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Optimal Risk Management, Risk Aversion, and
Production Function Properties

Edna Loehman and Carl Nelson

For production risk with identified physical causes, the nature of risk, pro-
duction characteristics, risk preference, and prices determine optimal input
use. Here, a two-way classification for pairs of inputs-each input as being risk
increasing or decreasing and pairs as being risk substitutes or complements-
provides sufficient conditions to determine how risk aversion should affect
input use. Unlike the Sandmo price risk case in which a more risk averse firm
produces less output, a more risk averse firm may produce more expected
output and use more inputs than a risk neutral firm. Sufficient conditions to
determine types for pairs of inputs are also related to properties of the pro-
duction function.
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Introduction

"The nature of uncertainty in a production function is crucial to determine the effects of
production risk on the firm's input decision ... " (Honda, p. 91). Accordingly, this article
examines the case of production risk and risk management when there are identified
physical causes of risk, such as insects and weather, with known probability distributions.

The characterization of production decisions under risk is the subject of a growing
literature, and conjectures have been made regarding how increasing risk aversion should
affect production decisions. Early studies considered exogenous price risk. For example,
Sandmo studied price risk and output decisions in the firm. The result obtained with a
nonrisky cost function was that the risk averse firm should produce less output than the
risk neutral firm. Batra and Ullah considered input decisions in the firm with price risk.
They also found that the output of the firm should decline with risk aversion based on
effects on input use. Although a production model was used to model input effects,
production risk was not considered in Batra and Ullah's work.

Recent research has focused on production risk rather than price risk. In such cases,
input use can affect the nature of risk so that risk becomes at least in part endogenous or
manageable; for example, insecticide use affects insect risk (Antle; Carlson; Feder). As in
classical production theory, economic optimization modeling can provide rules for risk
management to determine optimal input use. Here, rules are shown to be related to prices,
level of risk aversion, the nature of inputs, and characteristics of the production process.

Previous research in production risk studied special cases. Pope and Kramer used a
specific type of stochastic production function with only two inputs and a constant relative
risk aversion (power) utility function. MacMinn and Holtman investigated the case of a
general risk averse utility function and a general production function, but with only one
input. Babcock, Chalfant, and Collender included multiple inputs; however, the moment
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generating function method they used for optimization under risk assumes an exponential
utility function.

Comparative static results for production under risk are obtained here for more general
conditions. Results are based on a general stochastic production function with multiple
inputs, and both exponential and power utility function cases are included. In comparison
to Pope and Kramer, who were also concerned with the effect of risk aversion on input
use, more complete comparative static results and sufficient conditions are given.

Categorization of pairs of inputs-each as being risk increasing or decreasing and pairs
as being risk substitutes and complements-is used to delineate conditions under which
input use should increase or decrease with risk aversion. For the exponential and power
utility functions, sufficient conditions to identify input types according to the proposed
categorization are given in terms of properties of the stochastic production function. In
contrast to the Sandmo price risk case, we show that the risk averse firm may even produce
more expected output and use more inputs than the risk neutral firm when there are
multiple inputs.

This approach differs from that used by Meyer and Ormiston and by Jewitt because
they described risk in terms of parameterized changes in a distribution function rather
than using a production function to model risk. The advantage of using the production
function approach, as demonstrated here, is that sufficient conditions can be based on
classical production concepts extended to the risk case.

Another approach to study production under risk is based on approximating first order
conditions in mean-variance terms (see Anderson, Dillon, and Hardaker; Robison and
Barry). The approach in this article avoids approximation and instead relies heavily on
application of a theorem in statistics called Lehmann's Theorem (Barlow and Proschan).

Endogenous Production Risk and Input Choice

Since input choice affects the nature of yield risk, risk is partly endogenous. Optimal
management of risk entails the optimal choice of inputs. Inputs are assumed to be chosen
before the state of nature is revealed.

