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Abstract

The paper studies a specific reinforcement learning rule in two-player
games when each player faces a unidimensional strategy set. The essential
feature of the rule is that a player keeps on incrementing her strategy in the
same direction if and only if her utility increases. The paper concentrates
on games on the square [0, 1] × [0, 1] with bilinear payoff functions such
as the mixed extensions of 2 × 2 games. It studies the behavior of the
system in the interior as well as on the borders of the strategy space. It
precisely exhibits the trajectories of the system and the asymptotic states
for symmetric, zero-sum, and twin games.

1 Introduction

The paper examines a specific learning rule belonging to the family of rein-
forcement models (Sutton and Barto 1998). In such models, at each point in
time, the decision-maker observes only her past utility and chooses which ac-
tion to play according to her past performances. The model we study, we call
stubborn learning, applies only to situations where the agent’s strategy space is
one-dimensional. It is based on the following principles:
- at each period, the decision maker is able to shift her action of an incremental
quantity, in one direction or the other,
- she observes the utility obtained in the two past moves
- if the preceding shift induced an increase (decrease) in utility, she keeps on
going in the same direction (she reverses direction).

This rule has three notable features, which derive directly from the stated
principles. First, it requires relatively weak cognitive capacities of the player,
for computing as well as for memorizing. Second, it is purely individual and
can be used by the decision-maker without knowledge of her natural or strategic
environment. Third, in a one-player setting, it induces the player to follow the
familiar gradient-descent method. In a game setting, it describes the behavior
of an adaptive agent which acts as if she was alone.
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The rule was applied to the Cournot duopoly independently by Huck, Nor-
man and Oechssler (2004) and by Trégouet (2004). It was applied to a continuous
version of the Prisoner’s Dilemma by Huck, Norman and Oechssler (2005).

In the present paper, we propose a new application for two-player generic
bilinear games on the square: each player has as strategy set a closed interval,
say [0, 1] and his payoff is linear with respect to both her own strategy and her
opponent’s strategy. Some of our results extend easily to more general payoff
functions, in particular some local results. We mention them in the text but
keep the main focus on the bilinear case. The natural interpretation of such a
game is a standard 2 × 2 game “played in mixed strategies”. But it should be
clear that our players do not randomize: they chose pure strategies.

We now describe more precisely the learning rule followed by each player.
At each period, he holds in his memory the levels of utility he got and the
strategies he chose in the last two periods. From one period to the next, the
player increments his strategy by a small amount ±ε. The basic principle states
that the agent keeps on changing his strategy in the same direction as long as
his utility is increasing, but changes for the opposite direction if his utility is
decreasing. However, this rule fails and must be completed in two cases.

First, if the agent’s action is at a border of the strategy space (probability
0 or 1), the previous rule may prescribe an action outside this space. In such
a case, we stipulate that the chosen action is not changed at all. Hence when
the player wishes to, but cannot, cross the border, she stays on it. However, she
keeps in his memory the fact that she wants to cross the border.

Second, if the agent’s utility does not change, the previous principle is mute.
Such a case generically does not happen at interior points and even at usual
border points. But it happens at corner points. In such a case, we stipulate that
the player explores in the sense that she chooses at random whether to increase
or decrease his strategy. Hence the player cannot be stuck forever at the same
place. Notice that the rule is deterministic except in this last case.

Applied to general 2× 2 games, two main properties of the system trajecto-
ries appear. In the interior of the strategy space, the system is essentially driven
by collective optimality considerations. When both players see they utilities
increase, they both continue in the same direction, hence they generate locally
a welfare-increasing path. On the border of the strategy space, two logics inter-
fere: the optimality logic and the equilibrium logic. The precise resultant effect
depends on the details of the game.

Convergence properties are studied specifically for three classes of games,
namely symmetric, zero-sum and twin games. Two examples of the obtained
results are the following. In the Prisoner’s Dilemma, the system first moves in
the direction of the Pareto optimum. When it reaches a border of the strategy
space, it is stuck in a neighborhood of the impact point. The system thus escapes
the curse of a sub-optimal Nash equilibrium. In Matching Pennies, the system
circles around the mixed Nash equilibrium following a slowly expanding square.
After it reaches a border of the strategy space, it cycles around the strategy
space. The system thus tends to avoid the mixed Nash equilibrium.

Extension to more than two players is straightforward. But the extension to
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a multi-dimensional action space is much harder. The rule has to be generalized
in its definition and this can be done in different ways.

The next section provides a formal definition of the stubborn learning rule.
Section 3 studies the behavior of the system at interior points, on the borders
and at the corners of the strategy space, according to the parameters of the
2 × 2 game. Section 4 is devoted to symmetric games, Section 5 to zero-sum
games and Section 6 to twin games.

2 The learning rule

2.1 Framework: 2x2 game

In the general 2x2 game played by players 1 and 2, player i plays strategy αi
belonging to [0, 1].The strategy space is thus the square [0, 1]× [0, 1]. The utility
(or payoff) of player i is bilinear:

ui(α1, α2) = aiα1α2 + biα1(1− α2) + ci(1− α1)α2 + di(1− α1)(1− α2).

By analogy with a two-action game allowing mixed strategies, the payoffs can
be summarized in the following matrix:

1 \ 2 α2 = 1 α2 = 0
α1 = 1 (a1, a2) (b1, b2)
α1 = 0 (c1, c2) (d1, d2)

This matrix is introduced in the paper for two different uses. First, it charac-
terizes the restricted type of game we want to study. A symmetric, zero sum or
twin game corresponds to specific bilinear utility functions. Second, it is associ-
ated with well-known equilibrium points, either in pure or in mixed strategies.
These correspond respectively to corner and interior equilibria for the original
game.

For each period t, denote by α1(t) and α2(t) the current strategies and by

ũi(t) = ui(α1(t), α2(t))

the utility of player i.

2.2 Definition of the rule

The rule is followed by player i recursively at each period t. The state variables
are the strategy αi(t) and the observed utility level ũi(t). We introduce an
auxiliary variable vi(t), which takes value +1 and −1 and which indicates in
which direction the player intends to increment his strategy; vi(t) = +1 (resp.
−1) means that the player wants to increase (resp. decrease) the probability
αi(t).

• The player keeps in his memory four pieces of data:
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- ũi(t− 2) is the level of utility he obtained at the penultimate period
- ũi(t− 1) is the level of utility he obtained at the last period
- αi(t− 1) is the strategy he played at the last period
- vi(t− 1) is direction he was intending to follow in the last period.

• The player computes his intended direction :

vi(t) =

 vi(t− 1)
−vi(t− 1)

±vi(t− 1) at random

if
if
if

ũi(t− 1) > ũi(t− 2)
ũi(t− 1) < ũi(t− 2)
ũi(t− 1) = ũi(t− 2)

(“at random” here means with equiprobability.) The player keeps his di-
rection unchanged when his utility has increased and reverses his direc-
tion when his utility has decreased. In the case where his utility has not
changed, the new intended direction is chosen at random.

• The player computes his actual strategy:

αi(t) =

 0
1

αi(t− 1) + ε · vi(t)

if αi(t− 1) + ε · vi(t) < 0
if αi(t− 1) + ε · vi(t) > 1
in the other cases.

The player implements his intended strategy αi(t− 1) + ε · vi(t) whenever
that is physically possible (probability is between 0 and 1), and sticks
to the border if not. Denoting δi(t) ∈ {−1, 0,+1} the player’s actual
increment, his actual strategy can be written as:

αi(t) = αi(t− 1) + ε · δi(t)

The initial conditions to be specified are ũi(0), ũi(1), αi(1), and vi(1). For
convenience, we make the technical assumption that ε = 1/N for some integer
N and that Nαi(0) is an integer. It follows that Nαi(t) is an integer for all t.
Consequently, when a player reaches a border of the strategy space, he reaches
it exactly.

Remark that the definition of the rule only requires that the strategy space
of the decision-maker is uni-dimensionnal. The rule is well-defined for any n-
player game, even if the payoff function is not linear with respect to individual
strategies.

2.3 Payoff variations

We now study the instantaneous differential variations of the payoffs. The
derivatives of the utility function for player i are the following:

∂ui/∂α1 = bi − di + Eiα2

∂ui/∂α2 = ci − di + Eiα1

4
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with
Ei = ai − bi − ci + di.

The expression of the payoff variation depends on the current state being interior
or on the border of the strategy space.

Payoff variation at interior points. Denote by k(t) the indicator of sim-
ilar (k(t) = +1) or opposite (k(t) = −1) evolution of the players’ intended
strategies, defined by:

k(t) = v1(t)v2(t).

The first order approximation for the utility difference (omitting the period
index t) of player 1 can be written in the following way since dα2 = kdα1:

du1 =
∂u1
∂α1

dα1 +
∂u1
∂α2

dα2 = U1dα1

Then the intended strategy variation of player 1 can be expressed in a compact
way:

v1(t) = v1(t− 1) · signU1(t− 1) · v1(t− 1) = signU1(t− 1).

Since U1 depends on k, denote:

U1 =

{
U+
1 if k = +1

U−
1 if k = −1

with:

U+
1 =

∂u1
∂α1

+
∂u1
∂α2

= b1 + c1 − 2d1 + E1(α1 + α2)

U−
1 =

∂u1
∂α1

− ∂u1
∂α2

= b1 − c1 + E1(−α1 + α2).

