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Abstract

The paper investigates whether transforming a time series leads to an improvement in fore-

casting accuracy. The class of transformations that is considered is the Box-Cox power transfor-

mation, which applies to series measured on a ratio scale. We propose a nonparametric approach

for estimating the optimal transformation parameter based on the frequency domain estimation

of the prediction error variance, and also conduct an extensive recursive forecast experiment on

a large set of seasonal monthly macroeconomic time series related to industrial production and

retail turnover. In about one fifth of the series considered the Box-Cox transformation produces

forecasts significantly better than the untransformed data at one-step-ahead horizon; in most of

the cases the logarithmic transformation is the relevant one. As the forecast horizon increases,

the evidence in favour of a transformation becomes less strong. Typically, the näıve predic-

tor that just reverses the transformation leads to a lower mean square error than the optimal

predictor at short forecast leads. We also discuss whether the preliminary in-sample frequency

domain assessment conducted provides a reliable guidance which series should be transformed

for improving significantly the predictive performance.
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1 Introduction

Transformations aim at improving the statistical analysis of time series, by finding a suitable scale

for which a model belonging to a simple and well known class, e.g. the normal regression model,

has the best performance. An important class of transformations suitable for time series measured

on a ratio scale with strictly positive support is the power transformation; originally proposed by

Tukey (1957), as a device for achieving a model with simple structure, normal errors and constant

error variance, it was subsequently modified by Box and Cox (1964).

The objective of this paper is assessing whether transforming a variable leads to an improvement

in forecasting accuracy. The issue has already been debated in the time series literature. The use

of the Box-Cox transformation as a preliminary specification step to fitting an ARIMA model was

recommended in the book by Box and Jenkins (1970). In his discussion of the paper by Chatfield and

Prothero (1973), Tunnicliffe-Wilson (1973) advocated its use and showed that for the particular case

study considered in the paper, the monthly sales of an engineering company, maximum likelihood

estimation of the power transformation parameter could lead to superior forecasts. This point was

elaborated further by Box and Jenkins (1973).

A more extensive investigation was carried out by Nelson and Granger (1979), who considered

a dataset consisting of twenty-one time series. After fitting a linear ARIMA model to the power

transformed series and using 20 observations for post-sample evaluation, they concluded that the

Box-Cox transformation does not lead to an improvement of the forecasting performance. Another

important conclusion, supported also by simulation evidence, is that the näıve forecasts, which

are obtained by simply reversing the power transformation, perform better than the optimal fore-

casts based on the conditional expectation. The explanation is that the conditional expectation

underlying the optimal forecast assumes that the transformed series is normally distributed. This

assumption may not be realistic, however. In contrast to Nelson and Granger’s results, Hopwood,

McKeown and Newbold (1981) find for a range of quarterly earnings per share series that the

Box-Cox transformation can improve forecast efficiency.

In related work Lütkepohl and Xu (2011) have investigated whether the logarithmic transfor-

mation (as a special case of a power transformation) leads to improved forecasting accuracy over

the untransformed series; the target variables are annual inflation rates computed from seasonally

unadjusted price series. The overall conclusion is that forecasts based on the original variables are
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characterized by a lower mean square forecast error. On the other hand, based on data on a range

of monthly stock price indices as well as quarterly consumption series Lütkepohl and Xu (2011a)

conclude that using logs can be quite beneficial for forecasting. They also point out that there

does not appear to be a reliable criterion for deciding between logs and levels for the purpose of

maximizing forecast accuracy.

From the theoretical standpoint, Granger and Newbold (1976) provided a general analytical

approach, based on the Hermite polynomials series expansion, to forecasting transformed series.

Analytic expressions for the minimummean squared error predictors were provided by Pankratz and

Dudley (1987) for specific values of the Box-Cox power transformation parameter. More recently,

Pascual, Romo and Ruiz (2005) have proposed a bootstrap procedure for constructing prediction

intervals for a series when an ARIMA model is fitted to its power transformation.

Finally, the Box-Cox transformation is popular in financial time series analysis and has been

considered, for example, for forecasting volatility (see e.g. Higgins and Bera, 1992, and Goncalves

and Meddahi, 2011) and price durations (Fernandes and Grammig, 2006).