Production risk will be described here by a stochastic production function,

(1) y = F(x, 0),

which relates random output (y) to a vector of inputs (x) and the state of nature (0). 0
represents physical causes of production risk such as weather and insects with a known
cumulative distribution G(O). In contrast to Pope and Kramer, the stochastic production
function need not be the linear in 0. Specification of this production function should be
based on physical relationships between inputs and sources of risk, rather than being a
model of measurement error with heteroskedasticity as in Just and Pope (1978, 1979)
(see example below). To describe yield risk, a distribution for yield is determined from
(1) as a transformation of G(0) given input use. Below, only one source of risk (0) is used.

Optimal input choice for a risk averse producer is assumed to satisfy maximization of
expected utility:

(2) Max s u(Wo + pF(x, ) - w.x) dg(O),
x

A

where u denotes the utility function for income, Wo is riskless income, x denotes a vector
of inputs with input price vector w, p is price of output, and A is the support of 0. Prices
p and w are assumed here to be riskless. Profit is defined by:

(3) 7r(x, 0) = pF(x, 0) - w.x.

A risk neutral producer would maximize expected profit rather than (2).
The following lemma gives sufficient conditions to determine the sign of expected
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marginal profit (as in MacMinn and Holtman) at the optimum of (2) based on production
function properties. The lemma applies for a general production function and concave
utility function. Note that, in contrast to production in the certainty case with zero marginal
profit for each input, here marginal profit may be positive or negative depending on the
properties of the production function at optimum input use. F,, Fr, and Fx,, denote partial
derivatives of the production function with respect to xi and 0.

Lemma 1: Given a concave utility function, an input (xi) gives a positive expected
marginal profit at the optimum (x*) if Fo(x*, 0) and Fx,,(x*, 0) have the same sign for
all values of 0, and a negative expected marginal profit at the optimum if they have
opposite signs.

Proof: The expected marginal profit (ETr_,) evaluated at optimum input use x* satisfies
the following first order conditions for (1):

(4) Erx = E(pFx) - w = -Cov(u', pFx,)/Eu'

from the definition of covariance (MacMinn and Holtman; Pope and Kramer). By Leh-
mann's Theorem (see appendix B) applied with a concave utility function, the sign of the
covariance Cov(u', Fx) is positive if Fo and Fx,, have opposite signs and is negative if they
have the same signs. Then, a negative expected marginal profit is obtained for a positive
covariance term and, conversely, a positive marginal expected profit is obtained for a
negative covariance term. QED.

Input Classification

How the solution for optimal input use in (2) would change as the Pratt-Arrow risk
aversion coefficient changes is a question of comparative statics. For this purpose, Pope
and Kramer proposed two alternative definitions to classify inputs:

Definition 1: An input is said to be "marginally risk reducing" if the expected marginal
profit is negative at the optimum input use and "marginally risk increasing" if the
expected marginal profit is positive at the optimum input use.

Definition 2: An input is said to be marginally risk reducing (increasing) if the risk
averse firm uses a larger (smaller) quantity of the input than the corresponding risk
neutral firm.

The equivalence of these two definitions implies that a more risk averse person should
use more of an input having a negative expected marginal profit and less of an input
having a positive expected marginal profit. Lemma 1, above, is sufficient to determine
whether inputs are marginally risk reducing or increasing according to Definition 1.

When the production function has a form linear in 0,

F(L, K, 0) = f(L, K) + g(L, K)0, with EO = 0,

assuming a power utility function, Pope and Kramer showed that these two definitions
are equivalent if certain sign conditions are imposed on derivatives of the stochastic
production function F(L, K, 0) with respect to two inputs, L and K.

Below, instead of the categorization in Definition 1, pairs of inputs will be categorized
in two ways: whether each input is risk increasing or decreasing (Definition 3); and for
the pair, whether they are risk substitutes or complements (Definition 4). This categori-
zation is more complex than that in Definition 1. However, this categorization gives rise
to definitive comparative static results for a general production function, as stated in the
theorem below.

