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Annals of Economic and Social Measurement 5/4, 1976

RECURSIVE MODELS WITH QUALiTATIVE
ENDOGENOJS VARIABLESt

BY G. S. MADDALA ANt) Ltirv(]-Fri LEE

The paper discusses the estimation procedures and identijjcat.on problems for some simultaneousequations modeh involving underlying COntinUOUS Unobservable variables for which the observedvariables are qualitative. It also discusses the
formulation of recursive models in the logitframeor withan illustration of a five equation model.

1. IN1ROFOJCTIQ

Models with qualitative endogenous variables have received a lot of attention byeconometricians in recent years. Broadly speaking the models fall in twocategories: those that start with a multivariate logistic distribution (see Goodman[2], Nerlove and Press [6]) and those that postulate certain underlying Continuousresponse fUnctions. In the latter class of models if y* is the underlying continuousvariable, we observe a qualitative variable y which (assuming it is binary) takes thevalue 1 if y >0 and 0 if y 0. When it comes to generalizations to manyvariables, models with underlying Continuous variables are computationatly morecumbersome than models considered by Nerlove and Press [6].a It is fruitful toinvestigate these models because the underlying causal structurc is easieï tounderstand, at least for econometricians used to thinking about recursive and
non-recursive models and different types of simultaneous structures. Further, the
extensions to models with discrete and Continuous cases become more logical and
easy to comprehend. In section 2 we present a set of simultaneous equation
models involving underlying continuous unobservable variables for which the
observed variables are qualitative. We Consider the estimation prOcedures and the
identification problems in these models. Some models are more convenient to
present in a two equations framework (which is also useful to fix ideas on the
nature of the problems involved) and hence we consider them in a twoequation
framework. In section 3 we discuss the formulation of recursive models in the logit
framework. The logit mode! has been discussed by Nerlove and Press [6] in the
more general simultaneous framework where all endogenous variables are mutu-
ally interrelated. However, there will be many problems where one needs to
postulate some special type of causality (in particular a recursive model). In
section 4 we consider a logit model with such a causal structure. It is a five equation
model analyzed earlier by Brown etal. [1] but we take into account the fact that
some of the endogenous variables are qualitative. The final section presents the
conclusions.

t Financial support from the National Science Foundation is gratefully acknowledged. We would
like to thank Forrest Nelson for helpful comments on an earlier draft.

a Such continuous models have been considered by Heckman [3,4].
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Model I - A Simple Recursive Mode! wit/i Qualitative Variables
Consider the two equations model:

y=Xf3,e1
YXa2+yy1 2

where e,, e2 have zero mean, unit variances and are serially independe Xis avector of exogenous variables.' In general, at least one exogenous variable inequation 1 does notappear in equation 2 to guarantee the identification of2 andy. If e, and e2 are independent, the exclusion of one exogenous variable in X2 isnot necessary. Also in this model, y', y are not observable. Only the dichotomotis variables y1 and Y2 are observable. We assume that there exist constants ,.t1and z2 such that

y, I itfXf3, s, i.e. itT Xf31 -
y,O

and

Y2l iffX$2+yy,1L2e2
Y20 iffX/32+yyI..,L2<s2.

2. SOME MODELS WITh UNDERLYING CONTINUOUS VARIABLES:
In this section we will present three different models and discuss the problemsof their logical consistency, identification and estimation Models I and 2 arerecursive models and model 3 is a particular type of s!multaneotis 'node! For caseof exposition we will discuss the first two models in a two-equation framework butmodel 3 is discussed in a general framework. This should not be interpreted tomean that models I and 2 are special cases of model 3. These three types of modelsare logically consistent models to analyze problems involving underlying Continuous variables. It will be argued later that some other alternative formulations leadto logical inconsistencies.

Denote the joint distribution function of (si, e2) by F. The probabilityfunction of (y,, Y2) can easily be written down.
P,, P(y1 =1'Y2= 1)=F(X, 1,X$2+y-2)

= P(y, = 1, Y2 =0) = - .t,, Xj32 - y +/J.7)P, P(y1 =0, Y l)=F(Xfj,+,1 X2-2)
P00= P(y, = 0, Y2 = 0)=F(X, +/1., Xj32 +112).