This paper contributes to the debate in two ways: first, we propose a fast nonparametric method

based on the estimation of the prediction error variance (p.e.v.) of the normalized Box-Cox power

transformation which can be used to estimate the transformation parameter and in deciding whether

or not to use the power transformation if forecasting is the objective. Our procedure has the advan-

tage that it does not require normality assumptions which would be used in maximum likelihood

procedures. Hence, it circumvents the problem noticed by Nelson and Granger (1979). Our second

contribution is to assess the empirical relevance of the choice of the transformation parameter by

performing a large scale recursive forecast exercise, on a dataset consisting of 530 seasonal monthly

time series. In the previous studies only much more limited datasets were used and by considering

such a large dataset we hope to get a better overall picture of the situation and may be able to

explain some of the previous discrepancies in results. A side issue is whether the näıve predictor

outperforms the optimal predictor in terms of mean square forecast error. We find that there

is a certain percentage of series were significant forecast improvements are obtained by a power

transformation. The challenge is then to identify the series for which a power transformation may

help.

The plan of the paper is the following. In Section 2, after reviewing the Box-Cox transforma-

tion, we discuss the predictors of interest. In Section 3 we present the nonparametric procedure
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for estimating the p.e.v. and the transformation parameter. Section 4 discusses the estimation

results on the dataset. In Section 5 we judge the relevance of the transformation for out-of-sample

forecasting by conducting a rolling forecasting experiment. Conclusions are drawn in Section 6.

2 Forecasting Box-Cox transformed series

Box and Cox (1964) proposed a transformation of a time series variable yt, t = 1, . . . , n, that

depends on the power parameter λ in the following way:

yt(λ) =


yλt −1
λ , λ ̸= 0,

ln yt, λ = 0,
(1)

where ln denotes the natural logarithm. When λ is equal to 1, the series is analysed in its original

scale, whereas the case λ = 0 corresponds to the logarithmic transformation. Other important

special cases arise for fractional values of λ, e.g. the square root transform (λ = 1/2). Obviously,

for the transformation to be applicable, the series has to be strictly positive.

Suppose the optimal forecast of the Box-Cox transformed series is denoted by ỹt+h|t(λ), h =

1, 2, . . ., where h is the forecast lead. Here optimality is intended in the mean square error sense,

so that ỹt+h|t(λ) = E[yt+h(λ)|Ft] is the conditional mean of yt+h(λ), given the information set at

time t, here denoted as Ft. The conditional mean is typically available in closed form. Finally, let

σ2h(λ) = E{[yt+h(λ) − ỹt+h|t(λ)]
2|Ft} denote the h-step-ahead prediction error variance, which for

simplicity we assume time-invariant.

We now consider the prediction of yt on its original scale of measurement. The näıve forecast is

obtained as the inverse Box-Cox transformation,

ŷt+h|t =

 (1 + λỹt+h|t(λ))
1/λ, λ ̸= 0,

exp(ỹt+h|t(λ)), λ = 0.

This quantity corresponds to the median of the predictive distribution and, hence, it provides the

minimum absolute error predictor.

The optimal predictor of yt+h (i.e. its conditional expectation given the past), denoted by ỹt+h|t,

is

ỹt+h|t =
1

σh(λ)
√
2π

∫ ∞

−∞
exp

[
−1

2

(
y − ỹt+h|t(λ)

σh(λ)

)2
]
(λy − 1)1/λdy (2)
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Table 1: Optimal predictors of original variable for different Box-Cox transformation parameters

λ ỹt+h|t

0 ŷt+h|t exp
(
σ2h(λ)/2

)
1/2 ŷt+h|t

(
1 + 1

4
σ2
h(λ)

ŷt+h|t

)
1/3 ŷt+h|t

(
1 + 1

3
σ2
h(λ)

ŷ
2/3
t+h|t

)
1/4 ŷt+h|t

(
1 + 3

8
σ2
h(λ)

ŷ
1/2
t+h|t

+ 3
256

σ4
h(λ)

ŷt+h|t

)

if the transformed series is normally distributed (see Nelson and Granger, 1979). In general a closed

form expression for this integral is not available. However, if 1/λ is a positive integer, Pankratz and

Dudley (1987) and Proietti and Riani (2009) provide a closed form expression. Table 1 presents the

expressions of the optimal predictors as functions of the näıve predictor ŷt+h|t for selected values

of λ.