Definitions below are in terms of the certainty equivalent (CE) as derived from expected
utility (Eu):

u(CE(Wo, x, w, p)) = Eu(Wo + ir(x, 0)).
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Definitions are given in terms of the certainty equivalent rather than in terms of expected
utility because then interpretations are in dollar-valued terms (see below). Note that
maximization of the certainty equivalent gives the same results as expected utility max-
imization. The "marginal certainty equivalent" CE, denotes the partial derivative of the
certainty equivalent with respect to an input; it is proportional to the marginal expected
utility due to input i:

aCE _E U
CEi= = (l/u'(CE))

axi axi

because utility is monotone increasing.
The interpretations of the definitions below are that: for a risk increasing input, in-

creasing risk aversion will reduce the marginal certainty equivalent, whereas the marginal
certainty equivalent for a risk reducing input will increase with risk aversion. For a pair
of inputs which are risk substitutes, an increase in one input will reduce the marginal
certainty equivalent of the other, whereas for complements, an increase in one input will
increase the marginal certainty equivalent.

Note also that the definitions are given in terms of the optimum solution. The (*)
notation indicates that input use (x*) and profit (or*) are evaluated for input use held
constant at the optimum value for (2). Since the optimum solution could vary by geo-
graphic area (e.g., not the same in high and low rainfall areas), the type of an input may
vary depending on the nature of physical risk. The Pratt-Arrow risk aversion coefficient
for the exponential utility function is denoted by r.

Definition 3: An input will be termed "risk increasing" if ci < 0 and "risk reducing"
if ci > 0, where

0 aCE*
Ci --

Or Oxi

Definition 4: For a pair of inputs (xi, xj), they will be termed "risk substitutes" if
qi is negative and "risk complements" if qij is positive, where

2CE*'
q ij

dxjxi

If qj = 0, there is "no risk substitution" between inputs i and j.

Below, we compare risk increasing (reducing) inputs in Definition 3 to marginally risk
increasing (reducing) inputs in Definition 1. Definition 1 can be shown to relate to first
order effects of an input on the risk premium. The risk premium (RP) and certainty
equivalent (CE) are related by

RP= Efr - CE,

where RP is a positive number for a risk averse person. The certainty equivalent satisfies
OCE*

= 0 at the optimum input use. Therefore, at the optimum,
Oxi

ORP* OEr*
aXi aXi

From this correspondence at the optimum, a "marginally risk increasing" input in
Definition 1 will have a positive marginal risk premium at the optimum; thus, increasing
input use from the optimum will increase the risk premium. A "marginally risk reducing"
input will have a negative marginal risk premium; thus, increasing input use from the
optimum will reduce the risk premium.

Risk increasing (reducing) inputs in Definition 3 are defined in terms of the certainty
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equivalent, specifically the effect of risk aversion on the marginal certainty equivalent for
an input:

02CE*
ci

drxi

Thus, the sign of ci shows the change in the marginal certainty equivalent for an input as
the Pratt-Arrow risk aversion coefficient is varied. If ci < 0 (risk increasing), an increase
in r will reduce the marginal certainty equivalent for an input; for ci > 0 (risk reducing),
an increase in r will increase the marginal certainty equivalent for an input.

Comparative Static Effects of Risk Aversion

Here, for a general production function and both power and exponential utility functions,
the above categorization of inputs is shown to give rise to comparative static results
specifying when a more risk averse producer should use more or less of a given type of
input than a less averse producer. In contrast to the Pope and Kramer special case,
comparative static results obtained here for general conditions require inputs to be clas-
sified by more than just the sign of the expected marginal profit at the optimum. Also,
sufficient conditions for categorizing inputs are shown to be based not only on properties
of the production function but also on relative prices.

For a pair of inputs, in addition to the "no substitution" case, there are six possible
combinations of input types according to Definitions 3 and 4. Separately, both inputs can
be risk increasing, both can be risk reducing, or one input can be risk increasing and the
other risk reducing. For the pair, they can be either risk complements or substitutes for
each of the three cases above.

The comparative statics result of this article is stated in the theorem below. Effects of
risk aversion for each of the above six types plus the case of no substitution are described
in the theorem. Second order conditions link combinations of input types to effects of
risk aversion (see appendix A proving the theorem). In comparison, Pope and Kramer
presented proofs for only cases (ii), (v), and (vi) of this theorem and only for the power
utility function and production function linear in 0. This theorem extends their results in
terms of generality of the production function, allowing both exponential and power utility
functions, and completeness of the input combinations.

