
 
WORKING PAPER SERIES* 

DEPARTMENT OF ECONOMICS 

ALFRED LERNER COLLEGE OF BUSINESS & ECONOMICS 

UNIVERSITY OF DELAWARE 

 
WORKING PAPER NO. 2007-16 

 
EXPECTED UTILITY IN MODELS WITH CHAOS 

 

Judy Kennedy, Brian Raines and David R. Stockman 

 

 
 
 
 
 
 
 
 
 
 
____________________________ 
*http://lerner.udel.edu/economics/workingpaper.htm 
.© 2007 by author(s). All rights reserved. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6808526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Expected Utility in Models with Chaos

Judy Kennedy∗ Brian Raines† David R. Stockman‡

October 30, 2007

Abstract

In this paper, we provide a framework for calculating expected utility in mod-
els with chaotic equilibria and consequently a framework for ranking chaos.
Suppose that a dynamic economic model’s equilibria correspond to orbits gen-
erated by a chaotic dynamical system f : X → X where X is a compact metric
space and f is continuous. The map f could represent the forward dynamics
xt+1 = f(xt) or the backward dynamics xt = f(xt+1). If f represents the
forward/backward dynamics, the set of equilibria forms a direct/inverse limit
space. We use a natural f -invariant measure on X to induce a measure on
the direct/inverse limit space and show that this induced measure is a natural
σ-invariant measure where σ is the shift operator. We utilize this framework in
the cash-in-advance model of money where f is the backward map to calculate
expected utility when equilibria are chaotic.
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1 Introduction

Consider a dynamic general equilibrium model and two fiscal policies, say A and

B, both of which result in chaotic equilibria. Which policy is preferred? What are

the welfare consequences of switching from policy A to policy B? Note that in this

model, there is not a unique mapping from policies to equilibria (outcomes). Not

only are there an infinite number of equilibria associated with each policy, but there

is an enormous “variety” of equilibria as well. In this paper, we provide a framework

for calculating expected utility in models with chaotic equilibria and consequently a

framework for ranking chaos.

Suppose that a dynamic economic model’s equilibria correspond to orbits gener-

ated by a chaotic dynamical system f : X → X where X is a compact metric space

and f is continuous. The map f could represent the forward dynamics xt+1 = f(xt)

or the backward dynamics xt = f(xt+1). If f represents the forward/backward dy-

namics, the set of equilibria forms a direct/inverse limit space. The direct/inverse

limit space is a subset of X∞: the direct limit space consists of the forward orbits of

f and the inverse limit space consists of all the backward orbits of f .1

When integrating real-valued functions like a utility function, we would like to

use a probability measure that respects the dynamics of the model by providing

the actual probability (in a frequency sense) of seeing certain Borel sets of X and

the direct/inverse limit space. These types of measures are called natural invariant

measures. An f -invariant measure µ has the property that µ[A] = µ[f−1(A)] for every

measurable set A. The natural invariant measure µ is an f -invariant measure that

respects the dynamics of f : X → X in the following sense. If S ⊂ X is a measurable

set and almost all points in X have 40% of their respective orbits in S, then µ assigns

S measure 0.4. We use an f -invariant measure on X to induce a measure on the

direct/inverse limit space. We show that this induced measure is σ-invariant, where

σ is the shift map. Moreover, we show that if the f -invariant measure is a natural

1If f is a non-invertible backward map, we say that the model (or dynamical system) has backward
dynamics, i.e, the relationship describing the equilibrium dynamics is multi-valued going forward
in time, but is single-valued going backward in time. Two such models that may have backward
dynamics include the overlapping generations (OLG) model (see Grandmont (1985)) and the cash-
in-advance (CIA) model (see Michener and Ravikumar (1998)). Inverse limits is a relatively new
approach to analyzing dynamic economic models with backward dynamics. Medio and Raines (2006,
2007) use inverse limits to analyze the long-run behavior of an OLG model with backward dynamics.
Kennedy et al. (2007, 2005) investigate the topological structure of the inverse limit space associated
with the CIA model of Lucas and Stokey (1987). Kennedy and Stockman (2007) utilize the inverse
limit space to show that a multi-valued dynamical system with backward dynamics is chaotic going
forward in time if and only if it is chaotic going backward in time.
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invariant measure, then the induced measure on the direct/inverse limit space will

also be a natural invariant measure.

One of the uses of the induced measure on the direct/inverse limit space is to

perform integration over this space in a way that is dynamically meaningful. To be

more concrete, suppose that Y is the direct/inverse limit space from a DGE model

with a representative agent and f has a natural invariant measure µ. Then the utility

function of the representative agent can be viewed as a function W : Y → R given by

W (x) :=
∞∑

t=1

βt−1U(xt).

Let m be the induced measure on Y by µ, then expected utility is given by:

E[W (x)] :=

∫

Y

W (x)dm(x).

Note that our utility function is essentially inducing a ranking on direct/inverse limit

spaces and consequently providing a means for ranking chaos. In the context of

the cash-in-advance model, this could be useful in ranking monetary policies (money

growth rates) all of which lead to chaotic equilibria and assessing the welfare conse-

quences of changing the money growth rate.

The paper is organized as follows. In section 2, we discuss some preliminary back-

ground from dynamics, direct/inverse limit spaces and natural invariant measures. In

section 3 we construct our induced measure on the inverse limit space and show that

this induced measure is a natural invariant measure. In section 4 we carry out this

analysis for the much simpler direct limit case. The formidable problem associated

with numerically calculating these integrals is discussed in Section 5 along with a

solution. An application of these tools to the cash-in-advance model is in Section 6

illustrating how this framework can used for policy analysis. We conclude in Section

7.

2 Preliminaries

In this section we cover some preliminaries on dynamical systems, natural invariant

measures and direct/inverse limit spaces.

2.1 Dynamical Systems

Suppose that a dynamic economic model’s equilibria correspond to orbits generated

by a chaotic dynamical system f : X → X where X is a compact metric space with
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metric d and f is continuous (we assume throughout that f is also a surjection).

Definition 1. We say f has sensitive dependence on initial conditions if there exists

a sensitivity constant δ > 0 such that, for any x ∈ X and any neighborhood N of x,

there exists y ∈ N and an integer n ≥ 0 such that d(fn(x), fn(y)) > δ.

Definition 2. Suppose X is a compact metric space and f : X → X is a continuous

function. We will say that f is transitive if whenever U and V are open sets (non-

empty), there exists a positive integer n such that fn(U) ∩ V 6= ∅.

Definition 3. A point x ∈ X is a periodic point of period n if fn(x) = x and n is the

smallest positive integer with fn(x) = x. For x ∈ X, the orbit of x under the action

of f is defined by Of
+(x) := {x, f(x), f 2(x), . . .}.

One of the more commonly used definitions of chaos is that given by Devaney

(2003).

Definition 4. Suppose X is a metric space and f : X → X is a map. Then f is

chaotic on X if (1) f has sensitive dependence on initial conditions; (2) f is transitive;

and (3) the periodic points of f are dense in X.

