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Annals of Economic and Social Measurement. 5/4, 197(

A COMMENT ON I)ISCIUMLNANT ANAL\'SIS "VERSUS"
LOGIT ANALYSIS'

BY DANIIi Mc[:Ai)t)N

This note contrasts discrirninant analysis with logit analysis. Iii causal models, it is seen that forecasting

lejJs to classification problems based on selection probabilities. The posterior distributions implied by the
selection probabilities and prior distribution may provide a useful starting point for estimation of the
se!.ecrion prebahthty parameters in a discriminant-type analysis, but this procedure does no: tend to be

robust with respect to rnisspecification oJ the prior. In conjoint ,ncdels, on the other hand, the posterior

distributionS and selection probabilities are alternative conditional distributions characterizing the joint
distributiOti. In these models, it is generally not meaningful to examine the effects of shifts in explanatory

variables
1. INTRODUrIION

consider an experiment in which individual characteristics, attributes of possible

responses, and actual responses are observed for a sample of subjects. Suppose

the sets of possible responses are finite, so the problem is one of quantal response.

One approach to the analysis of such data is the logit model, which postulates

that the actual responses are drawings from multinomial distributions with
selection probabilities conditioned on the observed values of individual charac-

teristics and attributes of alternatives, with the logistic functional form. A second

approach is discritninant analysis, which postulates that the observed values of

individual characteristics and attributes of alternatives are drawings from post-

erior distributions conditioned on actual responses.

When the posterior distributions in discriminant analysis are taken to be

multivariate normal with a c(>mmOfl covariance matrix, one obtains the implica-

tion that the relative odds that a given vector of observations is drawn from one

posterior distribution or the other arc given by a logistic formula.2 This seems to

have led to some confusion as to whether these two approaches provide equally

satisfactory interpretations of the logit model, and whether the statistical

estimators and applications which seem natural for one of the models have some

reasonable interpretation in the other model. In this comment, I will write down a

common probability model for the two approaches, and use it to clarify these

issues.
I!. OBSERVED VARE.BLF.S

Consider a typical quantal response experiments for example a study of travel

mode choice. The possible responses of a subject in a particular experimental

setting are indexed by a finite set B = {1,. . - , J}. With each response j E B is

associated a vector z1 of observed variables and vector of unobserved

variables. We define z ='(z, .. . , zj) and (f,,...

This research is supported by NSF Grant No. GS-35890X. The question addressed in this

coimnent was raised during the NSF-NBER Conference on Individual Decision Rules, University of

California, Berkeley, March 22-23, 1974. I benefited from discussions at that time with R. Hall, I.

Fleckman, J. Housernan, 3. Press, and R. Westin. I retain sole responsibility for errors.

2 A discussion ot the discriminant model and of this and related properties
has been given by Ladd

(1966).

51!



/

(2)

Some discussion is required on the interpretation of the response index landthe data vector z1. In applications such as mode choice, it is usually natural toassociate a particular index with a particular response: e.g.. j I may be the"walk" mode. in oilier applications such as destination choice, there will be nonatural indexing, so that the index / associated with a particular
response isarbitrary. The data vector z can be interpreted as a transformation

ofobservations .v'on the attributes of each alternative i and soon the characterjstjof the subject; i.e.,

I) U U I) (
(1) z1=Z(x,;x1,. . .,x1,x1+1 ,...,xj;s ),
where Z is a vector of known functions. Note that the components of z may becomponents of observed attributes of alternatives

or characteristics of individuals,or may be interaction terms involving products or more complex functions ofthese variables. In the case that there is a natural indexing of responses, we caninclude the index / as a component of the vector xi'; this allows the inclusion ofcomponents of z which are interactions between components of the x, or of s°and a dummy variable for a particular index i; i.e..
C)

jXim IIi1
211_TO if/i 1s, ifj=ior z,,1 ifji

JLZ.