Theorem: The following comparative static results hold for pairs of inputs, with a
general stochastic production function, for either an exponential or a power utility
function.

(i) In the case of production with only one input, or no risk substitution for a pair
of inputs, a risk increasing input should be used less intensively by a more risk
averse person, and a risk decreasing input should be used less intensively by a
less risk averse person.

(ii) For a pair of risk substitutes, when both inputs are risk increasing, either both
should decrease with increasing risk aversion or one should increase while the
other decreases.

(iii) For a pair of risk substitutes when both inputs are risk reducing, either both
should increase with increasing risk aversion, or one should increase while the
other decreases.

(iv) For a pair of risk substitutes, when one input is risk increasing and the other
is risk reducing, then use of the risk reducing input should increase and use of
the risk increasing input should decrease with increasing risk aversion.

(v) For a pair of risk complements, when both inputs are risk increasing, then use
of both should go down with increasing risk aversion.

(vi) For a pair of risk complements, when both inputs are risk reducing, then use
of both should go up with increasing risk aversion.
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(vii) For a pair of risk complements, when one is risk increasing and the other is
risk reducing, then the risk increasing input should not increase with increasing
risk aversion unless the risk reducing input also increases. The risk reducing
input should not decrease with risk aversion unless the risk increasing input
also decreases. The risk increasing input may decrease if the risk reducing input
increases.

Proof: The proof (see appendix A) identifies possible and impossible cases for input use
combinations based on comparative static analysis of first and second order conditions
for optimization of (2).

These results can be compared to the results of Sandmo, and Batra and Ullah for price
risk, assuming that expected output is nondecreasing with increasing input use. As in their
results, if there is only one input and one output and if that input is risk increasing, then
the risk averse firm will produce less expected output than the risk neutral firm. However,
here the more risk averse firm also may produce more expected output than the risk
neutral firm if this single input is risk reducing.

The theorem also implies that expected output will decline with increasing risk aversion
if pairs of inputs are complements and all inputs are risk increasing. Expected output also
could decline under other conditions (e.g., if pairs of inputs are risk substitutes and all
are risk increasing). Conversely, expected output will increase with risk aversion if pairs
of inputs are risk complements and both are risk reducing. Expected output could also
increase in other cases (e.g., if pairs of inputs are risk complements, and one is risk
increasing and one is risk reducing).

Sufficient Conditions for Identifying Risk Increasing/Decreasing Inputs

We now give sufficient conditions related only to production function properties to identify
if an input is risk increasing or risk reducing for two commonly used utility functions-
exponential and power utility functions.

Exponential Function

For the exponential function, with initial wealth Wo

u(r) = ko - kle-r(ir+ °
),

the Pratt-Arrow risk aversion coefficient is a constant (r > 0). At the optimum, since the
marginal certainty equivalent and expected marginal utility are zero at this optimum,

c= dCEd = -d(k,/u'(CE*)) re-r(r*+Wo)7r* dG(O)
6r xi =r ax

A

= -(k,/u'(CE*)) re-r(7r )(ir* + WW) dG(O).
A

Sufficient conditions to determine the sign of the above integral are obtained from Leh-
mann's Theorem. First, from the definition of covariance,

E(e-r(7r*+ W)( 7 r* + Wo)ir*) = E(e-r(w*+ Wo)(r* + Wo))E(rx*)

+ Cov(rx*, e-r(r*+w)(r* + Wo)).

From Lehmann's Theorem, the sign of the covariance above is determined by the signs
of the derivatives of its two arguments with respect to 0:

(i) This covariance is positive if Fx* and - [e- r(T *+W+(T* +- WO)] have the same sign;
xoi
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and
a

(ii) this covariance is negative if F*o and -[e-r(lr*+ wor* + W0)] have opposite

signs.