We get this simplified expression by assuming that e1, e are symmetricallydistributed (This assumptioii is used to simplify the notations only).
and 2 need not have unit variances but since y and y are not observable these vaances

are not Identified
and fl are identified only up to a Proportionality faetor l 2).
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The ljkcljhoOd function to he maximized is

L(,81, f37. y, z1, ,L2IX, y, y)
Jjp)1'11Y2pY( I .-)p(I - )Y2p(I -Y))(

tO

Consider the model:

y

As with the identificatioji problem in the ordinary logit or prohit analysis. if X has

a constant term, the coethcients of the constant terms are not identifiable since

and 2 are unknown constants.

For this model, consistent initial estimates for all the parameters arc not easy
to get. Except for the parameters $ which can he estimated consistently by
applying the probit (if is assumed to be standard normal) or logit analysis (if e is
assumed to have the logistic distribution), the initial consistent estimates of the
other parameters are not available. So what we can suggest is to use the consistent
estimate Pi derived by the probit or logit analysis as an initial estimate for $1 and
try various values for the other parameters, study the values that they converge to
and choose the one which maxitnizes the likelihood function. However, if the
likelihood function involves numerical double integrals for some specified dis-
tributions for the error terms, the maximization procedure is expected to be
difficult.

If and e2 arc independent, then the likelihood function reduces to

L =fl[F(Xf31,.1)}'[1FI(XI31,Li)}''

XII {F2(X/32 + )/3) _1j2)]Y[j - F2(X132 + YYi -

and maximizing I- is equivalent to maximizing the likelihood functions for the first
and secoiid equations separatcly (as in a truly recursive model). In this case there
will be rio computational difficulty for the maximum likelihood procedure.

The extension of the two equations model to models with more equations is
straightforward. The likelihood function can be written down theoretically but if it
involves numerical multi-integrals, the computation will be intractable.

Model 2A Recursive Model with Qualitative and Continuous Variables

Xf31

y2Xf32+yy1±e2
where i, e2 are assumed to have zero mean and are serially independent, X are
exogeneous variables, Yi is an observed dichotomous variable, Y2 is an observed
continuous variable and y' is an underlying continuous variable. In fact,

Yi1 iffy'>O orillXI3iei
y1O iffXfl1<ei.

Here we assume also that at least one exogencous variable appears in equation I
but not in equation 2 to guarantee the identification of the parameters $2 and y. If
e1 and e2 are independent, the condition is unnecessary.
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The joint density function of y, Y2 ir this case is

g(y1= lv)=J f(ri,y2Xfi2y)dE,

g(y1 r0 Y2)
=J f(6,, Y2k/32)d61

XI',

wheref(e,, 62) is the joint density function of (ri, g,). The likelihood function tobe maximized is

L(31, /3, yIX Yi Y2) fJ g(y1 = I, yiY'g(y1 = 0, y,)1Yt
Y1y2

If and 62 are independent, the likelihood function reduces to

L fi [F1(xp1)]'[l F,(X/3)J'" flf2(y2 X$ YYi)

and thus maximizing L is equivalent to maximizing the likelihood functions forboth equations separately. In the case that e and 62 are normally distributed themaximum likelihood procedure is equivalent to estimating the first equation byprobit analysis and the second equation by ordinary least squares.As for the maximum likelihood procedure for the case when r and e2 are notindependent, we have to get some good initial estimates to start the iteration. Forthis model, we can get the initial consistent estimates easily if (ri, 2) are assumedto be normally distributed, i.e.,

cTl2J)L202
Since the first equation is a standard probit model, can he estimatedconsistently by probit analysis. Rewrite the second equation as

F1(Xf31))
X/32 + yFi(X131)-4-w

where w y(y1 F1(X/31)) 4 Since E() 0 and w is uncorrelated with theregressors, we can estimate /32 and y by regressing Y2 on X and F1(X$1). Sinceis a consistent estimate of f3, wider some general conditions, it can be shown thatthe estimates /32 and of /3 and v ai e consistent estimators Denote the estimatedresidual of the second equation by t2 i.e.,

Then the variance r can be estimated consistently by whereiT=;
I

(6;,

(T is the sample Size).

