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RECURSIVE MODELS WITH QUALITATIVE
ENDOGENOUS VARIABLEST

BY G. S. MADDALA AND LUNG-FEI LEE

The paper discusses the estimation proceautes and identification problems fer some simultancous
unobservable variables for which the observed

equations models involving underlying continuous

varables are qualitative. It also discusses the formulation of recursive models ; . ¢
i ; - els in the logit framewor,
an illustration of a five equation modei. git k with

1. INTRODUCTION

Models with qualitative endogenous variables have received a lot of attention by
econometricians in recent years, Broadly speaking the models fall in two
categories: those that start with a multivariate logistic distribution (see Goodman
{2], Nerlove and Press [6]) and those that postulate certain underlying continuous
response functions. In the latter class of models if y* is the underlying continuous
variable, we observe a qualitative variable y which (assuming it is binary} takes the
value 1 if y*>0 and 0 if y*=0. When it comes to generalizations to many
variables, models with underlying continuous variables are computationally more
cumbersome than models considered by Nerlove and Press [6].% It is fruitful to
investigate these models because the underlying causal structure is easier to
understand, at least for econometricians used to thinking about recursive and
non-recursive medels and different types of simultaneous structures. Further, the
extensions to models with discrete and continuous cases become more logical and
easy to comprehend. In section 2 we present a set of simultaneous equation
models involving underlying continucus unobservable variables for which the
observed variablesare qualitative. We vonsider the estimation procedures and the
identification problems in these models. Some models are more convenient to
present in a two equations framework (which is also useful to fix ideas on the
nature of the problems involved) and hence we consider them in a two-equation
framework. In section 3 we discuss the formulation of recursive models in the logit
framework. The logit mode! has been discussed by Nerlove and Press [6] in the
more general simultaneous framework where all endogenous variables are mutu-
ally interrelated. However, there will be many problems where one nesds to
postulate some speciai type of causality (in particular a recursive model). In
section 4 we consider a logit model with such a causal structure. It is a five equation
model analyzed earlier by Brown et a!. [ 1] but we take into account the fact that
some of the endogenous variables are qualitative. The final section presents the
conclusions.

1 Financial support from the National Science Foundation is gratefully acknowledged. We would
like to thank Forrest Nelson for helpful comments on an earlier draft.

¢ Such continuous models have been considered by Heckman [3, 4],
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2. SoME MobELS Wit UNDERLYING ConTinuOUuS VARIABLg

In this section we will present three different models and discuss the problems
of their logical consistency, identification and estimation. Models | and 2 are
recursive models and mode) 3 is a particular type of simultancous model. For ¢ a5
of exposition we will discuss the first two models in a two-equation framework but
N/ model 3 is discussed in a general framework. This should not be interpreteq to
mean that models 1 and 2 are special cases of model 3. These three types of models
are logically consistent models to analyze problems involving underlying contipy.
ous variables. It will be argued later that some other alternative formulationg lead
to logical inconsistencies.

Model 1 — A Simple Recursive Model with Qualitative Variables
Consider the two equations modei:
yT=XB, - €
yi= XBa2t+yy ¢,

where €, £, have zero mean, unit variances and are serially independent, X i a
vector of exogenous variables.' In general, at least one €xogenous variable in
equation 1 does not appear in equation 2 to guarantee the identification of B, and |
y.If £, and &, are independent, the exclusion of one exogenous variable in X, is i
notnecessary. Also in this model, ¥1, ¥% are not observable . Only the dichotom- '
ous variables y, and y, are observable. We assume that there exist constants I8
and u, such that '
)’1"’1 iﬁXﬁl‘_EIZ[lq ie. iﬁXﬂl_[LIZEh
y1=0 iff XB)—~u, <e,
and
y2=1 iﬁX52+YY:*M2282
y2=0 iff XB2+ vy, —u, <e,.

