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Abstract 
We investigate how to theoretically and empirically incorporate demographic translating in 
consumer distance functions.  Consumer distance functions yield inverse demand systems that 
are of interest when attempting to better understand questions of price formation.  Translating 
procedures are important when incorporating pre-committed quantities, pre-allocated factors, or 
demographic variables (e.g., advertising, health or food safety information) in the inverse demand 
system. Examples are included for illustrative purposes. 
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Introduction 

In this paper we investigate translating and scaling consumer distance functions, which are of 

interest when incorporating pre-committed, pre-allocated, demographic, or other shift variables 

into inverse demand systems.  Consumer distance functions that yield inverse demand systems 

are relevant when attempting to better understand questions of price formation at the market 

level.  Translating procedures provide theoretically consistent means to incorporating pre-

committed quantities, pre-allocated factors, or demographic variables in inverse demand systems. 

An empirical example on US meat demand is included to illustrate the economic approach and 

econometric testing procedures. 

Our empirical application focuses on estimating own- and cross-commodity effects of 

public food safety information on retail price formation for beef, pork, and poultry.  Examining 

the impact of food safety information reported in the media and product recall information on 

demand for food and agricultural markets has been a topic of considerable interest to economists, 

e.g. Piggott and Marsh (2004), Marsh, Schroeder, and Mintert (2004), Brown (1969), Johnson 

(1988), Smith, van Ravenswaay and Thompson (1988), van Ravenswaay and Hoehn (1991), 

Robenstein and Thurman (1996), Lusk and Schroeder (2000), McKenzie and Thomsen (2001), 

Thomsen and McKenzie (2001), Dahlgran and Fairchild (1987).  Public information pertaining to 

food safety and health concerns through the media have previously been shown to affect demand, 

e.g., van Ravenswaay and Hoehn (1991), Smith, van Ravenswaay and Thompson (1988), and 

Dahlgran and Fairchild (1987).  Several of these studies have been concerned with the U.S. meat 

market and analyzing how public information concerning health information and product recalls 

impact futures markets and publicly traded companies. For example, Dahlgran and Fairchild 

(1987) found that adverse publicity about salmonella contamination of chicken depressed 
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demand for chicken, but the effects were small (less than 1%), with consumer’s soon forgetting 

this adverse publicity and reverting back to previous consumption levels.   

The paper proceeds in the following manner.  First, for illustrative purposes, the distance 

function is reviewed and then specified with demographic translation.  Here, the translated 

distance function is derived from the primal utility maximization problem.  Second, an 

illustrative empirical example of meat demand is specified and estimated using a generalized 

inverse almost ideal demand system.  Finally, concluding comments are provided.  

Distance Function  

The consumer’s distance function can be defined by 

(1)     

 

where 1δ ≥ .  In (1), u is a (1× 1) scalar of utility, x =(x1,…,xk)′ is a (n × 1) vector of goods and 

( )S u  is the set of all good vectors n
+∈x R  that can produce the utility level 1u +∈R .  The 

underlying behavioral assumption is that the distance function represents a rescaling of all goods 

consistent with a target utility level.  Intuitively, δ  is the maximum value by which one could 

divide x and still produce u.  The value δ  places / δx  on the boundary of ( )S u  and on the ray 

through x.  Investigating the distance function is interesting because it is a dual representation of 

the expenditure and indirect utility functions.  Moreover, the input distance function provides 

direct estimates of inverse demand relationships and price flexibilities that are informative 

economic measures of price formation.  

The standard properties of a distance function are that it is homogenous of degree one, 

nondecreasing, and concave in input quantities x, as well as nonincreasing and quasi-concave in 

( ) { }1, sup 0 | ( / ) ( ),D u S u y +
δ

= δ > δ ∈ ∀ ∈x x R
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utility u (Shephard 1970; Färe and Primont 1995).  From this framework, inverse demand 

equations may be obtained by applying Gorman’s Lemma 

(2)         

 

where 
1

n
i ii

M p x
=

= ∑  and 1=( ,..., )  np pp is a (n × 1) vector of expenditure normalized prices or 

/i ip p M= .  The Hessian matrix is given by the second order derivatives of the distance function 

(Antonelli matrix) 

(3)    

2 2

2 2

( , ) ( , )  

( , ) ( , )  