528



Finally it remains to find some consistent estimates for 012. Rewrite the two
equations into a switching regression model.

y2Xj32±y+E2 iffXJ31>

y2=X2+e2 iffX/31s1.

With these specifications it can easily be shown that

E(y2XP2yIyi = 1)=E(y1e2)/F1(Xfl1)

= cri2[ __=e$1)2I2]/Fi(XJ3I)

arid

E(y2-X132Iyi = 0) E((1 y1)r2)J[1 F1(X191)]

= G.12[ _e_1)212]/[1 F(X1)].

Thus O12 can be estimated consistently either by using the sub-sample corres-
ponding to y = 1 and regressing

y2XIi2 on

or by using the subsample corresponding to Yi = 0 and regressing

y2X2on [ _=e_u1)2/'2]/[1_Fi(X,i)J.

or by combining these two sub-samples. Thus, we can use these consistent
estimates as the initial estimates to start the iteration for the maximum likelihood
procedure.

In the above model, the observed dependent variable is dichotomous in the
first equation and the observed dependent variable is continuous in the second
equation. In the reverse case we have the model:

= X31 + Ej

y=XP2+yyle2
where e1, e2 are serially independent with zero means and variances u, q22 and
covariance Here now y is the observed continuous variable and y is

unobserved but the dichotomous variable y2 is observed.

Y21 iffyO orX2+yylE2
Y2° ifiX(32-4-yyi<e2.

Under the rank condition that at least one of the exogeneous variables appears in

the first equation but not the second one, we can show (the proof can be found in
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Model 3) that only

)' (122 i2/3 . u i, -, -, ---,(1(1(7 CT

are identifiable2 where r2 = var (ye1 - e2).
In this model, the joint densities are

X32 y

(YiY2=fl=J f(y,X/31,2)d2
and

g(y1, Y2=0)=J f(y1 Xf31,e,)d2
X+ yy,

The likelihood function to be maximized is

L(f31,/32, yly,X)= 11 {g(y1, Y2
l)JYI[g(y1 Y2O)]'.Yl.Y2

Again if the residuals are independent, maximizing L amounts to estimationofeach equation separately.
If the residuals e and e2 are normally distributed, the consistent initialestimates can be found as follows. The first equation is a standard regressionmodel, so i3 and o- can be estimated consistently by the ordinary least squaresestimators /3 and . Rewrite the second equation into a probit model,

X+i(x1)_
where w = yX(J1 ) + (e2 - -ye ). It is easily shown that nJ/u is asymptotically astandard normal variable, so /32/u, y/u- can be estimated consistently by theprobit analysis. As for the parameters CT12/0, u22/c72, we can use the relation

E(s 1Y2) = coy (p1, !.J.2!')
{ -j== e

y\
11!

0-I j
or equivalently

e

to estimate t2/O. Regress the product of the least squares residuals and Y2and use this least square estimate and (/u)ê11 to2Though the Iikeliho funct00 involves 5 paramete 1I, I2/, 7/c? and c?/c? and itapears as though only these parameters are estimable it should be noted that or2 = var (ye1 £2) =
v Ii-2c?12+022 or (72/c?2)c?112(y/c?)( /) I and hence c?22/c?2 is alsoestimable.
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solve for &2/T. Finally since

where

2 = E(yE1 c2)
2 -- 2yu17+r22,

it implies (u22/o2) =1 - (y/o)'o + 2(y/u)(u12/u). hence we can cstirnatc

22/ by 1 ('y/a)20i1 +2(y/cr)(o12/o). Thus this gives the initial consistent
estimates for all the identifiable parameters and they can be used to start the
iteration of the maximum likelihood procedure.