3 Deciding on the Box-Cox transformation for prediction

The Box-Cox transformation parameter is usually estimated by maximum likelihood, assuming

a parametric model for yt(λ); the parameter λ can be concentrated out of the likelihood, which

is corrected by the Jacobian so as to take into account the change of scale of the observations.

This approach is plausible if the Box-Cox transformation converts the distribution to a normal.

Unfortunately, the results by Nelson and Granger (1979) indicate that the normality assumption

for the transformed series may be problematic. Moreover, even though the forecasts are typically

based on a parametric model, there is usually uncertainty regarding the right model. Therefore, we

propose a nonparametric approach, according to which the transformation parameter is estimated

as the value for which the prediction error variance (p.e.v.) of the series (after a normalization by

the Jacobian of the transformation), is a minimum.

Our procedure is based on the normalized Box-Cox (NBC) transformation which is obtained by

dividing yt(λ) by
n
√
J , where J =

∏
t

∣∣∣∂yt(λ)∂yt

∣∣∣ is the Jacobian of the transformation, which is equal

to gλ−1
y with gy = [

∏
t yt]

1/n being the geometric average of the original observations (Atkinson,

1973). This yields

zt(λ) = g1−λ
y yt(λ). (3)
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This normalization is relevant if the aim is minimizing the one-step-ahead p.e.v. across the different

values of λ. Notice that when λ = 1, the normalizing factor is unity, and the normalized transform

sets the scale equal to that of the original observations.

We assume that zt = zt(1) can be made stationary by differencing, that is, there exists a

stationary representation ut = ∆(L)zt, t = 1, . . . , n, where ∆(L) is a polynomial in the lag operator,

L, e.g. ∆(L) = (1 − L)d or ∆(L) = (1 − L)(1 − Ls), for seasonal time series with seasonal period

s. Obviously, if zt is stationary, ∆(L) = 1. Notice also that n has been reset so as to denote the

number of observations available for ut.

We estimate the transformation parameter by minimizing the p.e.v.. Notice that the one-step-

ahead p.e.v. for zt is the same as that of ut, since ut − E(ut|Ft−1) = zt − E(zt|Ft−1).

If we let f(ω) denote the spectral density of ut, and assume
∫ π
−π ln f(ω)dω > −∞, the one-step-

ahead p.e.v. is defined, according to the usual Szegö-Kolmogorov formula, as the geometric average

of the spectral density:

σ2 = exp

[
1

2π

∫ π

−π
ln 2πf(ω)dω

]
.

The p.e.v. can be estimated nonparametrically by a bias-corrected geometric average of the

periodogram. Letting ωj = 2πj
n , j = 1, . . . , [n/2], denote the Fourier frequencies, where [·] is the

integer part of the argument, the sample spectrum is defined as

I(ωj) =
1

2πn

∣∣∣∣∣
n∑

t=1

(ut − ū)e−ıωjt

∣∣∣∣∣
2

,

ū = 1
n

∑
t ut and ı is the imaginary unit. Letting n∗ denote n/2− 1, if n is even, and (n− 1)/2, if

n is odd, Davis and Jones (1968) proposed the following estimator:

σ̂2 = exp

 1

n∗

n∗∑
j=1

ln 2πI(ωj) + γ

 , (4)

where γ = 0.57722 is Euler’s constant.

Hannan and Nicholls (1977, HN henceforth) proposed replacing the raw periodogram ordinates

by their non-overlapping averages of m consecutive ordinates,

σ̂2(m) = m exp

 1

M

M−1∑
j=0

ln

(
m∑
k=1

2πI(ωjm+k)

)
− ψ(m)

 . (5)
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where M = [(n − 1)/(2m)] and ψ(m) is the digamma function. The estimator (4) is obtained in

the case m = 1. The large sample distributions of (5) and ln σ̂2(m) are, respectively,

σ̂2(m)
a∼ N

(
σ2,

2σ4mψ′(m)

n

)
, ln σ̂2(m)

a∼ N

(
σ2,

2mψ′(m)

n

)
.