2.2 Limit Spaces

Let f : X → X where X is a compact metric space with metric d and f is continuous

(we assume throughout that f is also a surjection). The direct limit space consists of

the forward orbits of f :

lim
−→

(X, f) := {(x1, x2, . . .) ∈ X∞ | xi+1 = f(xi), i ∈ N}. (1)

The inverse limit space consists of all the backward orbits of f :

lim
←−

(X, f) := {(x1, x2, . . .) ∈ X∞ | xi = f(xi+1), i ∈ N}. (2)

In this context, the space X is called the factor space and the function f is called the

bonding map. We use boldface letters, i.e., x to denote a point of D or Y , with xn

denoting the nth coordinate of x. We let πn denote the nth projection on D or Y , so

πn(x) = xn.

We can use the metric d on X to induce a metric on X∞ (and D and Y ) according

to

ρ(x,y) :=
∞∑
i=1

d(xi, yi)

2i−1
. (3)
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Let Y := lim
←−

(X, f) and D := lim
−→

(X, f). Then the bonding map f induces a natural

map F : Y → Y given by

F ((x1, x2, . . .)) := (f(x1), f(x2), . . .). (4)

Note that F is a homeomorphism with inverse given by the shift map:

σ((x1, x2, x3, . . .)) := (x2, x3, x4, . . .). (5)

Note that the induced map on D by f given by (x1, x2, . . .) → (f(x1), f(x2), . . .) is

simply the shift map σ. This map is onto (provided f is onto), but it in general is

not a homeomorphism (unless f is a homeomorphism on X).

Here are some well-known results for these spaces: (1) if X is compact, then the

direct/inverse limit space will be compact as well, (2) σ is continuous and (3) the

topology on the direct/inverse limit space generated by the metric ρ is equivalent to

the product topology on these spaces.

We see that if every forward (backward) orbit of f : X → X is an equilibrium in

the model, then the set of equilibria is a direct (inverse) limit space. Furthermore,

the dynamics of f (or f−1) on X are being captured by the shift map σ on the D (or

Y ). Examples: (1) The point x ∈ X has period n orbit under f on X if and only if

(x, f(x), f 2(x), . . .) ∈ D is a period n point under the shift map σ. (2) f (or f−1) is

chaotic on X if and only if σ is chaotic on D (or Y ).

2.3 Natural Invariant Measures

Suppose X is a compact metric space, f : X → X is continuous. Let B(X) be the

σ-algebra of Borel sets. If µ is a measure on (X,B(X)) such that µ[f−1(S)] = µ[S]

for every set S ∈ B(X), then µ is called an invariant measure for f .

Let x0 is a point in X, and S ∈ B(X). Define the fraction of the orbit of x0 lying

in S by

G(x0, S) = lim
n→∞

#{f i(x0) ∈ S : 1 ≤ i ≤ n}
n

, (6)

provided this limit exists. We would like for this fraction of orbits to be the same

for almost every x0 ∈ X. However, this method of measuring S may be not be

appropriate for certain “borderline” set and may imply a type of discontinuity as the

following example illustrates.

Example 1. Let f : [−1, 1] → [−1, 1] given by f(x) = αx where |α| < 1.
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Note that for all x ∈ [−1, 1], we have fn(x) → 0. The invariant measure that

captures the dynamics of f is the Dirac measure δ0. Note the measure is putting

all the measure on the attractor {0}. However we see that for S := {0}, we have

G(x0, S) = 0 for all x0 except x0 = 0. Note however that for any open set A with

0 ∈ A, we have G(x0, A) = 1 for all x0 ∈ [−1, 1]. So instead of assigning measure to

a set by the fraction of orbit lying in the set S, we will use the fraction of the orbit

of x0 lying in a sequence of open sets shrinking down to S.

For A ⊂ X and r is a positive number, define Dr(A) := {x ∈ X : d(x, y) < r for

some y ∈ A}. Note that Dr(A) is an open set containing A, and as r → 0, Dr(A)

shrinks down to A. We are now ready to define a natural invariant measure.

Definition 5. Suppose X is compact metric with a regular nonatomic Borel measure

ν with full support.2 Let f : X → X be continuous, x0 a point in X, and S be a

closed subset of X. The natural measure generated by the map f is defined by

µf (S) := lim
r→0

G(x0, Dr(S)), (7)

provided that for ν-a.e. x0 ∈ X this limit exists and is the same.

In this context, we call ν the reference measure. When the space X has Lebesgue

measure λ, typically ν is taken to be λ. However, when f is chaotic, the inverse

limit space is topologically complicated and does not have Lebesgue measure even if

the factor space does. However, we will see that if µ is nonatomic with full support,

then the induced measure on the inverse limit space will also be nonatomic with full

support. Consequently, when showing that the induced measure on the inverse limit

space is natural, the induced measure itself can be used as the reference measure.

3 Measures on Inverse Limit Spaces

Given a compact metric space X, a continuous map f : X → X, and an f -invariant

measure µ defined on X, we wish to define a measure m on Y := lim
←−

(X, f) invariant

relative to the induced shift homeomorphisms F and σ on Y . If the measure µ is, in

addition, a natural measure on X, we would like the induced measure m on Y to be

natural relative to F and σ.

2A measure ν is nonatomic if ν({x}) = 0 for every x ∈ X. We call a measure strictly positive if
it assigns every (non-empty) open set positive measure. The support of ν is the set of x ∈ X such
that every open set containing x has positive measure. A measure ν has full support if the support
of ν is all of X. Being a strictly positive measure is equivalent to having full support.
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3.1 Invariant Measures

If X is a locally compact metric space, denote by C the collection of all compact

subsets of X, by B(X) the σ-algebra generated by C. A member of the collection

B(X) is called a Borel set, and B(X) is the collection of Borel sets in X. A content

is a nonnegative, finite, monotone, additive, and subadditive set function defined on

the class C of all compact sets of a locally compact metric space X. A Borel measure

is a measure µ defined on the collection B(X) of all Borel sets such that µ(C) < ∞
for every C ∈ C.

It is straightforward to generate a regular Borel measure from a content on the

compact subsets of a locally compact space X, see (Halmos, 1974, Section 53, p.

231). Our goal now is to define a content on the compact subsets of Y := lim
←−

(X, f),

where X is a compact metric space and f : X → X is continuous, and then use that

content to generate a measure on Y . The measure we obtain on Y is not new, see

Bochner (1955) or Choksi (1958), but establishing that it is σ-invariant and a natural

invariant measure when it is induced by a natural invariant measure is new. We

include the construction of this measure for completeness and because in this section

we give much of the notation we will use in later proofs. Here is an outline of the

construction:

I. Use µ to define a function Γ on the compact subsets of Y := lim
←−

(X, f). Show Γ

is a content on the compact subsets of Y .

II. Show that Γ is a regular content on the compact subsets of Y .

III. Use the regular content Γ to induce an outer measure m∗ on the σ-bounded sets

of Y .

IV. Finally, this outer measure m∗ is used to induce a regular Borel measure m on

B(Y ) that agrees with the regular content Γ on the compact subsets of Y .

