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The corporation is a society which accomplishes its work through division of labor — a
proposition now so much taken for granted that it is surprising to think it once represented a
discovery.

Schon (1967) cited in Braverman (1974, p. 267)

1. Introduction

In this paper, we develop a theory of the firm where workers can specialize within a division

of labor. We are concerned with the following questions. How do incentives, employment,

and the division of labor differ across institutions? What is the relationship between

incentives and specialization? In particular, are they complements or substitutes? What

is the role of Holmström’s budget-breaker when team size is endogenous?1 To answer these

questions, we extend the classical teams framework in Alchian and Demsetz (1972) and

Holmström (1982) using the theory of specialization and the division of labor in Becker

and Murphy (1992). We show that the extended model generates predictions at odds with

the classical literature but consistent with several institutional stylized facts and recent

organizational trends.

We start with the first best benchmark, where a social planner chooses team size, task

assignments (i.e., the division of labor), and efforts to maximize the expected total surplus.

As in Becker and Murphy, an increase in team size results in greater specialization and

division of labor, which raises both the marginal product of effort and expected output per

worker. The first best employment level therefore balances the tradeoff between increasing

returns to specialization and the transaction costs associated with larger teams.

We consider two institutions under moral hazard: the partnership and the firm with

a budget-breaker. In Alchian and Demsetz, partnerships offer weak incentives and are

therefore necessarily small to limit shirking.2 As in Levin and Tadelis (2005), we focus on

equal-division partnerships (EDP) where revenue, tasks, and transaction costs are evenly

1 The literature on endogenous team size includes Levin and Tadelis (2005) and Liang et al. (2008).
These papers do not consider the relationship between incentives and employment or the role of the
budget-breaker when team size is endogenous but instead focus on other issues.

2 The literature on efficient or relatively efficient partnerships includes Rasmusen (1987), Legros and
Matsushima (1991), Legros and Matthews (1993), Garicano and Santos (2004), and Levin and Tadelis
(2005).
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divided among partners.3 An EDP chooses the number n of partners to maximize the

expected payoff of the representative partner. The relevant tradeoff differs from the first

best in two respects. First, the representative partner only receives 1/n of the expected

surplus from the marginal hire. This 1/n problem is also an important aspect of the Levin

and Tadelis model and tends to make the EDP smaller than first best. But unlike their

model, which focuses on worker selection issues rather than moral hazard, an increase in

employment also reduces the representative partner’s exposure to risk. It follows that an

EDP can be larger or smaller than first best depending on the relative magnitudes of these

two effects. Since the level of employment determines the degree of specialization and

the marginal product of effort, optimal EDP effort exceeds the first best when an EDP is

inefficiently large. In contrast with Alchian and Demsetz and Holmström, an EDP is not

necessarily small nor is it necessarily characterized by weak incentives and shirking relative

to the first best.

As documented by Garicano and Hubbard (2009), the average law firm in the United

States is indeed quite small (3.65 lawyers) but the size distribution is highly skewed to the

right, with the largest having hundreds of partners excluding associates and other lawyers.

These relatively large law firms have evidently found some mechanism to address the free-

rider problem highlighted in the classical literature. In our model, we show that optimal

EDP size is increasing in the price of output and the level of risk, which is consistent with

a large number of small law firms handling low-risk, low-fee cases and a small number of

large law firms handling cases with the opposite characteristics.

We then turn to the firm, where the budget-breaker chooses incentives, employment,

and task assignments to maximize expected profits. Unlike an EDP, where incentives 1/n

and employment are inextricably linked, the budget-breaker can set the two independently.

Our results for the firm are driven by two fundamental aspects of the model. First, the

budget-breaker can increase effort with an increase in incentives and/or an increase in

employment. This is because the expected marginal benefit of effort is the piece rate times

3 Bose, Pal, and Sappington (2010) show that equal division contracts can be optimal to prevent
sabotage, Bartling and von Siemens (2010) because of inequity aversion, and in Levin and Tadelis (2005)
for reasons of “stability.” Encinosa, Gaynor, and Rebitzer (2007) document the prevalence of equal division
contracts among medical group practices and Lang and Gordon (1995) among law firms in the form of the
lock-step system.
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the marginal product of effort, which depends on the degree of specialization. An increase

in incentives increases the former, while an increase in employment increases the latter. The

second is that incentives and employment are substitutes, so the budget-breaker adjusts

them in opposite directions. The model therefore predicts that larger firms offer weaker

incentives. Indirect evidence is provided by Brown and Medoff (1989) and Rasmusen and

Zenger (1990).