The estimation of the optimal transformation parameter is carried out by a grid search over

the λ values in the range (a, b), where typically, b = −a = 2. For each value of λ in the selected

range the NBC transformation of the series, zt(λ), is computed according to (3), the stationarity

transformation is obtained as ut(λ) = ∆(L)zt(λ) and the HN estimator (5) is computed. The value

of λ that yields the minimum p.e.v. is the required estimate. Notice that a crucial assumption is

that the stationarity inducing transformation, ∆(L), does not vary with λ, which is appropriate

for the NBC.

When explanatory variables are present, such as trading days and Easter regressors for modeling

calendar effects (see Cleveland and Devlin, 1982), interventions and seasonal dummy variables, the

p.e.v. can be estimated from the frequency domain regression residual periodogram, as in Cameron

(1978). Alternatively, we could use a weighted estimate of the p.e.v. based on a similar idea to

band spectral regression (Engle, 1974), that puts a zero weight to the sample spectrum ordinates

around the trading days and seasonal frequencies.

The latter may also be advocated as a more general strategy aiming at robustifying the non-

parametric estimator of the p.e.v., by excluding some periodogram ordinates that could be affected

by the stationarity inducing transformation. For instance, if ∆zt = zt − zt−1 is analyzed, leaving

out the seasonal frequency may be thought of as a way of eliminating a deterministic seasonal

component from the series. If we focus on ∆szt = zt − zt−s, instead, then the periodogram at the

seasonal frequencies may get close to zero, so that the seasonal frequencies will contribute strongly

and negatively to the p.e.v. estimate.

4 Estimation results

We apply the estimation method to a dataset consisting of 530 monthly time series, seasonally

unadjusted, 379 of which are related to the index of industrial production (IPI) and 151 to the

index of retail turnover for some Euro area countries, the UK and the US. For the IPI we consider

series from Sectors B (Mining and quarrying), C (Manufacturing), D (Energy), and B–D, and
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the series for the manufacturing sectors are from those identified by two digits of the NACE

statistical classifications of economic activities (Sectors C1-C31). For the US we consider the 63

series for Market and Industry Group and the 32 series for Special Aggregates and Selected Detail

(see http://www.federalreserve.gov/releases/g17/table1_2.htm for more details). For retail

turnover, we focus on the series available with code starting with G47 (Retail trade, except of

motor vehicles and motorcycles). The series were obtained from Eurostat (http://epp.eurostat.

ec.europa.eu/portal/page/portal/eurostat/home/), the Federal Reserve and the US Census

Bureau. The breakdown of the series by country and their sample period is available in Table 2.

The first objective of our analysis is to check if our estimation method suggests that transform-

ing our series is useful for reducing the p.e.v. and to narrow down the range of λ values to be

considered. Given the previous results, e.g. by Nelson and Granger (1979), one may expect the

logarithmic transformation (λ = 0) to be of particular importance. For each individual time series

the transformation parameter was estimated as the minimizer of the one-step-ahead p.e.v. of the

NBC transform, which is computed by the HN nonparametric estimator (5) using m = 3. This

particular choice for the value of m was suggested by a Monte Carlo simulation experiment, not

reported for brevity, according to which, for the sample sizes considered, setting m = 3 provides

the most reasonable compromise between bias and variance in estimating the p.e.v., the estimator

with m = 1 (the Davies and Jones estimator) being characterised by high sampling variance; on

the contrary, larger values for m lead to a minor reduction in the variance and larger biases. As

the series are strongly seasonal, we assume that ut = zt − zt−12 is stationary. Before summarizing

the results, it may be instructive to consider an example series for which our method suggested the

need for a transformation.

Figure 1 displays the French industrial production series for the branch Manufacture of wearing

apparel along with the interval estimates of the logarithmic p.e.v.. Clearly, the volatility of the

series appears to be linked to its level, suggesting that a Box-Cox transformation can make it

more homogeneous. The minimum p.e.v. occurs for λ = 0.28. The transformation indeed helps

stabilizing the amplitude of the series, so that zt(λ)−zt−12(λ) looks more like a covariance stationary

series (not shown). In contrast, the yearly changes on the original scale, yt − yt−12, are clearly

heteroscedastic, as suggested by Figure 1. An approximate 95% confidence interval for λ is (0.01,

0.61). The latter is computed as the smallest set of λ values which has an interval estimate at the

same confidence level that includes the minimum p.e.v. estimate. Notice that the coverage may

8

http://www.federalreserve.gov/releases/g17/table1_2.htm
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/


Table 2: Breakdown of the time series analysed by country, sample period, number of time series.