Suppose then that X is a compact metric space and f : X → X is continuous.

Let Y := lim
←−

(X, f). Let n be a nonnegative integer, and let B be a compact subset

of Y . Define the tower sets Bn for B as follows: define Bn := {x ∈ Y : πn(x) :=

xn ∈ πn(B)}. Note that B ⊂ Bn with πi(B) ≡ πi(Bn) for i = 1, 2, . . . n. However, for

j > n we may have πj(B) ⊂ πj(Bn). Note also that the compact subsets of Y are the

closed subsets of Y .

Now on to the construction of our induced measure. Suppose that µ is an invariant

measure on X. Now define the function Γ on the compact subsets of Y by first
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declaring that

Γ[Bn] := µ[πn(B)], (8)

where Bn is a tower set for the compact set B as defined above. Then define

Γ[B] := lim
n→∞

Γ[Bn]. (9)

The function Γ is a content on the compact sets of Y as we prove below: p

Lemma 1. The set function Γ is a content on the compact sets of Y := lim
←−

(X, f).

Proof. It is immediate from the definition that Γ is nonnegative, finite and monotone

as long as µ is. To see that Γ is additive, let K and R be disjoint compact subsets of

Y . Then there is an integer N such that for all m > N , πm(K) ∩ πm(R) = ∅. Thus,

Γ[Km ∪Rm] = µ[πm(K) ∪ πm(R)] = µ[πm(K)] + µ[πm(R)]

= Γ[Km] + Γ[Rm]

for all m > N . Hence,

Γ[K ∪R] = lim
n→∞

Γ[Km ∪Rm] = lim
n→∞

Γ[Km] + lim
n→∞

Γ[Rm] = Γ[K] + Γ[R],

and Γ is additive. The proof that Γ is subadditive is similar.

A measure ν is outer regular provided that ν[E] = inf{ν[U ] : E ⊂ U and U is

open}. A measure ν is inner regular provided that ν[E] = sup{ν[C] : C ⊂ E and

C is compact}. A measure ν on a space Z is regular provided that it is both inner

regular and outer regular.

A content Γ on the compact sets C is regular provided

Γ[C] = inf{Γ[D] : C ⊂ D◦ ⊂ D ∈ C}. (10)

Let U be an open set and define the inner content Γ∗ induced by the content Γ

by

Γ∗[U ] = sup{Γ[C] : U ⊇ C and C ∈ C}. (11)

Suppose X is a metric space and E ⊂ X. We say that E is σ-compact provided

there is a collection {Ci}∞i=1 of compact sets such that E = ∪∞i=1Ci. We say that E is σ-

bounded provided there is a collection {Ci}∞i=1 of compact sets such that E ⊂ ∪∞i=1Ci.

Given a σ-bounded set E we define

m∗[E] = inf{Γ∗[U ] : E ⊂ U and U is open}, (12)

and we call m∗ the outer measure induced by the content Γ.
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Lemma 2. With the assumptions as above, Γ is a regular content on Y provided µ

is a regular, invariant measure on X.

Proof. Let C ∈ C, the collection of all compact subsets of Y . Let ε > 0 and choose a

positive integer n such that |Γ[Cn]− Γ[C]| < ε/2, where the Cn’s are the tower sets

for C. Since µ is a regular measure on X, there is a compact subset Dn of X such

that D◦n ⊇ πn(Cn) and |µ[Dn]− µ[πn(Cn)]| < ε/2. Let D = π−1
n (Dn). Since πn is

continuous and D is compact, C ⊂ Cn ⊂ π−1
n (D◦n) ⊂ D◦ ⊂ D. Also, |Γ[C]− [Γ[D]| ≤

|Γ[C]− Γ[Cn]| + |Γ[Cn]− Γ[D]| ≤ ε/2 + |µ[πn(Cn)− µ[Dn]| = ε. Thus, Γ is regular.

Theorem 1 (Halmos (1974), Theorem E, p. 234). If m∗ is the outer measure

induced by a content Γ, then the set function defined for every Borel set E by m[E] :=

m∗[E] is a regular Borel measure.

Using this measure m from these definitions to calculate m[E] might be difficult.

However, since Γ is a regular content we can use the following result:

Theorem 2 (Halmos (1974), Theorem A, p. 235). If m is the Borel measure

induced by a regular content Γ, then m[C] = Γ[C] for each compact set C.

Thus, these definitions and theorems lead us from the f -invariant measure µ on

X to a content Γ on Y, and finally to a regular Borel measure m on Y , and from this

last theorem we see that m behaves exactly like Γ on the compact sets. We primarily

work with compact subsets K of Y because of the fact that m[K] = Γ[K]. However,

as the next few lemmas show, if K ⊆ Y is Borel and it projects to a Borel subset of

X then we can approximate m[K].

Lemma 3. Let K ⊂ Y be Borel . Then m[K] ≤ µ[πn(K)] for all nonnegative integers

n such that πn[K] is Borel.

Proof. If K is compact, this follows immediately from the definition of Γ and the fact

that Γ[K] = m[K].

Next assume that K is open. Then

m[K] = sup{m[C] : C ⊆ K, C is compact}.

Since each m[C] ≤ µ[πn(C)], it follows that

m[K] = sup{m[C] : C ⊆ K, C is compact}
≤ sup{µ[πn(C)] : C ⊆ K, C is compact}.
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Since πn is continuous, πn(C) ⊂ πn(K). Thus,

{πn(C) : C ⊆ K, C is compact} ⊆ {R : R ⊆ πn(K), R is compact},

and since m[C] ≤ µ[πn(C)], we have

m[K] ≤ sup{µ[πn(C)] : C ⊆ K, C is compact}
≤ sup{µ[R] : R ⊆ πn(K), R is compact}.

But since µ is also a regular Borel measure and πn[K] is Borel,

µ[πn(K)] = sup{µ[R] : R ⊆ πn(K), R is compact}.

Hence, m[K] ≤ µ[πn(K)] for each n.

Finally let K be any Borel set and recall that

m[K] = inf{m[U ] : U ⊇ K, U is open in Y }.

Let V ⊇ πn(K) be open in X. Then π−1
n (V ) ⊇ K is also open in Y . Thus,

{π−1
n (V ) : V ⊇ πn(K), V is open in X} ⊆
{U : U ⊇ K, U is open in Y },

and

inf{m[π−1
n (V )] : V ⊇ πn(K), V is open in X}

≥ inf{m[U ] : U ⊇ K, U is open in Y } = m[K].

But by the previous case

µ[V ] = µ[πn ◦ π−1
n (V )] ≥ m[π−1

n (V )].

Hence,

µ[πn(K)] = inf{µ[V ] : V ⊇ πn(K), V is open in X}
≥ inf{m[π−1

n (V )] : V ⊇ πn(K), V is open in X}
≥ m[K].

Lemma 4. Let K ⊂ X be a Borel set. Then, for any nonnegative integer n, µ[K] =

m[π−1
n (K)].
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Proof. Let n be a nonnegative integer. Since Γ and m agree on the compact sets of

Y , we need only consider open sets and then Borel sets in the proof of this lemma.