These numbers are interpreted as follows: U+
1 characterizes the utility variation

of player 1 when the system moves parallel to the first diagonal (dα2 = dα1)
while U−

1 characterizes the utility variation of player 1 when the system moves
parallel to the second diagonal (dα2 = −dα1)

The same variation can be computed for the second player:

du2 =
∂u2
∂α1

dα1 +
∂u2
∂α2

dα2 = U2dα2.

U2 =

{
U+
2 if k = +1

U−
2 if k = −1

,

with

U+
2 =

∂u2
∂α1

+
∂u2
∂α2

= b2 + c2 − 2d2 + E2(α1 + α2)

U−
2 = −∂u2

∂α1
+
∂u2
∂α2

= −b2 + c2 + E2(α1 − α2).
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Payoff variation on the border of the strategy space. On the border
α1 = 0, when the first player does not move, the first order approximation for
the utility difference is :

du1 =
∂u1
∂α2

dα2 =
(
U+
1 − U

−
1

)
dα2, (1)

du2 =
∂u2
∂α2

dα2 =
(
U+
2 + U−

2

)
dα2.

Similar expressions hold for α1 = 1 and α2 = 0 or 1.
Remark: The ‘stubborn learning rule’ differs profoundly from the ‘gradient

learning rule’ which is sometimes considered (Sutton and Barto 1998). In the
last case, the increment of the probability of a player only depends on the impact
of this player’s move, the other player’s move being implicitly fixed. The utility
variation for the players are then:

du1 =
∂u1
∂α1

dα1 =
(
U+
1 + U−

1

)
dα1 = Û1dα1,

du2 =
∂u2
∂α2

dα2 =
(
U+
2 + U−

2

)
dα2 = Û2dα2.

For instance, in an all-or-nothing version, where each player has a constant
increment, this increment is such that: v̂i(t) =signÛi(t−1) where Ûi = U+

i +U−
i .

A stubborn learner follows this gradient rule only when the other agent stays
on a border. But the rules differ at interior points.

Remark: In the case we study – bilinear games – the above expressions
such as ∂u1

∂α1
or U+

1 are linear. In the general case they would be defined at any
point where the payoff function is differentiable, but they would not be linear.

2.4 Synthesis

From an interior point, the system can move in the four directions parallel to
the two diagonals. From a point on a border, the system can also move in four
directions, either horizontally or vertically. The possible utility variations can
therefore be depicted in each point of the strategy space with a rosace. In each of
the eight possible directions, the rosace indicates the sign of the players’ payoff
variations. For example: 

+− +− −+
↖ ↑ ↗

+− ← → −+
↙ ↓ ↘

+− −+ −+


reads as follows: the upper left corner corresponds to a North-West direction.
The utility variation is positive for player 1 and negative for player 2.

Notice that the rosace is constrained by the following continuity rule: for
any player, by cycling around the table the signs must be in turn four times
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positive and four times negative. In particular, signs in opposite directions are
opposite, hence it is sufficient to know the signs in four successive directions.
This leaves open 64 possible schemes.

For the sake of simplicity, the above scheme will be depicted as:+− +− −+
+− −+
+− −+ −+


By convention, an asterisk ∗ instead of a sign means that the sign can be

either + or −.
Some definitions grounded on the rosace at a given point will be used in

further results:
- a game is ”covariant” (resp. ”contravariant”) if the players’ respective signs

in the rosace are the same (resp. opposite) in all directions.
- a border is ”attractive” (resp. ”repulsive” ) for a player if his utility

increases (resp. decreases) in the three directions pointing to it.
- a corner is ”attractive” (rep. ”repulsive” ) for a player if his utility increases

(resp. decreases) in the three directions pointing to it

3 System evolution

3.1 Partition of the strategy space

We now study the trajectories of the system which result from the two players
applying the previous rule. From the above analysis, the individual behavior
may change qualitatively when the system reaches two types of lines:

- the borders of the strategy space which define a square in the plane
(α1, α2) : α1 = 0, α1 = 1, α2 = 0, α2 = 1.

By definition, a player is “relevant” on a border when he is not constrained
by that border (for instance player 1 on a horizontal border).

- the “separating lines” L+
1 (U+

1 = 0), L−
1 (U−

1 = 0), L+
2 (U+

2 = 0), L+
1 (U−

2 =
0) which are parallel to the first or second diagonal.

When α1 and α2 are not constrained, the four separating lines define at most
9 areas in the plane (α1, α2). In some special classes of games, the number of
areas is reduced since some separating lines may coincide. Moreover, the strategy
space may intersect one or several of these areas.

In the sequel, we will describe the evolution of the system at interior points,
on separating lines, borders and corners.

Remark: The separating lines are straight lines because the payoff functions
are bilinear. In the general case, they would be separating curves. The results of
this section would hold true as well for general payoff functions when separating
curves “behave nicely”. In this paper we do not discuss this point further.
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3.2 Evolution at interior points

At interior points, the system is constrained by two features. First, the direction
(v1, v2) is either constant or cyclic of order two. The reason is that the direction
is completely determined by the sign of k which can only be constant or alter-
nate. Second, a cycle cannot be made of two opposite directions (going back
and forth from one state to another). The reason is that the utility increment
would change sign at each move but it only changes when it is negative.

It follows that only two types of trajectories are possible as long as they do
not reach a border or a separating line. Either no player changes his direction,
hence both utilities increase. We will then say that the players are moving
in concert in four possible directions: South-West, South-East, North-West or
North East. Or one player keeps a constant direction while the other alternates,
hence the first player sees her utility increase while the other sees her utility
decrease. We then say that the players are moving crab-wise in four possible
average directions: North, East, South or West.

The following proposition, proved in Appendix A, makes precise the condi-
tions for moving in concert or crab-wise.

Proposition 1. At interior points, after the first move, only two types of
trajectories are possible

(i) The system moves crab-wise (one player is moving in a fixed direction
and the other player alternates). This happens iff U−

1 U
−
2 � 0 and U+

1 U
+
2 ≺ 0.

(ii) The system moves in concert (each player is moving in a fixed direction).
This happens in all other cases.

Moreover, in general, the direction followed by the system does not depend
on the initial move. The only exception is when two (orthogonal) in concert
trajectories are viable from the same initial point. This happens iff U−

1 U
−
2 ≺ 0

and U+
1 U

+
2 � 0.

3.3 Evolution on a separating line

When reaching a separating line, the system may change direction. This change
can be inferred from the phase diagram by looking at the patterns of feasible
directions on each side of the separating line.

The following proposition, proved in Appendix B, makes precise the condi-
tions for these changes.

Proposition 2. When crossing a separating line (simple or double) between
two areas, only three kinds of trajectories are possible, depending on the relevant
regimes on both sides of the line:

(i) The system continues in the interior of the new area. This happens in
all cases where the regime in the reached area drives the system away from the
separating line.

(ii) The system is stuck in the ε-neighborhood of its impact point. This hap-
pens only when the directions on both sides are strictly opposed.

(iii) The system slides along the separating line, in the ε-neighborhood of the
line, in the direction closest to the resultant of the directions on both sides of
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the line. This happens in the remaining cases.

3.4 Evolution on a border line

When reaching a border line, the system has to change direction. The system is
either stuck on the border, close to the impact point, or slides in a neighborhood
of the border. The following proposition, proved in Appendix C, makes precise
the conditions for these behaviors.

Proposition 3. When reaching a border from the interior of the state space,
(i) If the system was previously moving in concert, the trajectory is of one

of two kinds
i-a). The system is stuck in an 2ε-neighborhood of its impact point. This

happens when the game is contravariant on the border and this border is attrac-
tive for the relevant player.

i-b) The system slides in an ε-neighborhood of the border, with an angle of
π/4 with respect to its initial direction. This happens in all other cases

(ii) If the system was previously moving crab-wise, the system slides in an
ε-neighborhood of the border in the direction corresponding to the best response
of the relevant player.

3.5 Evolution at a corner

When reaching a corner, the system is either stuck in the neighborhood of the
corner, or slides away in a neighborhood of a border. This border may be the
one the system comes from (it makes a U-turn) or the other one (it makes a
L-turn). The following proposition, proved in Appendix D, makes precise the
conditions for these behaviors.

Proposition 4. When reaching a corner, the trajectory follows one of two
patterns:

(i) It escapes from the corner following the neighborhood of a border which
is attractive for the relevant player. This happens either when the game is
covariant at the corner or when the corner is repulsive for one of the players.

(ii) It stays in a 2ε-neighborhood of the corner. This happens in all other
cases.

4 Symmetric games

4.1 Potential attractors

In a symmetric game: a1 = a2 = a, b1 = c2 = b, c1 = b2 = c, d1 = d2 = d. Hence

E1 = E2 = E = a− b− c+ d.

The parameter E = ∂2u1

∂α1∂α2
= ∂2u2

∂α1∂α2
will be called the coupling parameter.

We restrict attention to the cases E 6= 01. A game with E > 0 will be called

1Within the class of symmetric games, generically, E 6= 0. But this rules out games which
are both symmetric and zero-sum. Generic zero-sum games will be treated in section 4.
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a coupling game and a game with E < 0 will be called a decoupling game. If
E > 0, when one player goes in one direction (say dα1 > 0), the other player is
all the more induced to go in the same direction ( ∂u2

∂α2
increases).