Denote the joint distribution functien of (£1,82) by F. The probability :
function of (y1, y,) can easily be written down. i

Py, =Py, = Ly,= 1)=F(Xﬂ| ‘#hXﬁz“‘)""#z)

-Pw""P()’l:L}’zzo):F(Xﬂl‘ﬂn"Xﬁz_’)’"”#z) ‘,

Por=Ply,=0,y,= DN=F-XB,+pu,, XB2— )

Foo=Ply1=0, 7= 0= F(-X8, 4 u,, ~x8,4 4, |
We get this sirpph'ﬁed €Xpression by assuming that €1, & are symmetrically
distributed. (This assumption is used to simplify the notations only). “

1
\ £ ;nd €2 need not hav.e unit variances but since ¥¥ and y¥ are not observable, these varianses
Te not identified and g, are identified enly up 10 o Proportionality factor o, —( = 1, 2,
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The likelihood function to be maximized is

LB B2y s 22X, ¥1s ¥2)
=[PPy PG P

As with the identification problem in the ordinary logit or probit analysis, if X has
a constant term, the coefficients of the constant terms are not identifiable since u,
and p, are unknown constants.

For this model, consistent initial estimates for all the parameters are not easy
(o get. Except for the parameters B, which can be estimated consistently by
applying the probit (if £, is assumed to be standard normal) or logit analysis (if £, is
assumed to have the logistic distribution), the initial consistent estimates of the
other parameters are not available. So what we can suggest is to usc the consistent
estimate 3, derived by the probit or logit analysis as an initial estimate for 8, and
try various values for the other parameters, study the values that they converge to
and choose the one which maximizes the likelihood function. However, if the
jikelihood function involves numerical double integrals for some specified dis-
tributions for the error terms, the maximization procedure is expected to be
difficuit.

If £, and &, ar¢ independent, then the likelihood fuaction reduces to

L =11{F(XB1—p))" (1~ FUXB,— )]

y1

x[1FAXB2+ vy~ 2P [1 = Fa(XBa+ vy — w2l ™
yz

and maximizing L is cquivalent to maximizing the likelihooed functions for the first
and second equations separatcly (as in a truly recursive model). In this case there
will be rio computational difficulty for the maximum likelihood procedure.

The extension of the two equations model to models with more equations is
straightferward. The likelihood function can be written down theoretically but f it
involves numerical multi-integrals, the computation will be intractable.

Model 2—A Recursive Model with Qualitative and Continuous Variables

Consider the model:
)’l* =Xp1—¢€,
y2=XBtyy1+ €2

where &4, £, are assumed to have zero mean and are serially independent, X are
exogeneous variables, y; is an observed dichotomous variable, y, is an observed
continuous variable and y 7 is an underlying continuous variable. In fact,

)'|=1 Iﬁy7>0 OfiﬁXﬂ|ZE|

Here we assume also that at least one exogeneous variable appears in equation 1
but not in equation 2 to guarantee the identification of the parameters 8, and y. If
£, and &, are independent, the condition is unnecessary.
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The joint density function of y,, y2 in this case is

XB,
gy, = Ly)= f(F-l»)’z‘Xﬁz‘“Y) de,

and

8()’1:0-)’2):] f(ﬂl,)b_xﬂz)dfl
X

where f(g|, £,) is the joint density function of (g, £1). The likelihcod function to
be maximized is

LBy, Ba ¥X, yiy) =1 gy, =1, y2) '8y =0, p,)' .

yiy2z

If g, and ¢, are independent, the likelihood function reduces to
L =I1[F(XB)P' 1 - Fy(XB,))" [1f2(y2 = X8, ~ yy,)
y1 y2

and thus maximizing L is equivalent to maximizing the likelihood functions for
both equations separately. In the case that ¢ 1 and g, are normally distributed, the
maximum likelihood procedure js equivalent to estimating the first equation by ;
probit analysis and the second equation by ordinary least squares. {
As for the maximum likelihood procedure for the case when €;and g, are not
independent, we have to get some good initial estimates to start the iteration. For
this modei, we can get the initial consistent estimates easilyif (g,, £,) are assumed
to be normally distributed, ..,

€, 52)~N(O, [ : "“]).

