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Annals of Economic and Social Measurement. S /4, 1976

A COMMENT ON DISCRIMINANT ANALYSIS “VLRSUS”
LOGIT ANALYSIS'

By Danit McFapbpeN

This note contrasts discriminan! analysis with logit analysis. In causal models, it is seen that forecasting
leads to classification problems based on selection probabilities. The posterior distributions .-'mplied by the
selection probabilities and prior distribwion may provide a useful starting point for estimation of the
selection prebability parameters in a discriminant-type analysis, but this procedurc does not tend to be
robust with respect to misspecification of the prior. In conjoint madels, on the other hand, the posterior
distributions end selection probabilities are alernative conditional distributions characterizing the joint
distribution. In these models, it is gevierally not meaningful to exarnine the effects of shifts in explunatory
variables.
I. INTRODUCTION

Consider an experiment in which individual characteristics, attributes of possible
responses, and actual responses are observed for a sample of subjects. Suppose
the sets of possible responses are finite, so the problem is one of quantal response.

One approach to the analysis of such data is the logit model, wiich postulates
that the actual responses are drawings irom multinomial distributions with
selection probabilities conditioned on the observed values of individuai charac-
teristics and attributes of alternatives. with the logistic functional form. A second
approach is discriminant analysis, which postulates that the observed values of
individual characteristics and attributes of alternatives are drawings from post-
erior distributions conditioned on actual responses.

When the posterior distributions in discriminant analysis are taken to be
multivariate normal with a common covariance matrix, one obtains the implica-
tion that the relative odds that a given vector of observations is drawn from one
posterior distribution or the other are given by a logistic formula.” This seems to
have led to some confusion as to whether these two approaches provide equally
satisfactory interpretations of the logit model, and whether the statistical
estimators and applications which seem natural for one of the models have some
reasonable interpretation in the other model. In this comment, [ will write down a
common probability model for the two approaches, and use it to clarify these
1SSues.

Ii. OBSERVED VARIABLES

Consider a typical quantal response experiment, for example a study of travel
mode choice. The possible responses of a subject in a particular experimental
setting are indexed by a finite set B={1,...,J}). With each response jeB 1s
associated a vector z; of observed variables and vector ¢ of unobserved
variables. We define z ={z;, ..., z;) and E=(&, ..., &)

) This research is supported by NSF Grant No. GS-35890X. The question addressed in this
comment was raised during the NSF-NBER Conference on individual Decision Rules,‘Umversnly of
California, Berkeley, March 22-23, 1974. I bencfited from discussions at that time with R. Hall, J.
Heckman, J. Houscman, J. Press. and R. Westin. I retain sole responsibility for errors.

2 A discussion of the discriminant model and of this and related properties has been given by Ladd
(1965).
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Some discussion is required on the interpretation of the response index j anq
the data vector z;. In applications such as mode choice, it is usuaily natyrgj to
associate a particular index with a particular response: €. J=1 may be the
“walk” mode. In oiher applications such as destination choice, there will be po
natural indexing, so that the index j associated with a particular response js
arbitrary. The data vector % can be interpreted as A transformatiop of
observations xon the attribytes ofeach alternative i and ¢ onthe characteristicg
of the subject; i.c.,

(1) =2} x), ., x,‘»',_,,.t,fi,, xS sY),

where Z is a vector of known functions. Note that the components of % may be
components of obseived attributes of alternatives or characteristics of individuals,
or may be interaction terms involving products or more complex functiong of
these variables. I the case that there is a natural indexing of Tesponses, we cap
include the index J as a component of the vector x,’; this allows the inclusiop of
components of z; which are interactions between compaonents of the x/or of 5
and a dummy variable for a particular index j: j.e..