For convenience and without restriction, it can be assumed that b ≥ c (since
if b ≤ c, an equivalent game is obtained by exchanging rows and exchanging
columns). Since the utility levels are defined up to increasing affine transfor-
mation, we can fix two of the four parameters a, b, c, d. We restrict attention to
the case b 6= c2. It appears that the most convenient normalization is to set the
values of b and c:

b = +1, c = −1

so that
E = a+ d.

Then the various games to distinguish will be described in the plane (a, d). The
strategy space is a square centered on the main diagonal, and any such square
is the strategy space of some symmetric game.

Natural candidates for attractors of the dynamic process are Nash equilibria
and Bentham optima.

Nash equilibria.
As concern the pure equilibria (defined by the values of α1 and α2), three

types of games can be considered:
- If a > −1 and d < 1 or if a < −1 and d > 1, there is only one equilibrium

which is symmetric, namely (1, 1) or (0, 0). Notice that the equilibrium (1, 1)
is Pareto optimal if and only if a > d and that the equilibrium (0, 0) is Pareto
optimal if and only if a < d. For instance, the Appointment game is obtained
with a = 2, d = 0 (hence E = 2). Likewise, the Coupling Prisoner’s Dilemma
is obtained with a = 0, d = 0.5 (hence E = 0.5) and the Decoupling Prisoner’s
Dilemma is obtained with a = −0.5, d = 0 (hence E = −0.5).

- If a > −1 and d > 1, there are two symmetric equilibria. In this case,
E � 0. For instance, the Stag-Hunt game corresponds to: a = 1, d = 3 (hence
E = 4).

- If a < −1 and d < 1, there are two asymmetric equilibria (1, 0) and
(0, 1). In that case E ≺ 0. For instance, the Battle of Sexes corresponds to:
a = −2, d = −3 (hence E = −5)

For the last two types of games, there is moreover a mixed (interior) equi-
librium obtained for α̂1 = α̂2 = (d− 1)/(a+ d).

Bentham optima
Consider the maximization of the sum W of players utilities over the whole

2Within the class of symmetric games, generically, b 6= c. But this rules out games which
are both symmetric and twin. Generic twin games will be treated in section 5.
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strategy space:

W = u1 + u2

= 2aα1α2 + (b+ c) [α1(1− α2) + α2(1− α1)] + 2d(1− α1)(1− α2)

= 2aα1α2 + 2d(1− α1)(1− α2)

dW = (b+ c− 2d)(dα1 + dα2) + 2E(α2dα1 + α1dα2)

= −2d(dα1 + dα2) + 2(a+ d)(α2dα1 + α1dα2)

d2W = 2E dα1 dα2

= 2(a+ d) dα1 dα2

From the expression of d2W , one can see that a maximum of W is never
interior. On the borders of the square, W is an affine function, hence a maximum
of W can only be at a corner of the square.

We are first interested in the global Bentham optimum. These are global
maxima of the function W and are determined by the the largest of three values:

2d, obtained for α1 = α2 = 0,

0, obtained for α1 = 0, α2 = 1, or α1 = 1, α2 = 0,

2a, obtained for α1 = α2 = 1,

We further introduce the notion of a local Bentham optimum. These are local
maxima of the W and are given by the following conditions:

- (α1, α2) = (0, 0) is a local Bentham optimum iff d > 0,
- (α1, α2) = (0, 1) and (0, 1) are local Bentham optima iff a < 0 and d < 0,
- (α1, α2) = (1, 1) is a local Bentham optimum iff a > 0.
We finally define a diagonal Bentham optimum. This is a (global or local)

maximum of W on a line parallel to the main diagonal. Such a line L has
equation

α1 − α2 = r.

Denote by P the point on the main diagonal

P = (αP1 , α
P
2 ) = (

d

a+ d
,

d

a+ d
).

Consider the line LP which is parallel to the second diagonal and passes
through P . Its equation is:

α1 + α2 = αP1 + αP2

Let M be the intersection of L and LP .
The bilinear function W of α1 and α2 is easy to maximize on L, and one

obtains the following conclusions:

• For decoupling games (E < 0), on the line L, W has its maximum at
M . Note that M may be outside the strategy space, in which case the
diagonal maximum is on a border of the strategy space.
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a < −1 −1 < a < 0 0 < a
A B C

1 < d
NE: (0,0)

GO: (0,0)
LO: none

NE: (0,0) and (1,1)
GO: (0,0)
LO: none

NE: (0,0) and (1,1)
GO: (0,0) or (1,1)
LO: (1,1) or (0,0)

D E F

0 < d < 1
NE: (0,1) and (1,0)

GO: (0,0)
LO: none

NE: (1,1)
GO: (0,0)
LO: none

NE: (1,1)
GO: (0,0) or (1,1)
LO: (1,1) or (0,0)

G H I

d < 0
NE: (0,1) and (1,0)
GO: (0,1) and (1,0)

LO: none

NE: (1,1)
GO: (0,1) and (1,0)

LO: none

NE: (1,1)
GO: (1,1)
LO: none

Table 1: Symmetric games: Nash equilibria and Bentham optima

• For coupling games (E > 0), on the line L, W has its minimum at M .
Hence a diagonal local Bentham optimum is always on a border of the
strategy space.

Table 1 summarizes the Nash equilibria, as well as Global and Local Ben-
tham optima (by their coordinates). To read this Table: NE stands for Nash
Equilibrium, GO stands for Global Bentham optimum, and LO stands for Local
Bentham optimum when it is not global. For Bentham optima, the indication
“(0, 0) or (1, 1)” means that the optimum is (0, 0) if d > a and (1, 1) if d < a.

4.2 State transition diagram

For symmetric games, there are only three separating lines, two of them parallel.
They define six regions in the (α1, α2) plane separated by the lines L+(U+

1 =
U+
2 = 0), L−

1 (U−
1 = 0) and L−

2 (U−
2 = 0), with:

U+
1 = U+

2 = b+ c− 2d+ E(α1 + α2)

= −2d+ (a+ d)(α1 + α2)

U−
1 = b− c+ E(α2 − α1)

= 2 + (a+ d)(α2 − α1)

U−
2 = b− c− E(α2 − α1)

= 2− (a+ d)(α2 − α1)

Note that point P lies in the middle of the segment N1N2 defined on L+ by
L−
1 and L−

2 .
Hence, the relative positions of these lines depend only on the sign of E. The

two corresponding diagrams are depicted in Figures 1 and 2.
In figures 1 and 2, the arrows describe the possible trajectories of the system

as long as they do not reach a border of the strategy space or a separating line.

12

ha
l-0

06
09

50
1,

 v
er

si
on

 1
 - 

19
 J

ul
 2

01
1



U2
- >0

U2
-<0

U1
- >0

U1
-<0

U1
+=U2

+>0

U1
+=U2

+<0

+

-

+

+

+

-

-

-

P

N1

N2

Figure 1: Symmetric coupling game (E > 0)
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U1
- >0

U1
-<0

U2
- >0

U2
-<0

U1
+=U2

+<0

U1
+=U2

+>0

+

-

+

+

+

-

-

-

P

N1

N2

Figure 2: Symmetric de-coupling game (E < 0)
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Note again that that they are two possible directions of evolution in the zones
where two arrows are depicted, according to the initial state.

When reaching a separating line, two cases are possible:
If E > 0, this happens (up to some symmetry) in the upper part of Figure 1

when the system is moving South-East above the separating line U−
2 = 0, and

would be moving North East on the other side of this line. Then, according to
the rules of evolution on separating lines (case (i)), the system initially moving
South East then slides North East along the separating line.

If E < 0, this happens in two subcases. Firstly, in the upper part of Figure
2, the system is moving South West above the separating line L+ and is reaching
a zone where it may go either North-East or North-West. But it can easily be
shown that, when the system is on a trajectory parallel to the first diagonal, the
utility variations of the two players are the same, hence the system remains on
that diagonal. It follows that the system is stuck (in a cycle) on the separating
line. Secondly, in the central part of Figure 2, the system is moving South West
above the separating line L+ and would be moving North East on the other side
of this line. Then, according to the rules of evolution on separating lines (case
(ii)), the system is again stuck (in a cycle) on the separating line.

4.3 Properties of the trajectories

We now take into account the borders of the strategy space in order to exhibit
the convergence properties of the process.

It can be observed that the point P is at the intersection of L+ with the
main diagonal. A careful inspection shows that P belongs to the strategy space
iff a > 0 and d > 0 (case E ≥ 0) or a < 0 and d < 0 (case E ≤ 0). The strategy
space lies entirely below P if and only if a < 0 (when E > 0) and a > 0 (when
E < 0). The strategy space lies entirely above P if and only if d < 0 (when
E > 0) and d > 0 (when E < 0).

The strategy space lies entirely between the lines U−
1 = 0 and U−

2 = 0 iff
0 < a+ d < 2 (case E < 0) or −2 < a+ d < 0 (case E < 0), which simply boils
to −2 < a+ d < 2

Finally, for the first player, notice that the line U+
1 −U

−
1 = 0 is vertical, the

line U+
1 + U−

1 = 0 is horizontal, and they cross at the intersection of the lines
L+
1 and L−

1 , that is the point N1:

N1 =

(
d+ 1

a+ d
,
d− 1

a+ d

)
.

