
1 
 

 
 
 

Bayesian Estimation of The Impacts of Food Safety Information on 
Household Demand for Meat and Poultry 

 
 

by 
 
 

Mykel R. Taylor 

School of Economic Sciences 
Washington State University 

P.O. Box 646210  
Pullman, WA 99164-6210   

E-mail: m_taylor@wsu.edu 
 
 

Daniel Phaneuf 
Department of Agricultural and Resource Economics 

North Carolina State University 
Box 8109 

Raleigh, NC 27695-8109 
E-mail: dan_phaneuf@ncsu.edu 

 
 
 

Selected Paper prepared for presentation at the Agricultural & Applied Economics 
Association’s 2009 AAEA & ACCI Joint Annual Meeting, Milwaukee, WI, July 26-28, 2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2009 by Taylor and Phaneuf. All rights reserved. Readers may make verbatim copies of 
this document for non-commercial purposes by any means, provided this copyright notice appears on 
all such copies. 



2 
 

 Many factors can influence consumer purchasing habits, including information about 

product safety. Concerns about food safety are likely to be influenced by idiosyncratic 

experiences such as suffering from a foodborne illness or receiving medical warnings from a 

physician regarding susceptibility to bacterial pathogens. 1 General media information on the 

safety of meat and poultry might also affect purchase decisions. This is particularly plausible 

when large scale food safety events occur and media coverage of contaminated meat or poultry 

products is heightened. While idiosyncratic experiences are difficult to measure, the amount of 

food safety information available to consumers in the press can be quantified.  

The objective of this study is to investigate if the quantity of publicly available food 

safety information impacts consumers’ decisions to purchase fresh meat and poultry. A media 

index measuring the number of articles containing food safety information on beef, pork, or 

poultry published in U.S. regional newspapers is used as a proxy for food safety information 

available to consumers. The media index is a broad measure in that it includes reporting on 

domestic recall events as well as international issues, commentary on food contamination 

prevention, and other food safety-related topics. Commodity- and region-specific, monthly 

parameters are constructed using the media index and a discrete-continuous choice tobit model is 

estimated to measure the impact of food safety information on purchase behavior. Results from 

the study will provide insight into households' propensity to avoid or change their consumption 

of a commodity when faced with food safety concerns. 

Literature Review 

Previous research on consumer responses to food safety information has employed 

various measures of media coverage to infer its effect on food demand. Dahlgran and Fairchild 

                                                 
1 An example of a food safety warning from a physician would be providing information to pregnant women on the 
increased risks of miscarriage due to listeria contamination. 
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(2002) studied the effect of adverse media coverage from salmonella contamination on the 

demand for chicken. Their model incorporated adverse media publicity from T.V. and print as a 

form of negative advertising, where publicity included both the number of stories aired and the 

percent of population exposed to the coverage. Weekly market-level data on quantity and prices 

of chicken were used to allow measurement of short-run effects on the price of chicken. Their 

results did indicate a negative demand response to adverse media, however, the effect died out in 

a matter of weeks.  Burton and Young (1996) analyzed the effects of bovine spongiform 

encephalopathy (BSE) on meat demand in Great Britain using media indices incorporated into a 

dynamic AIDS model. The analysis used quarterly data on quantity and expenditures for beef, 

lamb, pork, and poultry. The study used an index of media coverage and showed that BSE 

publicity had both significant short-run and long-run effects on consumer expenditures on beef 

and among the other meats. 

 A recent study by Piggott and Marsh (2004) analyzed the impact of food safety 

information on demand for beef, pork, and poultry using aggregate data on quarterly U.S. per 

capita disappearance of meat. They developed a theoretical model that incorporated meat quality 

into the demand for meat. The framework also explicitly considered both own- and cross-product 

effects from quality on the quantity demanded. Meat quality, in their model, was inversely 

related to the occurrence of food safety information in the media. The media index for food 

safety information measured bundles of contaminants reported individually for beef, pork, and 

poultry. Their findings indicated that effects of food safety information on meat demand were 

statistically significant, but with no lagged effect implying a relatively small economic impact. 

Each of these studies used aggregate data to estimate meat and/or poultry demand 

equations that quantify the effect of food safety information on purchases. This approach has 
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shown that media information matters at the aggregate level, however it does not allow 

assessment of the likelihood that individual households will avoid purchasing meat and poultry 

products all together in response to food safety information. Examining both marginal and 

discrete avoidance behavior at the disaggregate level (i.e., what mix of products households buy 

on a given purchase occasion) can provide additional insight into consumer demand for meat and 

poultry products under different food safety information environments.  

Data 

 Monthly data from the time period January 1998 to December 2005 is used to analyze the 

effects of food safety information on U.S. household demand for meat and poultry.  The data for 

this study come from two sources.  Data on household purchases of meat and poultry were 

obtained from the Nielsen Homescan panel.  These panel data also contain information on 

several demographic characteristics of the participating households.  The data used to describe 

food safety information were obtained from searches of newspapers using the Lexis-Nexis 

academic search engine.   

The Nielsen Homescan panel is a nationwide survey of households and their retail food 

purchases.  Households record purchase data by scanning the universal product codes (UPCs) of 

the items they purchase.  Each item is recorded by a scanning device at home after every 

shopping trip.  The purchase data are subsequently uploaded electronically to Nielsen’s database.  

Data include detailed product information, date of purchase, total quantity, total expenditure, and 

the value of any coupons used for every item purchased.  Not all food products are marked with 

a UPC code.  Unmarked items are referred to as random-weight products and include foods such 

as fresh meat and poultry or fresh fruits and vegetables.  Random weight items are recorded by 

using a code book provided by Nielsen that contains product descriptions and unique codes that 
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can be scanned by the individual.  Both random-weight and UPC coded products are used in the 

analysis. 

The products of interest for this study are fresh and frozen beef and veal, pork, chicken, 

and turkey.  These groups do not include any processed products because it becomes difficult to 

determine the extent of processing and the value added to the final price from processing.2  All 

the fresh products used in the proposed demand analysis are random-weight items and the frozen 

products are marked by a UPC code.  Each observation is a separate product purchase and 

includes the total quantity purchased in pounds, the total amount spent on the item in dollars, a 

product description (e.g. ground beef-bulk, rib eye steak, whole chicken), and the date of 

purchase.  Prices per unit of product were subsequently calculated by dividing total expenditure 

by total quantity for each individual meat or poultry purchase.   

One advantage of working with daily purchase data is the flexibility to choose the 

frequency of observation.  The choice of periodicity is driven primarily by the level of censoring 

in the data.  If purchases were aggregated to a weekly level, the amount of censoring in this 

dataset is very large.  Quarterly data greatly reduces the amount of censoring for all 

commodities, but that level of periodicity could mask possible short run food safety effects.  

Therefore, a compromise of a monthly periodicity was chosen for the empirical analysis.  

Approximately 4.70% of the households did not purchase any meat or poultry products in a 

given year.  These households where removed from the panel, leaving 62,136 households across 

all eight sample years.  

The Nielsen Homescan panel is a stratified random sample that was selected based on 

both geographic and demographic targets.  The dataset used in this study is an unbalanced panel 

                                                 
2 Examples of processed meat and poultry products include luncheon meats, frozen dinners, or soups that contain 
meat or poultry. 
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in that not all households participated for all sample years.  However, the distributions of the 

demographic and geographic characteristics of the households within a sample year do not vary 

noticeably from year to year.  Summary statistics of the household demographic variables are 

listed in table 1. 

 As mentioned previously, prices per unit of each meat and poultry product were 

calculated by dividing total expenditure by total quantity. This results in retail prices being 

available only for the households that actually made purchases. For the households that chose not 

to purchase a product in a given month, the price they faced for that product is not recorded. 