Index of industrial production

Country Sample period Number of series

Austria 1996.1-2010.12 28

Belgium 1995.1-2010.12 27

Finland 1990.1-2010.12 20

France 1990.1-2010.12 28

Germany 1991.1-2010.12 28

Greece 2000.1-2010.12 29

Italy 1990.1-2010.12 27

Netherlands 1990.1-2010.12 22

Portugal 1995.1-2010.12 20

Spain 1980.1-2010.12 28

UK 1990.1-2010.12 28

US 1947.1-2010.12 94

Index of retail turnover

Country Sample period Number of series

Austria 1999.1-2010.12 6

Belgium 1998.1-2010.12 15

Finland 1995.1-2010.12 14

France 1994.1-2010.12 14

Germany 1994.1-2010.12 15

Greece 1995.1-2010.12 13

Italy 2000.1-2010.12 14

Netherlands 1996.1-2010.12 9

Portugal 1995.1-2010.12 9

Spain 2000.1-2010.12 14

UK 2000.1-2010.12 14

US 1992.1-2010.12 14
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Figure 1: French index of industrial production for Manufacture of wearing apparel. Series and

interval estimates of lnσ2 obtained by the HN estimator using m = 3.
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10 HN interval estimates of p.e.v. as a function of λ

be less than the nominal one due to the fact that the interval is constructed using the asymptotic

variance, whereas the finite sample variance can be larger. Hence, the logarithmic transformation

(λ = 0) could also be adequate.

The distribution of the 530 point estimates of λ, displayed in Figure 2, is centered around the

mean value 0.29, with a standard deviation of 0.64. The percentage of cases in which the value λ = 1

(i.e., no transformation needed) is not contained in the 95% confidence interval for the parameter is

18.68% (99 cases in total), of which only 5.05% (5 cases) resulted in λ estimates significantly greater

than zero, whereas for the remaining 94 series the estimated value is not significantly different from

zero. The main conclusion is that, if a transformation is indicated, in the vast majority of the

cases it can be safely taken as the logarithmic transformation. The complete distribution can be

considered as a mixture of two distributions, also plotted in Figure 2, the first arising when λ is

not significantly different from 1, and the second in the contrary case. The latter is shifted to the

left with mean -0.27 and standard deviation 0.44 so that λ = 0 is in its central region.

These results were obtained making no provision for calendar effects or for possible overdif-

ferencing caused by the stationarity inducing transformation ∆12. However, if we exclude from
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Figure 2: Density of the nonparametric estimator of the transformation parameter, λ, estimated

from 530 time series.

Full sample 
Not significantly different from 1 
Significantly different from 1 

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
λ

Full sample 
Not significantly different from 1 
Significantly different from 1 

(5) the frequencies ωj corresponding to trading days effects (the most prominent being around

0.348 × 2π and 0.432 × 2π, see Cleveland and Devlin, 1980) as well as the seasonal frequencies

2πj/12, j = 1, . . . , 6, the estimates of λ are not affected, as the deletion results only in a vertical

shift in the p.e.v. as a function of λ.

5 Empirical forecast comparison

This section aims at supporting the previous evidence concerning the need to transform the data

by means of a genuine out-of-sample forecasting experiment. Our estimator and decision rule was

based on all the available data and did not look at the relevance of the Box-Cox transformation

for improving the out-of-sample forecasting ability. It is well known that the performance of

a transformation model within the sample may not be coincident with that outside the available

sample. Thus, in this section, using a simple though flexible benchmark model, we will compare the

forecasting performance of different predictors arising when λ is fixed at specific values, including

the one estimated nonparametrically.

Our rolling forecast experiment is designed as follows.
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1. The size of the rolling window is fixed at 6 or 10 years of monthly observations depending on

the length of the series (we use 10 years if the length is greater than 15 years).