2
Tz 0

g P s et

Since the first equation is a standard probit model, 8, can bhe estimated
consistently by probit analysis. Rewrite the second equation as

y2=XB,+ YFiI(XB)) + ¢, +y(yi - Fi(XB,))
=XB2+ yF\(XB))+ w

where @ = y(y; ~Fi(XB)) +¢,. Since E(w)=0and v is uncorrelated with the
regressors, we can estimate B, and y by regressing y, on X and Fi(XB,). Since B, 1
1S a consistent estimate of 8,, under some general conditions, it can be shown that ;

the estimates 8, and ¥ of 8 and y are con sistent estimators. Denote the estimated
residual of the second equation by &, je.,
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Finally it remains to find some consistent estimates for o,. Rewrite the two
equations into a switching regression model.

y2=XBty+e, iff XB,>¢,
y2=XB+er i XBy=<ey.
With these specifications, it can easily be shown that

E(y.— XB2—vly1 = 1) =E(y&,)/ F\(XB))
=m-z[—%;eh(xs‘)zlz]/ﬂ(xm)

and
E(y,—XBaly1=0)=E((1-yyex)/[1- Fi(XB))]
= 0'12[ —Le“"""*"’z] /11~ FyxBl
Vam /
Thus o1, can be estimated consistently either by using the sub-sampie corres-
ponding to y; = 1 and regressing
] A 1 — 3 }2 A
y2—XB,— % on [———e (X81) ”]/I-‘(X
2= XB2— ¥ ‘/2—1-" 1(XB1)

or by using the subsample corresﬁonding to y; =0 and regressing

y2~ XB on [ —T;;e-(xﬁ’)%}/[l "Fl(xél)]-

or by combining these two sub-samples. Thus, we can use these consistent
estimates as the initial estimates to start the iteration for the maximum likelihood

procedure.

In the above model, the observed dependent variable is dichotomous in the
first equation and the observed dependent variable is continuous in the second
equation. In the reverse case we have the model:

yi=XBite;
yi=XB2+tvy1— €2

where &,, &, are serially independent with zero means and variances @y, 0732 and
covariance . Here now y; is the observed continuous variable and y3 is
unobserved but the dichotomous variable y; is observed.

y2=1 iffy3=0 or XBo+tyyi=e2
)‘2'—-0 iﬂXﬂz+‘Y}’|<£2.

Under the rank condition that at least one of the exogeneous variables appears |:n
the first equation but not the second one, we can show (the proof can be found in
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Model 3} that only

2
ﬂpﬂ'n, s

q
q |

are identifiable” where o = var (ye, — ¢,).
In this model, the joint densities are

‘\'ﬁzryyl
gln, 2=1):f f()’l“XBhez)dsz
and
8(YI,Y2:0)=j f(Yl_XﬂhEz)dEz

XBat+yyy

The likelihood function to be maximized is
LBy, B2, vly, X)= IT lg(y, y, = DI (g(y,, y2=0)]',
yYi.y2

Again if the residuals are independent, maximizing L amounts to estimation of
each equation separately,

If the residuals €; and g, are normally distributed, the consistent initiaj
estimates can be found as follows. The first €quation is a standard regression
model, so B; and o, can be estimated consistently by the ordinary least squares
estimators 2, and d1,. Rewrite the second equation into a probit model,

*
y—2=Xé+1(Xﬁ,)~2
o o o o

where @ = X (8, - Bi)+(e3—ve,). Itis easily shown that w/q is asymptotically a
standard normaj variable, so 8,/o, ¥/o can be estimated consistently by the
Probit analysis. As for the parameters o,,/a, o,,/a?, we can use the relation

£2— e I
E(e,y,)=cov ( e, Ll_i) [ —— (X(ﬂz/«f)*(r/a')Xﬂ.)’/z}
o V2

= [ (Z) oy ‘_;2} [ \_7_21_; e-(X(Bzfa)*‘(r/a)Xﬁ,)’/z]
Or equivalently
1 e~ XB2/o)e (v/o)Xp 12y, |
E(e\ly, = )= [;70'11 *%} ‘/277
F(x2y Yxs,)
o o

to estimate 012/0. Regress the product of the jeast Squares residuals and y, on
; —{X b+ (v, X8 . . A A
IN2m e~ X Catornrog oy, and use this least square estimate and (y/0)4,, to