Therefore, the missing prices must be imputed for households without positive purchases in 

order to have a complete dataset for estimation purposes. Following Cox and Wohlgenant 

(1986), household income is used to capture hypothesized increases in quality that may be 

demanded from increased income. A variable for household size is used to account for 

economies of size in purchasing meat and poultry products. Quadratic terms for both income and 

household size are also included in the regression. Other demographic variables were considered 

for the price equations; however, the coefficients were not statistically different from zero for 

most of the goods. 

The final specification of the linear price regression is as follows: 

2 2
itn it r n n n n n n itp p u i i s s             γ r

 
,           (1) 

where itnp  is the observed price of good i in month t for consuming household n, itp  is the 

sample average monthly price for good i in month t, nr  is a vector of binary variables indicating 

the region in which the household is located, nu  is a binary variable indicating if the household is 

located in an urban area, ni  is household income, 2
ni  is household income squared, ns  is the size 
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of household, 2
ns  is the squared size of household, it  is an iid error term, and 

, , , , , ,  and r     γ  are the corresponding coefficients to be estimated.3  The regression is 

estimated without a constant term so that all the regional binary variables can be included and 

standard errors are estimated using the robust sandwich estimator (Huber, 1967; White, 1980).  

 The regression coefficients for each good were subsequently used to predict prices for the 

non-consuming households. Predicted prices were obtained by using the sample monthly average 

prices and the geographic and demographic characteristics of the non-consuming households. 

These predicted prices replace the zeros to provide a complete series of prices for subsequent 

demand analysis.  

The grouping of purchases into various beef, pork, and poultry products of similar 

characteristics and average prices is intended to minimize the amount of quality and price 

variation that occurs when the daily purchases are aggregated to a monthly level. However, the 

number of equations that must be estimated is still relatively large (five beef, four pork, and six 

poultry groups), so the products are aggregated to the commodity level for estimation purposes. 

While aggregation is useful for estimation, it can mask variation in product prices and quality, 

making explicit consideration of this variation within aggregate commodities critical. 

In order to account for the within-species price and quality variation that exists when 

purchases were aggregated, a Törnqvist (1936) price index was used. The expenditure share-

weighted geometric price index defined as follows: 

int
1

i

G
wB

nt
i

p p


  ,      (2) 

                                                 
3 Total household income is recorded as an interval in this dataset. Therefore, the midpoint of the interval is the 
value used in the price regression. To calculate the midpoint of the highest income range, an upper bound of 
$150,000 was used. 
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where B
ntp  is the index price of beef for household n in month t, intp  is the retail price of beef 

group i faced by the household n in month t, wi is the beef group i share of total household 

expenditures on all groups of beef, and G is the number of groups specified for beef. The 

expenditure share is calculated as follows: 

1

,i i
i G

j j
j

p x
w

p x





      (3) 

where ip  is the average price of beef group i across the entire sample period and ix  is the 

average quantity purchased of beef group i across the entire sample period.4  For beef, there are 

five subgroups with group 1 referring to ground beef, group 2 to roasts, group 3 to steaks, group 

4 to frozen beef, and group 5 to other beef. A similar price index was calculated for the pork and 

poultry aggregates as well, using four groups for pork and six groups for poultry. The summary 

statistics of the price and quantity indices are listed in table 2.  

 Following Piggott and Marsh (2004), food safety is measured using commodity-specific 

indices of newspaper articles. This specification of commodity-specific media indices allows the 

cross-commodity effects of food safety information to be explicitly modeled. Relevant articles 

from six major papers in each of four regions of the United States were found using the Lexis-

Nexis search engine. The articles counts gathered from the regional newspaper search were 

aggregated to create indices that are 30-day rolling averages of the number of newspapers 

articles published during the previous two weeks.5 The intuition for this specification of the 

indices is that each day of the month is a potential purchase occasion and the available and 

                                                 
4 The monthly retail price of each group is the observed group price if the household bought that group in month t. If 
the household did not purchase that group, then the predicted group price is used. 
5 The choice of a two week ‘memory’ for the media index is based on investigation of the household purchase data. 
These data indicate that, on average, fresh meat and poultry products are bought about 2 times per month. 
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relevant information for each purchase occasion may change as time passes. At the beginning of 

the month, the articles most likely to impact household purchase decisions are the ones published 

in the latter half of the previous month. Over the course of the month, however, the most relevant 

food safety information becomes articles published in the current month. The rolling average 

specification captures this change in available information over the 30 day period. Figures 1-3 

display the regional media indices for each of the three commodity groups. 

Demand Model 
 
 The demand model is estimated as a seemingly unrelated regression (SUR) tobit model. 

There are two reasons for the use of this particular estimator. First, not all households buy all 

three of the commodities considered in this study every month. If an ordinary least squares 

(OLS) estimator were used for this analysis, the resulting coefficients would be biased toward 

zero with the degree of bias increasing as the percentage of censoring increases. The second 

reason a SUR tobit model was chosen is due to the possible correlation that exists between the 

errors of the beef, pork, and poultry demand equations. These three commodities are likely to be 

substitutes and consumer’s decisions of which product to buy are potentially affected by 

characteristics of the others. The use of a system estimator such as SUR will explicitly account 

for any error correlation that may exist between the three commodities, providing more efficient 

estimates than single equation estimation.  

The SUR tobit model is specified with a component error structure (random effects model) 

to account for the correlation that is likely to exist between observations from the same 

household. The random effects SUR tobit model is comprised of J commodities (equations) and 

 N T  outcomes where N is the number of households and T is the total number of times all the 

households appear in the dataset. The model is specified as follows: 
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where iju  is the household- and commodity-specific random error term that does not vary over 

time,  2 0,
jij uu iid N  , iT  is the size of the panel for the ith household, and all other terms are 

as defined above with an additional t index. In an unbalanced panel dataset like the one used in 

this study, iT  will vary over households. The system of equations is stacked over J commodities 

and written as: 

*
1 1 1 1 1 11

*
2 2 2 2 2 22

*

0 0 0 0

0 0 0 0

0 0 0 0

it i i itit

it i i itit

J itJ J i J iJ itJitJ

uy

uy

uy

 
 

 

              
              
                  
              
             
               

x β c γ

x β c γ

x β c γ

 
 

            
 

, 






 


  (6) 

or 

* ,it it i i itX C    y α β γ u ε                  (7) 

for 1,..., ,  1,..., ii N t T  . Combining the regressor matrices, and it iX C , equation (7) can be 

rewritten as: 

* ,it it i itW   y u ε      (8) 

where   it j it iW I X C    ,    α β γ , JI  is a  J J  identity matrix,   0,i iid N Vu  , and 

  0,it iid N ε   with   0it is ε ε  for all t s . The covariance matrix V is defined as follows:  

1
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 .           (9) 
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The system of equations are further stacked over all households and time periods in the panel and 

written as: 

1 11
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or 

* ,W    y u ε      (11) 

where *y is  1N J T   , W  is  N J T K   ,   is  1K  , u  is  1N J T   with the same 

value for the ith household over all Ti periods, ε  is  1N J T   ,  
1

N

i
i

T T


  , and K is the total 

number of demand parameters to be estimated. 