Model 3Simultaneous Mode! with Unobservable Continuous Variables:

This qualitative model with simultaneous continuous and unobservable
ndogefleOU5 variables has the following specification,

B9: + FX, =

where e, is serially independent, has zero mean and cOYarianCe matrix , B is a

G X G non-singular matrix with unitary diagonal elements. Here

-_j* * *
Ys - it Y2i' . . . YGIt YG1-i-li, . . ,

is a vector and YG1+', . . . Y, are observable continuous endogeneous variables,
are unobservable variables but the dichotomous variables

y1t,. .. , are observed such that

y= 1 *- yO
=0 :<°.

So this model is a simultaneous model with continuous and qualitative variables

when 0< G1 <G and it is a simultaneous model with only qualitative variables

when G G.
This model is quite similar to the usual simultaneous structural equations

model. As in the probit model, the model has its identification problems. In this

section, we will consider which parameters can be identifiable tinder the usual

conditions for the inclusion and exclusion of the variables in the simultaneous

system. Other prior information can of course give the identification of the

unknown parameters.
Consider the reduced form for this system which is

W1FX, +BE,
=llX+v1

B1e and H = W'F.

It follows that the covariance matrix ft of V1 iS

ft= B'HB'1
531
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Denote

1

For the parameters of the teduced form of the system, it can be shown easilythat All, AflA are identifiable but not Ii andD without any further assumptions.Now let us consider the identifiability of the parameters of the structuralequations by the equations

811+ F 0
B11B'=.

B=I191 812
LB21 822

To simplify the notation, we will show the identification of the parameters for thewhole system. For the identification of the parameters in any single equation, itfollows immediately. First let us consider the parameters B and F.

Bn+r=o(BA1)(ArI)r'= 0.
Since A is a diagonal matrix, the usual rank conditions for II are applicable for Afl.However the normalization rule = I for the first G, structural equation has noeffect in the identification of BA' and F. To see this, write the matrix B in apartitioned form.

where B11 is a G1xG1 matrix, B22 is a (GG1)x(G-61) matrix, B12 is aG1 x(G - G1) matrix and B21 is a (G - G) x G1 matrix. Thus

It is easy to see now that the first G1 x G1 elements in the diagonal elements of8A' are not unitary elements any more but rather the unknown parameters1Jir,..., l/aG}. Hence each row of [B11D', B12] is identifiable only up to aproportion. However, if we insist that the coefficient of y in the jUt structuralequation must be unity, we can normalize them by dividing the corresponding rowof[B11D1, B12] by 1/o-. Thus we have

(ABA')(A11)+ AU 0
where ABA' has unitary diagonal elements. Hence AB A' and AU are identifi-
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a G x G diagonal matrix where o var (v11), i = 1, . . , G1.



able if the rank condition holds for each structural equation in the system. Also

=Bf1B'
-*= (BA')(AL1A)(AB')
- AA = (ABAj(AcA)(ABA 5'

Thus, under therank conditions AA is identifiable. By the same arguments, if the
rank conditioul holds only for some structural equations, it follows that the
corresponding parameters in ABA', Al' and AA will be identifiable.

The identification of the structural parameters can also be improved upon if
more information is available in the system. Instead of a constant threshold for the
unobservable endogeneous variables, if some extraneous variable thresholds are
available the identification of the parameters in the corresponding structural
equation will be improved. Without loss of generality assume that there exist some
extraneous variables z for the first G2(G2 s G1) equations such that

Yt I

y, =0, otherwise, i= 1,..., G,; t=- 1,..., T
where z (1 = 1,. . , G2) are uncorrelated with errors . In this case, if the rank
conditions hold for all structural equations, we have

ABA',AF andALA

are identifiable where now

A=

0

1

"G2 +1

Finally, if the extraneous variables z, are available for all i = I,. .., G1, A is
an identity and hence B, I' and are all identifiable.