2. . o . -
Though the likelihood function involves 5 parameters B, oy, 8,/a, y/o and o)z/a and it
agpears_as though only tzhesg parameters are estimable, it should be noted that ¢® = yar (ye,—¢€5)=
Y ou-2a;,+0,, or (y*/o )o',.—2(7/0')(0-,2/0)+o-22/o'z= * and hence o5, /5 is also estimable.
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soive for G»/ 0. Finally since

o’ =E(ye,~¢€5)

=vyloy, ~2y0y, oy,

it impllies (62240'2}2:}—(7/?)?0“+2('y/u)((f|2/0'). Ilence we can cstimatc
anfo’ by 1-13/0) ‘,’H+?~(7/0’)(012/0)- Thus this gives the initial consistent
estimates for ali the identifiable parameters and they can be used to start the
iteration of the maximum likelihood procedure.
Model 3—Simultaneous Model with Unobservable Continuous Variables:

This qualitative model with simultaneous continuous and unobservable
endogeneous variables has the following specification,
Bif -‘_I‘Xf = €y

where ¢, is serially independent, has zero mean and covariance matrix 2, B is a
G X G non-singular matrix with unitary diagonal elements. Here

~ * % *
»= ()’m Y205+ - -2 YGits YGuwaes - - ,YG:)

isa vcctor*and YGytn - - -2 YGr AT€ obseyvable continuous endogeneous variables,
Yio.. -2 YGu Ar€ unobservable variables but the dichotomous variables
Yin - - -2 You ar€ observed such that

yu=1e Y:ZO
=0 ¢ yi<0.

So this model is a simultaneous model with continuous and qualitative variables
when 0< G; <G and it is a simultaneous model with only qualitative variables

when G,=G.

This model is quite similar to the usual simultaneous structural equations
model. As in the probit model, the mode! has its identification problems. In this
section, we will consider which parameters can be identifiable under the usual
conditions for the inclusion and exclusion of the variables in the simultancous
system. Other prior information can of course give the identification of the

unknown parameters.
Consider the reduced form for this system which is

§,=—B'TX,+B'e,
=11X,+v,
where
v=B'gand = -B°T.
It follows that the covariance matrix £ of v, is
Q=B"'IIB""
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Denote

1 ]
i 1)

a G X G diagonal matrix where o} = var (e i=1,.. ., Gy
For the parameters of the reduced form of the system, it can be shown easily
that AIl, AQA are identifiable but not [] andQ without any further assumptions,
Now Iet us consider the identifiability of the parameters of the structyry)
€quations by the equations

BIT+I'=9
BOB'=3,
To simplify the notation, we will show the identification of the parameters for the

whole system. For the identification of the parameters in any single equation, it
follows immediately. First let ys consider the parameters B andI'.

BIT+T =0 (BA™')AIl) +T'= o,

Since Aisa diagonal matrix, the usual rank conditions for | are applicable for ALl
However the normalization ruje Bii = 1 for the first G, structural equation has no
effect in the identification of BA~! and I'. To see this, write the matrix Bina

partitioned form.
Bl 1 Bl 2}
5=|
BZI B22

where B,, is a G x G, matrix, B,, is a (G~G,).‘<(G—-G,) matrix, B, is a
G, X(G - G,) matrix and B, isa (G-G,)XG, matrix. Thus

BA—1=[BH BI2J[D‘I O]z[BnD_I Bn]
By Bpll 0 g ByD™' B,,J

It ifleasy to see now that the first G, X G, elements in the diagonal efements of
BA™ are not unitary elements any more but rather the unknown parameters

(ABA™)YAI)+Ar =

where ABA ™! has unitary diagonal elements. Hence ABA ' and AT are identifi-
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able if the rank condition holds for each structural equation in the system. Also
' z=BQB'
>%=(BA ' )YAQA)A'B")
>AZA=(ABAT)AQAJABA ).
Thus, under the rank conditions AZA isidentifiable. By the same arguments, if the
rank condition holds only for some structural equations, it follows that the
corresponding parameters in ABA™', Al and AZA will be identifiable.