Let U be an open subset of X, and denote π−1
n (U) by Û . By the previous lemma,

µ[U ] ≥ m[Û ]. Let {Li}∞i=1 be a collection of compact subsets of X such that Li ⊂ U

for each i and µ[U ] = sup{µ[Li] : i ∈ N}. Then m[Û ] = sup{m[K] : K ⊆ Û , K

is compact} ≥ sup{m[π−1
n (Li) : i ∈ N}, because {K : K ⊆ Û , K is compact} ⊇

{π−1
n (Li) : i ∈ N}. Since

sup{m[π−1
n (Li)] : i ∈ N} = sup{Γ[π−1

n (Li)] : i ∈ N} = sup{µ[Li] : i ∈ N} = µ[U ],

we see that m[Û ] ≥ µ[U ]. Thus, m[Û ] = µ[U ].

Let K ⊆ X be a Borel set. Let K̂ = π−1
n (K). By the previous lemma, m[K̂] ≤

µ[K]. Let {Zi}∞i=1 be a collection of compact subsets of X with Zi ⊆ K for all i ∈ N
and with µ[K] = sup{µ[Ui] : i ∈ N}. For each i, let Ẑi = π−1

n (Zi). By the previous

paragraph, µ[Zi] = m[Ẑi] for all i ∈ N, and since {R : R ⊆ K̂ , R is compact in

Y } ⊇ {Zi : i ∈ N},

m[K] = sup{m[R] : R ⊆ K̂, R is compact in Y } ≥ sup{m[Ẑi] : i ∈ N}.

But µ[K] = sup{µ[Zi] : i ∈ N} = sup{m[Ẑi] : i ∈ N}. Thus, m[K̂] = µ[K].

3.2 Natural Invariant Measures

For the next few propositions, lemmas, and theorems we assume that X is a compact

metric space, f : X → X is continuous, and µ is an invariant measure on X with

respect to f such that µ is regular and nonatomic with µ(O) > 0 for each nonempty

open set O in X. We suppose further that Y = lim
←−

(X, f), and m denotes the measure

induced by µ.

Theorem 3. The induced measure, m, is F -invariant.

Proof. Let K ⊆ Y be closed. Then since Y is compact, K is compact. By definition,

if x = (x0, x1 . . . ) ∈ Y then F−1(x) = (x1, x2, . . . ). Thus πn+1[K] = πn ◦ F−1[K].

So if Kn = π−1
n ◦ πn[K] is the nth tower set for K, it is the n − 1’st tower set for

F−1[K]. By definition, m[K] = lim
n→∞

m[Kn] = lim
n−1→∞

m[Kn−1] = m[F−1(K)]. Thus

m is F -invariant.

Note that since F is a homeomorphism, m is also σ-invariant as well. The next

two propositions say that if the measure µ is strictly positive (or equivalently has
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full support) or nonatomic then the induced measure m has these properties as well.

However, first we will need a lemma from Ingram and Mahavier (2004). The lemma

essentially says that one can guarantee points in the inverse limit space are close to

each other if in some factor space their projections are close to each other.

Lemma 5 (Ingram and Mahavier (2004)). Suppose X is a compact metric space,

f : X → X is continuous, and Y := lim
←−

(X, f). Let ε > 0. Then there is a positive

number δ and a positive integer n such that for every x ∈ X, π−1
n (Dδ(x)) has diameter

less than ε.

Proposition 1. If U is an open nonempty subset of Y , m(U) > 0.

Proof. Suppose not, i.e., suppose U is a nonempty open set in Y and m(U) = 0.

Applying Lemma 5, for each ε > 0, there are a positive number δ and a positive

integer n such that for each x in X, diam(π−1
n (Dδ(x)) < ε. Therefore we can find

x ∈ X, an integer n, and a positive number δ such that π−1
n (Dδ(x)) ⊂ U . Then

m[π−1
n (Dδ(x))] = 0. However, m[π−1

n (Dδ(x))] = µ[Dδ(x)], by Lemma 4 and this means

that m[π−1
n (Dδ(x))] = µ[Dδ(x)] > 0. This is a contradiction to µ being regular.

Proposition 2. If µ is nonatomic, then m is nonatomic.

Proof. Suppose not, i.e, m is atomic. Let x̂ = (x0, x1, . . . ) ∈ lim
←−

(X, f) be such that

m[{x̂}] > 0. Since {x̂} is a compact set we have that Γ[{x̂}] = m[{x̂}] > 0. Let An be

the associated tower sets for {x̂}, i.e. An = {ẑ ∈ lim
←−

(X, f) : zn = xn}. By definition,

Γ[An] → Γ[{x̂}], and since Γ[{x̂}] > 0, there is some N ∈ N such that Γ[An] > 0 for

all n ≥ N . This implies that µ[{xn}] = Γ[An] > 0 for all n ≥ N , and hence µ is

atomic – a contradiction.

Proposition 3. If Z is a measurable subset of X such that µ(Z) = 0, then π−1
n (Z)

has empty interior for each nonnegative integer n and m[π−1
n (Z)] = 0.

Proof. That m[π−1
n (Z)] = 0 follows from Lemma 4. That π−1

n (Z) has empty interior

follows from Proposition 1.

Proposition 4. Suppose that x ∈ Y , O is open in X, and k is a nonnegative integer.

Then

lim
n→∞

#{F i(x) ∈ π−1
k (O) : 0 ≤ i ≤ n}

n
= lim

n→∞
#{f i(xk) ∈ O : 0 ≤ i ≤ n}

n
,

provided one of these limits exists.
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Proof. Note that for x = (x0, x1, . . .) ∈ Y , F i(x) = (f i(x0), f
i(x1), . . .). Thus,

F i(x) ∈ π−1
k (O) if and only if f i(xk) ∈ O. It follows that #{F i(x) ∈ π−1

k (O) :

0 ≤ i ≤ n} = #{f i(xk) ∈ O : 0 ≤ i ≤ n} for each n, and the result follows.

Notation: For x ∈ Y , A a measurable subset of Y , let

G̃(x, A) = lim
n→∞

#{F i(x) ∈ A : 0 ≤ i ≤ n}
n

,

provided this limit exists. For x ∈ X, A a measurable subset of X, let

G(x,A) = lim
n→∞

#{f i(x) ∈ A : 0 ≤ i ≤ n}
n

,

provided this limit exists.

Recall the Birkhoff Ergodic Theorem [see, for example Katok and Hasselblatt

(1995)]:

Theorem 4 (Birkhoff Ergodic Theorem). Let T : (X,µ) → (X,µ) be a measure-

preserving transformation of a probability space, φ ∈ L1(X). Then for µ-a.e. x ∈ X

the following time-average exists

lim
n→∞

1

n

n−1∑

k=0

φ(T k(x)).

By construction (Y,m) is a measure space and since the induced homeomorphism

F is continuous it is a measure-preserving transformation. Also the characteristic

function χA of a measurable subset A of Y is in L1(Y ) we see that the limit G̃(x, A)

exists for m-a.e. x ∈ Y .