The second term above will be positive if F6 > 0, (Ir* + W) > 0, and [1 - r(r* +
WO)] > 0 since:

- [e- r(i*+wo)(r * + Wo)] = e-'r(*+Wo)r*[1 - r(r* + Wo)].d0

Also, E(e -r(r*+Wo)(r* + WW)) is positive if (7.* + WO) is positive. The sign of E(rx*) also

depends on the sign of Fxo as in Lemma 1. The sign of ci is then determined from the

combination of the above conditions, as summarized below:

Lemma 2: If (r* + Wo) is positive and Max[7r* + WO] < -: xi is risk reducing if
0

Fxi0(X*, 0) and F(x*, 0) have opposite signs; xi is risk increasing if Fx,(x*, 0) and
Fo(x*, 0) have the same sign.

Power Function

With initial wealth WO, the power function with relative risk aversion s is:

U(X) = (WO + )1' - S.

At the optimum with expected profit Eir*, the following Pratt-Arrow coefficient corre-
sponds to this power function:

s
r-

WO + Er*'

To determine risk increasing/risk reducing properties, consider the sign of

a OCE a CE* CE*s
i r axi - Os x, jar'

Os
Since > 0, the sign of ci is the same as the sign of

d 2E -- ln(W + (W + T*)( + *)- r* dG(O)Osaxi
A

= -[Cov(7rx, ln(WO + i7*)(W + i*)-s)

+ E(ln(WO + 7r*)(Wo + r*)-s)E(ir*)].

The same sign conditions as above are shown to determine the sign of ci from Lehmann's

Theorem-with the requirements that (WO + ir*) > 0 and Max ln(WO + 7r*) < I. The
0 S

results for the power function are summarized by the following lemma.

Lemma 3: For the power utility function with (WO + ir*) > 0 for all 0 and

Max[ln(WO + 7r*)] < !: x, is risk reducing if Fx,(x*, 0) and Fo(x*, 0) have opposite
0 

s

signs; x, is risk increasing if Fo(x*, 0) and Fo(x*, 0) have the same sign.

Thus, for these two commonly used utility functions, for risk aversion coefficients
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satisfying the bound conditions, properties of the stochastic production function are suf-
ficient to determine whether an input is risk reducing or increasing.

Because of the bound condition, the magnitude of the Pratt-Arrow risk aversion coef-
ficient should be inversely related to the magnitude of income- similar to the magnitude
restriction obtained by Raskin and Cochran but for different reasons. The bound condition
for the power function is more restrictive than that for the exponential function. Note
that these two lemmas do not require that the sign conditions for the production function
derivatives hold for all values of x, merely at the optimum. However, if the sign conditions
hold for all input values, then specific information about the optimum may not be required
to determine the type of an input (see example below).

Comparing Definitions 1 and 3, note that when utility is of the exponential or power
function form, and the level of risk aversion satisfies the appropriate bound condition,
then a risk reducing/increasing input is also marginally risk reducing/increasing by Lemma
1. That is, the set of inputs which are risk reducing/increasing intersects the set of inputs
which are marginally risk reducing/increasing for a given production function. In partic-
ular, Definition 2 and Definition 1 correspond in Pope and Kramer's special case.

Sufficient Conditions for Identifying Risk Complements/Substitutes

Sufficient conditions for identifying risk complements/substitutes are more complex than
those above; prices are well as production function properties and bounds on risk aversion
determine the types of input pairs.

The coefficient qi shows the effect of one input on the marginal certainty equivalent for
the other input. If qj > 0, then an increase in input i will increase the marginal certainty
equivalent for input j; if qi < 0, then the marginal certainty equivalent for inputj will be
reduced. The general definition of qi, obtained from the first order condition aCE*/dxi =
0, is:

qi (1/u'(CE)) U'r*) xxj(X*, 0) + uu'(r*) )(, dG().
[Xi U (Jr*) (

A

One sufficient condition to determine the type for a pair of inputs extends the classical
definitions of substitutes and complements based on the cross-product derivatives of the
production function. The sign of qi may be determined from the sign of:

[7rx(*, 0) + U'( *) * 0 (x*, );

if this expression has a fixed sign, the sign of qij is the same as the sign of this term because
of monotone utility. With risk aversion, a sufficient (but not necessary) condition for risk
substitutes (qi < 0) is when inputs are substitutes in the classical production sense (Fx.
< 0) for all values of 0, and their marginal profits have the same signs at the optimum.
Conversely, a sufficient condition for inputs to be risk complements (qi > 0) is when
inputs are complements in the classical production sense (Fx, > 0) for all values of 0,
and their marginal profits have the opposite sign at the optimum. Note that prices play
a role in determining the signs of marginal profits.