2. For each rolling sample we fit an AR(p) model to the yearly changes of the power transfor-

mation of the series, ∆12yt(λ), with regression effects,

ϕp(L)∆12yt(λ) = β0 + β′∆12xt + ϵt, ϵt ∼ WN(0, σ2),

where xt are 6 trading days regressors and an Easter variable, that account for calendar

effects, and yt(λ) is the Box-Cox transform of the series. Along with the nonparametric

estimate of λ, λ̂, we consider also the following values of λ: λ = 0 (log transformation),

λ = 1/3, λ = 1/2 and λ = 1 (no transformation), which represent the most relevant cases

for which the out-of-sample forecasts are available in closed form. When the transformation

parameter is λ̂, we use the näıve predictor, as we do not want to rely on normality or other

distributional assumptions when this transformation is considered.

3. The order of the autoregression is selected according to the Schwarz information criterion and

the model is estimated by least squares. The maximum lag order considered is 12. We leave

open the possibility that the orders of the automatically identified AR models differ with λ

(Granger and Newbold, 1976).

4. Conditionally on the estimated model we compute the forecasts of the original levels yt and

the yearly growth rates, gt =
∆12yt
yt−12

, for all forecast horizons up to H = 24 steps ahead and

compare them to the observed values. For λ = 0, 1/2 and 1/3 we compute both the optimal

and the näıve predictor according to the formulae presented in Section 2. Hence, we consider

a total of eight competing forecasts (including λ = 1 and λ̂).

5. The rolling window is then moved one month forward and the steps 2–4 are iterated until we

reach observation n−H.

6. We summarise the distribution of the prediction errors at different horizons using the mean

square forecast error. Subsequently, we select the best performing predictor at horizon h

among the seven predictors obtained for λ = 0, 1/2 and 1/3, and λ = λ̂ and test the equal-

ity of the prediction mean squared errors with those computed for the benchmark model

(λ = 1), using the Harvey, Leybourne and Newbold (1997) version of the Diebold-Mariano
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(Diebold and Mariano, 1995, DM henceforth) test statistic.1 Significant values suggest that

transforming the data helps reducing the forecast mean square error.

Table 3 summarises the empirical results by presenting the number of times (over the 530

series analysed) in which the best performing predictor with λ ̸= 1, listed in the rows of the

table, outperformed significantly the benchmark predictor, computed on the untransformed series.

Significant differences are measured by the modified DM test using a 5% significance level.

As far as one-step-ahead forecasting is concerned only in 18% of the cases the Box-Cox predictor

using λ ̸= 1 provides systematically better predictions than the benchmark, for which the data are

not transformed. The percentage is slightly higher (20%) if we aim at predicting growth rates.

Secondly, as the horizon h increases, the case for transforming the data is less strong: if the

forecast horizon is h = 12, i.e. a year ahead, the proportion of cases in which the benchmark is

outperformed significantly at the same level reduces to a mere 7% for the levels and 8% for the

growth rates. These numbers are not much larger than the significance level and, hence, what one

would expect if the null hypothesis was true. Thus, for longer forecast horizons there is very little

evidence that the Box-Cox transformation can improve forecast efficiency.

In the cases for which a transformation is relevant, the nonparametric estimator of λ that we

have proposed, λ̂, provides the best predictor in a percentage of cases varying with h. For the levels

it varies between 28% and 39% whereas the range for the growth rates is from 18% to 38%. The

1Letting eλ,j , and e1,j , j = 1, . . . , J , denote the sequence of h-step-ahead forecast errors, respectively for the best

predictor using λ = 0, 1/3, 1/2, λ̂ and the benchmark predictor (λ = 1), and defining the quadratic loss differential

sequence dj(h) = e2λ,j − e21,j , j = 1, . . . , J , the DM test of the null hypothesis of equal forecast accuracy, H0 :

E(dj(h)) = 0, versus the one sided alternative that the model with λ ̸= 1 provides more accurate forecasts, H1 :

E(dj(h)) < 0, is based upon the statistic

DM(h) =
d̄(h)√
σ2
d

, d̄(h) =
1

J

∑
j

dj(h), σ2
d =

1

J

[
c0 + 2

q−1∑
k=1

J − k

J
ck

]
,

where ck is the sample autocovariance of dj(h) at lag k and σ2
d is a consistent estimate of the variance of the loss

differential. In our applications the value of the truncation parameter is set equal to q = max(h, 4) and we use the

DM statistic with the small sample modification proposed by Harvey, Leybourne and Newbold (1997) which provides

a correction for the bias of σ2
d as an estimator of the variance of dj(h):

DM∗(h) = DM(h)

[
J + 1− 2q + q(q + 1)/J

J

]1/2

.

