 When evaluating elasticities away from the point q, = 1, formulae (10) and (12) for LIDS are not identical.
However, for the three-digit rounding reported in table 2, formulae (10) and (12) give the same results, whereas
at a five-digit rounding level formula (10) gives slightly smaller RMSEs.
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Appendix
Table Al. Normalized U.S. Per-Capita Consumption of Beef, Pork,
and Chicken

Year ql q2 q3

1960 .81870 1.00439 .62778
1961 .83911 .96108 .67520
1962 .84421 .98440 .67294
1963 .89139 1.01605 .69552
1964 .94240 1.01605 .70455
1965 .93858 .91111 .75198
1966 .99596 .90944 .80166
1967 1.01764 .99939 .81972
1968 1.04570 1.02937 .82424
1969 1.05207 1.00938 .86037
1970 1.07630 1.03104 .90553
1971 1.06738 1.13098 .90553
1972 1.09033 1.03936 .93715
1973 1.02657 .94942 .90779
1974 1.08905 1.02271 .91457
1975 1.12221 .84115 .90102
1976 1.20255 .89279 .95973
1977 1.16557 .92943 .98909
1978 1.11201 .92943 1.04780
1979 .99469 1.06102 1.13587
1980 .97428 1.13431 1.12458
1981 .98321 1.08101 1.15845
1982 .97938 .97440 1.19006
1983 .99724 1.03104 1.20587
1984 .99596 1.02437 1.24652
1985 1.00489 1.03270 1.30072
1986 .99979 .97607 1.32556
1987 .93603 .98440 1.41588
1988 .91945 1.05102 1.45653
1989 .87736 1.04270 1.53782
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