The individual equations of the SUR tobit model are comprised of parameters that vary 

across both commodities, households, and time. Using the media index as a proxy for food safety 

information, the model is estimated for each of the three commodities of interest using the 

following specification: 

 
(12) 
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where ijtq  is the quality-adjusted per capita quantity of commodity j purchased by household i in 

time period t (can be positive or zero), D indexes the total number of demographic variables 

included in the model, and 
d
ih is the dth demographic characteristic of household i in time period 

t.6  

 The variable Price used in the three demand equations is the share-weighted geometric 

price index for each of the three commodities. The expected impact of Price on the probability of 

purchasing a commodity should be negative. That is, it would be expected that as the price of a 

good decreases, the probability of a household purchasing it would increase. The expected sign 

on the prices of the other goods in the model is positive, indicating that the three meat and 

poultry commodities are substitute goods. The food safety information variable, MI, is the 

commodity- and region-specific media index. The expected effect of an increase in the amount 

of food safety information available to the public would decrease the probability of purchase for 

some or possibly all households. 

 Interaction terms between the food safety variable and select demographic variables are 

included in the model. The education variable, Ed, used in the model is a binary variable equal to 

one if the head of household has a college or post college education and zero otherwise.7  Age is 

measured as a binary variable equal to one if the head of household is aged 55 or older and zero 

otherwise. The effect of children, Child, is measured using a binary variable equal to one if 

children under the age of 18 are present in the household and zero otherwise. The final 

demographic variable used in the interaction terms with food safety information, Urban, is a 

                                                 
6 The demographic variables such as age, education, and race do not vary over time. However, the notation also 
includes the binary variables for annual and monthly seasonal effects, which do vary over time. 
7 Demographic information is provided for both the male and female in married households, but no designation is 
made for the primary person responsible for purchase decisions. Therefore, it was arbitrarily decided that the 
demographic information for the female head of household would be used in model estimation. 
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binary variable indicating the location of the household in an urban area. Urban equals one if the 

household resides in an urban area and equals zero otherwise. The demographic variables for 

children and head of household aged 55 and older are used in the food safety interactions 

because these two groups of people are potentially the most susceptible to serious illness from 

foodborne pathogens. The education dummy variable is included to reflect possible differences 

in the gathering and processing of media information between households with and without 

college degrees. Finally, the urban location variable is interacted with food safety information to 

reflect possible differences information dissemination between urban and rural areas. For 

example, the limited availability of cable television or high speed internet connections in rural 

areas may impact the type and quantity of information that rural households will receive. There 

are no a priori expectations of the effect of the interaction terms on the probability of purchasing 

the three commodities. In addition to the interaction terms, the select household demographic 

variables of Ed, Age, Child, and Urban also enter the model separately to account for the average 

effects of these characteristics. 

 Other variables included in the binary choice models are household specific. They 

include variables for household income, Income, and a quadratic household income term, 

Income2. The expected effect of income on the probability of purchasing beef, pork, or poultry is 

positive, while the expected sign for the squared term is negative. This reflects a positive, but 

declining effect of income on the probability of meat and poultry purchases.8 The size of the 

household is also included in the regression (Hsize) to account for possible differences in 

purchase patterns for large versus small families. Seasonal effects in the purchase patterns of 

                                                 
8 The household income data were scaled by dividing each observation by 10,000. Therefore, the coefficients for the 
income variables can be interpreted as the change in the dependent variable caused by a change in total household 
income of $10,000.  
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households are accounted for using monthly dummy variables (M1-M12) with the parameter for 

December (M12) omitted from the regression. Annual effects in demand are also considered 

using year dummy variables (Y1-Y8) with the variable for 2003 (Y6) omitted from the regression. 

The expected signs for these variables are not known a priori, but are expected to vary by 

commodity. The geographic location of the household is included as binary variables for the 

central, western, and northeastern regions (Central, West, Northeast) with the variable for the 

southern region dropped from the regression. The race of the head of household is categorized 

into Caucasian, Hispanic, black, Asian, and Other race. The variables Hispanic, Black, Asian, 

and Other are included in the model and the variable Caucasian is omitted. The expected signs 

of the geographic location and race variables are not known a priori. 

 

Estimation Methodology 

The SUR tobit model is a generalization of the single equation tobit model. The primary 

estimation difficulty with SUR tobit is that as the number of equations (commodities) increases, 

the model becomes more difficult to estimate. This is due to the increase in the number of 

possible censored commodities. For example, if there are p commodities (equations), then there 

would be 2p possible combinations of censored commodities. Using Huang’s (2001) notation, the 

2 p  possible combinations may be represented by the following 2 1p   vector: 

   1 2
0,...,0 ,..., 0,...,0, ,..., ,..., ,...,ph

r p r

S S S S


              
   
  ,  (13) 

where kS  is  1p , 1, 2,..., 2 pk  , r is the number of censored commodities, ‘+’ indicates a 

positive purchase level for the commodity, and ‘0’ implies a censored observation for the 
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commodity in the random effects SUR tobit model. The likelihood function for the ith household 

in the hS case is given by: 

       
1

1 1 22 1 * 1 *1
2, ... 2 exp   .

pi ri r
h

W WS
i i i i i iL y W y W y W

 
  

     

 

        
    (14) 

It is clear that as the number of censored commodities approaches 2 p , the dimension of 

integration increases. In systems with large numbers of equations, this likelihood function 

quickly becomes intractable.9 

Given the complexities of estimation when censoring is present in a SUR model, it may 

be advantageous to use a methodology that augments or ‘fills in’ the latent dependent variables 

during estimation, thereby avoiding the need to compute integrated probabilities. This would 

simplify estimation to that of a standard non-censored SUR model. This study will employ a 

Bayesian analysis that allows for the use of a data augmentation methodology nested within a 

Gibbs sampler routine for posterior simulation. The Gibbs sampler was first introduced by 

Geman and Geman (1984) and a general explanation of the technique is found in Casella and 

George (1992). It is a Markov Chain Monte Carlo (MCMC) approach that generates random 

draws of variables from complex multivariate distributions by sampling sequentially from the 

full set of conditional distributions. The Gibbs sampler was shown by Percy (1992) to be suitable 

for estimation of the SUR model in a Bayesian analysis. Chib (1992) incorporated the idea of 

data augmentation into a Gibbs sampler for estimation of a single equation tobit model and the 

approach was extended to the SUR tobit model by Huang (2001). See Appendix 1 for details of 

the Bayesian estimation of the random effects SUR tobit model employed in this study. 

                                                 
9 Several alternative methodologies for estimating systems of censored demand equations have been put forth in the 
literature (e.g. Dong, Gould, and Kaiser (2004); Perali and Chavas (2000); Golan, Perloff, and Shen (2001)). The 
techniques used in these studies vary widely, suggesting that a general consensus on estimation methodology does 
not exist. 
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Results 

Due to the large size of the dataset and the amount of time needed to run these models, a 

subsample of the data was used for estimation. A random sample of 3,000 households was 

selected from the original dataset. All the observations from the panel were used for each of the 

3,000 households. This resulted in 119,280 observations that were used for estimation. Summary 

statistics are presented in table 3 for both the full dataset and the random sample.  

Bayesian coefficients are typically the mean of the posterior samples. Drawing from the 

Bernstien-von Mises theorem, the posterior analysis presented here is given a classical statistical 

interpretation.10 The classical perspective allows for discussion of the ‘statistical significance’ of 

the coefficients using confidence intervals. Summarizing the upper and lower 2.5% tails of the 

posterior distributions gives 95% confidence intervals for each parameter. Coefficients with 

confidence intervals that do not contain zero are referred to as statistically significantly different 

from zero. Results of the random effects SUR tobit model are presented in table 4. The means, 

standard deviations, and 95% confidence intervals are calculated using 1,015 posterior 

realizations.  