Likewise, for the second player, the line U+
2 − U

−
2 = 0 is horizontal, the line

U+
2 + U−

2 = 0 is vertical, and they intersect at the point N2:

N2 =

(
d− 1

a+ d
,
d+ 1

a+ d

)
.

When reaching a border line, the system behaves according to the rules of
the section “evolution on border lines”. It can either stop or slide along the
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border. The stated condition for the system to stop on the border α1 = 0
becomes, for a symmetric game:

−1 < d < 1.

By symmetry, the condition is the same for the border line α2 = 0. Note that
the system is never stuck on borders α1 = 1 or α2 = 1 since the corresponding
conditions would be b = 1 < a < c = −1, which was excluded when we set the
condition b > c.

The behavior of the system when it slides along a border and meets a sepa-
rating line is not examined, but is easily considered when happening.

4.4 Convergence results

When considering the whole behavior of the system, it appears that it is driven
by the notion of Bentham optimality inside the strategy space and by the notion
of Nash equilibrium on the border of the strategy space. The precise statement
is provided in the following Theorem 1, proved in Apprendix E.

Theorem 1. For symmetric games.
(i) If there exists a unique symmetric global Bentham optimum, then the

system coming from the interior of the action space points towards it. If this
point is also a Nash equilibrium then the system converges to it. If not, the
system is stuck at the point where it first reaches the border of the strategy
space.

(ii) If there exist a local and a global Bentham optima, both symmetric,
then the system coming from the interior of the action space points towards one
of them, depending on the initial point. If the local optimum is also a Nash
equilibrium, it converges to it. If not, the system is stuck at the point where it
first reaches the border of the strategy space.

(iii) If there exist two asymmetric global Bentham optima, the system com-
ing from the interior of the action space points towards a diagonal Bentham
optimum. If it meets no border before, it converges toward it. If it meets first a
border, it follows the border and converges towards the diagonal Bentham opti-
mum on the border.

5 Zero-sum games

5.1 Potential attractors

In a zero-sum game: a1 = −a2 = a, b1 = −b2 = b, c1 = −c2 = c, d1 = −d2 =
d. Hence E = E1 = −E2. Without restriction (by just eventually exchanging
players), we can assume that E > 0

With respect to the pure Nash equilibria, two cases are possible:
- no pure equilibrium when a � c, a � b, d � b, d � c (case E > 0) or when

a ≺ c, a ≺ b, d ≺ b, d ≺ c (case E < 0 which is ruled out).
- one pure equilibrium, which can be at any corner, otherwise.
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Looking for mixed equilibria, consider the point

Q = (αQ1 , α
Q
2 ) =

(
d− c
E

,
d− b
E

)
.

The point Q can be located anywhere in the plane (α1, α2) even with the con-
straint E > 0. Two relevant cases are possible. If Q belongs to the strategy
space, then it corresponds to the unique mixed equilibrium. If Q does not be-
long to the strategy space, then the unique equilibrium is at a corner (and is
pure). It is even more precisely located according to the following lemma (whose
proof is omitted).

Lemma 1. The pure equilibrium is given by the following rule:
- (0,0) if αQ1 ≺ 0, αQ2 � 0

- (0,1) if αQ1 � 0, αQ2 � 1

- (1,1) if αQ1 � 1, αQ2 ≺ 1

- (1,0) if αQ1 ≺ 1, αQ2 ≺ 0
In other respects, as concern the Bentham optima, they are obviously de-

generated.

5.2 State transition diagram

For zero sum games, there are only two separating lines L+(U+
1 = U+

2 = 0) and
L−(U−

1 = U−
2 = 0) defining 4 areas:

U+
1 = −U+

2 = b+ c− 2d+ E(α1 + α2) = 0
U−
1 = U−

2 = b− c+ E(α2 − α1) = 0

They precisely intersect at point Q. The phase diagram is depicted in Figure
3. A vertical or horizontal arrow describes the mean trajectory followed by the
system when moving crab-wise.

Consider for instance matching pennies, obtained for a = d = 1, b = c = −1.
The separating lines are respectively: α1 +α2− 1 = 0 and α2−α1 = 0 crossing
at α1 = α2 = 1/2. The strategy space is centered around the same point.

5.3 Properties of the trajectories

We first examine the behavior of the system when reaching a separating line.
Without loss of generality, assume that the system is coming crab-wise from the
East and intersects the separating line parallel to the first diagonal. According
to Figure 4, this intersection is South-West of Q. According to the rules of
evolution on separating lines, case (ii) indicates that the system turns right and
continues crab-wise to the North. The important point is that the trajectory
after its turn on the separating line has made a small step away from Q, as will
be stated in the next lemma.

Lemma 2. When crossing a separating line, the trajectory of the system is
such that its mean line (joining the middle of its constituent players) is further
away from point Q after the crossing than before.
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U1
- =U2

- >0

U1
- =U2

- <0

U1
+=U2

+>0

U1
+=U2

+<0

M

Figure 3: Zero-sum game with E > 0
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U1
- =U2

- >0

U1
- =U2

- <0

Q

A

B

C

D

E

F

Figure 4: Right turn in a zero-sum game with E > 0, case1

Proof. Consider first the case in which the system arrives exactly on the
separating line. (This is the case if the payoffs are integers and N is a multiple
of E.) According to Figure 4, coming from A then B, the system reaches the
separating line in C. Since the segment BC is entirely in the initial zone, the
system goes from C to D, exactly on the separating line. After D, it goes to E,
for the following reason.

The utility variation obtained by the two players from A to B is positive
for the first player and negative for the second, in short: (+,−). The utility
variation from E to F is (−,+) because E and F are on the other side of the
separating line, hence the utility variation from F to E is (+,−). By continuity,
the utility variation from C to D is (+,−) too. Hence the system goes from D
to E. It then continues from E to F . Notice that the mean line is further away
from Q, by magnitude 1/N .

Consider now the case in which the system does not arrive exactly on the
separating line. According to Figures 5 and 6, coming from A and B, the
system goes to C and crosses the separating line between B and C. The utility
variation from B to C is not straightforward and has to be computed. Let
B = (α1 − 1/N, α2). Then C = (α1, α2 − 1/N). The utility variation for player
1 is:

U(C)− U(B) = (1/N)(α1 − α2)(−a+ b+ c− d) + (1/N)(−b+ c)
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U1
- =U2

- >0

U1
- =U2

- <0

Q

A

B

C

D

E

F

Figure 5: Right turn in a zero-sum game with E > 0, case 2

U1
- =U2

- >0

U1
- =U2

- <0

Q

A

B

C

D

Figure 6: Right turn in a zero-sum game with E > 0, case 3
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This variation is zero on the line of equation

α1 − α2 =
b− c
E

This is precisely the separating line we consider. Hence, if the middle of
BC is under the separating line (Figure 4) the system turns left after C and
goes to D, then turns right to E, being completely above the separating line.
If the middle of BC is above the separating line (Figure 5) the system turns
right after C and goes to D, then turns left to E. In both cases, the succession
of moves has the same structure. Moreover, the mean line is further away from
the point Q after having crossed the separating line than before.

QED

We now examine the behavior of the system when reaching a border. Without
loss of generality, assume again that the system is coming crab-wise from the
East and is reaching the border α1 = 0. According to the general analysis, the
system goes North along the border (up to ε) if d � c and goes South along the
border if d ≺ c. Similar conditions hold for α2 = 0 (going West if d � b and
going East if d ≺ b), α1 = 1 (going South if b � a and going North if b ≺ a),
and α2 = 1 (going East if c < a and going West if c > a)

5.4 Convergence result

For zero-sum games, pure strategy Nash equilibra are point attractors of the
system, but the system cycles far away from mixed strategy Nash equilibria.
The following result, proved in Appendix F, makes these statements precise:

Theorem 2: For zero-sum games.
(i) When the game has a pure Nash equilibrium, the system converges to-

wards it.
(ii) When the system has no pure Nash equilibrium, the system asymptoti-

cally cycles around the greatest square situated in the strategy space and centered
on the mixed (interior) Nash equilibrium.

6 Twin games

6.1 Potential attractors

In a twin game: a1 = a2 = a, b1 = b2 = b, c1 = c2 = c, and d1 = d2 = d. Hence
E1 = E2 = E. Without loss of generality, it can be supposed that E � 0.

The game has:
- two pure Nash equilibria if a, d � b, c.
- one pure Nash equilibrium otherwise
Consider the point

Q = (αQ1 , α
Q
2 ) =

(
d− c
E

,
d− b
E

)
.
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The point Q can be located anywhere in the plane (α1, α2) even with the con-
straint E > 0. It is located inside the strategy space when there are two pure
Nash equilibria and represents a mixed Nash equilibrium. It is located out of the
strategy space when there is only one pure Nash equilibrium. More precisely,
the unique pure equilibrium is:

(0, 0) if αQ1 > 0 and αQ2 > 0, and one of them is > 1,

(0, 1) if αQ1 < 0 and αQ2 > 1,

(1, 1) if αQ1 < 1 and αQ2 < 1, and one of them is < 0,
(1, 0) if α̂1 > 1 and α̂2 < 0.
The Bentham values coincide with each player’s payoff. Hence, there is a

global optimum at one corner (the unique Nash one or the Pareto-dominating
in case of two) and there may be a local Bentham optimum at the other ones.