On the other hand, when there is no natural indexing, variables such as those in
Equation (2) are not meaningful. It is for this reason that the function Z inEquation (1) is assumed to depend on the response

index I only via its effect on xi'.
We note further in this equation that in most applications, z will depend solely on
x and s". More

generally, dependenceacross alternatives is possible. However, iiikeeping with the stipulation above that Zj depends on the index j only if the indexitself is an attribute of the alternative, we require that Z be invariant with respectto the order of the sub-vectors x 4, ,...,x. Analogously to theInterpretation of the observed variables z, we can interpret
the unobservedvariables as coming from unobserved attributes of alternatives x' and unob-

served individual
characteristics s".

ill. SELECTION
PROBABILITIESProvided we take a sufficiently

general definition of the unobserved variables
, the subject's actual

response is completely determined by the alternative set B
and the observed and unobserved variables (z, ); let

/ - D(B, z, )denote this
relationship, and define

E,(B, z) {D(B,z, ) j}to be the set of
unobserve&vectors giving response j.

-, We now assume the variables z, are jointly distributed with a frequency
nction f(z, ). In general, we can allow some components of (z, ) to be
ntinuous and others to be discrete, taking the corresponding components

of the product
measure (i', n) on (z, ) to be Lebesgue or counting measure,



respectively. We can also allow! to be degenerate, and restrict our attention to asuitable manifold. For example, the case where some components of z involveinteractions of variables with alternative dummies will correspond to a degeneratef distribution.
We first define the Selection probability that response I Occurs, Conditionedon the response set B and observed data z. Let

g(z)g(z; B)= Jf(z, (di)

be the marginal frequency for z. Then the selection probability is given by theconditional probability formula

p,(B, z)
= hI(f1.z)

(d)/g(z),

We note that the expression

h(j,z; B)pj(fi,z)g(z)=J f(z,(d)
is the joint distribution of (I, z) conditioned on B. Equation (6) is meaningfulwhether or not there isa natural indexing of alternatives. This implies in particular
that models formulated and analyzed solely in terms of the selection probabilitiesdo not require natural indexing. f-lowever, the concepts to be introduced nextrequire natural indexing in order to he meaningful.

IV. CLASSIFICATION MODELS

Assume hereafter that there is a natural indexing j of alternatives. Define
mean selection probabilities

I J(B)
= J p1(B, z)g(z)p(dz)

= J { J f(z,
E,(a.z)

Next, define the posterior distribution of the observed variables given the
actual response j. This 1:equency is clearly proportional to the probability of
actuai response j conditioned on the observed data, multiplied by the marginal
frequency function for the observed data, or

q,(B, z) = p1(B, z)g(z)/P = h(j, z, B)/P1

with the normalizing constant obtained from Equation (7). An obvious implica-
tion of this equation is that any specification of the selection probabilities p and
frequency function g of the observations determines specific posterior distribu-
tions q1. In this sense, every model for the selection probabilities combined with a
"prior" distribution g on the explanatory variables yields a classification model to
which some sort of discrimination analysis could be applied. However, the case of
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multtnoniial logit selection probabilities and a multivariate normal prior will noyield multivariate normal posterior distributions. (In the binary response case, theposterior distributions are transiormatiofls of the s,1 distribution; see Johnson(1949) and Westin (1974).)

V. CONSISTENCY 01: S!LEcrtoN
PftORABILITIFS ANt) POSi-nRIOR

DISTRIHUTIONS
We next consider the question of whether particular parametric specifica-tions for the selection probabilities and posterior distributions arc consistent, orequivalently whether there exists a prior distribution g satisfying

g(z) = q1(B, z)P/p1(B. z)
for all j. (In this construction, the P1 can be treated as constants to be determined.)It is obvious that (9) need not have a solution; clearly, q1(B, z)/p1(B, z) must beintegrahie, and q1 must equal p except for a multiplicative

constant dependingonjand a multiplicative
function independent of j.