In standard agency theory with one agent, the principal decreases incentives below

their first best (or ownership) level to reduce the agent’s exposure to risk. In our model,

however, the budget-breaker has a choice: she can reduce the aggregate risk premium

with either weaker incentives (which reduce individual risk premia) or a smaller team size

(which reduces the number of risk premia). We show that the former is optimal because (i)

the aggregate risk premium is convex in incentives but only linear in employment and (ii)

the marginal rate of substitution between incentives and employment implied by incentive

compatibility favors employment because of increasing returns to specialization. Since the

two are substitutes, the budget-breaker increases employment above the first best level

while she reduces incentives. Our result that the capitalist firm promotes an excessive

division of labor is also a central theme in the Marxist literature on labor processes, with

some supporting evidence.

In Holmström, the budget-breaker solves the teams problem by strengthening weak

partnership incentives, which contradicts the stylized fact that incentives are weak in

firms (see Pendergast (1999)). In contrast, in our model the budget-breaker solves the

teams problem with an increase in employment and offers incentives that are weaker than

the optimal EDP incentive. The result that incentives are weaker and shirking more

prevalent in the firm rather than the partnership represents a complete reversal of roles

vis-à-vis the classical literature. In our model, the role of the budget-breaker is not to offer

strong incentives but rather to reduce agents’ exposure to risk and promote and coordinate

specialization and the division of labor.

The model is consistent with several stylized facts about size-related differences across

firms, where size is measured in terms of employment. First, there is some evidence that

incentives decline with firm size, as noted earlier. Second, large firms tend to have more
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specialized workers, a more extensive division of labor, and higher transaction costs (e.g.,

more hierarchical layers and more explicit rules and procedures) as assumed in Becker

and Murphy. Third, larger firms pay higher wages. Brown and Medoff (1989) show that

only about half of this size-wage effect can be explained by differences in worker quality

and that existing explanations cannot account for the residual. Fourth, large firms tend

to operate in more concentrated industries and to be more capital intensive (Kalleberg

and Van Buren (1996)). In our model, we show that an increase in price and/or an

exogenous improvement in the production technology lead to an increase in employment

(size), specialization, division of labor, transaction costs, and wages (expected total pay)

but a decrease in incentives. The model is therefore consistent with the above stylized

facts if greater concentration implies higher prices and greater capital intensity reflects

investments in production technology.

In The Modern Firm, Roberts (2004) documents a major shift in firms’ strategies and

organizational structures driven in part by increased global competition and technological

progress. Although many complementary variables and processes are involved, two key

features of the new paradigm are a more intensive use of incentives and a reduced emphasis

on returns to scale, specialization, and the division of labor. In our model, we show

that a reduction in price and the level of risk (the variance of the productivity shock)

induce stronger incentives but less specialization and division of labor. The model is

therefore consistent with these trends if increased global competition corresponds to lower

prices and technological progress (in the form of improved information and data-processing

technology) to easier performance measurement, as Roberts himself suggests.

The plan for the rest of the paper is as follows. We characterize the first best in

section 2 and introduce moral hazard in section 3. In section 4, we consider the EDP and

the firm in section 5. We provide a tractable example in section 6. Section 7 concludes.

2. The First Best

We start with the first best. There is a continuum S = [0, 1] of tasks, which permits

an arbitrarily fine division of labor. Each task can be performed by at most one worker.
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Output in task s is given by

qs = Blγs es, (1)

where B > 0 and 0 ≤ γ < 1 are technological parameters, ls is the time spent learning

about the task, and es is production effort. In Becker and Murphy (1992) the production

function is Leontief Q = y, where

y = inf
s∈S

qs. (2)

To incorporate moral hazard, in this paper we consider the more general stochastic Leontief

production technology Q = y + ε, where ε is normally distributed with mean zero and

variance σ2.4 We refer to the latter as objective risk.