Heckman [3] has recently proposed to use the full information MLestiination
for this kind of system. Also he has suggested some initial estimates for the
parameters when the disturbance terms are assumed to he normally distributed.
However, if the system has many structural equations and G1 >2, there will be G1
multi-integrals involved in the density function and the estimation procedure will
be intractable. A feasible alternative to the FIML method is to estimate the
unrestricted reduced form equations separately by Probit analysis and use a two
stage least square analogue to estimate the structural equations. The test for the

significance of these parameters can also be developed.
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Rewrite the system with all the coefficients to be identifiable. The system is

(ABiV')y+M'X, -=

whbrc r = Ag,. With these y as the unobservable continuous endogenco5variables, it characterizes y1 in the same way as , does, i.e.,
y, I

= 0, otherwisc
for all 1 1,.. ., G1. The reduced form of the system is

y** = AUx, + Ave.
The first G1 equations in this reduced form system are the usual Probit models andthe last G - G1 are the ordinary regression equations. Thus All can be estimatedconsistently by All which are derived by the Prohit analysis and the least squaresprocedures. As for the estimation of the parameters A8A' and Al' it is sufficientto illustrate the procedure by the first and the G1 + Ith equation.Written down explicitly, the first equation has the following expression

** P1202 **Yt 4Y2
YG11cr1 Ci

** Yii 712 71k _Eiz+...+ y,+ Xi+ X21+...+Xk( -.01 (F1 (F

Denote = AI1x and substitute for y' into the structuralequation, it becomes
**_ _.**.... Pici0j, f3IGrfl- Y2i . . .

2'** YiI 712 71kYt Xt,X2,.. .(Fl Oi Oi (fwhere w1, can be shown to have the same distribution as v,,/u1 is asymptoticallyand hence asymptotically standard normal. Thus the maximum likelihood proce-dure for the Probit model can be applied again to this equation. Thus we canestimate the structural parameters
P 122

131G,+i

l 1Iconsistently. It follows that the asymptotic: test can also be developed for the testof the significance of these parameters.The G1+lth equation is
** **Yat+i,e pc,+1.tcrtYi, -. . .

. YG,+ijXk, +Substitute9' for y' (i = 1... , G1) in the equation and apply the ordinaryleast squares procedure. The parameters
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can be estit consistently and the usual t test for the significance of the
parameters can also be applied.

Models of the type 1, 2 and 3 considered here are well-defined. But in the
class of qualitative simultaneous equations models, some models arc not valid.
For example, the modCl

.;s x/31+a1y2+e1

Y2 = x/3 2+a2y1 + E2

is not valid.
It leads to logical inconsistencies3 because it results in an equation of the form

y* =xy±y +u
where the unobservable variable y is related to the dichotomous variable y
through another relation of the form

yrl ify*>O

-=0 ify*<0.

y' =xj31 +a1y,+E:1

y' = x)32+ a + a2

and yx1+a1y2ri
y' = xj32 + a2YI - a2

are also inconsistent. To show the inconsistency of the last model, it is easy to
check in general that

P(y1,y2)l
YI.Y2

whenever a and a2 0.
All these inconsistent models have a common feature that the reduced forms

are not defined. Thus the endogenous variables can not be explained by the
exogeneous variables and the disturbances.

Hence we can conclude that all the simultaneous equations models with
qualitative endogeneous variables can be broadly divided into the category of the
recursive type of models as model 1, model 2, or their combination, and the
category of the model 3.

3. SIMUL.TANEOUS vs. REcuRsivE MODELS IN ThE L0GIT FRAMEWORK

Nerlove and Press [6] discuss a logit model where the endogenous variables
are all completely interrelated; for instance, if there are three such variables Yi Y,
y3 then y1 influences Y2 and y3 Y2 influences y3 and y1, andy3 influences y' and y2.

The incoflSiStCIlCiCs of this model have been recently discussed by Heckman [31.