6.2 State transition diagram

There are only two separating lines L+(U+
1 = U+

2 = 0) and L−(U−
1 = U−

2 = 0)
defining 4 areas:

U+
1 = U+

2 = b+ c− 2d+ E(α1 + α2) = 0
U−
1 = U−

2 = b− c+ E(α2 − α1) = 0
which cross at Q. The state transition diagram is described in Figure 7.

6.3 Trajectory properties

As can be seen, the system never reaches a separating line, except maybe on
borders. When coming on a border, according to the rules of evolution at a
border, the system is never stuck.

6.4 Convergence results

For twin games, pure Nash equilibria are point attractors. We can state the
following theorem, proved in Appendix G:

Theorem 3. For twin games.
(i) If there is a unique pure Nash equilibrium, the system converges towards

it.
(ii) If there are two pure Nash equilibria, the system converges towards one

of them, depending on the initial state.
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U1
+=U2

+>0

U1
+=U2

+<0

Q

U1
-=U2

->0

U1
-=U2

-<0

Figure 7: Twin game with E > 0
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k = +1 U+
2 ≺ 0 U+

2 � 0

U+
1 ≺ 0 ↙ ↖

U+
1 � 0 ↘ ↗

k = −1 U−
2 ≺ 0 U−

2 � 0

U−
1 ≺ 0 ↙ ↖

U−
1 � 0 ↘ ↗

Table 2: interior points

U−
1 ≺ 0

U−
2 ≺ 0

U−
1 � 0

U−
2 � 0

U−
1 ≺ 0

U−
2 � 0

U−
1 � 0

U−
2 ≺ 0

U+
1 ≺ 0

U+
2 ≺ 0

↙ ↙ ↙ if k(0) > 0
↖ if k(0) < 0

↙ if k(0) > 0
↘ if k(0) < 0

U+
1 � 0

U+
2 � 0

↗ ↗ ↗ if k(0) > 0
↖ if k(0) < 0

↗ if k(0) > 0
↘ if k(0) < 0

U+
1 ≺ 0

U+
2 � 0

←− ↑ ↖ ↘

U+
1 � 0

U+
2 ≺ 0

↓ −→ ↖ ↘

Table 3: Possible regimes

Appendix: Proofs

Appendix A: Proof of Proposition 1. (Evolution at interior points)

According to the expression of sign vi(t), the first player moves in some
direction independently of the preceding increment vi(t − 1), but according to
k(t − 1) = v1(t − 1).v2(t − 1). Since both players act in the same way, Table 2
gives, for each value of k(t− 1), the direction of evolution of the system in each
region of constant signs for U1(t) and U2(t). In Table 2 the arrows depict in
the usual way the direction of evolution, for instance the South-East arrow ↘
means that v1(t) = +1 and v2(t) = −1.

Consider an initial value for k. The sign of k indicates whether U+
i or U−

i

is the relevant expression for Ui. Table 1 provides the direction of evolution
of (α1, α2). This leads to a new value of k. If this new value is the same as
the preceding one, the system keeps the same direction. If the sign of k has
changed, then the relevant expression for Ui changes and Table 1 indicates the
new direction.

Except for the initial period, the system evolution can be described quali-
tatively as long as the system stays inside an area of the strategy space where
U1 and U2 have constant signs. In most cases, the direction of evolution is well
defined independently of the initial value k(0). In some cases, two directions are
possible according to this initial value. 3 defines the one or two possible regimes
for each configuration of parameters.

Table 3 has to be read as follows:
- in the four North-West regions and in the four South-East regions, the

unique arrow indicates the direction in which the system steadily evolves. For
instance the arrow ↙ indicates that α1 and α2 are both decreasing.
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- in the four North-East regions, the movement is always in the same direc-
tion, but this direction depends on the initial value of k.

- in the four South-West regions, the unique arrow depicts the average evolu-
tion, since the system evolves crab-wise along a trend. For instance, the North
arrow ↑ means that one move out of two goes North-East while every other
move goes North-West. QED
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after
↘ −→ ↗ ↑ ↖ ←− ↙ ↓

↓ 1A 3C 1F
before ↘ 2B 123E 2D 3G 1D 123E 1B

−→ 2A 2F 3C

Table 4: Possible shifts on a separating line

Appendix B: Proof of Proposition 2. (Evolution at a separating line)

Without restriction, we consider a separating line U−
i = 0 which is parallel

to the main diagonal. It may be the line corresponding to one player only,
U−
1 = 0 or U−

2 = 0. However, for some classes of games, these two lines may be
identical and we refer then to the case U−

1 = U−
2 = 0.

Without restriction, we consider the case where the system was previously at
the North-West of the separating line. Then, the separating line can be reached
by three types of trajectories, namely: ↘ , −→ , and ↓. There is no prior re-
striction on the possible types of trajectories in the South-East of the separating
line.

According to Table 3, crossing the separating line U−
i = 0 means shifting

from one cell to another in the same line. Each one of the three other cells can
be reached, changing the sign of U−

1 only (label 1) of U−
2 only (label 2), or of

both (label 3). Table 4 records the possible shifts between types of trajectories.
The numbers in the cells of this table indicates the player(s) involved in the
shift and the letter the case involved.

Table 4 indicates that some shifts are impossible (blank cells). Moreover
some can be considered as similar for symmetry reasons. Seven different cases
remain, denoted A to G. For convenience, we assume that at time t the system
is exactly on the separating line. Let (α1(t), α2(t)) be the point where the
trajectory first reaches the line U−

1 = 0 and/or U−
2 = 0. Since the last move

leading to the separating line is the same in all cases, the preceding point, at
t− 1, is such that: δ1(t) = +1 and δ2(t) = −1.

Case A: transition from ↓ to ↘ (thus through U−
1 = 0). Coming from a ↓

move and reaching the line, the next point, at t+1, is obtained for δ1(t+1) = −1,
and δ2(t + 1) = −1. Note that the point at t + 1 is still on the line U−

1 = 0.
For player 2, the utility variation is positive like before. For player 1, the utility
variation is still negative, given by U+

1 . Hence the next move is: δ1(t+2) = +1,
and δ2(t + 2) = −1. After that the system continues in the same direction. To
sum up, the system crosses the separating line and keeps on going in concert
South East.

Case B: transition from ↘ to ↓ (thus through U−
1 = 0). Coming from a ↘

move, the system crosses the border and stays in the same direction: δ1(t+1) =
+1 and δ2(t+ 1) = −1. Since it is now completely on the other side of the line,
it continues in the new direction ↓ .

Case C. transition from −→ to ↓ (thus through U−
1 = U−

2 = 0). Coming
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from a −→ move, and reaching the line, the next point is given by δ1(t+1) = +1
and δ2(t + 1) = +1,which is still on the line. The utility variations (given by
U+
1 and U+

2 ) are still positive for player 1 and negative for player 2. Hence the
next move is: δ1(t+2) = +1, and δ2(t+2) = −1. The system is now completely
on the other side of the line and continues in the new direction↓.

Case D: transition from ↘ to ←− (thus through U−
1 = 0) In that case, the

system goes globally South-West, staying ε-close to the separating line. The
precise path is the repetition of a 6-step pattern, starting from the separating
line:

δ1(t+ 1) = +1 and δ2(t+ 1) = −1,
δ1(t+ 2) = −1 and δ2(t+ 1) = −1,
δ1(t+ 3) = −1 and δ2(t+ 3) = +1,
δ1(t+ 4) = −1 and δ2(t+ 4) = −1,
δ1(t+ 5) = −1 and δ2(t+ 5) = +1,
δ1(t+ 6) = +1 and δ2(t+ 6) = −1.
Case E: transition from ↘ to ↗ (thus through U−

1 = 0, with or without
U−
2 = 0). In that case, the system crosses the separating line, turns left and

keeps on going North-East, ε-close to the separating line (on the same side of
the line).

Case F: transition from −→ to ↖ (thus through U−
1 = 0). In that case,

the system goes globally North-East, staying ε-close to the separating line. The
precise path is the repetition of a 6-step pattern, starting from the separating
line:

δ1(t+ 1) = +1 and δ2(t+ 1) = +1,
δ1(t+ 2) = +1 and δ2(t+ 1) = −1,
δ1(t+ 3) = −1 and δ2(t+ 3) = +1,
δ1(t+ 4) = −1 and δ2(t+ 4) = +1,
δ1(t+ 5) = +1 and δ2(t+ 5) = +1,
δ1(t+ 6) = +1 and δ2(t+ 6) = −1.
Case G: transition from↘ to↖ (thus through U−

1 = U−
2 = 0). In that case,

the system is locked around the point where it crosses the line. The precise 4-
cycle is made of four consecutive moves:

δ1(t+ 1) = +1 , δ2(t+ 1) = −1
δ1(t+ 2) = −1 , δ2(t+ 1) = +1
δ1(t+ 3) = −1 , δ2(t+ 3) = +1
δ1(t+ 4) = +1 , δ2(t+ 4) = −1.
QED
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S \ SE ++ −+ +− −
++ A1 A1 A1 A1
−+ ∅ A2 ∅ A5
+− ∅ ∅ A4 A4
− ∅ ∅ ∅ A3

Table 5: Possible shifts on a border

Appendix C: Proof of proposition 3. (Evolution on a border line)

Note that the trajectory on the border only depends on the signs of payoff
variations in three directions, because the direction orthogonal to the border
does not matter. Without loss of generality we study the vertical East border
α1 = 0. Without loss of generality we suppose that the trajectory first meets
the border going South-West, at t.