A weaker sufficient condition for determining the sign of qi for the exponential utility
function is obtained from Lehmann's Theorem by considering the sign of the following
covariance together with the sign of Fxx at the optimum:

Cov(rx*, e-r(*+ W°)) - E(e-r(r*+ W)r**) - E(e-r(r*+ Wrxi)E(r*).

This covariance is positive by Lehmann's Theorem (similar to the analysis for risk in-
creasing/risk reducing inputs) if r*.o is positive and [7r*0 - rrx*rv*] is positive; then
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E(e r("1*+o)r*i* is positive from first order conditions. Conversely, this covariance is

negative if signs of these terms are opposite. The lemma below summarizes sufficient
conditions:

Lemma 4: For the exponential utility function satisfying the bound condition [rX0i -

r7rr*] > 0: x, and xj are risk complements if F, > 0 and rx < 0; x, and xj are risk

substitutes if Fxx < 0 and *x0 > 0.

Note the above bound condition is based not only on physical properties of the production
function but also on relative prices. Similar results could be obtained for the power
function.

Production Function Example

The following example illustrates use of the above definitions and lemmas. The nature
of inputs is determined in part by physical relationships expressed in terms of production
function properties.

Suppose production under risk is described by:

y = h(xi, x2) + f(x 1)0 + X(1 + g(x2))I(0),

where y is the crop yield, 0 represents rainfall, x, is fertilizer, and x2 is insecticide treatment.
1(0) represents insect population which increases with rainfall. X is a negative number
showing that insects reduce yield. A positive value of I'(0) indicates that insect population
increases with good rainfall. For g(x2) negative, insecticide treatment would reduce the
negative effect of insects. The derivative of y with respect to rainfall 0 should be positive
in some range of xl and 0:

F0 =f(x,) + X(1 + g(x,))I'(0) > 0.

Then, iff(x,) increases with xl, x, will be a risk increasing input:

Fxo =f'(xl) > 0.

For x2 to be a risk reducing input, g'(x2) should be positive to give:

Fx2 = Xg'(x2)'(0) < 0.

A sufficient condition for expected marginal profit of fertilizer and insecticide to have
opposite signs is that Fx10 and Fx20 have opposite signs, e.g., iff'(x), g'(x2), and I'(0) are
positive and X is negative. These are also the same conditions for fertilizer to be risk
increasing and insecticide to be risk reducing!

Substitution/complementarity for a pair of inputs relates to the sign of

a2 h
-xx d=xldx 2 '

which expresses the effect of insecticide on the marginal product of fertilizer. We could

expect that insecticide would increase the expected marginal product of fertilizer, i.e., that

insecticide and fertilizer potentially would be risk complements. Risk complementarity

also requires that the signs of the marginal profits are opposite; i.e., if fertilizer is relatively

cheap compared to the value of its marginal product and pesticide is relatively expensive

compared to the value of its marginal product.
Case (vii) of the above theorem then applies. If a risk averse person uses more fertilizer

than a risk neutral person, then also the risk averse person should use more insecticide;

the more risk averse person would then produce more output than the risk neutral person.

However, it is also possible that a risk averse person would use less of both fertilizer and

insecticide, then producing less output than a risk neutral person. Or, the risk averse
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person could use less fertilizer and more insecticide than a risk neutral person with the
output effect not identifiable.

Conclusions

This article has generalized models of optimal input use in Pope and Kramer, MacMinn
and Holtman, and Babcock, Chalfant, and Collender to apply for multiple inputs, a general
stochastic production function, and both exponential and power utility functions. Also,
our comparative static results expand results obtained by Pope and Kramer. Determi-
nation of input use effects of risk aversion was based on a two-way categorization for
pairs of inputs-each input separately as being risk increasing or decreasing and the pair
of inputs as being risk substitutes or complements.