4This section is based on the discussion in Maddala and Nelson [5].
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This type of mutual independence may not always be desirable and WC should beable to analyze models that have any causal structure we desire.For illustrative purposes we will consider the case of three dichotomou5variables Y!' }, y, and a set of erogenous variables to be denoted by x.
Let P = t'r(Y =i, Y=j, Y =k) i,j, k Oor 1.

We can then write

7

D =1+ e
1=1

These equations imply the following relations:

P000 P00

IPhl0=e($4_2)x
P010

I pe
Poll

Ph01

These reactions can he written as
P(y 11y2y3)log
P(y1 = 01Y2Y3)

= i +(f3 .82/31)'Xy2+(135 133/31)Xy7

+(p7-6_5 __$4 +/3i+/3,+131)'xyy
P(y2 = 1y1y3)

(fl4fl2)'xy,(2)

+(137_136 /35/34+/33+132+/3yXYYP(y3 1Jy1y3).

+(/36_fl3_2)'Xy2P(y3 Of yy2)

+ 7 605f3 +3 +2 ±$u)'xy1y2
536

=
P000

= e''
P100

e L)x
Polo

=
10

(1)

where

P000= lID
Pu)0 = e'/D
Poio =

P()) =

Pu0 = e9/D
Pioi - e/D
Poll = e/D
Ph = e'/T)



Note the symmetry in the coefficients of the equations (2). This symmetry was
discussed by Ncrlove and Press [6]. To simplify the model we can impose:

(3)

We can get this model if the first element of . is 1, all but the first elements of the
vector 13 are equal to the sum of the corresponding elements of 132 and 13,. with
similar conditions holding for and 136, and for f37 all but the first element are
equal to the sum of the corresponding elements of p, p, and p.

Thus, an important consequence of the muitinomial logistic model (1) is that
we get the well defined conditional distributions (2). In actual practice, if there are
a number of categories, the complete multinomial model (1) i,r.oIvs too many
parameters. That is why Nerlove and Press suggest estimating equatioLs (2) by the
logit method treating the right hand variables as exoger..ius. One can get consis-
tent estimators for the parameters by this procedure (though these are not fully
efficient because they ignore the cross equation constraints). This prvedure
reduces the number of parameters to be estimated considerably. Further re(i-
tion can be achieved by making some simplifying assumptions like (3). If we
further impose the restriction 137-136-$s134+133+132+PI =0 we can also
eliminate the product terms involving YIY2' Y2Y3' Y3YI in equations (2).

Unlike the usual simultaneous equations model where it is not possible to
interpret each equation as a conditional expectation (except in a recursive system)
the specification (1) permits well defined conditional probabilities (2). Also, it
looks as if we cannot have causal chains in simultaneous equation logit models.
This is indeed not so. Consider a situation where the causal relations between
y1y2y3 are as shown in Figures 1 and 2.

y3

(134-13,--13,)'x =

(P-f31--131)'x = f3,

(f36-133--f3,)'x = 1323

(I37i36---13s-I34P3--132+13I)'x = y.

537

Figure 2
Figure 1

Suppose that Yi and Y2 are variables that do precede (in time or in some other

sense) variable y. Then a relationship as in Figure 2 obviously does not make

sense and it is a relationship as in Figure 1 that we should be considering. It might

be thought that the symmetry conditions in equations (2) imply that if y3 depends

on y,, then the reverse must be true with the same effect. This is of course not true.

What the symmetry conditions imply is that if y1 depends on y and y3 depends on

y' then the two effects should be equal. We have to interpret the conditional

probability equations (2) as depicting the nature of the causal relationships

between the variables. For the model in Figure 1 these causal relationships can be

I



written in the following form

Pr (Yi = 1}Y2' x)
-y2±a1ALog

Pr (y = 01y2, x)
Pr(y2 1y1,x)

=8y1 +axLO(),_0t
.)

Pr(y1= iy1,y2x)Log
Pr (y3 O}y1, y2x)/313h1 +132Y2 +X3.