Case A: the system was moving in concert before reaching the border.
In the rosace, the sign of the payoff variation in the South-West direction is
necessarily ++. Since the signs in the West direction are irrelevant, the only
relevant signs are those in the South and South-East directions. That would
yield 16 possibilities, but some are impossible thanks to the continuity rule in the
rosace. As will be seen, some cases are moreover identical. Table 5 summarizes
the different cases to be considered:

Subcase A1.  ∗∗ −− −−
∗∗ ∗∗

++ ++ ∗∗


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = −1

which means that the system slides downward on the border.
Subcase A2. +− +− −−

∗∗ ∗∗
++ −+ −+


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = −1
δ1(t+ 2) = +1 , δ2(t+ 2) = −1
δ1(t+ 3) = −1 , δ2(t+ 3) = −1

which means that the system slides downward in an ε-neighborhood of the
border according to a 4-step pattern.

Subcase A3. ++ ++ −−
∗∗ ∗∗
++ −− −−


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The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = −1
δ1(t+ 2) = +1 , δ2(t+ 2) = +1
δ1(t+ 3) = −1 , δ2(t+ 3) = −1

which means that the system slides downward in an ε-neighborhood of the
border according to a 2-step pattern.

Subcase A4. ∗+ −+ −−
∗∗ ∗∗
++ +− ∗−


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = −1
δ1(t+ 2) = 0 , δ2(t+ 2) = +1
δ1(t+ 3) = +1 , δ2(t+ 3) = +1
δ1(t+ 4) = −1 , δ2(t+ 4) = −1

which means that the system is stuck in an ε-neighborhood of the impact point
on the border in a 4-cycle.

Subcase A5. ++ +− −−
∗∗ ∗∗
++ −+ −−


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = −1
δ1(t+ 2) = +1 , δ2(t+ 2) = −1
δ1(t+ 3) = −1 , δ2(t+ 3) = +1
δ1(t+ 4) = 0 , δ2(t+ 4) = +1
δ1(t+ 5) = 0 , δ2(t+ 5) = −1

which means that the system is stuck in an 2ε-neighborhood of the impact point
on the border in a 4-cycle.

Synthesis for case A: Table 6 indicates the trajectory for each possible case
of the rosace. The symbol ∅ means that the case is impossible. The symbol F
means that the system is stuck around some point at the border. The symbol
↓ indicates that the system slides down near the vertical border. Note that the
direction followed on the border is in continuity with the direction before the
impact on the border.

Case B: the system was moving crab-wise West before reaching the border.
The sign of the payoff variation in the South-West direction is +−. and the
sign in the South-East direction is −+. Hence, only the signs in the South
direction are free. When the system, moving crab-wise, first reaches the border,
its last movement is assumed, without restriction to be South-West. Table 7
summarizes the four subcases to be considered for the remaining directions:
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S - SE ++ −+ +− −−
++ ↓ ↓ ↓ ↓
−+ ∅ ↓ ∅ F
+− ∅ ∅ F F
−− ∅ ∅ ∅ ↓

Table 6: case A (border line)

S - SE −+
++ B1
−+ B2
+− B3
− B4

Table 7: case B (border line)

Subcase B1: +− −− −+
∗∗ ∗∗
+− ++ −+


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = +1
δ1(t+ 2) = +1 , δ2(t+ 2) = −1
δ1(t+ 3) = −1 , δ2(t+ 3) = −1

which means that the system slides downwards in a ε-neighborhood of the bor-
der, according to a 3-step pattern.

Subcase B2: +− +− −+
∗∗ ∗∗
+− −+ −+


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = +1
δ1(t+ 2) = 0 , δ2(t+ 2) = −1
δ1(t+ 3) = +1 , δ2(t+ 3) = −1
δ1(t+ 4) = −1 , δ2(t+ 4) = −1

which means that the system slides downwards in a ε-neighborhood of the bor-
der, with a 4-step pattern.
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S - SE −+
++ ↓
−+ ↓
+− ↑
−− ↑

Table 8: results for case B (border line)

Subcase B3: +− −+ −+
∗∗ ∗∗
+− +− −+


The successive moves are:

δ1(t+ 1) = 0 , δ2(t+ 1) = +1
δ1(t+ 2) = +1 , δ2(t+ 2) = +1
δ1(t+ 3) = −1, δ2(t+ 3) = +1
δ1(t+ 4) = 0 , δ2(t+ 4) = −1

which means that the system slides upwards in a ε-neighborhood of the border,
with a 4-step pattern.

Subcase B4: +− ++ −+
∗∗ ∗∗
+− −− −+


The successive (similar) moves are

δ1(t+ 1) = 0 , δ2(t+ 1) = +1

which means that the system slides upwards on the border.
Synthesis for case B : Table 8 indicates the trajectory for each possible case

of the rosace. It may be observed that the trajectory on the border always
follows the direction of the best response for the relevant player, namely player
2. Hence, the result does not depend on the way the crab-wise trajectory reaches
the border (which can be computed directly).

QED
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1 \ 2
−
+
+ + +

−
−
+ + +

+
+
+ − −

−
+
+ + −

−
+
+ + +

A1 A2 A2’ A3

−
−
+ + +

A2 A1 A4 A2

+
+
+ − −

A3 A4 A1’ A2’

+
+
+ + −

A3 A3 A2’ A1’

Table 9: Possible configurations (corners)

Appendix D: Proof of Proposition 4. (Evolution at a corner)

Consider, without restriction, the corner (0, 0). We study simultaneously
what happens when the system reaches a corner coming from a border, or
directly reaches a corner coming from the diagonal.

Case A: the system reaches one border or the other coming in concert. Notice
that the South -West signs of the rosace have to be ++. According moreover
to the continuity principle of the rosace, sixteen configurations are depicted in
Table 9. However, the system behavior reduces to four subcases indicated in
the Table. The subcases A2 and A3 are asymmetric with respect to changing
players 1 and 2, so we distinguish in the Table cases A2 from A2’ and A3 from
A3’.

Subcase A1. Example of such a rosace:−− −− −−
++ −−
++ ++ ++


When the system reaches the West border, it slides South then turns at the

corner and moves East along the South border. When the system reaches the
South border, it slides West then makes a U-turn at the corner and moves East
along the South border.

Subcase A2: −− −− −−
+− −+
++ ++ ++


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When the system reaches the West border, it slides South then turns at the
corner and is stuck in a 4-cycle in the neighborhood of the corner. When the
system reaches the South border, it is stuck in a cycle around the intersection
point with the border.

Subcase A3: −+ −− −−
++ −−
++ ++ +−


Independently of how the corner is reached from a border, the system is

stuck a 3-cycle at the corner.
Subcase A4. −+ −+ −−

−+ +−
++ +− +−


The system is stuck at the point where it reaches the border (whatever this
border is). If it reaches directly the corner, it is stuck in a 4-cycle at the corner.

Synthesis for case A: Table 10 indicates the system behavior for each subcase.
The symbol � indicates that the system is stuck at the corner and the symbol �
indicates that the system does not stay at the corner. The symbol F indicates
that the system is stuck on a border when reaching it. The arrows indicate that
the system slides along the border. For instance, in the North-West cell, the
system attracted by the South border will not stay at the corner and will slide
East along the South border. One can notice, from the second diagonal, that
the system escapes from the corner if and only if the game is covariant. If the
system arrives at the corner following a border, it can either make a U-turn or
turn at right angle.

Case B: the system reaches one border or the other coming crab-wise. With-
out loss of generality, we suppose that the system moves crab-wise horizontally
towards the West border. The signs of two directions are imposed and the con-
tinuity principle applies. Hence, Table 11 depicts the four subcases to be dis-
tinguished:

Subcase B1. +− −+ −+
+− −+
+− +− −+


The system, after it reaches the West border (be it at the corner or not), goes
North and slides in the ε-neighborhood of the West border.
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1 \ 2
−
+
+ + +

−
−
+ + +

+
+
+ − −

+
+
+ + −

−
+
+ + +

↓
� �

↓
� F

F
� ←−

↓
� ←−

−
−
+ + +

↓
� F

↓
� �

F
� F

↓
� F

+
+
+ − −

↓
� ←−

F
� F

↓↑
� ←−

F
� ←−

+
+
+ + −

↓
� ←−

↓
� ←−

F
� ←−

↓↑
� ←−

Table 10: results for case A(corners)

1 \ 2
−
−
− − +

−
−
− + +

+
+
+ + −

B1 B3

+
+
+ − −

B2 B4

Table 11: subcases B (corners)
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1 \ 2
−
−
− − +

−
−
− + +

+
+
+ + −

↑
�

↓
�

+
+
+ − −

↑
�

↓
�

Table 12: results for case B (corners)

Subcase B2. +− ++ −+
+− −+
+− −− −+


As in B1, the system, after it reaches the West border (be it at the corner or
not), goes North and slides in the ε-neighborhood of the West border.