D u D u
uA

D u D u
u u u

⎡ ⎤∂ ∂
⎢ ⎥′∂ ∂ ∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥
⎢ ⎥′∂ ∂ ∂ ∂⎣ ⎦

x x
x x x

x x
x

 

Demographic Translating 

The primal utility maximization problem is  

(4)     ( ){ }max   
x

u st M′ =x p x  

Pollak and Wales define demographic scaling of x for some pre-committed consumption vector c 

as ∗ = −x x c  such that the utility function is rewritten as  

(5)      ( ) ( )*u u= −x x c  

Then the translated primal problem can be specified as  

(6)     ( ){ }*

* * *max   u st M′ =
x

x p x  

where *M M ′= −p c  is supernumerary expenditure and ′p c  is pre-committed expenditure.  

Importantly, under demographic translation, dual identities, relationships, and properties follow 

for (6).  It is well known that the dual indirect utility function is then ( )*,  V V M= p  and the 

( , ) ( , )D u u∂
=

∂
x p x
x



 5

expenditure function is ( )* *,  E E M′= +p c p (Pollak and Wales).  The distance function also can 

be defined through the dual relationship with the utility function as 

(7)     ( ) { }* *, arg ( / ) 1
d

D u u d= =x x  

Equivalently ( ) ( )*, ,D u D u− =x c x  with ∗ = −x x c .  A modified Gorman’s Lemma can be 

derived using the Envelope Theorem and a dual identity defining the distance function through 

the normalized expenditure function ( ) ( ){ }* * *, min   , 1D u st E u′= =
p

x p x p  such that 

(8)         

 

where ( )1= ,..., np pp is a n × 1 vector of prices normalized by supernumerary expenditure, or 

*/i ip p M= .1  The Antonelli matrix of second derivatives is defined in the standard way.2 

Example:  Cobb-Douglas Utility Function 

For illustrative purposes we include an example using the Cobb-Douglas utility function 

( )1 2u x x=  with two goods.  The generalized Cobb-Douglas utility function can be defined as 

( )1 1 2 2)(u x c x c= − − .  Following standard dual relationships the following dual functions can be 

derived: (a) the expenditure function ( ) ( )1/ 2
1 2, 4E u up p′= +p p c , (b) the indirect utility function 

( )
* *

*

1 2

,
2 2
M MV M

p p
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

p , and (c) the distance function ( ) ( )( )1 1 2 2x c x c
D

u
− −⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

x c .  Further, 

and considering good 1 for convenience, dual relationships yield the Marshallian demand 

                                                           
1 Note that the expenditure value normalizing prices is the supernumerary expenditure M*, which leads to a modified 
Gorman’s Lemma. 
2 Demographic scaling, Gorman, and inverse Gorman form approaches also can be integrated into distance function 
specifications. 

( ) ( )
*

*

,  
,

D u
u

∂
=

∂

x
p x

x
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function 
*

1 1
12

m Mx c
p

= +  (using Roy’s Identity), Hicksian demand function 
1/ 2

2
1

1

h px u
p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

(from 

Shephard’s Lemma), the inverse Hicksian demand function ( )
( )

1/ 2

2 2
1

1 1

1
2

h x c
p

x c u
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (from a 

modified Gorman’s Lemma), and the inverse Marshallian demand function 
( )1

1 1

1 1
2

mp
x c

=
−

.  

Finally, note that with the Cobb-Douglas specification, it is straight forward to derive the inverse 

Marshallian demand function directly from the Marshallian demand function.  

Empirical Application 

For an empirical application we examine the impacts of food safety information on price 

formation for meat using an inverse demand system approach.  Arguably the most popular choice 

in applied demand analysis has been to employ the Almost Ideal (AI) model (Deaton and 

Muellbauer) when estimating a complete system of demand equations. The AI model has been 

used extensively since it is a locally flexible functional form; is appropriate for aggregate and 

individual consumer analysis; and allows restrictions from theory such as homogeneity, adding-

up, and symmetry to be imposed.  The generalized almost ideal demand system (GAIDS) 

incorporating precommitted quantities was first proposed by Bollino (1990).  Piggott and Marsh 

(2004) examined the impact of food safety information on consumer demand for meat using the 

generalized almost ideal demand system (GAIDS) with pre-committed quantities and 

demographic translation.  They found significant but small effects of public food safety 

information on meat demand.   