Note that the symmetry conditions have been imposed only for the first twoequations in (4) since Yi and Y2 are jointly determined. One can estimate 8, a1, 02from the joint probability distribution of y andY2 These joint probabilities are:
P1 I =

P01 =

= C"

P(10= 1/z
where

= I +e x+ea2X
As for the third equation in (4) its parameters are estimated separately. Thisequation implies

Log
tO

Log-=f32+crxPolo

PlotLog - = /3 -i- a3xr
PoolLog---=a3x
F000

and equations (6) in conjunction with (5) will enable us to estimate the jointprobabilities PJk for any goodness of fit tests. If we assume the causal relationshipin Figure 2, the conditional probabilities will be given by equations (2), with anyappropriate zero restrictions, and the joint probabilities will be given by (I), againwith the appropriate zero restlictions.
Given anyspecification o the condttion& odds ratios as in (2) onecan deducethe joint probabilities (1). The ML estimation procedure based on the impliedjoint probabilities (1), has been called the full information ML procedure byNerlove and Press [6]. They argue that it is computationally less cumbersome toestimate the conditional equations (2) and that in practice these should beadequate.
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In the case of a recursive model, of course, as in the usual simultaneous
equations context, the estimates from the conditional equations (2) would be fully
efficient. As an illustration consider the causal model:

Yi f(x)

y2=f(x, y)

where y1and Y2 are binary.

(7) Pr(y1=1)=

e2x +Y>i

Pr(y2= 1Iy)= 1+e'
These give the joint probabilities

(8) P11 = F(/3x)F(f3,x + y)

P01 = F(f3x)L1 F(J3'x)]
P10= F(f3'x){l F(J3x+y)]

= [1 F(J3x)J{1 F(J3x)]
where

F(z) 1+e

The separate estimation of equations (7) and the joint estimation ofequations (8)

are the same. r

4. Ar APPLICATION

The model we analyze here is a model analyzed by Brown et at. [1] on the

effectiveness of the neighborhood youth corps programs (NYC program). We

estimate here a model somewhat simpler than theirs.5 The model consists of five

endogeneous variables and ten exogeneous variables.

Endogeneous Variables

Heard of the NYC, a dummy variable, 1yes, 0no.
Y2 Dummy variable for participation in NYC program, 1participated,

0not participated.
y3 Dropout from high school a dummy variable, 1dropout, 0not

dropout.
4 Proportion of time involuntary unemployed in post-high school period.

y Current (or most recent) wage level of the individual ir cents/hour.

We are grateful to Stanley Horowitz for supplying us the data.
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Exogeneous Variables
x1 Constant term, x, = 1.
x2 Western, Southern U.S. or else dummy variable 'western or southern0else.
x Rural area, small city or medium city, big city dummy variable iruralarea or small city, 0medium or big city.
x4 Family size while in high school.
x Family income during high school.
x6 Father's education.
x7 Age of individual.
1 Sex of individual, a dummy variable, imale, Ofemale.x9 Race of individual, a dummy variable, iwhite, Ononwhjtex Number of friends of individual who dropped out of high school.

The NYC program is expected to iofluence the lives of its participants Itmight be expected to affect their decisions about finishing high school, participating in the labor force, wage level and so on. In addition to the NYC, other factorsmay influence these activities and also their enrollment in NYC. We build a fiveequation recursive model to study the NYC participation and assess the effects ofthe NYC program on the individual's activities. The exogeneous variables x2, x3differentiate the regions and communities in which the individual may live.Variables x4, x5, 16 quantify factors of the home environment experienced by theindividual while he was in high school. x7, Xg, x9 measure the individual charac-teristics that are expected to be important determinants of the person's activitiesand opportunities. The last variable captures the group status that might influencehis activities. The structure of the model is given in Table 1. Table 2 presents theOLS estimates and Table 3 presents the 2SLS estimates.

