This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 1
Volume Author/Editor: NBER

Volume Publisher:

Volume URL: http://www.nber.org/books/aesm77-1
Publication Date: 1977

Chapter Title: On Numerical Computation in Simultaneous Equation Systems
Chapter Author: Warren T. Dent
Chapter URL: http://www.nber.org/chapters/c10505
Chapter pages in book: (p. 123-125)

## NOTES

# ON NUMERICAL COMPUTATION IN SIMULTANEOUS EQUATION SYSTEMS 

By Warren T. Dent

The introduction of sophisticated numerical analysis techniques into parameter estimation in econometric simultaneous equation systents was originally made by Dent and Golub (1972) at the Sixth Interface Symposium on Computer Science and Statistics, Berkeley, 1972, and in a consequent widely distributed Stanford report (1973). This foundation work involved the application of numerically stable and accuracy preserving Householder transformations and the Singular Value Decomposition to the determination of the Limited Information Maximum Likelihood (LIML) estimates of the parameters in a single equation of a simultaneous economic system. Recently, Belsley (1974) has incorporated these concepts into the consiruction of a comprehensive computerized package (NBER-GREMLIN) of accuracy-preserving estimation procedures for lincar and nonlinear econometric systems. We take this opportunity to clarify some misunderstandings and misinterpretations that have arisen in this work, and to summarize some econometric insights available with the techniques.

In particular Belsley suggests (p. 564, eqn (1.12)) that the "LIML estimator is calculated as a $k$-class estimator with $k$ equal to the minimum eigenvalue of the eigensystem

$$
\left|\left(Y^{\prime} Y\right)_{\perp X_{1}}-\left(Y^{\prime} Y\right)_{\perp x}\right|=0
$$

The correct definition involves the determinantal equation (in Belsley's notation)

$$
\left|\left(W^{\prime} W\right)_{\perp x_{1}}-\left(W^{\prime} W\right)_{\perp x}\right|=0
$$

where $W=[Y y]$. This system has $G+1$ eigenroots, not $G$.
As it stands the Houscholder transformation series applied in this case is inappropriate, as are equations (1.15) p. 565), and the comments (1.16) et seq. The necessary corrections to Belsley's procedure can be de-

[^0]rived.* Dent and Golub's algorithm for LIML estimation is criticized (note 13, p. 568) on the basis that it requires storage of the large orthogonal Householder transformation matrix. This is not so however, and the criticism is therefore unfounded. Dent and Golub's algorithm ap. plies the Singular Value Decomposition to the correct Householder transformation. and takes notice of rank problems associated with the matrix ( $\left.W^{\prime} W\right)_{\perp x}$. The insight gained here is important, as is knowledge of the relationship between the LIMI and Two Stage Least Squares estimators in over-identitied cases. Determination of all eigenvalues of the system above (and noi just the smallest) allows one to apply Fisk's (1967) tests of identification for the equation in question, a process of considerable, but neglected, merit.

Econometric insight from application of numerical analysis techniques has also been gained in three other areas. The first concerns uncorrelated residuals in single equation models. Grossman and Styan (1972) show how application of Householder transformations in the sense described by Belsley (p. 558) readily yields uncorrelated residuals. These latter also may be conveniently used to prove in more classical contexts the existence of $\chi^{2}$ distributions for estimators of disturbance variance under normality assumptions. Numerical and analytic properties of uncorrelated residuals are further advanced in Grossman and Styan (1972), Styan (1972) and Dent and Styan (1973).

Second, the use of Householder techniques in determination of linearly estimable functions was developed by Golub and Styan (1973) and expanded by Dent (1973) and Dent and Foreschle (1973). Convenient $g_{123}$ inverses are utilized to develop elegant and practical linearly estimable functions in the present of multicollinearity.