Subcase B3. +− −− −+
+− −+
+− ++ −+


The system, after it reaches the West border (be it at the corner or not), goes
South, reaches the corner and follows a 3-cycle around the corner.

Subcase B4. +− +− −+
+− −+
+− −+ −+


The system, after it reaches the West border (be it at the corner or not), goes
South, reaches the corner and follows a 4-cycle around the corner.

Synthesis for case B: Table 12 indicates the system behavior for each sub-
case. One can notice, from the first column, that the system escapes from the
corner if and only if the corner is repulsive for a player (player 2).

QED
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Appendix E: Proof of Theorem 1. (Symmetric games)

We examine the nine cases distinguished in Table 1 in the main text. Within
each case, the subcases to be distinguished correspond to the sign of E (that is
a+ d being positive or negative), the position of P with regard to the strategy
space (a and d being positive or negative) and the position of the strategy space
with respect to the separating lines (here two conditions are involved: a + d
being larger or smaller than −2, 0 and 2). Note that in some of these cases, the
sign of E is given, and in some others, it is not.

Case A: a < −1 and d > 1.
Subcase A1. −2 < a + d < 0 (hence E < 0). The strategy space is entirely

above P and between the separating lines L−
1 and L−

2 . According to Figure 2,
the system trajectory points South-West until it reaches a border, it then slides
along the border until it reaches the corner (0, 0).

Subcase A2. 0 < a + d < 2 (hence E > 0). The strategy space is entirely
below P and between the separating lines L−

1 and L−
2 . According to Figure 1,

the system trajectory points South-West until it reaches a border, it then slides
along the border until it reaches the corner (0, 0).

Subcase A3. 2 < a+ d (hence E > 0). The strategy space is entirely below
P and intersects both separating lines L−

1 and L−
2 . According to Figure 1, the

system trajectory depends on the initial point. If the initial point is between the
separating lines L−

1 and L−
2 , the situation is similar to subcase A2. If the initial

point is above L−
1 , the trajectory depends on the initial direction. If the initial

direction is South-East, then the system goes South-East until it reaches the
separating line L−

1 , then slides along it until it reaches the border α1 = 0, then
slides along this border until reaching the corner (0, 0). If the initial direction
is South-West, the system goes South-West until it reaches the border α1 = 0,
then slides along this border until reaching the corner (0, 0).

Subcase A4. a+d < −2 (hence E < 0). The strategy space is entirely above
P and intersects both separating lines L−

1 and L−
2 . According to Figure 2, the

system trajectory depends on the initial point. If the initial point is between
the separating lines L−

1 and L−
2 , the situation is similar to subcase A1. If the

initial point is above L−
1 , the trajectory depends on the initial direction. If the

initial direction is South-West, the system goes South-West until it reaches the
border α1 = 0, then slides down along this border, crosses the separating line
and reaches the corner (0, 0) where it stops. If the initial direction is North-
West, then the system goes North-West until it reaches a border, either α1 = 0,
or α2 = 1. In both cases, it slides along the border in until it reaches the corner
(0, 1). From this corner, it slides down along the border α1 = 0, crosses the
separating line and reaches the corner (0, 0) where it is stops.

To sum up, in case A, the system ultimately reaches the corner (0, 0) which
is here the unique Nash Equilibrium and the unique global Bentham optimum.

Case B: −1 < a < 0 and d > 1.
Subcase B1, a+ d < 2: Identical to A2.
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Subcase B2, a+ d > 2: Identical to A3.
To sum up, in case B, the system ultimately reaches the corner (0, 0) which

is here one of the two Nash Equilibria and the unique global Bentham optimum.

Case C: 0 < a and d > 1. (Hence E > 0.)
Subcase C1. a+ d < 2. The strategy space includes P and lies between the

separating lines L−
1 and L−

2 . According to Figure 1, if the initial point is below
L+, the trajectory goes South-West until it reaches a border then slides along
the border until it reaches the point (0, 0); if the initial point is above L+, the
trajectory goes North-East until it reaches a border then slides along the border
until it reaches the point (1, 1).

Subcase C2. a + d > 2. The strategy space includes P and intersects both
separating lines L−

1 and L−
2 . According to Figure 1, the system trajectory

depends on the initial point. If the initial point is between the separating lines
L−
1 and L−

2 , the situation is similar to subcase C1. If the initial point is above
L−
1 , the trajectory also depends on the initial direction. (i) If the initial point is

below L+ and the initial direction is South-East, then the system goes South-
East until it reaches the separating line L−

1 , then slides along L−
1 until it reaches

the border α1 = 0, then slides along this border until reaching the corner (0, 0).
(ii) If the initial point is below L+ and the initial direction is South-West, the
system goes South-West until it reaches the border α1 = 0, then slides along
this border until reaching the corner (0, 0). (iii) If the initial point is above
L+ and the initial direction is South-West, then the system goes South-West
until it reaches the separating line L−

1 , then slides along L−
1 until it reaches the

border α2 = 1, then slides along this border until reaching the corner (1, 1).
(iv) If the initial point is above L+ and the initial direction is North-West, the
system goes North-West until it reaches the border α2 = 1, then slides along
this border until reaching the corner (1, 1).

To sum up, in case C, if the initial point is below the line L+, the system
goes towards the corner (0, 0) which is a (local or global) Bentham optimum
and a Nash equilibrium; if he initial point is above the line L+, the system goes
towards the corner (1, 1) which is a (local or global) Bentham optimum and a
Nash equilibrium.

Case D: a < −1 and 0 < d < 1 (hence E < 0).
Subcase D1: −2 < a + d < 0. The strategy space is entirely above P and

between the separating lines L−
1 and L−

2 . According to Figure 2, the system
trajectory points South-West until it reaches a border, where it is scotched.

Subcase D2: a+d < −2. The action space is entirely above P and intersects
both separating lines L−

1 and L−
2 . According to Figure 2, the system trajectory

depends on the initial point. If the initial point is between the separating lines
L−
1 and L−

2 , the situation is similar to subcase D1: the system is stuck on the
border. If the initial point is above L−

1 , the trajectory depends on the initial
situation and direction. If the initial direction is South-West, the system goes
South-West until it reaches the border α1 = 0, where it is stuck. If the initial
direction is North-West, then the system goes North-West until it reaches a

37

ha
l-0

06
09

50
1,

 v
er

si
on

 1
 - 

19
 J

ul
 2

01
1



border α1 = 0 or α2 = 1. If it reaches the border α1 = 0, it is stuck. If it
reaches the border α2 = 1 then it slides along this border until it reaches the
corner (0, 1), where it is stuck.

To sum up, in case D, the system ends up being stuck on one of the borders
adjacent to the global optimum (0, 0), either directly or indirectly after sliding
along another border.

Case E: −1 < a < 0 and 0 < d < 1.
Subcase E1: a+ d > 0 (hence E > 0). The strategy space is entirely below

P and between the separating lines L−
1 and L−

2 . According to Figure 1, the
system trajectory points South-West until it reaches a border, where it is stuck.

Subcase E2: a+ d < 0 (hence E < 0). The strategy space is entirely above
P and between the separating lines L−

1 and L−
2 . According to Figure 2, the

system trajectory points South-West until it reaches a border where it is stuck.
To sum up, in case E, the system goes South-West and is ultimately stuck

on a border.

Case F: 0 < a and 0 < d < 1 (hence E > 0).
Subcase F1: a + d < 2. The strategy space includes P and lies between

the separating lines L−
1 and L−

2 . According to Figure 1, if the initial point is
below L+, the trajectory goes South-West until it reaches a border where it is
scotched; if the initial point is above L+, the trajectory goes North-East until
it reaches a border then slides along the border until it reaches the point (1, 1).

Subcase F2: a + d > 2. The strategy space includes P and intersects both
separating lines L−

1 and L−
2 . According to Figure 1, the system trajectory

depends on the initial point. If the initial point is between the separating lines
L−
1 and L−

2 , the situation is similar to the previous subcase F1. If the initial
point is above L−

1 , the trajectory also depends on the initial direction. (i) If the
initial point is below L+ and the initial direction is South-East, then the system
goes South-East until it reaches the separating line L−

1 , then slides along L−
1

until it reaches the border α1 = 0, where it is stuck. (ii) If the initial point is
below L+ and the initial direction is South-West, the system goes South-West
until it reaches the border α1 = 0, where it is stuck. (iii) If the initial point is
above L+ and the initial direction is South-West, then the system goes South-
West until it reaches the separating line L−

1 , then slides along L−
1 until it reaches

the border α2 = 1, then slides along this border until reaching the corner (1, 1).
(iv) If the initial point is above L+ and the initial direction is North-West, the
system goes North-West until it reaches the border α2 = 1, then slides along
this border until reaching the corner (1, 1).