Rather than interpret the signs and statistical significance of the parameter estimates, 

household-level elasticities for prices, income, and food safety for the various demographic 

subgroups are discussed. Elasticities are useful for several reasons. First, although some of the 

food safety media index interaction terms with the demographic subgroups are statistically 

significant, the total effect for these subgroups (the average media effect plus the interaction 

coefficient) may or may not also be statistically significantly different from zero. Calculation of 

                                                 
10 The Bernstien-von Mises theorem states that as the sample size increases, the posterior distribution becomes 
normal and the variance of the posterior becomes the same as the sampling variance of the maximum likelihood 
estimator, implying that the mean of the posterior distribution (the Bayesian coefficients) is asymptotically 
equivalent to the maximum likelihood estimate (Train, pp.291-293, 2003). 
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the total food safety elasticity for each realization of the parameter vector will give both an 

average elasticity as well as the standard deviation. This provides more information about the 

statistical significance of the total effect for food safety. Second, elasticities provide estimates of 

purchase response that is unitless. This allows for a comparison of the effects of prices and 

income relative to food safety information. 

The elasticities are calculated using the marginal effects rather than the parameter 

estimates. The estimates of the unknown parameters are defined as follows: 

 *
i

i

E y

W





θ  ,         (15) 

where i denotes an individual household. The parameter estimates reflect the changes in the 

mean of the latent dependent variable for a change in an independent variable. The marginal 

effects are: 

 i

i

E y

W





m  ,         (16) 

and reflect the changes in the unconditional expected values of the observed dependent variable 

for a change in the independent variables. The use of the marginal effects allows the elasticities 

to be calculated using the full sample means for the regressors ( iW ) and the mean of the 

dependent variable for positive purchases only ( iy ). The marginal effects for the ith household 

and the jth equation of the random effects SUR tobit model are calculated as: 
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where jjV  is the jth diagonal element of the household-specific error variance  matrix. For the 

random effects model, the marginal effects of the jth equation, jm , are calculated as the average 

over all the posterior realizations. 

The own-price elasticity of the jth commodity is calculated as follows: 

jprice price
j j

j

p
E m

y
  ,             (18) 

where price
jm  is the own-price marginal effect for the jth commodity, jp  is the mean price 

calculated over the full sample of households and jy  is the mean quantity calculated using only 

the positive purchases of the jth commodity. The cross-price elasticity is calculated as follows: 

 for price price l
jl jl

j

p
E m j l

y
   ,      (19) 

where price
jlm  is the cross-price marginal effect for the jth commodity. The income elasticity is 

calculated as follows: 

 2

2  inc inc inc
j j j

j

inc
E m m inc

y
     ,        (20) 

where inc
jm  is the income marginal effect for the jth commodity, 

2inc
jm is the income squared 

marginal effect for the jth commodity, and inc  is the mean household income calculated over the 

full sample of households. 

The elasticity of quantity purchased with respect to the media index is similarly 

calculated for each commodity and demographic subgroup. The formula for the food safety 

elasticity with respect to education is as follows: 

  jMI Ed MI MI Ed
j j j Ed

j

MI
E m m

y
     ,    (21) 
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where MI
jm is the coefficient for food safety of the jth commodity, MI Ed

jm   is the marginal effect 

of the interaction term between the jth commodity media index and the dummy variable for a 

college educated head of household, and jMI  is the mean value of the media index variable for 

the jth commodity calculated using only the college educated head of household subgroup. The 

food safety elasticities for the other demographic subgroups (age 55 and older head of 

household, children present in the household, and household located in urban area) are similarly 

calculated.  

 The price and food safety elasticities are presented in table 5 for the random effects 

model. All of the own-price elasticities are statistically different from zero using a 95% 

confidence interval. The own-price elasticities are greater than one for beef and pork, but 

relatively inelastic for pork. The beef price elasticity indicates that a 10% increase in the price of 

beef would cause a 13.0% decline in per capita beef purchases. The effect from a 10% increase 

in the price of pork is estimated to be a 6.9% decline in purchases. The price effect for poultry is 

very comparable to that of beef price with an estimated decrease of 15.1% from a 10% increase 

in price. All but one of the cross-price elasticities for beef, pork, and poultry are statistically 

significantly different from zero and have negative signs. The cross-price elasticity of pork price 

on poultry purchases is not statistically significant. The cross-price elasticities are small in 

magnitude as compared to the own-price elasticities suggesting that a change in the price of 

another good in the system has very limited impact on the quantity purchased of the other goods. 

 The elasticities with respect to income are statistically significant for all three 

commodities. For beef, a 10% increase in household income increases the pounds per capita 

purchased by 1.6%. The effects for pork and poultry are increases in per capita purchases of 
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0.8% and 1.7%, respectively. These effects are similar in magnitude as compared to the cross-

price effects, but are much smaller than the own-price effects. 

The food safety elasticities for households located in urban areas are statistically 

significantly different from zero for every commodity media index. The effect of a 10% increase 

in the poultry index is estimated to be a decrease in purchases of 0.4% for these households. 

However, an increase in the beef and pork media indices is estimated to cause a 0.1% increase in 

the amount of beef and pork urban household purchase. All the remaining food safety elasticities 

are not significantly different from zero. The food safety effects that are statistically significant 

are relatively small in magnitude and do not appear to be as economically significant as the price 

and income elasticities.  

 The price and food safety elasticities estimated in this study are comparable to elasticity 

estimates given in other studies. A literature search conducted by the U.S. Environmental 

Protection Agency (pg. 3-41, 2002) indicated the following ranges of own-price elasticities for 

meat and poultry: -2.590 to -0.150 for beef; -1.234 to -0.070 for pork; -1.250 to -0.104 for 

broilers; and -0.680 to -0.372 for turkeys. The own price elasticity estimates from the random 

effects model for beef and pork fall within these ranges.11 The relatively high magnitude of the 

poultry price effect is similar to the results found by Piggott and Marsh (2004). They found that 

pre-committed quantities of beef and pork were higher than for poultry, suggesting that poultry 

purchases may be more sensitive to changes in price and income than beef and pork purchases. 

The food safety elasticities estimated in the Piggott and Marsh study are -0.0144 for beef, -

0.0131 for pork, and -0.0250 for poultry. These elasticities measure the total effect of food safety 

information on the representative consumer. The magnitudes of their elasticities are very 
                                                 
11 The own-price elasticities for poultry fall outside the ranges for both broilers and turkey. However, the use of a 
poultry aggregate, which includes both chicken and turkey products, in this study may explain this difference in 
estimated elasticities. 
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comparable to the food safety elasticities found in this study for each of the four demographic 

groups of households. 

Conclusion 

The elasticities calculated from the results of the random effects SUR tobit model 

indicate that food safety information does not have a statistically significant effect for the vast 

majority of the households considered in the model. The only statistically significant effects were 

for households in urban areas. For the few food safety elasticities in the random effects SUR 

tobit model there are statistically significant, their small magnitude relative prices and income 

indicates that they are not necessarily important economically.  

The results of this study are similar to previous research. Piggott and Marsh (2004) found 

statistically significant food safety effects, but they were small in magnitude and short-lived. 

However, their study used aggregate disappearance data to measure consumption. These data 

include consumption of meat and poultry both at home and away from home. The data employed 

in this study only account for food purchased for consumption at home. Therefore, differences in 

the statistical significance of food safety information between the Piggott and Marsh study and 

the results presented here may be due in part to differences in the consumption measure 

employed. While the Schlenker and Villas-Boas (2006) study found statistically significant 

effects at the grocery store level, it did not find these same effects at the household level for meat 

purchases. One possible reason that results at the store and household levels differ is that the 

aggregation of product groups for household purchases may mask the product substitution that is 

noticeable at the store level.  