Lemma 6. Assume that X is a compact space with Lebesgue measure λ. Also assume

that µ is a natural invariant measure on X. If A is a closed tower set in Y , then there

is some nonnegative integer r such that A = {y ∈ Y : yr ∈ πr(A)} and µ[πr(A)] =

m[A]. Furthermore, for m-a.e. x ∈ Y , µ[πr(A))] = lim
ε→0

G̃(x, π−1
r (Dε(πr(A)))) =

lim
ε→0

G(xr, Dε(πr(A))) = m[A].

Proof. Suppose ε > 0. Since µ is a natural measure, there is a measurable set Z

of measure 0 in X such that if x /∈ Z, then for every closed set S in X, µ[S] =

lim
ε→0

G(x,Dε(S)). By Proposition 4, ZY := ∪∞k=0π
−1
k (S) is a measurable set of measure

0 in Y .

13



Suppose then that x ∈ Y \ZY . Then for each k, πk(x) = xk /∈ Z. Thus, xm /∈ Z.

Then, by the previous proposition, for each ε > 0 and nonnegative integer n,

#{f i(xr) ∈ Dε(πr(A)) : 0 ≤ i ≤ n} = #{F i(x) ∈ π−1
r (Dε(πr(A))) : 0 ≤ i ≤ n}.

Thus,

G(xr, Dε(πr(A))) = lim
n→∞

#{f i(xr) ∈ Dε(πr(A)) : 0 ≤ i ≤ n}
n

= G̃(x, π−1
r (Dε(πr(A))))

= lim
n→∞

#{F i(x) ∈ π−1
r (Dε(πr(A))) : 0 ≤ i ≤ n}

n
.

Since µ[πr(A)] = lim
ε→0

G(xr, Dε(πr(A))) and G̃(x, π−1
r (Dε(πr(A)))) = G(xr, Dε(πr(A)))

for each ε > 0. Because A is a tower set, the result follows.

Lemma 7. Assume that X is a compact space with Lebesgue measure, λ. Also as-

sume that µ is a natural invariant measure on X. Let A ⊆ Y be closed. Then

lim
ε→0

G̃(x, Dε(A)) ≤ m(A) for m-a.e. point in Y .

Proof. For each r ∈ N let Ar be the rth tower set for A, i.e. Ar = π−1
r ◦ πr(A) =

{x ∈ Y : xr ∈ πr(A)}. Let Zr ⊆ X be a set of Lebesgue measure zero such that if

x 6∈ Zr then lim
δ→0

G(x,Dδ(πr(Ar))) = µ[πr(Ar)]. By Lemma 6, for all x 6∈ π−1
r (Zr),

lim
δ→0

G̃(x, π−1
r (Dδ(πr(Ar)))) = m[Ar].

Let x 6∈ ⋃∞
t=1 π−1

t (Zt) = Z, and let r ∈ N. For all sufficiently small ε > 0 there is

a δε > 0 such that Dε(A) ⊆ π−1
r (Dδε(πr(A))). Fix ε > 0 small enough and δε > 0 as

above.

Define

Ln = #
{
F i(x) ∈ Dε(A) : 0 ≤ i ≤ n

}

and

Mn = #
{
F i(x) ∈ π−1

r (Dδε(πr(A))) : 0 ≤ i ≤ n
}

Since Dε(A) ⊆ π−1
r (Dδε(πr(A))) we see that 0 ≤ Ln ≤ Mn. Obviously, 0 ≤ Ln

n
≤

Mn

n
, and by Proposition 4 lim

n→∞
Mn

n
= G̃(x, π−1

r (Dδε(πr(A)))) exists. By the Birkhoff

Ergodic Theorem we see that lim
n→∞

Ln

n
exists. So 0 ≤ lim

n→∞
Ln

n
≤ lim

n→∞
Mn

n
, and thus

0 ≤ lim
n→∞

Ln

n
= G̃(x, Dε(A)) exists and is less than or equal to G̃(x, π−1

r (Dδε(πr(A)))).

Let

Nε = G̃(x, Dε(A)) and Pδ = G̃(x, π−1
r (Dδ(πr(A)))).

14



By above, for all sufficiently small ε there is a δε with Nε ≤ Pδε . As ε → 0 we can

choose δε so that δε → 0. By Lemma 6, m[Ar] = lim
δ→0

Pδ, and thus we can pass to a

subset of the δ’s m[Ar] = lim
ε→0

Pδε ≥ lim
ε→0

Nε. Thus, for each r ∈ N,

m[Ar] ≥ lim
ε→0

G̃(x, Dε(A))

This implies that m[A] ≥ lim
ε→0

G̃(x, Dε(A)) for all x 6∈ Z.

Theorem 5. Assume that X is a compact space with a Lebesgue measure λ. Also

assume that µ is a natural invariant measure on X that is nonatomic with full support.

Then m is a natural invariant measure on Y .

Proof. We showed in Theorem 3 that m is F -invariant. By Propositions 1 and 2, m

is nonatomic with full support.

Suppose A is a closed subset of Y and, for each nonnegative integer n, An denotes

the nth tower set for A. There is a measurable set Zn ⊆ X of Lebesgue measure

zero such that if x ∈ Y \π−1
n [Zn], then m[An] = lim

ε→0
G̃(x, π−1

n (Dε(πn(A)))). Let x 6∈
∞⋃

n=1

π−1
n [Zn] = Z. Let n, r, k ∈ N and define

Qn = G̃(x, D1/n(A))

and

Pr,k = G̃(x, π−1
r (D1/k(πr(A))))

Notice that if we fix r ∈ N then m(Ar) = lim
k→∞

Pr,k and m(A) = lim
r→∞

m(Ar) =

lim
r→∞

lim
k→∞

Pr,k. By Lemma 5, for each n ∈ N, there is some rn, kn ∈ N so that

π−1
rn

(D1/kn(πrn(A))) ⊆ D1/n(A). For this n, rn, kn ∈ N we have

Prn,kn = G̃(x, π−1
rn

(D1/kn(πrn(A)))) ≤ G̃(x, D1/n(A) = Qn

As n →∞, rn, kn →∞. So

m(A) = lim
n→∞

Prn,kn ≤ lim
n→∞

Qn

Since lim
n→∞

Qn = lim
ε→0

G̃(x, Dε(A)) we see that

m(A) ≤ lim
ε→0

G̃(x, Dε(A))

Combining this with the previous lemma,

m(A) = lim
ε→0

G̃(x, Dε(A))

for every x ∈ Y \ Z.
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Corollary 1. Since F : Y → Y is a homeomorphism, m is also a natural invariant

measure for σ.

4 Measures on Direct Limit Spaces

Suppose (X, d) be a compact metric space and f : X → X continuous. Let B(X)

denote the Borel sets of X. Suppose µ is an f -invariant measure defined on the B(X).

Let D := lim
−→

(X, f). We wish to define a measure m on B(D) that is σ-invariant where

σ is the shift map on D. Furthermore, if µ is a natural invariant measure, we would

like the induced measure m to be a natural invariant measure as well.