(2) =

On the other hand, when there js RO natural indexing, variables such as those ip
Equation (2) are not meaningful. It is for (his reason that the function 7 n
Equation (1) is assumed to depend on the response index j only via itg effecton x;.
We note further in this equation that jp most applications, z; willdepend solely on
x;'and s". More generally, dependence acrogs alternatives is possible. However, in
keeping with the stipulation above that 2 depends on the index j only if the index
itself is ap attribute of the alternative, we require that Z pe invariant with respect
to the order of the sub-vectors x¢ XX , x5, Analogously to the
interpretation of the obseryed variables z, we cap interpret the unobserved

variables ¢ as coming from unobseryed attributes of alternatives X/ and unob-
served individya) characteristjcs s*

11 SELECTION PROBABILITIES

Provided we take asufficiently general definition of the unobserved variables

¢, the subject’s actual response jg completely determined by the alternative set B
and the obseryed and unobseryeg variables (2, £); let

©)) J=D(B, z,¢)
dencte this rclationship, and define

4) E(B,2)={¢p(p, z,£)=j}

d-vectors giving Iesponse j.

responding components
»€) to be Lebesgue or counting measure,




respectively. We can also allow £ to be degenerate, and restrict our attention to a
suitable manifold. For example, the case where some components of z involve
interactions of variables with alternative duminies will correspondto a degen
f distribution. '

We first define the selection probability that response J occeurs, conditioned
on the response set B and observed data ». Let ’

€rate

(5) 8(2)58(2;3.}=If(2, Emlde)

be the marginal frequency for z. Then the selection probability is given by the
conditional probability formula b

©) pBa=[ s emaore

Ej(B

We note that the expression

h(j.z; By=p,(8, Z)g(Z)=J f(z, E)n(de)
Ej(B,z)
is the joint distribution of (j, z) conditioned on B. Equation (6) is meaningful
whether or not thiere is a natural indexing of alternatives. This implies in particular
that models formulated and analyzed solely in terms of the selection probabilities
do not require natural indexing. However, the concepts to be introduced next
require natural indexing in order to be meaningful.

IV. CLassiFIcATION MODELs

Assume hereafter that there is a naturai indexing j of alternatives. Define
mean selection probabilities

) P=E(B)= (B, 21g(c wide)

- .[ l L(B“ /G, E)n(d.f)]v(dz),

Next, define the posterior distribution of the observed variables given the
actual response j. This {-equency is clearly proportional to the probability of
actual response j conditioned on the observed data, multiplied by the marginal
frequency function for the observed data, or

®) (B, z) = p;(B, 2)g(2)/P,= h(j, z, B)/P,

with the normalizing constant obtained from Equation (7). An obvious implica-
tion of this equation is that any specification of the selection probabilities p; and
frequency function g of the observations determines specific posterior distribu-
tions g;. In this sense, every model for the selection probabilities combined with a
“prior” distribution g on the explanatory variables yields a classification model to
which some sort of discrimination analysis could be applied. However, the case of
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multinomial logit selection probabilities and a multivariate normal prior will o,
yield multivariate normal posterior distributions. (In the binary responge case, the
posterior distributions are transformations of the i distribution; see Johnsop
(1949) and Westin (1974).)

V. ConsISTENCY OF SELECTION ProOBABILITIES AND PosTERIOR
DistriBUTIONS

We next consider the question of whether particular parametric specifica-
tions fer the selection probabilities and posterior distributions arc consistent, or
equivalently whether there €xists a prior distribution g satisfying

9) 8(z) = q;(B, 2)P/p,(B. z)

for all j. {In this construction, the P, can e treated as constants to be determing)
It is obvious that (9) need not have a solution; clearly, 4;(B, 2)/p(B, Z) must be
integrable, and 49; mustequal p; except for a multiplicative constant dependingonj
and a multiplicative function independent of ;.*

Suppose the selection probabilities are specified to be multinomi) logit,

ey"i’ﬁ'?,
(10) P(B )=

YitB'z o
Licg € '

where 8, y,, . ... ¥, are parameters and we impose the normalization y, + .. 4
s = 0. Note that when the Zi variables are of the forn in Equation (2), Equation
(10) specializes to

PROCTTE

(11) p;(B, 2)=m,

e YitBiva,

_
. “e'h B2y,
i€

and the normalization Z,.(:.,,ﬂ;,, =0 is imposed. This formulation is common when
attributes of alternatives are absent and only characteristics of subjects are
observed. However, note that z;;, may contain attributes of | alternatives,
making Equation (12) as general as Equation (10).