The elasticities calculated from the results of the random effects SUR tobit model 

indicate that food safety information does not have a statistically significant effect on purchases 
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of meat and for the vast majority of the households considered in the model. However, 

households located in urban areas have a statistically significant response which is negative for 

poultry and positive for beef and pork purchases. A negative effect from food safety information 

is an intuitive result. It implies that people will decrease their purchases of poultry, probably in 

favor of other foods. However, a slightly positive response to beef and pork food safety 

information is not necessarily an implausible response. Many food safety recalls are product 

specific, impacting only ground beef, for example. Consumers may still continue to buy other 

beef products, like roasts or steaks, but avoid purchasing ground beef. As a result, their overall 

purchases of beef may not change or could even increase slightly, while still responding 

rationally to the food safety information with regard to ground beef. These results suggest that 

further investigation of heterogeneous household effects using different aggregation levels of 

meat and poultry products is warranted. 

One aspect of consumer behavior that was not explicitly accounted for in this study is the 

effect of decisions made in previous time periods on the probability of purchase in the current 

period. The effects from these past decisions can be can be captured using state dependence 

variables which can capture both inventory and purchase habit effects.  By explaining the 

variability due to state dependence, second-order effects from food safety information may be 

more accurately identified. 

Future research will also focus on different specifications of the media index. For 

example, the specification of a 30-day rolling average using a two-week memory has an intuitive 

appeal given the frequency with which household make meat and poultry purchases. However, it 

is possible that a longer lag length or a distributed lag structure would be a better fit for the data. 

The most appropriate specification of the lag structure of the media index is an empirical 
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question that remains to be answered. Other specifications could focus on the criteria applied to 

article searches. Currently, any article pertaining to meat or poultry and food safety that is found 

in the regional newspapers is used, including articles focused on international events. If 

consumer purchase decisions are not impacted by international events, then the current media 

index specification may be inappropriate. An alternative to this specification would be to use 

only those articles that focus on domestic food safety events or issues. While there are an endless 

number of specifications for the media index, each specification that is analyzed provides 

researchers with more information on how to model consumer behavior and food safety 

information. 
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Demographic Variable Frequency Percent of Sample a 
Household Size 

Single member 1,820 23.33
Two members 2,913 37.48
Three members 1,222 15.76
Four members 1,087 14.05
Five members 479 6.19
Six members 160 2.06
Seven members 57 0.74
Eight members 18 0.23
Nine or more members 13 0.17

Household Income
Under $5000 46 0.59
$5000-$7999 73 0.94
$8000-$9999 72 0.93
$10,000-$11,999 107 1.37
$12,000-$14,999 198 2.54
$15,000-$19,999 388 4.99
$20,000-$24,999 559 7.19
$25,000-$29,999 496 6.40
$30,000-$34,999 581 7.48
$35,000-$39,999 541 6.97
$40,000-$44,999 584 7.55
$45,000-$49,999 528 6.81
$50,000-$59,999 901 11.63
$60,000-$69,999 767 9.89
$70,000-$99,999 1,223 15.72
$100,000 & Over 705 9.02

Age of Male Head b

Under 25 Years 23 0.30
25-29 Years 160 2.09
30-34 Years 431 5.58
35-39 Years 608 7.85
40-44 Years 719 9.29
45-49 Years 791 10.22
50-54 Years 760 9.82
55-64 Years 1,210 15.56
65+ Years 1,079 13.82
No Male Head 1,987 25.48

Age of Female Head b

Under 25 Years 52 0.69
25-29 Years 250 3.26
30-34 Years 549 7.11
35-39 Years 730 9.44
40-44 Years 889 11.49
45-49 Years 966 12.47
50-54 Years 951 12.24
55-64 Years 1,467 18.80
65+ Years 1,158 14.82
No Female Head 755 9.70

a  Summary statistics calculated as average across the eight sample years.
b  Married households have information on both the male and female head of household.

Table 1  Household Panel Demographic Variables



25 
 

 
 

Demographic Variable Frequency Percent of Sample a 
Age and Presence of Children

Under 6 only 330 4.29
6-12 only 549 7.08
13-17 only 628 8.13
Under 6 & 6-12 302 3.90
Under 6 & 13-17 48 0.61
6-12 & 13-17 372 4.80
Under 6 & 6-12 & 13-17 67 0.87
No Children Under 18 5,472 70.33

Male Head Employment b

Under 30 hours 235 3.02
30-34 hours 140 1.80
35+ hours 3,937 50.89
Not Employed for Pay 1,468 18.81
No Male Head 1,987 25.48

Female Head Employment b

Under 30 hours 885 11.41
30-34 hours 378 4.88
35+ hours 3,203 41.34
Not Employed for Pay 2,547 32.68
No Female Head 755 9.70

Male Head Education b

Grade School 76 0.97
Some High School 291 3.74
Graduated High School 1,315 16.93
Some College 1,767 22.79
Graduated College 1,548 19.97
Post College Grad 783 10.12
No Male Head 1,987 25.48

Female Head Education b

Grade School 38 0.48
Some High School 206 2.65
Graduated High School 1,765 22.70
Some College 2,376 30.61
Graduated College 1,892 24.37
Post College Grad 737 9.50
No Female Head 755 9.70

Region
East 1,658 21.32
Central 1,582 20.53
South 2,840 36.45
West 1,687 21.70

Marital Status
Married 4,755 61.37
Widowed 618 7.90
Divorced/Separated 1,142 14.64
Single 1,253 16.09

a  Summary statistics calculated as average across the eight sample years.
b  Married households have information on both the male and female head of household.

Table 1  Household Panel Demographic Variables, cont.

a
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Average Minimum Maximum Std. Dev.

4.901 0 1,452.640 8.584
3.046 0.170 8.006 0.493

2.129 0 408.725 5.159
2.480 0.055 10.795 0.476

3.101 0 1,911.060 6.468
1.822 0.150 6.045 0.245

a 
Summary statistics based on 745,632 monthly observations.

Quantity (lbs) 

Table 2 Summary Statistics of Quality-Adjusted Monthly Purchases and Price Indices

Geometric price index 

 
Beef

Per Capita Quantity (lbs)
Geometric price index 

Pork 
Quantity (lbs) 
Geometric price index 

Poultry 
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Average Minimum Maximum Std. Dev. Average Minimum Maximum Std. Dev.