Data 

Food safety indices are based on newspaper articles from the popular press constructed by 

Piggott and Marsh (2004).  Food safety indices are constructed separately for beef, pork, and 
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poultry.  Data for the series were obtained by searching the top fifty English language 

newspapers in circulation from 1982 to 1999 using the academic version of the Lexis-Nexis 

search tool.  Keywords searched were food safety or contamination or product recall or outbreak 

or salmonella or listeria or E. coli or trichinae or staphylococcus or foodborne.  From this 

information base, the search was narrowed to collect beef, pork, and poultry information 

separately by using additional terms a) beef or hamburger, b) pork or ham, and c) chicken, 

turkey, or poultry, respectively.  The newspaper articles were then linearly aggregated to 

construct quarterly beef, pork, and poultry media indices.   

Meat data used in the analysis are quarterly observations over the period 1982(1)-1999(3), 

providing a total of 71 observations.  The basic quantity data are per capita disappearance data 

from the United States Department of Agriculture (USDA), Economic Research Service (ERS) 

supply and utilization tables for beef, pork, and poultry (broiler, other-chicken, and turkey) 

published in the Red Meats Yearbook and Poultry Yearbook with data after 1990 taken from 

updated revisions of these publications made available online.  The beef price is the average retail 

choice beef price, the pork price is average retail pork price, and the poultry price was calculated 

by summing quarterly expenditures on chicken, using the average retail price for whole fryers, 

and quarterly expenditures on turkey, using the average retail price of whole frozen birds, divided 

by the sum of quarterly per capita disappearance on chicken and turkey.  All of the price 

variables are published in the same USDA, ERS sources with the original sources identified as 

the ERS (Animal Products branch) for the beef and pork prices (variable names BFVRCCUS and 

PKVRCCUS, respectively) and the Bureau of Labor Statistics, U.S. Department of Labor for the 

whole fryers (chicken) and whole frozen bird (turkey) prices.  Food safety variables for beef, 

pork, and poultry used in the analysis are quarterly data over the same period, constructed as 
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discussed in a previous section. Finally, effects of time on meat demand are incorporated in the 

model through the use of quarterly demand shift (binary) variables for seasonality and a linear 

trend variable as discussed in the previous section.  Table 1 provides descriptive statistics of the 

non-binary variables. 

Empirical Model 

Capturing the own- and cross-commodity impacts on price formation from food safety concerns, 

as well as the pure food safety and indirect effects, motivate the subsequent model specification.  

Like traditional own/cross quantity and scale effects, food safety effects can be addressed within 

a theoretically consistent inverse demand system.  We attempt to accomplish this by using a 

standard inverse demand model generalized to include pre-committed quantities and then adopt a 

demographic translation procedure.   

Modifying the pre-committed quantities, the ‘ci’s, to depend linearly upon time variables 

and food safety indices implies the following augmentation of the model outlined in (7) of: 

(9) 
3

0 , , ,
1 0

L

i i i ik k i m t m i m t m i m t m
k m

c c t qd bf pk py− − −
= =

= + τ + θ + φ + π + κ∑ ∑    

where t is a linear time trend set equal to 1 for the initial time period; qdk (k=1, 2, and 3) are 

seasonal dummies; bft-m is the beef food safety indices, pkt-m is the pork food safety indices, and 

pyt-m is the poultry food safety indices all lagged m periods.  The parameters that must be 

estimated are the 0 'ic s , si 'τ , sik 'θ , smi ',φ , smi ',π  and smi ',κ .  There is no way to know a 

priori how long a particular food safety "event" may impact demand.  This is an empirical 

question that can be investigated econometrically by testing alternative lag lengths to determine 

the appropriate choice of L.  This issue is pursued in more detail in the model results section of 

the paper. 
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Inverse Almost Ideal Demand System 

Following Eales and Unnevehr and Holt and Goodwin the logarithmic distance function may be 

specified as: 

(10)   ln ( , ) (1 ) ln ( ) ln ( )D u u a u b= − +x x x  

The inverse almost ideal demand system (IAIDS) is obtained by substituting equations (11) and 

(12) below into (10) above:    

(11)   1
0 2

1 1 1

ln ( ) ln ln ln
n n n

j j ij i j
j i j

a x x x
= = =

= α + α + γ∑ ∑∑x   

and  

(12)   0 1
ln ( ) ln ( )i

n
ii

b x a−β

=
= β +∏x x . 