Under the null hypothesis the reference distribution is Student’s t with J − 1 degrees of freedom, denoted TJ−1.
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logarithmic transformation overall has the best performance, although there may be cases in which

the estimated λ is not significantly different from 0. Notice also that, somewhat counter-intuitively,

the näıve predictor outperforms the optimal one at short forecast leads. This result is in line with

observations by B̊ardsen and Lütkepohl (2011) in a comparison of forecasts based on levels and logs

in multivariate systems. They explain the phenomenon by the estimation uncertainty involved in

computing the optimal forecast. An alternative explanation may, of course, be that the normality

assumption underlying the optimal predictor is invalid. The square root transformation plays only

a negligible role.

Given that there are some series for which forecast efficiency gains can be obtained with the Box-

Cox transformation for short horizons, it would be useful to validate the nonparametric method as

a tool for deciding the need for a transformation.

As far as one-step-ahead prediction of the levels is concerned, setting λ = λ̂ yields an improve-

ment in the forecasting performance (i.e. a reduction in the mean square forecast error) with

respect to λ = 1 in 54% of the cases (288 out of 530). However, the improvement is statistically

significant only in 18% of the cases, a proportion in line with the result in Table 3.

To compare the results of nonparametric estimation with the out-of-sample evidence we cate-

gorize the nonparametric estimates λ̂ in three groups: those which were not significantly different

from 1, suggesting to leave the series untransformed (λ = 1), those which were significantly dif-

ferent from 1, but not different from zero, suggesting the log transformation (λ = 0), and finally

those that were significantly different from both 0 and 1 (0 < λ < 1). Table 4 cross-tabulates

the nonparametric estimation results with the results of the rolling forecasting experiment, which

categorize the series in two groups, according to whether the modified DM test was significant or

not at the 5% level. Pearson’s χ2-test of independence resulted in a value of 9.83 with p-value 0.007

and, hence, suggests that the results are not independent. In other words, there is a clear associ-

ation between our procedure suggesting a transformation and getting significantly better forecasts

by transforming the series. Moreover, in 72% of the cases the nonparametric method that we pro-

pose provided a reliable guidance for the outcome of the out-of-sample rolling forecasting exercise.

The number of false positive (70) and false negative decisions (69), jointly representing 28% of the

cases, might be explained by the different nature of the two methods. While the nonparametric

method looks at the evidence for a transformation within the sample and rests crucially on the

assumption of stationarity of the underlying process, the rolling forecast experiment evaluates the
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Table 3: Rolling forecast experiment: number of series for which the predictor listed in the rows

resulted as the best predictor and outperformed significantly the benchmark (λ = 1) at the 5%

level according to the one-sided modified DM test. The percentages in the last row are obtained

by dividing the totals in the previous row by 530.

Levels

Forecast horizons

λ h = 1 h = 2 h = 3 h = 6 h = 12 h = 24

λ̂ 35 30 28 13 12 16

0 (optimal) 10 9 8 13 17 14

0 (näıve) 34 34 24 15 5 7

1/3 (optimal) 2 2 4 2 1 2

1/3 (näıve) 13 7 5 2 1 1

1/2 (optimal) 2 1 2 0 0 0

1/2 (näıve) 1 1 1 1 1 1

Total 97 84 72 46 37 41

Percentage 18.30 15.85 13.58 8.68 6.98 7.74

Growth rates

Forecast horizons

λ h = 1 h = 2 h = 3 h = 6 h = 12 h = 24

λ̂ 31 29 27 18 8 8

0 (optimal) 26 24 17 26 27 26

0 (näıve) 31 25 16 11 6 5

1/3 (optimal) 11 2 5 3 3 0

1/3 (näıve) 4 3 2 0 0 0

1/2 (optimal) 1 0 0 1 0 0

1/2 (näıve) 1 0 0 1 0 0

Total 106 86 72 61 44 39

Percentage 20.00 16.23 13.58 11.51 8.30 7.36
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Table 4: Comparison of results of HN estimator and rolling forecastas

Nonparametric Modified DM test

Estimator Significant Not Significant Total

λ = 0 27 67 94

0 < λ < 1 2 3 5

λ = 1 69 362 431

Total 98 432 530

performance out-of-sample and can accommodate time variation and local nonstationarities. More-

over, note that a forecast based on a transformed series may have a smaller mean square forecast

error without being significantly superior to the benchmark.