Next suppose the posterior distributions 4; 1o be multivariate normal with a
€ommon covariance matrix. In order to include the possibility that g is degener-
ate, we assume (by a translation of the origin if necessary) that z varies in a
subspace . Then, g; has a mean r' €L and a covariance matrix () that is positive

’.A question_\yith a trivial affirmatjye answer is whether, given posterior distributions q; andinean
selechpn Probabilities F}, one can find 4 prior distribution & and selection probabilities p, such that
Eq.uan_on (9) holds. From Equation (9) define 7 = Fiq/g. Then Lp=1,=y Fiq;. Then, a prior g
Wwhich is a P probability mixyre of the posterior distributions i recessary and 'stiﬂiciem to give a
solution, Compare thjs result with the analysis following where P Is restricted,
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semi-definite and definite with respect to the subspace L.* The frequency func-
tions can then be written (suppressing B)

(13) q(B. 2)=q;(z) = K exp[~3z —p/YA(z - /)], (z € L)

where K is a constant independent of § and A is the generalized inverse of ).
Define a vector 8/ =(0,...,8,...,0) commensurate with z = {z, z;) 'md
with the j-th subvector equal to 8. vt

Theorem 1. Suppose the selection probabilities satisfy Equation (10) and the
posterior distributions satisfy Equation (13). Then the conditions for consistency
are that the prior distribution be a probability mixture of the posterior distribu-
tions.

(14) g(z)= ). Pqi(2),

ieB
with the means g/ in Equation (13) satisfying
(15) n = Q' +38),

§ an arbitrary vector, and with
(16) f’;=cxp[7;+%#"/\u’]/ Y, exp [yt An']
feB

/

=exply; +3(B'+5YQ(B'+8)]] ¥ explyi+3(B'+8) B +8)].

ieB

Corollary 1.1. Suppose the selection probabilities satisfy Equation (10) with
given B, 1, . . -, ¥s- Suppose the posterior distributions are multivariate normal
with a common positive semidefinite covariance matrix 2. Then there exist
posterior means satisfying Equation (15), mean selection prebabilities satisfying
Equation (16), and a prior distribution which is a mean selection probability
mixture of the posterior distributions, such that

pi(B,2)=¢q(z)] ¥ qi(2).

i€l

*Let K denote the dimension of z;. Then z is of dimension JK, where J is the number of
alternatives. The subspace L is given by L ={Qz|z € R’*}, and its orthogonal complement L is the
null-s?acf of O, ie., L ={ze R’*|Q1z =0}. Then z €L and z #0 implies z'(2z >0. Every vector
yeR’™ has a unique representation y =p+w with pel. Since Q is symmetric and positive
semidefinite, there exists an orthonormal matrix A such that AA’= I and

A’QA—F—V;-O]
00l

where Wis a diagonal matrix with positive diagonal clements and rank equal to the dimension of L.

* The generalized inverse of {2 is defined to be the matrix
A= Ar W "1‘:*01 A’
0o 037

in the notation of footnote 4. It is simple to verify using this formula that the system of equations y = 0z
has a solution if and only if y € L, and that y I implies z = AyelL isa solution, as is z + w for any
vector w in the orthogonal complement of L.
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Coroliary 1.2. Suppose the selection probabilities sa‘tisfy. Equation {10) with
given B. Suppose the posterior distributions.arc multivariafe normal wi ,
common positive semidefinite covariance matrix Q Suppese the mean selection
probabilities P,,... P, are given. Then there exists posterior means satisfying

Equation (15), selection probability parameters Yis - ..y satislying *
1 A ini X (| p-l “A ")
(17) y,.=lnP,-~5,u 1 7L n r; 2# My,

and a prior distribution which is a mean selection probability mixture of the
posterior distributions, such that p(B z)= 4(2)/Yicnq(z).
Proof: Substituting Equations (10) and (13) into formula (9) for g yields

(18) glz)= % expl(zj-z,)B +y,~ %IPK exp {~3(z - w!yA(z - u’)]
ieB

=) explzig+y, +log K-1z'Az - ZiB+2'Ap’ - ¥ +log P,
ieg

— 21/ Ap],
Since the right-hand-side of this equation cannot depend on I, consistency
requires -
(19) TV Hlog B3y =,

where A is a constant, and

(20) ~Z}8+2' Ay’ = 7',

AN ey L

where 8 is a vector of constants.
Equation (20) can be written

(21) TAp =2'(8 1 5) (zel)