Beef Price 3.209 0.577 12.638 0.562 3.196 1.227 12.638 0.551

Pork Price 2.534 0.627 12.219 0.509 2.527 0.644 11.453 0.513

Poultry Price 1.924 0.700 8.195 0.248 1.918 0.880 7.082 0.248

Beef MI 7.633 0.786 77.645 6.428 7.650 0.786 77.645 6.446

Pork MI 2.547 0.000 16.567 1.988 2.558 0.000 16.567 2.010

Poultry MI 11.378 2.000 38.310 6.054 11.336 2.000 38.310 6.021

Ed 0.393 0 1 0.488 0.376 0 1 0.484

Age 0.372 0 1 0.483 0.376 0 1 0.484

Urban 0.875 0 1 0.330 0.873 0 1 0.333

Child 0.296 0 1 0.456 0.288 0 1 0.453

Income 5.383 0.250 12.500 3.151 5.281 0.250 12.500 3.137

Income
2 38.910 0.062 156.250 43.477 37.729 0.062 156.250 43.064

Y1 0.120 0 1 0.325 0.120 0 1 0.325

Y2 0.112 0 1 0.316 0.114 0 1 0.318

Y3 0.118 0 1 0.322 0.118 0 1 0.323

Y4 0.127 0 1 0.333 0.130 0 1 0.337

Y5 0.133 0 1 0.340 0.131 0 1 0.338

Y6 0.136 0 1 0.342 0.134 0 1 0.341

Y7 0.129 0 1 0.336 0.130 0 1 0.336

Y8 0.125 0 1 0.330 0.122 0 1 0.328

M1 0.083 0 1 0.276 0.083 0 1 0.276

M2 0.083 0 1 0.276 0.083 0 1 0.276

M3 0.083 0 1 0.276 0.083 0 1 0.276

M4 0.083 0 1 0.276 0.083 0 1 0.276

M5 0.083 0 1 0.276 0.083 0 1 0.276

M6 0.083 0 1 0.276 0.083 0 1 0.276

M7 0.083 0 1 0.276 0.083 0 1 0.276

M8 0.083 0 1 0.276 0.083 0 1 0.276

M9 0.083 0 1 0.276 0.083 0 1 0.276

M10 0.083 0 1 0.276 0.083 0 1 0.276

M11 0.083 0 1 0.276 0.083 0 1 0.276

M12 0.083 0 1 0.276 0.083 0 1 0.276

South 0.366 0 1 0.482 0.362 0 1 0.481

Central 0.204 0 1 0.403 0.216 0 1 0.412

West 0.217 0 1 0.412 0.216 0 1 0.412

Northeast 0.213 0 1 0.410 0.205 0 1 0.404

Caucasian 0.766 0 1 0.423 0.758 0 1 0.429

Hispanic 0.076 0 1 0.264 0.075 0 1 0.264

Black 0.121 0 1 0.326 0.123 0 1 0.328

Asian 0.022 0 1 0.146 0.026 0 1 0.159

Other 0.016 0 1 0.126 0.018 0 1 0.134

Table 3  Summary Statistics of Demand Model Variables
Full Sample Random Sample

Note: The number of observations in the full sample is 745,632 and the number of observations in the random sample
of 3,000 households is 119,280.
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Coefficent
Standard 
Deviation Coefficent

Standard 
Deviation Coefficent

Standard 
Deviation

Beef Price -7.899 0.113 -8.110 -7.676 -0.452 0.106 -0.675 -0.240 -0.600 0.097 -0.795 -0.412
Pork Price -0.493 0.117 -0.731 -0.268 -5.616 0.087 -5.788 -5.450 -0.175 0.093 -0.357 0.004
Poultry Price -1.044 0.231 -1.503 -0.603 -0.692 0.197 -1.069 -0.322 -13.093 0.169 -13.444 -12.761
Beef MI 0.027 0.022 -0.018 0.071 0.000 0.007 -0.013 0.013 0.007 0.006 -0.005 0.020
Pork MI 0.005 0.028 -0.049 0.061 0.080 0.056 -0.030 0.193 0.056 0.021 0.014 0.096
Poultry MI 0.003 0.010 -0.018 0.022 -0.011 0.008 -0.029 0.005 -0.020 0.024 -0.068 0.026
Ed*MI beef -0.045 0.012 -0.069 -0.021 -- -- -- -- -- -- -- --

Age*MIbeef -0.024 0.013 -0.050 0.001 -- -- -- -- -- -- -- --

Child*MI beef -0.030 0.015 -0.060 -0.001 -- -- -- -- -- -- -- --

Urban*MI beef 0.002 0.018 -0.037 0.038 -- -- -- -- -- -- -- --

Ed*MI pork -- -- -- -- -0.094 0.037 -0.167 -0.023 -- -- -- --

Age*MIpork -- -- -- -- -0.106 0.037 -0.179 -0.033 -- -- -- --

Child*MI pork -- -- -- -- -0.098 0.040 -0.179 -0.015 -- -- -- --

Urban*MI pork -- -- -- -- 0.014 0.049 -0.088 0.105 -- -- -- --

Ed*MI poultry -- -- -- -- -- -- -- -- 0.008 0.013 -0.017 0.032

Age*MIpoultry -- -- -- -- -- -- -- -- 0.038 0.013 0.011 0.065

Child*MI poultry -- -- -- -- -- -- -- -- 0.005 0.015 -0.024 0.033

Urban*MI poultry -- -- -- -- -- -- -- -- -0.034 0.022 -0.076 0.010
Ed -0.850 0.278 -1.384 -0.293 -0.504 0.212 -0.932 -0.083 0.021 0.231 -0.439 0.454
Age 0.895 0.217 0.465 1.329 1.112 0.194 0.734 1.479 -0.133 0.221 -0.566 0.303
Child -2.699 0.208 -3.127 -2.299 -1.413 0.194 -1.786 -1.034 -2.053 0.227 -2.520 -1.617
Urban 0.188 0.325 -0.462 0.833 -0.204 0.276 -0.751 0.315 1.215 0.339 0.536 1.877
Income 0.796 0.098 0.610 0.992 0.502 0.079 0.352 0.658 0.493 0.077 0.335 0.643

Income
2 

-0.023 0.006 -0.037 -0.011 -0.019 0.005 -0.031 -0.009 0.000 0.005 -0.010 0.010

Table 4  Bayesian Estimated Coefficients of the Random Effects SUR Tobit Model
Beef Model Pork Model Poultry Model

95% Confidence
Interval

95% Confidence
Interval

95% Confidence 
Interval

Note: The estimated coefficients are means calculated from 1,015 posterior realizations. The 95% confidence intervals are calculated using the upper and lower 2.5% 
tails  of the posterior distribution.
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Coefficent
Standard 
Deviation Coefficent

Standard 
Deviation Coefficent

Standard 
Deviation

Y1 0.265 0.223 -0.199 0.675 6.617 0.181 6.252 6.969 4.383 0.176 4.030 4.727

Y2 -1.453 0.179 -1.791 -1.087 1.170 0.150 0.870 1.468 0.442 0.156 0.134 0.748

Y3 -0.081 0.170 -0.404 0.260 0.868 0.142 0.588 1.133 1.207 0.137 0.930 1.480

Y4 -0.331 0.166 -0.661 0.003 0.897 0.137 0.640 1.188 0.349 0.130 0.084 0.597

Y5 -0.713 0.146 -1.010 -0.429 -0.200 0.122 -0.435 0.045 -0.452 0.124 -0.701 -0.225

Y7 1.109 0.159 0.808 1.414 0.487 0.129 0.217 0.731 0.724 0.123 0.461 0.952

Y8 0.043 0.173 -0.299 0.392 0.513 0.140 0.222 0.785 1.352 0.131 1.090 1.600

M1 -0.148 0.196 -0.533 0.240 -2.269 0.167 -2.587 -1.938 0.967 0.158 0.670 1.277

M2 -0.407 0.190 -0.778 -0.048 -2.635 0.155 -2.948 -2.349 0.823 0.148 0.528 1.118

M3 0.328 0.187 -0.043 0.679 -1.812 0.147 -2.105 -1.527 0.945 0.150 0.661 1.243

M4 -0.268 0.186 -0.633 0.104 -1.326 0.147 -1.617 -1.035 0.589 0.148 0.296 0.875

M5 1.335 0.191 0.975 1.696 -2.466 0.148 -2.743 -2.174 1.298 0.153 0.998 1.591

M6 0.479 0.192 0.096 0.866 -2.863 0.154 -3.179 -2.560 0.841 0.151 0.530 1.130

M7 0.457 0.191 0.080 0.830 -2.697 0.149 -2.996 -2.407 0.909 0.158 0.594 1.211

M8 0.525 0.184 0.173 0.888 -2.703 0.151 -2.982 -2.401 1.291 0.151 1.009 1.594

M9 0.141 0.188 -0.234 0.502 -2.603 0.148 -2.893 -2.326 0.988 0.149 0.698 1.261

M10 0.143 0.187 -0.243 0.496 -2.511 0.148 -2.798 -2.230 0.687 0.146 0.402 0.985

M11 -1.335 0.190 -1.685 -0.965 -1.974 0.152 -2.266 -1.687 1.529 0.145 1.261 1.809

Central 0.084 0.440 -0.776 0.966 0.184 0.350 -0.481 0.880 -1.070 0.336 -1.739 -0.444