Suppose the selection probabilities are specified to he inultinomial logit,

p1(B, z)=. y,+r1LdcB C
where /3, 'y1,.... y, arc parameters and we impose the normalization y + ... += 0. Note that when the z1 variables are of the form in Equation (2). Equation(10) specializes to

J)1(B, z)

where the /3 and z are subvectors of /3 and z. An important special case ofEquation (11) occurs when the variables are the sante for each alternative,

e(12)
P1(R, Z)=.ç.

e
and the normalization

JJ/3 0 is imposed. This formulation is common whenattributes of alternatives are absent and only characteristics of subjects areobserved. However, note that Z may contain attributes of all alternatives,making Equation (12) as general as Equation (10).Next suppose the posterior distributions q1 to be multivariate normal with acommon covariance matrix. In order to include the possibility that g is degerier-ate, we assume (by a translation of the origin if necessary) that z varies in asubspace L. Then, q1 has a mean j. e L and a covariance
matrix 1 that is positive

'A question with a trivial affirmative answer is whether, given
posteriordistributionsq1 andmean

selection probabilities P1, one can find a prior
distribution g and selection probabilities p, such that

Equation (9) holds. From Equation (9) define p, = P1q/g. Then ) g = I, g = . P1q. Then, a prior g
which s a P,

probability mixture of the posterior
distributions is necessary and sufficient to give a

solution. Compare this result with the analysis following where p1 is restricted.
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semi-definite and definite with respect to the subspace L.4 The frequency func-
tions can then he written (suppressing B)

q,(B, z)q1(z) = K CX (z p')'i(z ')], (z EL)

where K is a constant independent of J and A i the generalized inverse of ft
Define a vector f3' = (0,.. . p.....0) commensurate with z = (z1.....z1) and
with the j..th subvector equal to f3.

Theorem 1. Suppose the selection probabilities satisfy Equation (10) and the
posterior distributions satisfy Equation (13). Then the conditions for consistency
are that the prior distribution be a probability mixture of the posterior distribu-
tions.

g(z)=

with the means in Equation (13) satisfying

an arbitrary vector, and with

P1 = cxp [yj +"Ap']/ exp [y +"A']
1.1

=exp[y1 +(/3' + )'fl(1 + )]/ exp[y1 +(/3 +f1(/3' +)].
'C B

corollary 1.1. Suppose the selection probabilities satisfy Equation (10) with
given /3, 'y, . . . , y. Suppose the posterior distributions are multivariate normal
with a common positive semidefinite covariance matrix f. Then there exist
posterior means satisfying Equation (15), mean selection probabilities satisfying
Equation (16), and a prior distribution which is a mean selection probability
mixture of the posterior distributions, such that

q(z).
H

Let K denote the dimension of z,. Then z is of dimension JK, where I is the number of
alternatives. The suhspacc L is given by L = Whiz and its orthogonal complement Lc is the

nulls?ace of 11, i.e., L ={z E R"IUz =0}. Then z eL and z implies zUz >0. Every vector
yER K has a unique representation y= v+w with vU. Since U is symmetric and positive
semkiefinite, there exists an orthonormal matrix A such that AA' = land

FW 01
U) 0J

where Wis a diagonal matrix with positiveiliagona elements arid rank equal to the dimension of L.

'The generalized inverse of U is defined to be the matrix

01
A=AThR11A'

in the notation of footnote 4. It is simple to verify using this formula that the system of equations y

has a solution if and only if yE L, and that ye I. implies z = Ay eL is a solution, as is z for any

vector w in the orthogonal complement of L.
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(ora1iwy 1.2. Suppose the selection probabilities satisfy Equation
(10) wigiven fi. Suppose the posterior distributions are muitjvarja,e normal

acommon positive semidefinite covariance matrix Suppose the mean selecti0probabilities P1.....P are given. Then there exists Posterior means satisfyjgEquation (15), selection probability parameters y ..., y, satisfying

(17) y,, 1n F- (in p
2

and a prior distribution which is a mean selection
Probability mixture of theposterior distributions, such that p,(B, z) qj(z)/1q(z)

Proof: Substituting Equations (10) and (13) into formula (9) for g Yields
(18) g(z) = exp {(z1 - z,)'f3 + - y,]P,K exp [--(z -')'i%(z -p')JIEH

=
iE$

-
Since the right-handsi of this equation cannot depend on I, consistencyrequires

(19)

where A is a constant, and

(20) +z'A' z'ô,

where S is a VeCtor of constants
Equation (20) can be written

:Aj'=z'(i8). (zL)
Taking 2 = I 1w for any real vector w, this implies w' = v'S1(p' + 5), or