Taking z = 0w for any real vector w, this implies w'y = w'd{B’ +6), or
22) W =0 +5),

Substituting these expressions in Equation (18) yields

23) g(z)= 2. exp[log K-1z'Az +z’(ﬁf+6)+y;+A]
iep

= ¥ exp[iog K-3z'Az +2'Ap 4y, +A]
icB

=L ewl2'Az+ 2 py ~a ARyt b A 4]

=L PK exp [z ~u'y Az -t QED
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V1. THE CONSISTENCY OF GIVEN POSTERIOR DISTRIBUTIONS

Suppose one is given multivariate nermal posterior distributions with a
common positive setmidefinite covariance matrix. We seek conditions for the
existence of multinomial logit selection probabilities of the form given in Equa-
tion (11). Itwill be convenient for this analysis to change notaticn slightly deﬁ(rlnin
2=zl -2 and B'=Bqy, ..., By In general, z;, and B va;y withf
However, we consider alsq the cases \yhcre zyor B; are uniform across 4. In the
last of these cases, the multinomial logit equation (11) reduces to equation (10)

Theorem 2. Suppose the posterior distributions satisfy Equation (13) \;;ilh
given means p’ = (r{y), - . ., piy) and a common positive semidefinite covariance
matrix ). Suppose the mean selection probabilities P; are given. Suppose the
selection probabilities are required to have the form specified in Equation (11)
Tren the following conditions are necessary for consistency: .

(1) The prior distribution is a probability mixture of the posterior distribu-
tions satisfying Equation (14).

(2) The parameter vector B'=(By,), . .., B(;) satisfies

(24) Boy=—HAw —@)+qlyl,  (j#i)
where ~
&

A= | -
A,

is a partition of A left-commensurate with the partition of 8.

_ 1 i
(25) u= j ZjeB &,

and the ¢’ ‘= (q{'l,, R q{',,) are some vectors in the null-space of Q (i.., 0g’ =0)
satisfying

f=0.
(26) iEZBq
(3) The parameters v, .. ., s satisfy
(27 = —(ln P~—-1- Y in P)+l( A L Y Ay.‘)
K Ty TR R T G

Remark. Equations (24), (25), and (26) imply

J ) .
(28) ﬁ(i)z'ﬁ[/\i(#‘—ﬁ)'*'qz;)]

Combining Equations {24) and (28) yieids
(29) B = Ailn’ “u’)+qis)—qfn (j#i)

Equations (26) and (29) plus the conditions Qg’ =0 give 2J? equations in the
J+7J* unknowns B, and qi;. Hence, the existence of a solution requires, in
general, conditions yielding dependencies between equations. For example, if Qs
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an identity matrix, then Equation (29) implies that 3 ecessary condition fo,
consistency is pfy = pu ;) for i # j, k.
Corollary 2.1. 1 (Y is non-singular, then neeessary condition for consistengy

is
(30) A’ —u")=0  for i#j k.
Corollary 2.2.1f J =2, then the solution
(31) [Bm]=Mu¥u5
"ﬂ(:)
is consistent.
Corollary 2.3. 1f B= ... =Boh= ... =By, thena necessary condition for
sufficiency is that A, (u ~1')+q4)~ql;, be independent of | and j for i #j,
Corollary 2.4.1f z,= . . . = 26 = - - . = zy,, then the solution
(32) 3(,') =A, !“{l)a

with A}, the generalized inverse of the covariance matrix ), of Z(1), IS CONsistent,
Remark. By defining z(1y in Corollary 2.4 to contain all the variables of the

Equation (10).
Proof: Equations (14) through (17) continue tobe hecessary and sufficient for
consistency with

O TR Aty e

B'=(0,...,0,8,0,...,0)

In order to express Equation (15) in more detail, partition A into submatrices Ay
each square and of the same dimension as B and write g/ = (uf, iip) and
6=(8y,..., d.) commensurately with z = (zays - .., Z(). Then

(33) re(n=§' ik#{k)_ao)““?fi)

(34) ()zgl\ik#{k)j*a(i)‘*‘q{n (#j)

or !
(35) 3(/)‘% /k(#{k)"#fk))*qa;“q;)) (i #j)

where as before the u! are assumed to lic in the non-null space L of {2 and ¢’ is a
vector in the nyl| space of {) such that Equation (26) holds. Summing Equation
(35) over i #; yields

- 1B, =§ A_ik(-’#{k) = .2.; #fk)) +Jgl;— _ZH )
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Using Equation (26), this implies Equation (28). Subtracting J times Equation
(35) from Fquation (28) yields quation (24). Fquation (27) follows from
Fquation (17). This completes the proof of the theorem.