The share form of the inverse demand function can be written as 

(13) j
1

ln  x ln
n

i i ij i
j

w Q
=

= α + γ +β∑   

where 

(14)   1
0 2

1 1 1

ln ln ln ln
n n n

j j ij i j
j i j

Q x x x
= = =

= α + α + γ∑ ∑∑  

In (13) and (14), wi = expenditure share of meat type i  ( i i
i

p xw
M

= ) and ( )1
2ij ij jiγ = γ + γ .  

Necessary demand conditions that lead to parameter restrictions of the distance function 

specification are as follows:  

(15a)    
1 1 1

1,   0,  0  
n n n

i ij i
i j i= = =

α = γ = β =∑ ∑ ∑ adding up  

(15 b)    
1

0
n

ij
i=
γ =∑   homogeneity 
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(15c)    ij jiγ = γ  symmetry 

Price and scale flexibilities provided in Eales and Unnevehr are defined by 

(16a)   ( ) ( )
1

ln 1 ln  
ln

n
i

i i ij j i
ji

p
x

x w =

⎡ ⎤⎛ ⎞∂
= γ +β α + γ − δ⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

∑
x

 

and 

(16b)    ( )ln
1 /

ln
i

i i

p
w

∂ λ
= − +β

∂ λ
x

 

where the last equality simplifies due to imposition of general demand restrictions with reference 

vector x . 

Generalized Inverse Almost Ideal Demand System 

Using the identity that ∗ = −x x c , the generalized logarithmic distance function may be specified 

as: 

(17)   * * *ln ( , ) (1 ) ln ( ) ln ( )D u u a u b= − +x x x  

The generalized inverse almost ideal demand system (GIAIDS) then is obtained by substituting 

(18)   ( ) ( ) ( )*
0

1 1 1
ln ( ) ln .5 ln ln

n n n

j j j ij i i j j
j i j

a x c x c x c
= = =

= α + α − + γ − −∑ ∑∑x   

and  

(19)   ( )* *
0 1

ln ( ) ln ( )in
i ii

b x c a−β

=
= β − +∏x x . 

into equation (17).  The supernumerary share form of the inverse demand functions is then 

(20a) ( ) *

1

ln  ln
n

i i ij j j i
j

w x c Q∗

=

= α + γ − + β∑   

where i i
i

p xw
M

∗
∗

∗=  and 
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(20b)   ( ) ( ) ( )*
0

1 1 1
ln ln .5 ln ln

n n n

j j j ij i i j j
j i j

Q x c x c x c
= = =

= α + α − + γ − −∑ ∑∑  

Rewriting (20a) yields the standard share equation 

(21)  ( )
*

*

1
ln  ln

n
i i

i i ij j j i
j

p c Mw x c Q
M M =

⎡ ⎤
= + α + γ − +β⎢ ⎥

⎣ ⎦
∑  

with i i
i

p xw
M

= .  Price, scale, and food safety flexibilities can be derived from (21).   

Several important issues regarding parameter restrictions and differences in methodology need to 

be discussed.   First, the necessary demand conditions that lead to parameter restrictions in (15) 

remain unchanged for the GIAIDS relative to the IAIDS.  As in the GAIDS there are no 

necessary economic restrictions to be imposed on the pre-committed quantities ci’s.  Moreover, if 

we augment the pre-committed quantities using demographic translation as in (9), there are no 

restrictions on food safety parameters either.  Second, and as an aside, this approach offers an 

alternative means to incorporate habit formation into the IAIDS.  Holt and Goodwin augment 

parameters of the share equations in an effort to incorporate habit formation.  Alternatively, one 

could follow Pollak and Wales and augment the pre-committed quantities themselves to 

incorporate habit formation. 

Results 

In the empirical analysis, meat is treated as a weakly separable group comprised of beef, 

pork, and poultry (chicken and turkey) in which consumption of an individual meat item depends 

only on the expenditure of the group, the prices of the goods within the group, and certain 

introduced demand shifters.  Current and lagged (1 period) food safety information are included 

in analysis.  Models were estimated using iterated non-linear estimation techniques.  Due to the 

singular nature of the share system one of the equations must be deleted (poultry) with the 
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remaining equations being estimated (beef and pork).  Theoretical restrictions such as 

homogeneity and symmetry were imposed as a maintained hypothesis. 