West 1.622 0.435 0.804 2.539 -0.535 0.329 -1.158 0.102 1.992 0.329 1.394 2.678

Northeast 1.391 0.425 0.556 2.226 0.296 0.303 -0.330 0.882 1.284 0.293 0.704 1.879

Hispanic 0.703 0.422 -0.110 1.557 0.086 0.335 -0.548 0.733 0.596 0.311 0.033 1.216

Black -2.306 0.455 -3.187 -1.344 0.502 0.347 -0.209 1.165 1.725 0.329 1.086 2.381

Asian -2.180 0.667 -3.476 -0.857 0.326 0.520 -0.783 1.297 0.428 0.496 -0.579 1.392

Other -2.502 0.489 -3.478 -1.558 0.749 0.400 -0.025 1.538 0.021 0.380 -0.718 0.786

Constant 22.693 0.744 21.164 24.127 10.493 0.630 9.274 11.694 17.886 0.657 16.633 19.156

Sigma ? 12.363 0.034 12.296 12.433 8.695 0.032 8.632 8.756 9.480 0.030 9.421 9.538

Sigma u 9.123 0.138 8.858 9.387 6.655 0.114 6.446 6.874 6.414 0.096 6.225 6.602

Table 4  Bayesian Estimated Coefficients of the Random Effects SUR Tobit Model, cont.
Beef Model Pork Model Poultry Model

95% Confidence 
Interval

95% Confidence 
Interval 

95% Confidence 
Interval

Note: The estimated coefficients are means calculated from 1,015 posterior realizations. The 95% confidence intervals are calculated using the upper and lower 2.5% tails 

of the posterior distribution. 
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Elasticity Standard Deviation

Beef -1.296 0.023 -1.339 -1.251

Pork -0.688 0.014 -0.714 -0.662

Poultry -1.508 0.024 -1.554 -1.461

Beef Pork -0.066 0.015 -0.097 -0.036

Poultry -0.103 0.022 -0.148 -0.059

Pork Beef -0.068 0.016 -0.099 -0.037

Poultry -0.064 0.018 -0.097 -0.029

Poultry Beef -0.116 0.018 -0.151 -0.076

Pork -0.028 0.014 -0.056 0.000

Beef 0.157 0.011 0.135 0.180

Pork 0.078 0.009 0.060 0.095

Poultry 0.165 0.011 0.143 0.186

College Education Beef -0.008 0.009 -0.028 0.009

Pork -0.002 0.008 -0.017 0.013

Poultry -0.009 0.018 -0.046 0.024

Age 55 & Older Beef 0.001 0.007 -0.012 0.015

Pork -0.003 0.006 -0.014 0.008

Poultry 0.011 0.014 -0.019 0.037

Children Present Beef -0.001 0.013 -0.028 0.025

Pork -0.004 0.012 -0.027 0.019

Poultry -0.016 0.028 -0.072 0.038

Urban Residence Beef 0.012 0.006 0.000 0.022

Pork 0.012 0.004 0.003 0.021

Poultry -0.040 0.009 -0.058 -0.022

Table 5  Price and Food Safety Elasticities of Random Effects SUR Tobit Models

95% Confidence Interval 
Own-Price

Note: The own- and cross-price elasticities are means calculated from 1,015 posterior realizations. The 95% confidence intervals are 
calculated using the upper and lower 2.5% tails of the posterior distribution.

Cross-Price 

Food Safety 

Income 
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Figure 1 Beef Media Index by Region, 1998 to 2005 
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Figure 2 Pork Media Index by Region, 1998 to 2005 
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Figure 3 Poultry Media Index by Region, 1998 to 2005
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Appendix 1 
 

Bayesian Estimation: The Random Effects SUR 
Tobit Model 

 
The estimation of a model in the Bayesian framework requires summarization of a 

posterior probability distribution. The posterior is derived using Bayes Theorem for probability 
distributions, which can be stated as: 

Posterior  Likelihood  Prior   
where   means “is proportional to.” Given both a likelihood function and prior distributions, a 
posterior distribution for the unknown model parameters can be derived. The likelihood function 
is derived from the specification of the model and the prior distributions are determined using 
any pre-existing knowledge of the model parameters. 

The random effects SUR tobit model, stacked over all J commodities is specified as: 
* ,it it i itW   y u ε      (A1.1) 

* *

*
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0    if  0  ,

ijt ijt
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ijt

y y
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       (A1.2) 

where   0,it iid N ε   and  0,i iid N Vu  . The prior distribution of the unknown model 

parameters,    , is specified as a multivariate normal distributions. The prior distributions of 

the unknown parameters,     and  V , are specified as inverse Wishart distributions. The 

probability distribution of the dependent variable conditional on the model parameters and 
observed data for household i in time period t is: 

   1 1 * * *
1, , , ... , , ,  ... 

it rit rW W

it i it i it itrp W f W d d
 

 
  

 
   y u y u y y  ,   (A1.3) 

where  f  is the normal probability distribution function and r refers to the number of censored 

commodities. The likelihood function over all households and time periods is: 

     
1 1

, , , , , , , , ,
N T

it i
i t

L W p W p W  
 

    y u y u y u  .           (A1.4) 

Using the likelihood function and prior distributions, the posterior is proportional to the product 
of the likelihood function and the prior distributions: 

         , , , , , ,p W L W V           y u y u  .     (A1.5) 

No analytical form exists for the multivariate posterior distribution given in equation 
(A1.5), making sampling very difficult. To obtain the conditional posterior distributions needed 
to employ the Gibbs sampler, the posterior of the unknown model parameters is augmented with 
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the latent data to get a full posterior. Using properties of probability distributions, the full 
posterior can be rewritten as follows: 

         

         

* *

* *

, , , , , , , ,

                             , , , , , , ,  .

p W p W V

p W p W V

     

     

      

       

u y y y y u

y y u y u

   (A1.6) 

The conditional posterior distributions are derived using multivariate (univariate) normal-inverse 
Wishart (gamma) conjugate prior analysis. The Gibbs sampler can now be implemented to 
sample iteratively from the conditionals in the following order: 

 (1)   * , , , ,p W y u y          (A1.7) 

(2)   , , , ,p V W z u       

 (3)  , , , ,p V W u z       

(4)  , , ,p W z u       

(5)  , , ,p W z u ,      

where z denotes a vector comprised of the observed values of the dependent variable, y, and the 
sampled values of the latent dependent variable, y*. 