In addition, Figure 3 displays the empirical distribution function of the p-values of the statistic

DM∗(1), P (TJi−1 < DM∗
i (1)), i = 1, . . . , 530, respectively for the 99 cases in which the nonpara-

metric estimator suggested to transform the data (λ ̸= 1) and contrasts it with the empirical

distribution function of the 431 cases for which a transformation was not suggested. The two dis-

tributions are different and in fact the Kolmogorov-Smirnov test of equality of the two distributions

versus the alternative that the former is larger than the latter, based on the maximum distance

between the two distribution functions, takes the value 0.185, with asymptotic p-value 0.005. This

is a further confirmation that the preliminary nonparametric assessment of the need to transform

the series can be useful. These results are quite promising, especially when we compare them to

related results in the literature. For example, Lütkepohl and Xu (2011, 2011a) consider the simpler

setting of comparing forecasts based on levels and logs only and conclude that they did not find a

reliable decision rule for choosing between the two possibilities. Thus, our method appears to be a

valuable tool.

6 Conclusions

It is argued that previous studies of the Box-Cox transformation as a means for improving forecast

accuracy may be distorted by the assumption of a normally distributed transformed series. The

latter assumption is often adopted in estimating the transformation parameter and computing the
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Figure 3: Empirical distribution functions of the p-values of the modified DM test at horizon h = 1

for the two subpopulations consisting respectively of the 99 cases in which the nonparametric

estimator suggested λ ̸= 1 and of the 431 remaining cases for which λ = 1.
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optimal forecast of the original series. We propose a distribution free, nonparametric method for

estimating the Box-Cox transformation parameter and perform a large scale forecast comparison

based on a much larger set of time series than previous studies. More precisely we consider a set

of 530 monthly, seasonal time series related to industrial production and retail turnover of a large

number of countries. We find three main results.

First, in only about 20% of the cases, a 95% confidence interval around the estimated transfor-

mation parameter does not contain the value of one which corresponds to no transformation. Thus,

using a transformation parameter significantly different from one as a criterion for considering the

Box-Cox transformation, for roughly 20% of the series a transformation is indicated. Clearly, if

in one fifth of the series forecast improvements are possible, this is too large a set of series to be

ignored if one is seriously interested in improving forecast accuracy. Out of the series for which

transformations are indicated, only a very small fraction (about 5%) has a parameter significantly

different from 0 which corresponds to the log transformation. Thus, in most cases where a trans-

formation is indicated a log transformation may be a good choice. This result is well in line with

Nelson and Granger (1979) who perform a forecast comparison for a much smaller set of time series.

As a second main result, our forecast comparison shows that transformations can indeed improve

forecast accuracy at short horizons. For about 20% of the series, the one-step-ahead forecasts are

significantly improved by using a Box-Cox transformation. For longer-term forecasts the advantage

of the transformation diminishes, however. It turns out that, although the log transformation is

indeed very successful in providing the best forecasts when a transformation is needed, estimating

the transformation parameter by our method results in the best forecasts in about one third of the

cases where a significant improvement is found, at least for short horizons. Moreover, the näıve

predictor obtained by just inverting the transformation performs overall better than the optimal

predictor which is based on the conditional expectation and uses normality assumptions. Again

the latter result conforms well with previous related studies.

Our third main result is that our nonparametric approach to estimating the p.e.v. can provide

good guidance and be a useful substitute for a computationally more demanding rolling forecast

exercise for deciding on the need for a Box-Cox transformation. In general, when the approximate

95% nonparametric interval estimate does not cover λ = 1, it is also the case that the rolling forecast

experiment points at the need to transform the series for getting significantly better forecasts

(judging significance by a modified DM test). The number of false positive and false negative
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decisions is typically small. The false decisions may be due to structural change and inhomogeneity

of the series.
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