The identification of the structural parameters can also be improved upon if
more information is available in the system. Instead of a constant threshold for the
unobservable endogencous variables, if some extraneous variable thresholds are
available the identification of the parameters in the corresponding structural
equation will be improved. Without loss of generality assume that there exist some
extraneous variables z; for the first G,(G, = G,) equations such that

ya=1& yi=z
y: =0, otherwise,i=1,..., Gy t=1,..., T

where z;, (i=1, ..., G;) are uncorrelated with errors &,. In this case, if the rank
conditions hold for all structural equations, we have

ABA™', AT and AZA

are identifiable where now

I Rl

Finally, if the extraneous variables z; are available foralli=1,..., G, Alis
an identity and hence B, I and X are all identifiable.

Heckman {3] has recently proposed to use the full information ML estimation
for this kind of system. Also he has suggested some initial estimates for the
parameters when the disturbance terms are assumed to be normally distributed.
However, if the system has many structural equations and G, >2, there willbe G,
multi-integrals involved in the density function and the estimation procedure will
be intractable. A feasible alternative to the FIML method is to estimate the
unrestricted reduced form equations separately by Probit analysis and use a two
stage least square analogue to estimate the structural equations. The test for the
significance of these parameters can also be developed.
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Rewrite the system with all the coeflicients to be identifiable. The systems:
(ABA™)y** + ATy, = Ag,

where y* = Ay, With these yi* as the unohservahle continucus endogencoyg
variables, it characterizes ¥ in the same way as ye does, i.c.,

Y= 1 & yi*s

=0, otherwise,

foralli=1,.. G,. The reduced form of the system is

v = Allx, + Av,.

The first G, equations in this reduced form system are the usual Probit models and
the last G - G, are the ordinary regression cquations. Thus AIl can be estimated
consistently by ATl which are derived by the Probit analysis and the least squares
procedures. As for the estimation of the parameters ABA™' and AT itis sufficien
to illustrate the procedure by the first and the G 1+ 1th equation.

Written down explicitly, the first equation has the foliowing expression

BiZo'Z *%k .BIG‘O'GI *:k ﬂlG.‘bl * %k
_'—a_—‘y;, +.. .+"__y(;l,+""’_‘_a.

i+ YGi+1
g,
, . €
+.. .+—B“’y§:*+:’ﬂx,,+@x2,+. AL
a, a, o, o, o,

Denote y;* = Allx, and substitute for y**into the structural equation, it becomes

so_Budrg,  Bigug, s Broer
YU - YZ: < G~ YG.”,
(] g, g,
BIGA** Y Y12 1k
- Yo — 10— X2 "--xkl+wll
a, 1 1 1

3120'2, ,BiG;UGI ﬂlcm Bic Yu Yik
—_— ... \-,—-—,...,ﬁ,-——.
T o, oy o o oo

consistgmly. It follows that the asymptotic ¢ test can also be developed for the test
of the significance of these parameiers.
The G, + 1th equation is

= *x *
Va1, BoisioytF~. . -ﬁG;H.GsUG.}’Gfr‘BG.+l.G:+2YG-+2J
. *ﬁc.ﬂ.c)’c:r-)'c.u.lxu T TG 1Kk TG 410
; i d *k oo _ ; ; j i
Substitute g3* for yi (i=1,.. ., G))in the equation ang apply the ordinary
least squares procedure. The Parameters
ﬁc.+1.10'1, e ,ﬁc.+1,c:.0'c..ﬁc.+|.(;,+z,- s Beyrig and yg,,,, .. ., YGi+ix
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can be estimated consistently and the usual ¢ test for the significance of the
parameters carn also be applied.

Models of the type 1, 2 and 3 considered here are well-defined. But in the
class of qualitative simultancous equations models, some models are not valid.
For example, the model

yi=xBi+ay;te
y2=xBatazy,te
is not valid.
[tleads to logical inconsistencies’ because it resuits in an equation of the form
y*=xy+8y+u
where the unobservable variable y* is related to the dichotomous variable y
through another relation of the form
y=1 if y*>0
=0 if y*<0.
Other models of the form
yi=xBi+ayrte

yE=xBrtay} te;

and
yr=xB,ta,y,—¢

yi=xBrtazy,—¢

are also inconsistent. To show the inconsistency of the last model, it is easy to
check in general that
Z P(yla yl)#l

yuy2
whenever o # 0 and a4 # 0.

All these inconsistent models have a common feature that the reduced forms
are not defined. Thus the endogenous variables can not be explained by the
exogeneous variables and the disturbances.