The truncated normal distribution used in the first step of the Gibbs sampler is 
conditioned on the household-specific error component iu , which enters the mean of the 

distribution. Let  *
, ,,it it r it rz y y  be a vector of dependent variables for the ith household with r 

denoting elements censored at zero and -r denoting positive (observed) commodity purchases. 
The conditional distribution of *

,it ry  is a truncated normal distribution of the following form: 

   *
, , ,,0, , , , ,it r i it it r it r rW TN   y u y μ  ,     (A1.8) 

where *
,it ry  is a dimension  1r  vector of draws and ,it ry  is a  ( ) 1J r   dimension vector of 

positive purchases. For the ith household, the mean and variance of the truncated normal are:  

 1
, , , , , ,it r i it r r r r r it r i it rW W 

          μ u y u       (A1.9) 
1

, , , ,r r r r r r r r r


           ,           

where the dimension of ,it rμ  is  1r , r  is dimension  r r , and the indices r and –r refer to 

censored and positive elements, respectively (Huang, 2001). The fully augmented z vector is 
subsequently used for drawing realizations of the parameters of interest from the conditional 
distributions for the model parameters. 
 The conditional posterior distributions are derived from specifications of prior 
distributions, which are specified using any previously known information about the parameters 
of interest. The prior distributions used in the random effects model for the parameters   and    
are assumed independent and of the following form: 

   1
0 0,KN B     ,     (A1.10) 

   0 0,JIW R    ,     (A1.11) 
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where     is a K-dimension multivariate normal distribution with mean 0  and precision 

matrix 1
0B  and     is a J-dimension inverse Wishart distribution with degrees of freedom 0  

and scale 0R . The hyperparameters of the prior distributions ( 0 , 1
0B , 0 , 0R ) are set to values 

that reflect very diffuse prior information. The values of 0 , 1
0B , 0 , and 0R  are set to 0, KI , J, 

and JI , respectively where KI  and JI  are K- and J-dimension identity matrices. With the values 

of the hyperparameters set, the conditional posterior densities of the model parameters are: 

   1
1 1, , , ,Kp W N B  z u   ,       (A1.12) 

    1 1, , , ,Jp W IW R  z u  .       (A1.13) 

The posterior distribution of   is a K-dimension multivariate normal with mean 
1
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it it i d z u . The posterior distribution of   is a J-dimension inverse Wishart with degrees of 

freedom 1 J N T     and scale    1 JR I J SN T J N T     , where 
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  . 

In addition to these adjustments to the posterior distributions for   and  , the prior and 
posterior distributions of the random effects error components, iu , must be derived for the 

random effects model. The prior distributions for the error component, iu , and its variance, V , 

are assumed independent and of the following form: 

   1
0 0,N M  u   ,          (A1.14) 

   0 0,JV IW G   ,          (A1.15) 

where   u  is a univariate normal distribution with mean 0  and precision matrix 1
0M   and 

 V  is a J-dimension inverse Wishart distribution with degrees of freedom 0  and scale 0G . 

As with the prior distributions of   and  , the hyperparameters are assumed to be known and 
are set to values that reflect very diffuse prior information. The values of 0 , 1

0M  , 0 , and 0G  

are set to 0, V , J, and JI , respectively where JI  is a J-dimension identity matrix. With these 

values of the hyperparameters, the posterior densities are derived as: 

   2
1 1, , , , ,p V W N M u z  ,     (A1.16) 

where 1 2
1 1

i iT T

it it
t t

W M    
    

  
 z  is the mean of the posterior and   12 1 1

1 jM TI V
     is 

the variance. The posterior distribution of V  is derived as follows: 

   1 1, , , , ,p V W IW G z u  ,   (A1.17) 
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where 1 J N    are the degrees of freedom and    JG I J SN J N   , where 21

1

N

iN
i

S


 u  

is the scale.  
The following is an outline of the steps of the Gibbs sampler for estimation of the random 

effects model. The algorithm includes steps for sampling from the conditional distributions for 
both the household-specific error components and the variance of these errors. Iteration p of the 
Gibbs sampler algorithm is comprised of the following steps: 

(1) Initialize the model unknowns with starting values, 0 0 0, , it  z , where 

0
  if  0

1  if  0  .

ijt ijt

ijt
ijt

y y
z

y

  
 

(2) At iteration p, complete the following: 
a.  Draw realizations of * 1 1

, ,, , , ,p p p
it r i it it rW  

y u y  for i=1,…,N from 

   1 1
,,0

p p
it r rTN  

  μ , where ,it rμ  and r  are person specific as described 

above. Use the inversion method to draw from the truncated multivariate 
normal distribution given the most recent draws of the mean and variance of 
the distribution. 

b. Draw 1 1 1, , , ,p p p p pV W   z u  from  1 1,IW G . 

c. Draw 1 1 1, , , ,p p p p pV W   u z  from  2
1 1,N M . 

d. Draw 1, , ,p p p p W  z u  from  1 1,JIW R . 

e. Draw , , ,p p p p W z u  from  1
1 1,KN B  . 

(3) Repeat step (2) for 1,...,p P , where P is large enough to obtain a sufficient number 
of posterior realizations.  
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Appendix 2 
 

Bayesian Estimation: Convergence and Mixing 
 

There are two primary concerns when implementing a Bayesian estimation methodology 
that uses a Markov Chain Monte Carlo (MCMC) algorithm: convergence and mixing. The 
MCMC algorithm must converge to the proper posterior density and should mix thoroughly 
across the support of that density (Lynch, pp.132-141, 2007). Trace plots of model parameters 
are useful for detecting convergence to the proper density. If the MCMC algorithm has not 
converged, trending will be seen in the trace plots. Trace plots for the commodity-specific media 
index and price variables of the random effects SUR tobit models are shown in figure A2.1. The 
trace plots for each parameter display a steady, stationary chain, indicating that convergence of 
the algorithm has been attained. The trace plots also appear to converge to the posterior density 
within about 20 iterations. Therefore, a burn in of 500 iterations is more than sufficient to make 
certain that posterior analysis is conducted using a converged model. 

Histograms of the model parameters are also useful for diagnosing convergence and 
mixing. The histograms shown in figure A2.2 are the media index and price parameters of the 
random effects SUR tobit model. Recall that only every 36th posterior realization is kept in this 
model to decrease autocorrelation sufficiently. Therefore, the number of realizations that make 
up the histograms for the random effects model is 395. These histograms are approaching normal 
distributions, but are not sufficiently close to ensuring convergence and mixing. Therefore, a 
longer chain is needed to be confident in the results from the random effects model. 

Another check of convergence for MCMC algorithm models is to begin the Gibbs 
sampler at different starting values. If the chains converge to the same posterior distribution, then 
the estimator is performing well. Figure A2.3 shows overlays of trace plots for the price 
parameters of the random effects models at different starting values. The starting values for 
Chain 1 (green) are the Ordinary Least Squares (OLS) estimates for the model. Chain 2 (blue) 
uses a starting value of 0.1 for each of the model parameters. The trace plots for each model 
indicate that convergence to the posterior distribution is robust to the selection of starting values.  

Although MCMC algorithms such as the Gibbs sampler produce samples from a posterior 
distribution, these samples are not independent. The Markov property of the sampler uses the 
previous draw from the distribution as the basis for the next sample that is drawn. The samples 
are autocorrelated, which can cause the variance estimates to be incorrect. To account for 
autocorrelation between the samples in the chain, it is common to take every kth draw for 
inference, where k is the lag beyond which autocorrelation no longer affects inference. The 
autocorrelation function (ACF) can be calculated to determine the appropriate number of sample 
to skip to have insignificant autocorrelation. The ACF for lag L is as follows: 
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         (A2.1) 

where tx  is the sampled value of x  for iteration t, T is the total number of sampled values, x  is 

the mean of the sampled values, and L is the lag length (Lynch, pp.146-147, 2007).  
The ACF was calculated for every parameter in the model. Figure A2.4 shows the ACF at 

different lag lengths for all the parameters in the random effects model. A lag length of 35 is 
required for all the parameters in this model to have an ACF of 0.25 or less. By omitting the first 
500 iterations from the random effects model and keeping one in every 35 sampled values, 1,015 
posterior realizations remain for inference.  
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Figure A2.1 Trace Plots of Media Index and Price Parameters from Random Effects SUR Tobit 
Model 
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Figure A2.2 Histograms of Media Index and Price Parameters from Random Effects SUR Tobit 
Model 
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Figure A2.3 Trace Plots of Price Parameters from Random Effects SUR Tobit Model at Different 
Starting Values 
 

 
Figure A2.4 ACF at Different Lag Lengths of all the Parameters in the Random Effects SUR 
Tobit Model 