Corollaries 2.1 and 2.3 follow from Equation (35) and the observation that
{lg’ =0 and €1 non-singular implics ¢’ = 0. Corollary 2.2 is proved by verifying
that the proposed solution satisfics

8(z) ~ 4;(2)B/p(z)
“}‘;‘cxp[z(’,,ﬁ“, +y, tlog K—32'Az - 2Btz A
y, +log Py —u! Ap!)
with the right-hand-side independent of j. One has
“zinBayt 2’ A = 2y A rdy)
2O Aty t Anprin) = 2'8
and
2Btz An’ = 2(A i)
+ 2K rapmin t A piy) = 2'6,

where

An A o
A= (/\;: /\:i)' yielding the result.

Corollary 2.4 is established by considering
gz = 4 (z)Py/plz )

=) explzin]t +y ‘HUHK',’él('n/\nlin’"zfl;BU)

ieH
+ 5! I} )
tzauAamtn = v Hlog P = pinplsl

where Ay is the generalized inverse of the covariance matrix €1y, of z,. When
By =M iy, the right-hand-side of this cquation isindependentof f. O.ED,

VIL Tt ROBUSTNESS OF DISCRIMINANT ESTIMATES OF THIE I.oarr Mabyit

We have established conditions under which statisties derived from posterior
distributions under the postulate of normality provide consistent estimates of the
selection probability parameteis. ‘The prior distribution required by these condi-
tions, a probability mixture of the posterior distributions, seems unlikely to be
realized in applications. Hence, it is of interest to c¥mine the robustness of the
estimator of the selection probabitity parameters derived under the postulates
above when alternative prior distributions prevail. We consider the alternative of
anormal prior. Suppose binary choice and a single real explanatory variable, with

(41 pB, z) = em B 7 e )
=f/(1+e " )
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where y =y, ~, and = Z1— 2,5 and

(2)=—=¢ ~
(42) 4 Vo
l J Then
N o f’“’ sn__dz
(43) P T L re 787
1 oo Z —22/3
(44) = r=f e e
P2/ o 14e 7 8
45) ma2==Pp, /P,
1 e (z-u,)° ~z2/2
46 2= f e gy
( ) Ty [)l\/:z—w“m 4o 78
(47) e3=(1=Pg]— Py - Pyu3)/ P,
(48) (r2=P,(r,2+P2ir§
(49) B =1, p)/
(50) V=0 Py/Py)~Yu2- 2y /0

where P, 4, o} are the mean selection probability, posterior mean, and Posterior
variance, respectively, for j = L2, o’ is the “pooled” variarnce, and B, ¥ are the
discriminant estimators of g, Y- Asshown in Figure 1, the discriminantestimatorﬁ
underestimates in magnitude the trye Parameter 8. The percent of the selection
probabilities lying between 0.1 and 0.9 is 73 percent atB=2,y=0and 19 percent

Percentage
60 vy=5 /
/y = O/
50 / "
-

40

30

20 /

10

— —
L T S R T
true 8

Figure | Percentage downward bias in discriminang estimate of §
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at B =9, y = 0; these values would bracket the corresponding percentage in man
applied studies. We conclude that for a typical prior distribution of the explana)—’
tory variables, multivariate normal, estimates of the sefection probability parame-
ters based on discriminant analysis will be substantially biased. Note that lh‘c
discriminant estimator 8 coincides in finite samples with a linear probability
model estimator; hence, this conclusion is consistent with results showing that the
linear probability estimator applied to logistically generated responses leads to
underestimates of the true parameters (McFadden (1973)).