Hence we can conclude that all the simultaneous equations models with
qualitative endogeneous variables can be broadly divided into the category of the
recursive type of models as model 1, model 2, or their combination, and the
category of the model 3.

4
3. SIMULTANEOUS VS, RECURSIVE MODELS IN THE LoGiT FRAMEWORK

Nerlove and Press [6] discuss a logit model where the endogenous variables
are all completely interrelated; for instance, if there are three such variables yq, ¥2,
y, then y, influences y, and y,, yz influences y, and y,, and y; influences y, and y».

3 The inconsistencics of this model have been recently discussed by Heckman 31
* This section is based on the discussion in Maddala and Nelson [5].
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/This type of mutual independence may not always be
able to analyze models that have any caus
For illustrative purposes we will cor
variables y,, y

Let Py =Pr(Y, =i, Y,=j, Y, =k)

S We can then write

(1)

where

Pow=1/D

Pl(m:eﬁ;t/D
Pmozeﬂéx:/D
Py = eﬂ;x/D
Plln:é’mx/D
Pim‘:emx/D
pm':eﬁkx/[)
Py=e?"/D

7 .
D=1+7 ¢~

These equations imply the following relations:

Poio Bix
Poo
— ,Ba—As)x _‘Pllﬁ___e(ﬂ,,-ﬁ,)x
PI()ﬁ
B3-8,rx ._P@ —e‘ﬁa B3)'x
P()()l
. e(ﬁ7“ﬁ6)'l P“l —_ e(ﬁ7‘n@5)"
Pl()l

These reactions can be written as

Log

P()’2= 1‘)’1)’3)
2 =2z 1Y)
R T

Log

P(y, = 1]y,y,)

Py, =0ly,y,)

P(y,= 1])’1)’3)-_
P(y;= Ol)’l}’z)

desirable and we should be

al structure we desire.
isider the case of three dichotomgyg
2+ ¥3, and a set of exogenous variables to be denoted by x.

LW k=0or}.
PU(” - B4
= o B
Pooo

Py, = BsB)x
Py

Pony = oo Bar'x
PO]()
52—6(37_54"
PIIO

=;BIIX+(34‘Bz“Bl)'x,Vz'*'(Bs‘BJ“BI)’X)’?.

+(B,~-B; —Bs— B, +B:+8, +B1)'xyay,

=Bux+{B,-p, —B1)xy, ‘i‘(ﬂﬁ_ﬁ's“ﬁz)'x)’s

+(ﬁ7‘36*Bs‘ﬂ4+ﬂ3+ﬁz+ﬁl)'x)’x)’3

_ﬁéx+(ﬁ5‘ﬂ3_ﬁl)'x)’l +(Bs ~B3—82)xy,

""(.37_30_135*:84"’,33""32 +B1)'xy,y,.
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Note the symmetry in the coeflicients of the equations (2). This symmetry was
discussed by Nerlove and Press [6]. To simplify the model we can impose:

(3) (Bi=B2—B1)x= By,
(Bs—B+—Bi)x=0
(Be—B3—B2)'x =Py
B1-Be=Bs—Bs—=Bi—P2tByx=7.

We can get this model if the first element of x is 1, all but the first elements of the
vector B4 are equal to the sum of the corresponding elements of B8, and B,, with
similar conditions holding for 85 and B4, and for B; all but the first element are
equal to the sum of the corresponding elements of 8, B, and Bs.

Thus, an important consequence of the muitinomial logistic model (1) is that
we get the well defined conditional distributions (2). In actual practice, if there are
a number of categories, the complete multinomial model (1) ir~olves too many
parameters. Thatis why Nerlove and Press suggest estimating cquatiors (2) by the
logit method treating the right hand variables as exoger:.uus. One can yet consis-
tent estimators for the parameters by this procedure (though these are not fully
efficient because they ignore the cross equation constraints). This pro~edure
reduces the number of parameters to be estimated considerably. Further regus-
tion can be achieved by making some simplifying assumptions like (3). If we
further impose the restriction B;—Be—Bs—Bst B3+ B+ =0 we can also
eliminate the preduct terms involving y,y,, ¥2¥3, ¥3y1 in equations (2).