Carrying out these tasks is fairly straightforward in the direct limit case since f

and σ are conjugate as the next theorem establishes.

Theorem 6. Suppose f : X → X is continuous and X is a compact metric space.

Let D := lim
−→

(X, f) with induced metric ρ. Then X and D are homeomorphic with

a homeomorphism given by H : X → D defined by H(x) := (x, f(x), f 2(x), . . .) with

H−1 ≡ π1 : D → X defined by π1((x1, x2, . . .)) := x1. Furthermore, f : X → X and

the shift map σ : D → D are conjugate with f = H−1 ◦ σ ◦H.

Corollary 2. Suppose f : X → X is continuous and X is a compact metric space.

Let D := lim
−→

(X, f) with induced metric ρ. Then (D, ρ) is a compact metric space.

4.1 Invariant Measures

Note that since H is a homeomorphism, we can use H to induce a measure m on

B(D) given by

m[B] := µ[H−1(B)] ≡ µ[π0(B)]. (13)

The next theorem establishes that an invariant measures induces an invariant measure

for a conjugate dynamical system.

Theorem 7. Suppose that X and Y are compact metric spaces, f : X → X and

g : Y → Y are continuous and conjugate with conjugacy given by h : X → Y . Then

if µf is an f -invariant measure on the Borel sets B(X) then the induced measure on

the Borel sets B(Y ) given by µg[B] := µf [h
−1(B)] is g-invariant.

Proof. Let B be a closed set in Y . Note that since h is a homeomorphism we have

µg[h(A)] = µf [A] for A ∈ B(X) as well. Since g−1(B) ≡ h ◦ f−1 ◦ h−1(B) we have

µg[B] = µf [h
−1(B)] = µf [f

−1 ◦ h−1(B)] = µg[h ◦ f−1 ◦ h−1(B)] = µg[g
−1(B)].
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Corollary 3. Suppose f : X → X is continuous, X is compact, µ is a Borel f -

invariant measure, D is the direct limit space and σ : D → D the shift map. Then

the induced measure on B(D) given by m[B] := µ[π0(B)] is σ-invariant.

4.2 Natural Invariant Measures

Theorem 8. Suppose we have (X, f,B(X), µ) and (Y, g,B(Y ),m) where X and Y

are compact metric spaces, f : X → X and g : Y → Y are continuous, f and g are

conjugate with conjugacy h : X → Y , µ is an f -invariant Borel measure and m is

the Borel g-invariant measure induced on B(Y ) by h, i.e., m[B] = µ[h−1(B)]. If µ is

a natural invariant measure, then m is a natural invariant measure.

Proof. Let λ be Lebesgue measure on B(X) and λ̃ be Lebesgue measure on B(Y )

given by λ̃[B] := λ[h−1(B)]. Since µ is a natural invariant measure, there exists a

measurable set PX with Lebesgue measure zero where limr→0 G(x,Br) exists and is

the same for x ∈ X \ PX . Let S ⊂ Y be closed. We define

mg[S] := lim
r→0

G(y, Sr).

We will show that this limit exists λ̃-almost every y in D and equals m[S]. Let

PY := h(PX). Then h−1(PY ) = PX and λ̃(PY ) = λ[h−1(PY )] = λ[PX ] = 0. Let

y ∈ Y \ PY and x = h−1(y). N.B. y ∈ Y \ PY iff x = h−1(y) ∈ X \ PX . We also have

x ∈ h−1(Sr) iff h(x) ∈ Sr which implies f j(x) ∈ h−1(Sr) iff h ◦ f j(x) ∈ Sr which is

equivalent to h ◦ f j ◦ h−1(y) ∈ Sr or gj(y) ∈ Sr. This gives

#{f j(x) ∈ h−1(Sr) : 1 ≤ j ≤ n} = #{gj(y) ∈ Sr : 1 ≤ j ≤ n}.

This implies that G(y, Sr) exists and is the same for all y ∈ Y \ PY . Furthermore,

G(y, Sr) = µ[h−1(Sr)]. So we have

mg[S] := lim
r→0

G(y, Sr) = lim
r→0

µ[h−1(Sr)] = µ[h−1(S)] = m[S].

Corollary 4. Suppose f : X → X is continuous, X is compact, µ is a Borel f -

invariant measure, D is the direct limit space and σ : D → D the shift map. If µ

is a natural invariant measure on B(X), then the induced measure m is a natural

invariant measure on B(D).
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5 Computational Issues

When approximating the integral over the direct/inverse limit space, one essentially

wants to do what one does with a Riemann integral:

1. Form a partition: {E1, E2, . . . EN}.

2. Pick a representative point: xi ∈ Ei, i = 1, 2, . . . , N .

3. Add up the “area of the rectangles”:

∫

X

G(x)m(dx) ≈
N∑

i=1

G(xi)m(Ei).

When the bonding map f is chaotic, the property of sensitive dependence on initial

conditions may make this approach computationally difficult. The problem is that

even if two points in a factor space are close together, as one moves through the

direct/inverse limit space, these points may be pulled far apart. As an illustration,

take the tent map f : [0, 1] → [0, 1] given by f(x) := 2x for x ∈ [0, 1/2] and f(x) :=

2(1−x) for x ∈ [1/2, 1]. Consider a fixed partition {E1, E2, . . . , EN} of [0, 1] given by

Ei := [(i− 1)/N, i/N) for i = 1, 2, . . . , N − 1 and EN := [(N − 1)/N, 1]. Then there

exists a k such that fk(Ei) = [0, 1] for i = 1, 2, . . . , N . Heuristically, fk is becoming

very “erratic” for large k. Holding the partition fixed, consider for k ∈ N:

∫

X

fk(x)µ(dx) ≈
N∑

i=1

fk(xi)µ(Ei).

For some k, there will always be two different points xi, yi ∈ Ei with |fk(xi) −
fk(yi)| = 1. This implies that the area of the rectangle may be very sensitive to the

representative point chosen:
∣∣∣∣∣

N∑
i=1

fk(xi)µ(Ei)−
N∑

i=1

fk(yi)µ(Ei)

∣∣∣∣∣ = 1.

However, for a given k and ε > 0, there will always exists a partition {E1, E2, . . . , ENk
}

(sufficiently fine) so that
∣∣∣∣∣

N∑
i=1

fk(xi)µ(Ei)−
N∑

i=1

fk(yi)µ(Ei)

∣∣∣∣∣ < ε,

for any xi, yi ∈ Ei. However, Nk may need to be so large to make this computationally

very demanding.
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5.1 Inverse Limit Case

Let f : X → X be a continuous map on a compact metric space X. Let µ be an

invariant measure of f and m be the induced invariant measure on the inverse limit

space Y := lim
←−

(X, f). Let W : Y → R be a continuous real-valued function on Y

defined by

W (x) :=
∞∑

t=1

βt−1U(xt),

where U : X → R is continuous. The proof used to construct the measure on the

inverse limit space in Section 3 suggests the following algorithm for approximating

the integral ∫

Y

W (x)m(dx).