TABLE I
Tim STRUCTIJR o THE MODEL

Yi Y j y y x x x1 x4 x x6 x7 x8 .z x10
y ,/ .,i ', '/

'I
Y2

y3

y4 ,., i '/
,/ 'I

y5 i ,

Yi alo+allrJ+a12x+ax
Y2 fl21y1 +a20+a,1x4 +a22x6+a23xax+
Y3 /33j +a3o+U1X2 +a32x3 +a33x6 +a34Xi+a3x +a36x10-f63Y4 th iY + 42Y3 + a40+ IX3 + &4X6 +a43x7 + a44x9 + 64YS +52Y3 +fl51y4 +a50 + a51x2 a52x3 +a56 + a54x8 + a55x9 + 65
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As is evident, even for the recursjve'models considered in section 2, the ML
/ estimation involves bivariate integrals unless the residual's arc independent

Extension to more variables involves higher order integrals. We could have usedthe methods outlined in section 3 which are straightfoard adaptations of the' Nerlove-Press procedure. However we chose to estimate our model by thefollowing computationally simpler procedures. First we estimated the model byusing the logit method separately on each equation treating all the right handvariables as exogeneous (which is valid if the residuals are indcpendejt). Next weused a 2SLS analogue which we call here logit 2SLS. In this method theendogenous dummy variables are replaced by their estimated values obtained bythe application of the logit method to the reduced form. These estimates arepresented in Tables 4 and 5.
If the NYC program is effective we would expect and /341 to be negativeand /3 to be positive. Also /342 is expected to be positive and /32 and /3 areexpected to be negative. The OLS estimates reported in Table 2 have some wrongsigns (/341 and /3 ). The 2SLS estimates reported in Table 3 have the correct signsfor the coefficient of Y2 but none of the coefficients are significant and /342 has thewrong sign (though the coefficient is not significant). The single equation logitestimates reported in Table 4 still indicate that the NYC program is not effective.The logit 2SLS estimates reported in Table 5 indicate a stronger effect of the NYCprogram_particularly on the dropout rate out of high school, though it has noadditional effect on the post high school rate of involuntary unemployment andthe wage rate earned. It appears to influence these variables only through itsinfluence on the dropout rate.

5. CONCLUSIONS
The paper presents some models where some of the endogenous variables areunobserved continuous variables for which the observed variables are discrete,and discusses the identification and estimation problems in these models. Thepaper also discusses the formulation of simultaneous and recursive models in thelogit framework. An empirical example concerning the effectiveness of theneighborhood youth corps program is presented. The model consists of fiveendogenous variables, and has a particular causal structure that resembles arecursive model in the simultaneous equations literature (or more precisely thematrix of coefficientsof the endogenous variables is triangular). The 2SLS methodwhere the discrete nature of the endogenous variables is taken into account leadsto the conclusion that the neighborhood youth corps program has a ignificanteffect on the rate of dropping out of high school, whereas the ordinary 2SLSmethod, where the discrete nature of the endogenous variables is not taken intoaccount, showed no significant effect of the program.

University 0/Florida
University ofMinnesota

544



REFFRENCFS

[1] George F. Brown, Jr. Arlene Hokn, Stanley A. HOrOWItZ, LOUIS Jacobson, and Lester P.
Silvermafl_AIYs of the Neighborhood Youth ('orps Program," Center for Naval Analysis:

Dec. 1972.
[21 lco Goodman, "The Multivariate Analysis of Qualitative l)ate: Interaction Among Multiple

uIassificatiun," Jjurnal of the Arnricar Srari.tica! .&cwciat:on, 1970, pp. 216-25f'.

[3] James J. Heckman, "Simultaneous Equations Models With Both Continuous and Discrete
EndogeflOUS Variables With and Without Structural Shift in the Equations," University of
Chicago, Aug. 1975.

'Dummy Endogeisous Variables," NBFR Working l'aper, April 1973. Forthcoming

(subject to revision) in Economefrica.
0. S. Maddala and Forrest D. Nelson,"Analysis of Qualitative Variables," Working Paper No. 70,

Oct. 1974, NBER (Cambridge, Mas.s.).
[6] Marc Nerlove and James Press, "Univariate and Multivariate Log-linear and l.ogistic Models,"

Rand Corporation, R- 13O6EDA/NIH, Dec. 1973.

545