Assume n > 0 identical agents. Let Si ⊆ S be the set of tasks assigned to agent i,

Tis = eis + lis i’s total effort in task s ∈ Si, and

Ti =

∫
Si

Tis ds (3)

i’s total effort across all assigned tasks. We now derive the efficient allocation of a given

total time Ti across tasks in Si. Given Tis, qs is maximized when

eis =
Tis

1 + γ
(4)

and lis = Tis − eis. Substituting into (1),

qs =
B

γ

(
γ

1 + γ

)1+γ

T 1+γ
is . (5)

To maximize agent i’s component of expected output

yi = inf
s∈Si

qs, (6)

Ti should be allocated equally across assigned tasks. Let ρi be the proportion of tasks

assigned to i (i.e., the measure of Si). Substituting Tis = Ti/ρi into (5),

yi =
B

γ

(
γ

1 + γ

)1+γ (
Ti
ρi

)1+γ

. (7)

4 Output is therefore negative with positive probability. As in Holmström and Milgrom (1991), we
could assume instead that output is deterministic Q = y but non-contractible, and that contracts can only
be based on the signal y+ε (which can legitimately take negative values), where ε has the same properties.
Our results would be unaffected.
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To simplify expressions, we define A > 0 and 1 ≤ θ < 2 such that

yi =
A

θ

(
Ti
ρi

)θ
. (8)

This production technology has two features traditionally associated with specialization

and the division of labor which will be important in what follows. First, (8) exhibits

increasing marginal and average returns to effort Ti when θ > 1. Second, these returns are

increasing in the degree 1/ρi of specialization.

Let N > 1 be the size of the labor pool, while 0 ≤ n ≤ N is the number actually

employed. All agents are identical and we ignore integer constraints throughout the paper.

In Becker and Murphy, agents are endowed with a fixed unit of labor. In this paper we

allow for elastic supply, where C(Ti) is the cost of effort. Following Becker and Murphy, we

assume that larger teams incur higher transaction costsK(k, n), where k > 0 is a parameter

which increases marginal transaction costs. These include the costs of communicating task

assignments and coordinating the assembly of intermediate outputs into final output. We

assume C and K satisfy the following properties.

Assumption 1. (i) C is three times differentiable and C ′(0) = 0. Let

f(Ti) = C ′(Ti)/T
θ−1
i . (9)

(ii) f(0) = 0, f ′ > 0 on (0,∞), and f(Ti) → ∞ as Ti → ∞. (iii) K(k, 0) = Kn(k, 0) = 0,

Kn > 0 for all n > 0, and Knn > 0 for all n ≥ 0. (iv) Kkn ≥ 0.

The expression for f in (9) is the ratio of the marginal cost and expected marginal

productivity of effort (see (8)) after normalizing for A and the task assignment ρi. Since

expected output increases at an increasing rate, the agents’ optimal efforts will be infinite

unless marginal costs increase sufficiently fast. The requirement in (ii) that f is increasing

and unbounded ensures this. The rest of the assumptions are standard. The following

common functional forms satisfy all of the above conditions

C(Ti) = (1/2)T 2
i (10)

K(k, n) = (1/2)kn2. (11)
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Let p > 0 be the price of output. The first best or social planner’s problem is to choose

the team size n, task assignments {ρi}ni=1, and efforts {Ti}ni=1 to maximize the expected

total surplus

V (n, {ρi}, {Ti}) = py −
∑
i

C(Ti)−K(k, n) (12)

subject to the constraint 0 ≤ n ≤ N . Let nf denote the first best optimal team size.

Proposition 1. (i) Given 0 < n ≤ N , the first best total effort is

T (n) = g
(
pAnθ−1

)
, (13)

where g = f−1, and the first best task assignment is an equal division of labor ρi = 1/n

for all i. (ii) Assume (10) and (11). The break-even employment level is

n0f =

[
(2− θ)(Ap)

2
2−θ

θk

] 2−θ
4−3θ

. (14)

If 4/3 < θ < 2 then nf = N when n0f ≤ N and nf = 0 otherwise. Let

ncf =

[
(Ap)

2

(2k)
2−θ

] 1
4−3θ

. (15)

If 1 ≤ θ < 4/3 and (
2− θ
θ

)
(Ap)

2
2−θ ≥ k (16)

then nf = ncf when ncf ≤ N and nf = N otherwise.

The first result gives the first best total effort and division of labor in the usual case

where team size n is given and exogenous. The first best effort T (n) in (13) is increasing

in n because a larger team is more specialized with higher expected marginal productivity,

so the planner chooses greater effort. Substituting ρi = 1/n and T (n) into (12), we obtain

the expected total surplus solely as a function of employment

V (n) = V [n, {1/n}, {T (n)}]. (17)