First, we truncate the infinite sum at some value T . Next, we grid the state space

(factor space) at time T into a partition with N pieces {Ij}N
j=1. Each of these pieces

can used to partition the inverse limit space according to

Aj := {x ∈ Y |πT (x) ∈ Ij}

Each of these “tunnels” in the inverse limit space has measure µ(Ij). Let Hj de-

note a truncated tunnel, i.e., the embedding of Aj into RT . Then our integral is

approximated by ∫

Y

W (x)m(dx) ≈
T∑

t=1

N∑
j=1

βt−1U(xj
t)µ(Ij),

where {xj
0, x

j
1, . . . , x

j
T} ∈ Hj. One issue that needs to be addressed is how sensitive is

the value of the approximation to the length T , the number (and size) of subintervals

and the selections of the point {xj
0, x

j
1, . . . , x

j
T} ∈ Hj. As mentioned earlier, the

selection point is potentially very problematic due the sensitive dependence on initial

conditions inherent in the map f . We can have two different points x0, y0 ∈ Ij (close),

but fT−1(x0) and fT−1(y0) might be far apart. Ideally, one would want the projection

of the tunnel πi(Hj) to be “small” for each i, but the sensitive dependence on initial

conditions of f is “stretching” Ij apart. The problem of sensitive dependence on

initial conditions puts our two objectives at odds with each other: as we increase T

to make the tail of the utility function small we must also increase N to ensure f j(Ik)

is small for all j = 0, 1, . . . , T − 1. Our initial results using this algorithm were very

discouraging. Fortunately, the fact that µ is f -invariant can be used to speed things

up immensely.
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Since µ is an f -invariant measure, we have for A ∈ B(X) and k ∈ N,

∫

X

χfk(A)µ(dx) = µ[f−k(A)] = µ[A] =

∫

X

χAµ(dx).

This implies for any continuous real-valued function g we have
∫

X

g ◦ fk(x)µ(dx) =

∫

X

g(x)µ(dx).

In fact we have the following stronger theorem.

Theorem 9 (Walters (1982), Theorem 6.8). If f : X → X is continuous and

X is a compact metric space, then µ is an f -invariant measure if and only if
∫

g ◦
f(x)µ(dx) =

∫
g(x)µ(dx) for all g ∈ C(X).

The integral of the truncated sum is given by

T∑
t=1

∫

I

βt−1U(fT−t(x))µ(dx).

However, since µ is an f -invariant measure, we have
∫

X

U(fT−t(x))µ(dx) =

∫

X

U(x)µ(dx), t = 1, . . . , T − 1.

Consequently, our integral is given by
∫

Y

W (x)m(dx) =
1

1− β

∫

X

U(x)µ(dx).

5.2 Direct Limit Case

Let f : X → X be a continuous map on a compact metric space X. Let µ be an

invariant measure of f and m be the induced invariant measure on the direct limit

space D := lim
−→

(X, f). Let W : D → R be a continuous real-valued function on D

defined by

W (x) :=
∞∑

t=1

βt−1U(xt),

where U : X → R is continuous. The proof used to construct the measure on the

inverse limit space in Section 4 suggests the following algorithm for approximating

the integral ∫

D

W (x)m(dx).
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First, we truncate the infinite sum at some value T . Next, we grid the state space

(factor space) at time t = 1 into a partition with N pieces {Ij}N
j=1. Each of these

intervals can be used to partition the direct limit space according to

Hj := {x ∈ D|π1(x) ∈ Ij}

Each of these “tunnels” in the inverse limit space has measure m(Hj) = µ(Ij). Let

xj := (xj, f(xj), f
2(xj), . . .) ∈ Hj. Then our integral is approximated by

∫

D

W (x)m(dx) ≈
N∑

j=1

W (xj)m(Hj) =
N∑

j=1

T∑
t=1

βt−1U(f t(xj))µ(Ij)

This implies that

∫

Z

W (x)m(dx) =
T∑

t=1

∫

X

βt−1U(f t(x))µ(dx).

Again, since µ is an f -invariant measure, we have

∫

X

U(fn(x))µ(dx) =

∫

X

U(x)µ(dx), n ∈ N.

Consequently, our integral is given by

∫

Z

W (x)m(dx) =
1

1− β

∫

X

U(x)µ(dx).

Note that in the direct limit case, the “Riemann strategy” for approximating the inte-

gral might work even though we still have sensitive dependence on initial conditions.

Our partition of tunnels is done with a grid that is always on X at time t = 1. As n

gets large fn may be very irregular so the choice of xi ∈ Ei matters a lot for fn(xi),

but βn substantially discounts this problem.

6 Ramsey Meets Chaos in a Cash-in-Advance Model

6.1 Optimal Policy with Multiple Equilibria

The framework in this paper for calculating expected utility can be used to bridge

two important literatures in macroeconomic theory: multiple equilibria and opti-

mal policy. Dynamic general equilibrium (DGE) models have become a standard

framework for both the positive and normative evaluation of policy. In the optimal
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monetary/fiscal policy literature one considers a mapping from a policy space (e.g.,

money growth rate or set of taxes) to outcomes (e.g. allocations from a competi-

tive equilibrium). If the mapping from policies to outcomes in the DGE model is

single-valued, then one can induce a ranking on the policy space in a very natural

way. For instance, suppose Θ is the policy space and for each θ ∈ Θ, there is a

unique competitive equilibrium E given by E = M(θ). If U the utility function of

the household defined over the space of competitive equilibria, then one can use the

function W (θ) := U(M(θ)) to define a ranking on Θ. In addition to perhaps locating

the most preferred or optimal policy θ∗, such a ranking can be used to measure the

welfare gains of switching from some policy θ to another policy θ′. There is a large

literature that takes this approach to evaluating polices starting with the work of

Ramsey (1927).3

However, when H is not single-valued this method of ranking polices will not

work, and it is not clear what one should do since there is more than one equilibrium

associated with a particular policy. There are many ways in which M may be multi-

valued. For example, the model may exhibit local indeterminacy in which for a given

policy θ there exists a continuum of equilibria all converging to the steady state

equilibrium. However, one may also have a multi-valued H due to global properties

of the model as well. Our framework can be applied to the class of economic models

with equilibria that correspond to orbits generated by a chaotic dynamical system

f : X → X where X is a compact metric infinite space and f is continuous. Thus

there is both a large number of equilibria and a large and complicated variety as well.

Our framework is designed for this type of multi-valued H. Note that if f represents

the backward map, the indeterminacy in the model is greater in the following sense.

If f represents the forward map, there is a unique equilibrium associated with each

x ∈ X. However, if f is the backward map, there is at least one equilibrium (and

perhaps an infinite number of equilibria) associated with each x ∈ X.

6.2 Cash-in-Advance Model

The model is the standard endowment CIA model of Lucas and Stokey (1987). We

closely follow the exposition of Michener and Ravikumar (1998), hereafter [MR]. Since

our intent is only to apply our techniques to calculate expected utility in a model with

backward dynamics and chaos, we will focus on a particular family of utility functions

and parameterizations used in [MR].4 It is an endowment economy with both cash

3See Chari and Kehoe (1999) for a literature survey.
4See [MR] for more details and a more general framework.
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and credit goods. There is a representative agent and a government. The government

consumes nothing and sets monetary policy using a money growth rule.