VIII. ConcrLusion

'We'conc!ude tl}is comment with some observations on the experimental
settings in which logit or discriminani analyses are appropriate. The first distinc-
tion to be made concerns the interpretation to be given to the response function
j=D(B, z,£) in Equation (3). On one hand, we may view this as a causal
relationship, with z and the unobserved vector ¢ determining j. On the other
hand, we may view (j, z) as being conjoint, or jointly distributed with no causal
effect running from z to j. In the first case, the function D is of intrinsic
methodological interest, while in the second case it is merely one of the ways of
characterizing the joint distribution of (j, z). Two examples will aid in exploring
the implications of this distinction.

Example 1. (Causal model): Seeds are planied and observations z are made
on seed age, soil acidity, temperature, and time allowed for germination.
Responses j = 1 (germination) and j = 2 (no germination) are observed.

Example 2. (Conjoint model): Eggs are candled, and observations z are made
on translucency. Responses j=1 (high yolk=gocd egg) and j=2 (spread
yolk =bad egg) are observed.

In Example 1, theory suggests a causal relation between the explanatory
variables and probability of germination. Then, the response function D and
selection probability will be of primary methodological interest. The selection
probability would be used to forecast germination frequency for a new sample of
seeds. It is not meaningful in this example to speak of two seed populations,
“germinators” and ‘‘non-germinators,” and attempt to classify seeds into one or
the other. However, it is possible to classify seeds by probability of germination,
~ and a binary classification into high and low probability germinators on the basis
of selection probability is formally equivalent to a discriminant classification
procedure.

In Example 2, translucency and yolk height can be viewed as jointly
determined by unobserved variables, with no causal relation from translucency to
yolk height. Then, the posterior distributions, or conditional distributions of z
given j, have the same status as the selection probabilities, or conditional
distributions of j given z. It is meaningful to speak of the populations of “good”
and “bad” eggs, and aitempt to classify an egg into one of these populations; this
classification can be made using the selection probabilities.

We conclude from the comparison of these two examples that aside from the
special causal interpretation given to the selection probabilities in causal models
and the interpretation of the posterior populations in conjoint models, the
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problems of statistical analysis are identical, particularly with respect to the
classification problem of forecasting response for new observations, Logit-type
and discriminant-type statistical analysis could be used intcrchangeably, keeping
in mind the legical interdependence of these models worked out earlier in this
comment. In any causal modei, it becomes critical when the statisticql formulation j;
of the discriminant type to check whether a consistent prior and selection probabilities
exist, and whether the implied form of the selection probabilities is compatible wig
the underlying axioms of causality.

An important distinction among quantal response models s whether jt jg
meaningful to pose the question ““If a policy is pursued which shifts a component
of z, what is the effect on responses?”. Clearly in a causal mode] this question s
always meaningful, whether the component of z is a characteristic of the subject
or an attribute of an alfernative. Thus, in Example 1, one may seek to determine
the responsiveness of the germination probability to seed age or to time allowed
for germination. What is important here is that the functional specification of the
selection probabilities is assumed to not change when the policy changes, since it js
determined by the underlying causal model. In a conjoint model, the question
cannot be answered in general without specifying a causal relationship betweep
underlying policy variables and (J, 2); there is no basis for assuming the functional
specification of the selection probabilities remains unchanged when policy
changes. ;

One distinction which has not been made in comparing causal and conjoint
models is between characteristics of subjects and attributes of alternatives. Jt is

variables, and the notion of dlassification, arise in causal models. Further, while
conjoint models typically involve only characteristics of the subject, it is possible
to give examples where attributes of aiternatives enter, e.g., in Example 2 a

dummy explanatory variable might appear indicating the method of measuring

conjoint models on one hand and characteristics of subjects or aitributes of
alternatives on the other hand.

In summary, we see in causal models (1) that it is natural to specify problems
in terms of selection probabilities, (2) that forecasting leads to ciassification
problems within this medel based on the selection probabilities, (3) that the model
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ects of policies which shift the explanatory variables.
eﬁbc’ tions, causal models are natural, suggesting that
apphc? Ite:d i,n terms of selection probabilities, with disc
fon:"udato the posterior distributionsonly if there is consid
xﬁd?tv of the implied specification of the prior,

In most social science
the models should be

rimidant-type methods
erable confidence in the

University of California, Berkeley
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