Unlike the usual simultaneous equations model where it is not possible to
interpret each equation as a conditional expectation (except in a recursive system)
the specification (1) permits well defined conditional probabilities (2). Aiso, it
looks as if we cannot have causal chains in simultaneous equation logit models.
This is indeed not so. Consider a situation where the causal relations between
y1y2ys are as shown in Figures 1 and 2.

n ¢ > 2 yr € ¥ y2

S

'

Y3
Y3

Figure 1 Figure 2

Suppose that y, and y, are variables that do precede (in time or in some other
sense) variable y;. Then a relationship as in Figure 2 obviously does not m?ke
sense and it is a relationship as in Figure 1 that we should be considering. It might
be thought that the symmetry conditions in equations (2) imply thatif ys depends
on y,, then the reverse must be true with the same effect. This is of course not true.
What the symmetry conditions imply is that if y, dependson y; and y3 depe{‘n('is on
y: then the two effects should be equal. We have to interpret the coqdltlopal
probability equations (2) as depicting the nature of the causall relqtlonshlps
between the variables. For the model in Figure 1 these causal relationships can be
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/ written in the following form

Yy =1y, x ,
/ l()g-*—-Pl(y'\b’2 )—=6yz+a,,\'

“ U Pr{y =0y, x)

(4} Iogpr(yZ;”yl’x)

. —=8y;+alx
Priy,=0ly, x)

Pr(y;=1ly,, y,x) ,
Priv =l = =By1+Boy, +a'x.
Log Pr (y, = OIy,, Y21 By Bay, 3

€quations in (4) since Y1 and y, are jointly determined. One can estim.a-te. S, ay,a,
from the joint probability distribution of y,and y,. These jomt probabilities are:

Pl = e(ﬂ:*ﬂz)'x+8/A

Py =e"*/A
Pio=e""*/A
Pyo=1/A

where

(5 A=1+eu;x+ea;x+e<al+a1)'x+a_

As for the third equation in (4) its parameters are estimated separately. This
€quation implies

©) LogPUl_g 4 g 1oty
PllO

POll

—— + ’_
LOngO B2 +ajx

and equations (6) in conjunction with (5) will enabie us to estimate the joint
probabilities Py for any goodness of fit tests. If we assume the causal relationship
in Figure 2, the conditional probabilities will be given by equations (2), with any
appropriate zero restrictions, and the joint probabilities will be given by (1), again
with the appropriate zero restrictions.

Given any specification of the conditionai odds ratjos asin (2) one can deduce
the joint probabilities (1). The ML estimation procedure based on the implied




In the case of a recursive model, of course, as in the usual simultaneous
equations come?(t, the estimates from the conditional equations (2) would be fully
efficient. As an illustration consider the causal model:

yi1=flx)
y2= flx, yi)
where y,and y, are binary.
Bix
M Pr (y1=1)=_1_J;FlT
ePEtm

Pr(y,= 1|)’1)=T;?;;:7—,1.

These give the joint probabilities

(8) P, =F(Bix)F(Bax +7v)
Po, = F(B2x)[1- F(B1x)]
Py =F(B\x)[1-F(Bx +7)]
Poo=[1-F(B1x)][1 - F(B2x)]
where

2z

€

F(z) =
(2) 1+e®

The separate estimation of equations (7) and the joint estimation of equations (8)
are the same.

4. AN APPLICATION

The model we analyze here is a model analyzed by Brown et al. [1] on the
effectiveness of the neighborhood youth corps programs (NYC program). We
estimate here a model somewhat simpler than theirs. The model consists of five
endogeneous variables and ten exogeneous variables.

Endogeneous Variables

y, Heard of the NYC, a dummy variable, 1—yes, 0—no.

y» Dummy variable for participation in MYC program, 1—participated,
0—not participated.

y3 Dropout from high school a dummy variable,
dropout.

ys Proportion of time involuntary unemployedin post

ys Current (or most recent) wage level of the individual in

1—dropout, 0—not

-high school period.
cents/hour.