With production risk, unlike the price risk case in which a more risk averse firm produces
less output, a more risk averse firm may produce more expected output and use more
inputs than a risk neutral firm. Results in this article outline when this could occur and,
conversely, when increased risk aversion would imply less output.

Properties of the stochastic production function were relevant to identify alternative
input use cases. Production properties describe the physical interactions of inputs with
explicit causes of risk. Production properties were sufficient to determine whether inputs
were risk increasing or risk reducing. However, the nature of sufficient conditions for
determining risk substitutes/complements implies that production function properties
alone are not sufficient to identify inputs of these types. Not surprisingly, the results in
this article show that not only production function properties but also the level of risk
aversion relative to income and relative prices determine how risk aversion should affect
risk management.

[Received October 1990; final revision received August 1992.]
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Appendix A: Proof of Theorem

We will prove the result for one pair of inputs at the optimum. For multiple inputs, each pair would be treated
similarly. Inputs are denoted by the indices 1 and 2. (All functions are evaluated at the optimum but the *
notation is omitted.) Totally differentiating the first order conditions for i = 1, 2 with respect to the Pratt-Arrow
risk aversion coefficient r in the exponential case,

S u'(ir)7r, dG(O) = 0,
A

the following simultaneous system is obtained:

dxl dx2qll dr + ql
2 dr -c, and

dx, dx2
q21 + q22 = C2,dr dr

where

q = qji = (/u'(CE)) f u'(r)rxj + u"(Tr)Trx, dG(O), and
A

ci = (l/u'(CE))drJ u(r),rx, dG(.).
A

Note that qi corresponds to the definition of risk substitutes/complements, and ci corresponds to the definition
of risk increasing/decreasing inputs. Solving the above system, we obtain

r = det - C q12
dr - et q22/ IDI =(-cq22 + c 2 )IDI, and
dr L c2

q2 2jc

dr d et[2 '2 / ID = (-c 2qll + Clql2)IDI,

where

DI = det[
q " Iq2].

[q 2 1 q22j

Second order sufficient conditions for a pair of inputs are that: q, < 0, q22 < 0, and D = qlq 22 - q22 > 0.
dxi dx<

For the one input case or the case of no substitution with q12 = 0, = -ci/q,; thus, ci < 0 implies d < 0,
dr dr

and the reverse sign for ci > 0.
In the six cases for ql2 # 0, there are eight possible sign combinations for q12, cl, c2, as shown in appendix

table Al; these eight cases reduce to the six cases of the theorem as indicated. Table Al shows four cases (El,
dx,

E2, E3, and E4) for sign combinations of d- Note that E3 corresponds to a decrease in expected output
dr

and E4 gives an increase in expected output; El and E2 produce indeterminate output effects. For these
combinations, "S" denotes sufficient conditions, "NP" corresponds to cases which are not possible, and "P"
indicates possible cases.

The S, P, and NP results are obtained from - and second order conditions. For the sufficient (S) cases,
dr

dx,
the signs of d are determined directly by the stated conditions and second order conditions. As an exam-

dr

ple of a sufficient (S) case, if q,2 < 0, c, < 0, and c2 > 0, then - < 0 and - > 0 are obtained directly
dr dr

dx.
from the expressions for -. When there is a sufficient condition in a row of table Al, the other cases in the

dr
row are not possible (NP).
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Table Al. Sign Combinations

Combination Input Sign Cases TTheorem
ql2 Ci c2 El E2 E3 E4 Case

+ - - NP NP S NP (v)
+ - + NP P P P (vii)
+ + + - P NP P P (vii)
+ + + NP NP NP S (vi)

P P P NP (ii)
- - + NP S NP NP (iv)

+ S NP NP NP (iv)
+ + P P NP P (iii)

Notation:
El: dxl/dr > 0, dx2/dr < 0.
E2: dxl/dr < 0, dx2/dr > 0.
E3: dxl/dr < 0, dx2/dr < 0.
E4: dxl/dr > 0, dx2 /dr > 0.