ILL' =fl(fl'+,)
Substituti8 these expressio5 in Equation (18) yields

(23) g(z)= expflogK: +z'(8'+)±y+AJgEB

= exp flog K- z'Az + z 'A1' + y, + AJiEB

exp1_z1Az+ZlA.l,ilAi+II.iEE

P1KexPf_.(z,i)1A(Z9)]
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vi. Tim CONSISTENCY OF GIVEN POSTERIOR DISTRIBUTIONS

Suppose one is given multivariate normal posterior distributions with a
common positive seinidefinite covariance matrix. We seek conditions for the
existence of inultinornial logit selection probabilities of the form given in Equa-
tion (11). It will be convenient for this analysis to change notation slightly, defining

z,1) and /3' = (i3w . . In general, and vary with j.
However, we consider also the cases where z or are uniform acrossj. In the
last of these cases, the inultinomial logit equation (11) reduces to equation (10).

Theorem 2. Suppose the posterior distributions satisfy Equation (13) with
given means = (iii, . . . i.) and a common positive sernidefinite covariance
matrix 11, Suppose the mean selection probabilities P, are given. Suppose the
selection probabilities are required to have the form specified in Equation (11).
Then the following conditions are necessary for consistency:

(1) The prior distribution is a probability mixture of the posterior distribu-
tions satisfying Equation (14).

(2) The parameter vector /3' = (/3, . . . , /3) satisfies

.J[AE(p! ,i)+q)], (j i)

where
rA

is a partition of A left-commensurate wth the partition of /3.

1

and the q" = (q),.. . , q(,)) are some vectors in the null-space of (i.e., Ilq' =0)
satisfying

q'=O.
1EB

(3) The parameters y',.. ., satisfy

= - (In P1 -- In +i(,L"A,L' i
JieB 2 JiB

Remark. Equations (24), (25), and (26) imply

I
I3(i) =j___j[Aii i)+q)]

combining Equations (24) and (28) yields

j3 = A(' p) +q()q(I) (j i)

Equations (26) and (29) plus the conditions 1q' 0 give 212 equations in the

/+12 unknowns I3 and qJ). Hence, the existence of a solution requires, in

general, conditions yielding dependencies between equations. For example, if Cl is
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or

an identity matrix, then Equation (29) implies that a flCCCSSary conditi0 rConsistency is j4 = i4 for i j, k,
corollary 2.1. If 1 is non-singular, then a flCccssary COfl(l itio for consistencyis

' , £ -/L )=ii
C'orollarv 2.2. 1ff = 2, then the solution

f
(J-A(,.12)

[or i j, k.

IS COflSi5tfl

Corollary 2.3. If
. . - = = . then a necessary conditj0 forsufficiency is that A( ')+q)---q1 he independent of i andj forj/Corollary 2.4. If Z . .. Z(1) = = then the Solution

= A1 ?/LiI),
with A1 the generalized inverse of the covariance matrix f) of S ConsistentRemark. By defining Z(I) in Corollary 2.4 to contain all the variables of theoriginal problem, we obtain the general result that any mujtjvariate nonposterior distributions with a common covariance matrix are consistent with amultinompal logit model of the form of Equation (11) with every variableappearing in the attributes of each alternative. The preceding results show thatadditional conditions on the posterior distributions

are required to obtain mul-tinomial logit models with added structure on the independent
variables, as inEquation (10).

Proof: Equations (14) through (17) COntinue to be necessary and sufficient forConsistency with

13'=(O,.. .,0,pU),O .

In order to express Equation (15) in more detail, partition A into submatrices Aq,each square and of the same dimension as , and write u' (MI).....i4,) and= (ô,. .. , ö.) commensurately with z (2(1),. . . , 2(J)). Then

(35) l3) = A1 (p.k) - IL(k)) + q;J) -k
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(1 /)
where as before the '

are assumed to lie in the non-null space L of 11 and q' is avector in the null space of 1 such that Equation (26) holds. Summing Equation(35) over i yields

(J ')I(i)=>Aik(J14k)-
IL (k)) +Jq/) Ek iB IEIi

F

I

13(j) + q)

(1 = (i) +q) (1 j)