3 We are grateful to Stanley Horowitz for supplying us the data.

539



Exogeneous Variables

x; Constant term, x, =1,

X, Western, Southern U.S. or else dummy variable 1—western or southern,
0—clse.

x3 Rural area, small city or medium city, big city dummy variable 1—rura]
area or small city, 0—medium or big city.

xs Family size while in high school.

xs Family income during high school.

x¢ Father's education,

X7 Age of individual.

xg Sex of individual, a dummy variable, 1—male, O0—female.

X9 Race of individual, a dummy variable, 1—white, 0—nonwhite.

X10 Number of friends of individual who dropped out of high school,

The NYC program is expected to irfluence the lives of jts participants. It
might be expected to affect their decisions about finishing high school, participat-
ing in the labor force, wage level and so on. In addition to the NYC, other factors
may influence these activities and also their enrollment in NYC. We build 5 five
equation recursive model to study the NYC participation and assess the effects of

differentiate the regions and communities in which the individuaj may live,
Variables x,, xs, x quantify factors of the home environment experienced by the
individual while he was in high school. X7, X3, X9 measure the individual charac-
teristics that are expected to be important determinants of the person’s activities

TABLE 1
THE STRUCTURE oOF THE MODEL

Vi ya oy oy, Yso o1 xp x5 X X5 xg x, Xg X9 Xy
___N\
Y1 v v ooV v v
—_—
y2 v v v VAN v
—_— Y
¥3 v v oV oy N v
—_— T

_—

¥s VooV v v v v v
_\\\\
¥s vov oy VN N v v oV

i=aotan;+a,y, +013~’-’s+0114x7+6l’15x9+ £

Y2=Bayi+ay tasx, +022x5+¢123x7+az4x9+ £

Y3=Bsy, taytayx, tazxstagyx, tasaxstassxg tazx;gte,
Ya=Ba1y2+ By, +a4o+a41x3+04216 tayx, tagxgte,

Ys=Bs1y2+ 85,7, +8s3y4 tasotas,x, tasx3+asxg tasaxgtassxgtes
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/ As is evident, even for the recursive'models considered in secti.0n 2, the ML
estimation involves bivariate integrals unless the residual’s are independent,
;  Extension to more variables involves higher order integrals. We coulq have used
/ the methods outlined in section 3 which are straightfqm'ard adaptations of the
" Nerlove-Press procedure. However we chose t.o esmnatfa our model by the
following computationally simpler procedures. Fl.rst we es.tlmated the _mode! by
using the logit method separately on each equation trea.tmg all the right hang
variables as exogeneous (which is valid if the residuals are mdcpen.dcnt). Next we
used a 2SLS analogue which we call here logit 2$IS. In this meth.od the
endogenous dummy variables are replaced by their estimated values qbtamed by
the application of the logit method to the reduced form., These estimates are
presented in Tables 4 and 3.

If the NYC program is effective we would expect @_1.1 and B4, to be negative
and B, to be positive. Also B,. is expected to be pc.)sm‘ve and Bs, and B, are
expected to be negative. The OLS estimates reported in Table 2 have some wrong
signs (B4, and B5,). The 2SLS estimates reported in Table 3 have the correct signs
for the coefficient of y, but none of the coefficients are significant and B> has the
wrong sign (though the coefficient is not significant). The single equation logijt
estimates reported in Table 4 stiil indicate that the NYC program is not effective,
The logit 2SLS estimates reported in Table 5 indicate a stronger effect of the NYC
program—particularly on the dropout rate out of high school, though it has no
additional effect on the post high school rate of involuntary unemployment and
the wage rate earned. It appears to influence these variables only through its
influence on the dropout rate.

~—t

5. ConcLusiOoNs

The paper presents some models where some of the e ndogenous variables are
unobserved continuous variables for which the observed variables are discrete

logit framework. An empirical example concerning the effectiveness of the
neighborhood youth corps program is presented. The mode] consists of five
endogenous variables, and has a particular causal structure that resembles a
recursive model in the simultaneous equations literature (or more precisely the
matrix of coefficients of the endogenous variables is triangular). The ZSLS method
where the discrete nature of the endogenous variables is taken into account leads
to the conclusion that the neighborhood youth corps program has a significant
effect on the rate of dropping out of high school, whereas the ordinary 2SLS
rethod, where the discrete nature of the endogenous variables is not taken into
account, showed nv significant effect of the program.

University of Florida
University of Minnesota
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