To sum up, in case F, if the initial point is below the line L+, the system
goes in the direction of the corner (0, 0) which is a (local or global) Bentham
optimum but not a Nash equilibrium, and is stuck before reaching this corner;
if the initial point is above the line L+, the system goes towards the corner
(1, 1) which is a (local or global) Bentham optimum and a Nash equilibrium
and finally reaches it.
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Case G: a < −1 and d < 0 (hence E < 0).
Subcase G1: a + d > −2. The strategy space includes P and lies between

the separating lines L−
1 and L−

2 . According to Figure 2, if the initial point is
below L+, the trajectory goes North-East until it reaches the separating line L+

where it stops. If the initial point is above L+, the trajectory goes South-West
and it either reaches first the separating line L+ where it stops or reaches first
the border α1 = 0 , follows it until reaching the separating line L+ where it is
stuck.

Subcase G2: a + d < −2. The strategy space includes P , intersects both
separating lines L−

1 and L−
2 . The point N1 may be inside or outside the strategy

space, but the subcases are the same. Assume that N1 is outside, say West of
the border α1 = 0. (i) If the initial point is under L−

1 and South enough, the
trajectory is as in subcase G1; it goes South-West and reaches L+ where it is
stuck. (ii) If the initial point is directly under L−

1 , the system meets first the
border α1 = 0,slides along it and reaches L+ where it is stuck (iii) If the initial
point is above L−

1 and the initial direction is South-West, the system meets
the border α1 = 0, slides along it, crosses L−

1 and reaches finally L+ where
it stops.(iv) If the initial point is above L−

1 and the initial direction is North-
West, the system meets first the border α2 = 1,slides on it in West direction,
then turns along border α1 = 0, slides South around it and reaches finally L+

where it is stuck.
To sum up, in case G, the system goes on a diagonal Bentham optima, either

an interior one when it reaches it directly or on a border when it reaches first a
border.

Case H: −1 < a < 0 and d < 0 (hence E < 0).
Subcase H1: a+ d > −2. This subcase is identical to G1.
Subcase H2: a+ d < −2. This subcase is identical to G2.
To sum up, case H is analogous to case G.

Case I: 0 < a and d < 0.
Subcase I1: 0 < a + d < 2 (hence E > 0). The strategy space is entirely

above P and between the separating lines L−
1 and L−

2 . According to Figure 1,
the system trajectory points North-East until it reaches a border, slides along
that border and reaches the corner (1, 1).

Subcase I2: −2 < a + d < 0 (hence E < 0). The strategy space is entirely
below P and between the separating lines L−

1 and L−
2 . According to Figure 2,

the system trajectory points North-East until it reaches a border, slides along
that border and reaches the corner (1, 1).

Subcase I3: a + d > 2 (hence E > 0). The strategy space is entirely above
P and intersects the separating lines L−

1 and L−
2 . According to Figure 1, if the

initial point is between the separating lines L−
1 and L−

2 , the situation is similar
to the previous subcase I1. If the initial direction is South-East, the trajectory
first reaches the separating line L−

1 , then slides along that separating line until
it reaches the border α2 = 1, then slides along this border until it reaches the
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corner (1, 1). If the initial direction is North-East, the system reaches the border
α2 = 1, then slides along that border and reaches the corner (1, 1).

Subcase I4: a+ d < −2 (hence E < 0). The strategy space is entirely below
P and intersects the separating lines L−

1 and L−
2 . According to Figure 2, if the

initial point is between the separating lines L−
1 and L−

2 , the situation is similar
to the previous subcase I2. If the initial direction is North-West, the trajectory
first reaches the border α1 = 0 and then slides North, reaches the corner (0, 1)
and then turns to reach the corner (1, 1). If the initial direction is North-East,
the system reaches the border α2 = 1 then slides along that border and reaches
the corner (1, 1).

To sum up, in case I, the system always goes to the corner (1, 1) which is a
global optimum and the unique Nash equilibrium.

QED
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Appendix F: Proof of Theorem 2. (Zero-sum games)

We distinguish two cases related to the position of the intersection Q of the
separating lines with regard to the strategy space.

Case A: Q is outside the action space. For this part of the proof, we suppose
that αQ1 > 0 and αQ2 > 1. Hence d > c and a < c; the equilibrium is at the
point (0, 1).

Subcase A1: the action space does not intersect any separating line. For
instance, the action space lies entirely in the quarter of plane South of Q. From
any interior initial point, the system goes crab-wise West until it reaches the
border α1 = 0. According to the theorem about border behavior, the system
goes in the direction of the best response for player 2. This best response is
given by the sign of d − c. Because d > c the system goes North. Thus the
system goes towards the pure equilibrium and finally reaches it. To prove that
the system is stuck around the equilibrium, first notice that the rosace is fully
determined: +− +− +−

+− −+
−+ −+ −+


The same reasoning as usual shows that any trajectory ends in a cycle around
the corner.

Subcase A2: The action space intersects only the separating line parallel to
the first diagonal. If the initial point is below the separating line, the system
goes West until it reaches either the border α1 = 0, or the separating line.
In the first case, it then slides North along the border, crosses the separating
line, continues North until it reaches the equilibrium (0, 1). In the second case,
the system reaches the separating line, goes North until it reaches the border
α2 = 1, then goes West until it reaches the equilibrium (0, 1). If the initial point
is above the separating line, the system first goes North until it reaches the
border α2 = 1, then goes West until it reaches the equilibrium (0, 1).

Subcase A3: The action space intersects only the separating line parallel
to the second diagonal. If the initial point is below the separating line, the
system goes West until it reaches the border α1 = 0, then slides North along
the border until it reaches the equilibrium (0, 1). If the initial point is above the
separating line, the system first goes South until it reaches the separating line,
then goes West until it reaches the border line, then goes North until it reaches
the equilibrium (0, 1).

Subcase A4: the action space intersects both separating lines. It is just a
superposition of the two former cases.

To sum up, in case A, the system always converges towards the pure equi-
librium.

Case B: Q is inside the action space. It is the mixed-strategy equilibrium of
the game. By symmetry, we can consider only the case where:

0 < αQ1 < αQ2 < 1/2.
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These conditions imply that b < c < d. Then the largest square centered on Q
and included in the action space will be denoted by S. It has summits:

(0, αQ2 − α
Q
1 ), (2αQ1 , α

Q
2 − α

Q
1 ), (2αQ1 , α

Q
2 + αQ1 ), (0, αQ2 + αQ1 ).

Two cases have to be considered according to the initial point.
Subcase B1. If the initial point is outside S, but not on a border then, when

the system reaches a separating line, it turns Right (if E > 0, which we now
suppose). Moreover, according to lemma 2, the system is one step further away

from M̂ after this turn. After zero, one or two such right turns, the system
reaches a border. If the border is the border α2 = 0, the system goes West,
according to the description of the behavior at a border. If the border is the
border α1 = 0, the system goes North. In all cases, it turns right. Moreover, if
it reaches again a separating line while moving on a border (this is possible if
and only if the system slides along the border α20 = 0), the system continues
straight on the border.

Therefore the system asymptotically cycles in a 3ε-neighborhood of S.
Subcase B2. If the initial point is inside S, then the system turns always

right each time it reaches a separating line. Since the system is one step further
away from M̂ after each turn, this holds until the system reaches the square S.
In fact, it goes even outside the square until reaching a border. But, this was
already considered in case A.

QED
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Appendix G: Proof of Theorem 3. (Twin games)

Case A: the two separating lines intersect the strategy space and divide this
space into 4 areas. Without loss of generality we suppose that Q is inside the
triangle at the left of the state space, defined by the three conditions:

αQ1 < 0

αQ1 + αQ2 > 0

αQ2 − α
Q
1 < 1

In that case the unique Nash equilibrium is at the corner (1, 1).

Subcase A1. The initial point (α1, α2) is such that α1 + α2 < αQ1 + αQ2 and
α1 > α2. Then the system goes South-West until it reaches the border α2 = 0.
According to the behaviour at a border, it follows the border towards the West
(according to player 1’s best response) until reaching the corner (0, 0). Then,
according the behaviour around a corner, the system follows the border α1 = 0,
crosses the two separating lines and reaches the corner (0, 1). Here it turns right,
follows the border α2 = 1, crosses a separating line and reaches the pure Nash
equilibrium (1, 1), where it is blocked.

Subcase A2. the initial point (α1, α2) is such that α1 + α2 < αQ1 + αQ2 , but
α1 < α2. Then the system goes South West until it reaches the border α1 = 0.
Then behaviour on a border still applies: the system makes a 3π/4 right turn
and continues North like in the previous case.

Subcase A3. the initial point (α1, α2) is such that α1 +α2 > αQ1 +αQ2 Then
the system moves North-East until reaching one the two borders α1 = 1 or
α2 = 1, follows that border until reaching the Nash equilibrium (1, 1).

The other cases for Q outside the state space are in fact sub-cases of the
previous ones and symmetric cases in which the pure Nash equilibrium is another
corner.

When Q is inside the state space, there are two pure Nash equilibrium,
located (since we assume E > 0) at (0, 0) and (1, 1).

If the initial point (α1, α2) is such that α1 + α2 < αQ1 + αQ2 the system goes
South-West, reaches a border α1 = 0 or α2 = 0, then follows the border towards
the pure Nash equilibrium (0, 0), where it is blocked. If the initial point (α1, α2)

is such that α1 + α2 > αQ1 + αQ2 , the system likewise goes to a border, then to
the pure Nash equlibrium (1, 1).

QED
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