For cases (ii), (iii), and (vii) of the theorem, proofs of the not possible (NP) cases are obtained from second
order conditions.

dxl
Case (ii): Suppose ql2 < 0, c2 < 0, and -' > 0. Then

dr

Clq22 < c2q2.

From second order conditions,

cql2q22 > c2q22 > c2qlq22.

So, since q22 < 0,

Clq,2 < c2 ql

dX2 dX2implies - < 0; thus, > 0 is not possible.
dr dr

dx,
Case (iii): Suppose ql2 < 0, c2 > 0, and - < 0. Then

dr

clq22 > c2 q12;

also,

clq22q,2 < c2q22 < c2qllq22.

This implies (since q22 < 0)

Clql2 > C2 qll,

dx2 dx,
or - > 0. Thus, < 0 is not possible.dr dr

dX,
Case (vii): Suppose q, 2 > 0, c2 > 0, and - > 0. Then

dr

Clq22 < c2 q12.

From second order conditions,
clq2q22 < c2q22 < c2qllq22

Since q22 < 0,
Clql2 > C2qll

dXi dx2
implies - > 0. Thus, - < 0 is not possible.

dxi
Possible (P) outcomes occur when the numerator for - contains terms of opposite sign; then signs depend

on the relative sizes of c,, C2, q2, q22, and ql,. For example, when ql2 < 0 and c, and c2 have the same sign, terms
dx,in the numerator of have opposite signs. The proof for the power function is similar because of a positive
dr

relationship between s and r. QED.
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Appendix B: Summary of Lehmann's Theorem (from Barlow and Proschan) and
Application to Production Under Risk

Definition of Quadrant Dependence

Given a pair (U, V) of random variables with a joint distribution, the pair is positively quadrant dependent if

P(U -< u, V < v) > P(U < u)P(V < v) for all u, v,

and negatively quadrant dependent if the reverse inequality holds.

Lehmann's Theorems

The following is a special case of Lehmann's Theorem 1:

Theorem 1: Let U, Vbe positively quadrant dependent and r(U), s(V) be monotone transformations of U,
V. Then the pair (r(U), s(V)) is positively quadrant dependent if r and s are monotone in the same direction
and negatively quadrant dependent if r and s are monotone in opposite directions.

The following is a restatement of Lehmann's Theorem 2:

Theorem 2: If (U, V) are positively quadrant dependent, then E(UV) > E(U)E(V); the reverse holds for
negative quadrant dependence. Let r(U), s(V) be monotone transformations of U, V. Then, if r and s are
monotone in the same direction,

E(r(U) s(V)) > E(r(U)) E(s(V)),

and if r and s are monotone in the opposite directions, then

E(r(U) s(V)) < E(r(U)) E(s(V)).

Application of Lehmann's Theorems for Production Under Risk

We apply the above theorems in this article by

(a) taking U = V = 0 [then (0, 0) is positively quadrant dependent] and
(b) considering F(x, 0), Fx(x, 0), u'(pF(x, ) - wx) to be transformations of 0.

The following results are obtained by direct application of the above theorems:

(a) Fo, Fxo have the same sign implies Cov(F, Fx) > 0;
(b) Fo, FxO have opposite signs implies Cov(F, Fx) < 0;
(c) u"Fo, Fxo have the same sign implies Cov(u', Fx) > 0; for u" < 0, this is when Fo and Fxo have opposite

signs;
(d) u"F0, Fxo have opposite signs implies Cov(u', Fx) < 0; for u" < 0, this is when Fo and Fxo have the same

sign.

Even if Fo and Fxo are not monotone, the following weaker results are obtained since u' (.) and its inverse (u') -

are monotone transformations when u'(.) is strictly decreasing:

(e) If (F, Fx) is positively quadrant dependent and if u is strictly concave, then (u', Fx) is negatively quadrant
dependent and Cov(u', Fx) < 0. The reverse holds if (F, Fx) is negatively quadrant dependent.

(f) If (u', Fx) is positively quadrant dependent [so that Cov(u', Fx) > 0] and u(.) is strictly concave, then
Cov(F, Fx) < 0; the reverse holds if (u', Fx) is negatively quadrant dependent.
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