Results are presented in tables 2-4.  Price and scale flexibilities are negative, as expected 

(table 2).  Twelve of eighteen coefficients for current and lagged (1 period) food safety 

information are statistically significant in the price formation equations (table 3).  Food safety 

flexibilities are provided in table 4.  Own food safety flexibilities are negative only for pork 

(short and long run).  Cross food safety effects are negative for four out of the six cases.  In all, 

the average food safety impacts are small relative to quantity and scale effects. Nevertheless, 

during periods coinciding with prominent food safety events, food safety information effects can 

be economically significant in price formation.  It appears that food safety information impacts 

on price formation are larger in magnitude and longer lasting than on the consumer demand side 

(see Piggott and Marsh (2004)).   

Conclusion 

We investigate how to theoretically and empirically incorporate demographic translating in 

consumer distance functions.  Translating procedures are important when incorporating pre-

committed quantities, pre-allocated factors, or demographic variables (e.g., advertising, health or 

food safety information) into distance functions to better understand price formation.  

For illustrative purposes the impacts of food safety information on US meat demand were 

examined. To do so, we specified and estimated a generalized inverse almost ideal demand 

system with demographic translation.  Preliminary results suggest that current and lagged (1 

period) food safety information are statistically significant in price formation.  The average food 

safety impacts are small relative to quantity and scale effects. However, food safety information 

can be economically significant in price formation during periods coinciding with prominent food 
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safety events.  Food safety information impacts on price formation are larger in magnitude and 

longer lasting than on the consumer demand side.  Future work would include testing alternative 

hypotheses, model specifications, and curvature conditions. 
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Table 1: Summary Statistics of Quarterly Data, 1982(1)-1999(3) 

  
Variable Average Std. Dev. Minimum Maximum 
Beef Consumption (lbs/capita) 17.799 1.353 15.892 20.818
Pork Consumption (lbs/capita) 12.789 0.685 11.562 14.492
Poultry Consumption (lbs/capita) 19.607 3.040 13.674 24.767
Retail Beef Price ($/lb) 2.638 0.240 2.227 3.004
Retail Pork Price ($/lb) 2.067 0.241 1.678 2.481
Retail Poultry Price ($/lb) 0.901 0.086 0.721 1.051
Meat Expenditure ($/capita) 90.951 8.316 75.660 108.436
Beef Expenditure Share 0.516 0.038 0.435 0.586
Pork Expenditure Share 0.290 0.014 0.265 0.323
Poultry Expenditure Share 0.194 0.030 0.133 0.243
Beef Food Safety 162.817 223.358 2.000 1158.000
Pork Food Safety 41.887 40.925 0.000 241.000
Poultry Food Safety 151.296 126.822 6.000 571.000
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Table 2.  Price and Scale Flexiblities 

Inverse Demand Equation

Quantity Beef Pork Poultry
Beef -0.1404 -0.2146 -2.0337
Pork -0.1141 -0.0617 -1.1243
Poultry -0.1026 -0.1352 -0.5333
Scale -0.3571 -0.4114 -3.6913  

 

Table 3.  Food Safety Coefficients 

Current Food Safety Index
Equation Beef Pork Poultry
Beef 0.0004 (-0.0057)* (-0.0001)
Pork (-0.0010)* (-0.0037)* 0.0015*
Poultry 0.0005 0.0167* (-0.0038)*

Lagged  Food Safety Index
Equation Beef Pork Poultry
Beef (-0.0006)** (-0.0134)* (0.0017)**
Pork (-0.0003) (-0.0045)* (0.0009)*
Poultry 0.0008 (0.0295)* (-0.0060)*  

 

Table 4.  Food Safety Flexibilities 

 

 

 

 

Short-Run

Equation Beef Pork Poultry
Beef 0.0036 -0.0045 -0.2693
Pork -0.0070 -0.0033 -0.0203
Poultry 0.0014 0.0151 0.6597

Long-Run
Equation Beef Pork Poultry
Beef 0.0023 -0.0154 -0.8672
Pork -0.0075 -0.0041 -0.0830
Poultry 0.0052 0.0421 2.1560
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