The third further instance of analytical insight suggested by applications of Singular Value and Householder transformation decompositions is in the broader $k$-class estimation. One is not guaranteed that Belsley's $G+K_{1}$ system (1.10) is of full rank and that the corresponding estimators exist. Dent shows (1975, eqns. (15) and (16)) that by applying partitioned inversior, a smaller system of order only $G \times G$ need be examined. The ranx of this system may be checked by the Singular Value Decomposition, and indeed this process determines "inadmissable" values of $k$ for the data in question. It is shown analytically from this latter decomposition that inadmissable $k$ values are always greater than unity, giving impetus to the use of values less than unity, such as those prescribed by Fisk (p.50) and Zellner (1975). The algorithm yields insight, but there is no intent here to imply that savings in time or computation are simultaneously possible.

The procedure for Three Stage Least Squares estimation outlined by Belslay (pp. 580-585) is superior to that of Dent (1975) in that smaller
computer stor:tge areas are required. The issuc of large systems has atso recently been taken up by Jennings (1974) and a package for standard estimation techniques is currently under implementation at the University of Illinois (Chicago Circle) and The University of Low: Speciat attention in this development is given to the casc of mon-full rank and the options of estimates of complete covariance matrices or diagonal elements only.

University of lowa

## Rhferinces

Betsley. David A. (1974): "Estimation of Sytenis: of Simultancous Equations, and Com-
 October.
Dent. Warren T. (1973): "Information in Less Than Full R:ank Regression Models." Workiag Peper Series No. 73-12. College of Business Administration. The University
of Zoval May.
Dent. Warren T. (1973): Efficient Computator in Smultancous Equations Estimation," Working Paper Serics No. 7.3-13 College of Business Administration. The Unisersity of lowa Mas.
Dent. Warren T. (1976): "Information and Computation in Simultapoous Equatoms Eximation." Journal of Eiconome:trice Vol. A. pp. 8995.
Demt. Warren T.. and Jimes R. Forescile (1973): Best Linear Unbiased tstimates of Lime:rly Estimable Punctions." Working Paper Scries No. 73-20. College of Business Administration. The Unicersity of lowa. July
Dent. Warren T... and Gene H. Golub M 1972): Computation of the Limited Informal. tion Maximum Likelihood Estimator." Procedings of INTERFACK: Computer Science and Statistics, oth A nnual Symposium. Berkeley. October.
Dent. Warren T.. and Gene H. Gelab (197.3): Computation of the limited Intormatien Maximum Likelihood Fs:mator." STAN-CS-73-339. Computer Science Department. Stanford Iniversity. February.
Dent. Warren T.. and George P. H. Styan (1973): "Uncorrelated Residuals from L.mear Models." Teehnical Report 88. Institute for Mathematical Studies if the Social Scences. Stanford Universit!. Jama:ry.
Fish. R. (1967): Stochavically I) Penenden Equarions. Hatiner. Now York.
Grossman, Stamey I. and George P. H. Styan (1972): Optimatity Propertios of Theils BLUS Residuals." Jenrnal af the American Statistical Aswociatiam. 67. No. 339. pp. 672. 673. Suptember.

Golub. Genc H. and George P. H. Stan t1973: Namerial Computations and Univariate Line:ar Models." Jounal ol Statistical Comiputation and Simulation, 3.
Jemings. Les S. (1974): "A Computational Approath to Simultancous Extimation." STAN CS-74-454. Computer Scienci Depirtment. Stanford Uniscrsite. September.
Styan. George P. H. (1973): "Properties of Discrenaticy Covariance Matrices for Uncor-

Zellner. Arnold (1975): Estimation of tunctions of Population Mans and Kegreston (o. efficients including Structural Cocticients: A Minimum Evected Loss (ME1.O) Ap proach." Unpublish d manuscript. University of Chiengo. Junc.


[^0]:    *Editor's Note: Belsicy notes thal Equation (1.12) et seq. can be made vorrect by a simple expedient. In ( 1.4 ) detine $R_{33}^{*}=\left[\begin{array}{ll}R_{33} & R_{34} \\ 0 & R_{44}\end{array}\right\}, R_{13}^{*}=\left|R_{13} R_{14}\right|$ and $R_{23}^{*}=\left\{\begin{array}{ll}R_{23} & R_{24}\end{array}\right\}$.
     equations are correct and make sense.