Using [.lu4ition (26), this implies Equation (2). Subtracting J times Equation
(35) from Equation (2) yiekls Equation (24). Equation (27) follows from
Iquat-' (17). ibis completes the proof ot the theorem.

corollaries 2. I and 2.3 follow from Equation (35) and the observation that
0 and g 1 iron-singular implies q' 0. Corollary 2.2 is proved by verifying

that the propoSeti sc>lution satisfies

g(z) q,(z)P,/p,(z)

- exp[z1fl, + y -4- log K - z'Az - z(,)IJU) + z'Aj.'
' IS

+ log P, ---

with the right-hand-side independent of I. One has
2= z1)(Afl(1)+ ttI2U(2))

- I I
4 Z(2J(A2,1.L(2) + A, 1/L( ) Z (

+ z'A. 2 z1 ,(A IL (2))

+ z(,)(A,,IL:,, -4- A,1 i4) z'l,,

A
(A11

A,1
yielding the result,

A,,

Corollary 2.4 is established by considering

g(z11))

) CX [Zj1] f + y, + log K - z>A --
I

-- -y, +log 1',

where A1 is the generalized inverse of the covarianec matrix f1 of Z(j). When

= Al the right-hand--side of thisequation is independent off. OFf),

VII. 'frii Roi3IJsmIss oi I)ISeIUMINANr ESiIMA1iS 01' 11Th LoOIT Motwi.

We have established condilions under which statistics derived from posterior
distributions under the postulate of normality provide consistent estimates of the

selection probability pararneteis. 'Fire prior distribution required by these condi-

tions, a probability mixture of the posterior distributions, seems unlikely to he
realized in applications. I-fence, it is of interest to einine the robustness of the

estimator of the selection probability parameters derived under the postulates
above when alternative plOIF distributions prevail. We consider the alternative of

anormal prior. Suppose binary choice arid a single real explanatory variable, with

(41) p1(JJ,
/i

= 1/(1 -I--c

5 I)

and

where



where y = Yi and 2 Z1 - 22, and

Then

z
1= eP1v2ir 1+e

22 f (zp1) -z2/21= -I e dzI'1'1T, I+e1
2 7 2 2,=(JPo-1P.--P2p.2)/P2

where P1, are the mean selection
probability, posterior mean, and posteriorvariance, respectively, for i = 1,2, r is the "pooled" variance, and , are thediscritninant estimators of . y. As shown in Figure 1, the

discriininant estimatorunderestimates in magnitude the true parameter 3. The percent o the selectionprobabilities lyingbetween 0.1 and 0.9 is 73 percent at $ = 2, y =0 and 19 percent
Percentage

60-

2 2 2if =1 t0t+2T2
i::I i1 /1)1(7

9= (log P1/P2)( )/2

5 6 7 8 9 It)
truerFigure 1

Perccnlagedownward bias in discriminant
esOmate of 3



at 9, y = 0; these values would bracket the corresponding percentage in many
applied studies. We conclude that for a typical prior distribution of the explana-
tory variables, multivariate normal, estimates of the selection probability paranie-
ters hased on discriminant analysis will be substantially biased. Note that the
discriminant estimator 13 coincides in finite samples with a linear probability
model estimator; hence, this conclusion is consistent with resultsshowing that the
linear probability estimator applied to logistically generated responses leads to
underestimates of the true parameters (McFadden (1973)).

VIII. CONCLUSZON

We conclude this comment with some observations on the experimental
settings in which logit or discriminant analyses are appropriate. The first distinc-
tion to he made concerns the interpretation to be given to the response function
j = D(B, z, ) in Equation (3). On one hand, we may view this as a causal
relationship, with z and the unobserved vector determining j. On the other
hand, we may view (j, z) as being conjoint, or jointly distributed with no causal
effect running from z to j. In the first case, the function D is of intrinsic
methodological interest, while in the second case it is merely one of the ways of
characterizing the joint distribution of (j, z). Two examples will aid in exploring
the implications of this distinction.

Example 1. (C'ausal model): Seeds are planted and observations z are made
on seed age, soil acidity temperature, and time allowed for germination.
Responses / I (germination) and j = 2 (no germination) are observed.

Example 2. (Gonjoint model): Eggs are candled, and observations z are made
on translucency. Responses j 1 (high yolk = good egg) and j=2 (spread
yolk bad egg) are observed.