The household has preferences over sequences of the cash good (c1t) and credit

good (c2t) represented by a utility function of the form

∞∑
t=1

βt−1U(c1t, c2t), (14)

with the discount factor 0 < β < 1. The utility function is assumed to take the

following form:

U(c1, c2) :=
c1−σ
1

1− σ
+

c1−γ
2

1− γ
,

with σ > 0 and γ > 0. To purchase the cash good c1t at time t the household must

have cash mt carried forward from t − 1. The credit good c2t does not require cash,

but can be bought on credit. The household has an endowment y each period that

can be transformed into the cash and credit goods according to c1t + c2t = y. Since

this technology allows the cash good to be substituted for the credit good one-for-one,

both goods must sell for the same price pt in equilibrium and the endowment must

be worth this price per unit as well.

The household seeks to maximize (14) by choice of {c1t, c2t,mt+1}∞t=1 subject to

the constraints c1t, c2t,mt+1 ≥ 0,

ptc1t ≤ mt, (15)

mt+1 ≤ pty + (mt − ptc1t) + θMt − ptc2t, (16)

taking as given m1 and {pt,Mt}∞t=1. The money supply {Mt} is controlled by the

government and follows a constant growth path Mt+1 = (1 + θ)Mt where θ is the

growth rate and M1 > 0 given. Each period the household receives a transfer of cash

from the government in the amount θMt.

A perfect foresight equilibrium is defined in the usual way as a collection of se-

quences {c1t, c2t,mt}∞t=1 and {Mt, pt}∞t=1 satisfying the following. (1) The money sup-

ply follows the stated policy rule: Mt+1 = (1 + θ)Mt. (2) Markets clear: mt = Mt

and c1t + c2t = y. (3) The solution to the household optimization problem is given by

{c1t, c2t,mt+1}∞t=0.

The necessary first-order conditions from the household’s problem imply that

U2(c1t, c2t)/pt = βU1(c1t+1, c2t+1)/pt+1, (17)

where Ui is the partial derivative of U with respect to the ith argument. This condition

reflects that at the optimum, the household must be indifferent between spending a
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little more on the credit good (giving a marginal benefit U2(c1t, c2t)/pt) versus savings

the money and purchasing the cash good in the next period (giving a marginal benefit

βU2(c1t+1, c2t+1)/pt+1).

Let xt := mt/pt denote the level of real money balances. Using the equilibrium

conditions that Mt = mt and c2t = y − c1t, equation (17) implies

xtU2(c1t, y − c1t) =
β

1 + θ
xt+1U1(c1t+1, y − c1t+1). (18)

Let c be the unique solution to U1(x, y − x) = U2(x, y − x). If the cash-in-advance

constraint (15) binds, then c1t = xt. If not, then the Lagrange multiplier µt = 0 and

c1t = c. It then follows that c1t = min[xt, c] for all t. Using this relationship we can

eliminate c1t and c1t+1 from (18) to get a difference equation in x alone:

xtU2(min[xt, c], y −min[xt, c]) =
β

1 + θ
xt+1U1(min[xt+1, c], y −min[xt+1, c])

or

B(xt) = A(xt+1), (19)

where

B(x) := xU2(min[x, c], y −min[x, c]),

A(x) :=
β

1 + θ
xU1(min[x, c], y −min[x, c]).

Whether or not the model has backward dynamics depends on whether or not A(·)
is invertible. In one parameterization, [MR] set β = 0.98, σ = 4, γ = 0.5, y = 2

and consider θ equal to 0, 0.5 and 1.0. In this case the function A is not invertible

and there exists an invariant set [xl, xh] such that the the backward map has a three

cycle. The backward map for this parameterization (with θ = 0) is in Figure 1. We

see that for this parameterization, the CIA model has backward dynamics.

Our function W : lim
←−

(I, f) → R is given by

W (x) :=
∞∑

t=1

βt−1U(xt, y − xt).

To construct the natural f -invariant measure, we approximate µ via a histogram using

a sample trajectory of f for some x ∈ [x, x] : {x, f(x), f 2(x), . . .}. This mimics the

“rain gauge” description of the natural invariant measure described in Alligood et al.

(1996). Figure 2 contains an approximation of µ. This histogram uses 104 bins and
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Figure 1: Backward map f : [xl, xh] → [xl, xh] from the cash-in-advance model.
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a sample trajectory of length 108. Given this approximation to the natural invariant

measure, the utility function U and the discount factor β it is now straight-forward

to approximate our integral

∫

X

W (x)µ(dx) =
1

1− β

∫

I

U(x)µ(dx) ≈ 83.3285573.

As mentioned in the introduction, our integral allows us to rank direct/inverse

limit spaces according to expected utility (a very natural ranking from the model).

To give some sense of how this might be used to evaluate different monetary policies,

imagine that for money growth rates θ ∈ Θ := [θ, θ], the backward map f is chaotic.

However, not all chaotic maps are the same in terms of utility. One way of framing the

question through a Ramsey lens, is within this subclass of possible monetary policies

Θ, which money growth rate gives the greatest expected utility? We see that for

θ ∈ Θ, we have a different backward map fθ, natural invariant measure µθ, invariant

state space Iθ, inverse limit space Zθ := lim
←−

(Iθ, fθ) and induced measure mθ. We then

have an indirect utility function given by

V (θ) :=

∫

Zθ

W (x)mθ(dx) ≡ 1

1− β

∫

Iθ

U(x)µθ(dx).

To be more concrete, suppose that the monetary authority is only considering money

growth rates in Θ := [0, 0.1]. Which θ ∈ Θ should the monetary authority choose to

maximize expected utility? Figure 3 contains a plot of the indirect utility function
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Figure 2: Histogram with 104 bins using a sample trajectory of length 108
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V : Θ → R. We see that a lower money growth rate is preferred to higher money

growth rate (θ = 0 is the most preferred). This ranking is qualitatively similar to the

ranking when considering only steady state equilibria.5 However, Figure 4 illustrates

that considering only the steady state equilibria would underestimate the welfare

costs of higher money growth rates.

Figure 3: Indirect utility function V : Θ → R.
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5A priori, this need not have been the case. What is driving the utility results in this example is
the distribution (and its support) for different money growth rates θ.
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Figure 4: Comparison of expected utility under chaos versus utility in the steady-state
equilibrium.
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7 Conclusion

In this paper, we developed a framework for calculating expected utility in mod-

els with chaotic equilibria and consequently a framework for ranking chaos. Our

framework is quite general and applies to any DGE model where the set of equilibria

correspond to the orbits generated by a chaotic dynamical system f : X → X where

X is compact and f is continuous with a natural invariant measure. We have illus-

trated how this framework can be used to bring together two important literatures

in macroeconomic theory: multiple equilibria and optimal policy.
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