In Example 1, theory suggests a causal relation between the explanatory
variables and probability of germination. Then, the response function D and
selection probability will be of primary methodological interest. The selection
probability would be used to forecast germination frequency for a new sample of
seeds. It is not meaningful in this example to speak of two seed populations,
"germinators" and "non-germinators," and attempt to classify seeds into one or
the other. However, it is possible to classify seeds by probability of germination,
and a binary classification into high and low probability germinators on the basis
of selection probability is formally equivalent to a discriminant classification
procedure.

In Example 2, translucency and yolk height can be viewed as jointly
determined by unobserved variables, with no causal relation from translucency to
yolk height. Then, the posterior distributions, or conditional distributions of z
given j, have the same status as the selection probabilities, or conditional
distributions of j given z. It is meaningful to speak of the populations of "good"
and "bad" eggs, and attempt to classify an egg into one of these populations; this
classification can be made using the selection probabilities.

We conclude from the comparison of these two examples that aside from the
special causal interpretation given to the selection probabilities in causal models
and the interpretation of the posterior populations in conjoint models, the
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problems of statistical analysis are identical, particularly with respect to theclassification problem of forecasting response for new observations.
Logittypand discrimiruanttype statistical analysis could be used inteIchangey keeping

/in
mind the logical intcrdependeiice of these models worked Out earlier in thiscomment fn any causal model, it becomes critical when the

statis(jca(fQrujujati isof the discri,ninant type to check whether a consistent prior and selectionprobabilitiesexist, and whether the implied form of the selection probabilities is compatible withthe underlying axioms of causality.
An important distinction among quantal response models is whether it ismeaningful to pose the question "If a policy is pursued which shifts a Componentof z, what is the effect on responses?". Clearly in a causal model this question isalways meaningful, whether the component of z is a characteristic of

the subjector an attribute of an alternative. Thus, in Example 1, one may seek to determinethe responsiveness of the germination probability to seed age or to time allowedfor germination. What is important here is that the functional
specification of theselection probabilities is assumed to not change when the Policy changes, since itisdetermined by the underlying causal model. in a conjoint model the questioncannot be answered in general without Specifying a causal relationship

betweenunderlying policy variables and (j, z); there is no basis for assuming the
functionalspecification of the selection probabilities remains unchanged when policychanges.

One distinction which has not been made in comparing causal and conjointmodels is between characteristi of subjects and attributes of alternatives It isoften natural to associate with characterjsti of subjects the notion of classifyingthe population into observable subpopulatjons according to response prob-abilities, and to associate with attributes of alternatives the notion of causalresponse. However, we have noted in discussing Example 1 that both types ofvariables, and the notion of classification, arise in causal models. Further, whileconjoint models typically involve only characteristica of the subject, it is possibleto give examples where attributes of alternatives enter, e.g., in Example 2 adummy explanatory variable might appear indicating the method of measuringyolk height. We conclude that there is no logical relationship between causal orconjoint models on one hand and characterjsti of subjects or attributes ofalternatives on the other hand.
In summa we see in causal models (I) that it is natural to specify problemsin terms of selection probabilities (2) that forecasting leads to classificationproblems within this model based on the selection probabilities, (3) that the modelmakes it meaningful to analyze the effects of policy affecting the explanatoryvariables, and (4) that the posterior distributions implied by the selection prob-abilities and prior distribution mayprovide a useful starting point for estimation ofthe selection probability parameters in a discriminanttype analysis, but thisprocedure does not tend to be robust with respect to misspecification of the prior.In conjoint models, (1) the posterior distributions and selection probabilities arealternative conditional distributions characterizing the joint distribution of (I, z),and functional specificai can be made from either starting point, (2) classiflca-flon procedures coincide with those of causal models despite the differingInterpretation and it (3) IS generally not meaningful to pose questions about the
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effects of policies which shift the explanatory variables, in most Social Science
appliCati015 causal models are natural, suggesting that the models should be
formulated in terms of selection probabilities, with discriniiant.ty

methods
applied to the posterior distributions only if there is considerable Confidence in the
validitY of the implied specification of the prior.
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