The first best employment level nf maximizes (17) subject to the constraint 0 ≤ n ≤ N .
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The rest of Proposition 1 characterizes the first best employment level nf under the

specific functional forms in (10) and (11). The central tradeoff is between the increasing

returns to specialization and the transaction costs associated with larger teams. We refer

to this as the Becker-Murphy tradeoff, which will be augmented under moral hazard. When

the returns to specialization are sufficiently high 4/3 < θ < 2, expected total surplus V (n)

is U-shaped, where ncf in (15) is the global minimizer and n0f in (14) is the break-even

employment level. In that case, the planner shuts down when N < n0
f and employs the

entire labor pool otherwise. When returns are sufficiently low 1 ≤ θ < 4/3, expected total

surplus is hill-shaped with a global unconstrained maximum at ncf , which is the global

constrained maximizer when ncf ≤ N . The condition in (16) ensures that expected total

surplus is positive at n = 1, so the planner operates. Note that ncf is increasing in A and

p and decreasing in the transaction cost parameter k as is intuitive. Since the case where

increasing returns dominate is not very interesting, we assume 1 ≤ θ < 4/3 and N = ∞

for the rest of the paper.

The model therefore predicts that larger teams will be more specialized, with a more

extensive division of labor and higher transaction costs. Since this result follows directly

from efficiency in production, it is not institution-specific and will also hold for partnerships

and firms below. These predictions are consistent with the robust empirical finding that

firm size is positively correlated with division of labor and vertical differentiation (i.e.,

the number of hierarchical layers); see Beyer and Trice (1979), Kalleberg and Van Buren

(1996), and the survey by Carter and Keon (1986).

3. Moral Hazard

We now introduce moral hazard into the Becker-Murphy framework. Following the teams

literature, we assume individual performance measures are unavailable and that only final

output Q is contractible. We compare two institutions: (i) a firm with a budget-breaker

(referred to as simply the firm), who offers a linear contract Ii = αi + βiQ to each worker

i, where Ii is income, αi a lump sum (which can be negative), and βi the incentive and (ii)

an equal-division partnership (EDP) with zero lump-sum transfers αi = 0 and an equal
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division of labor ρi = 1/n, revenue βi = p/n, and transaction costs.5

We do not offer a novel explanation for the existence of partnerships. If the parameters

(A, k, p, θ) are the same for both institutions then EDP expected profits cannot be higher

than the firm because the budget-breaker is free to choose the same employment level,

incentive contract, and task assignments. The EDP is therefore inefficient unless the

parameters favor it. For example, Garicano and Santos (2004) show that partnerships can

address the moral hazard and adverse selection problems associated with matching workers

to opportunities (referrals) more effectively than market arrangements. Levin and Tadelis

(2005) show that an EDP hires better workers than a budget-breaker and therefore may

be more efficient when consumers are uncertain about product quality. In our model, the

productivity parameter A and p may be higher in an EDP for similar reasons.

The agents’ utility functions are negative exponential

− exp{−r[Ii − C(Ti)]}, (18)

where r > 0 is the coefficient of absolute risk aversion. The corresponding certainty

equivalent is given by6

Ui = αi + βiy − C(Ti)− (1/2)sβ2
i . (19)

The first two terms constitute expected income as a function of expected output. The

final term is the agent’s risk premium, which reflects the disutility of risk. It is increasing

in both subjective risk s = rσ2 (objective risk scaled by the agents’ risk aversion) and

incentives because stronger incentives link income more closely to stochastic final output.

The timing of the game is as follows. (i) A budget-breaker chooses the number n of

workers, the contracts {(αi, βi)}, and task assignments {ρi}. In an EDP, the sole choice

variable is partnership size n because incentives βi = p/n and task assignments ρi = 1/n

are otherwise fixed institutional features. (ii) Agents who receive offers decide whether or

not to accept them. We assume that all agents have an outside option of zero and indifferent

5 Linear contracts are quite common in actual organizations (see footnote 3) and can be justified on
various grounds. In the case of a single agent with limited liability, Bose, Pal, and Sappington (2011)
show that the optimal linear contract secures at least 90% of the expected profits of the optimal nonlinear
second best contract. A linear contract will therefore be optimal when transaction costs are sufficiently
increasing in contractual complexity.

6 Bolton and Dewatripont (2005, p. 137) provide a detailed derivation.
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agents accept. (iii) The agents who accepted choose their efforts non-cooperatively. (iv)

Output is realized and the contract is executed. A budget-breaker chooses n to maximize

her expected profits. As in Lang and Gordon (1995) and Levin and Tadelis, an EDP

chooses n to maximize the representative partner’s expected payoff. The following result

characterizes the set of equilibria in efforts in stage (iii) for both institutions.

Lemma 1. (i) Given n > 0, {ρi}, and {βi} such that ρi > 0 and βi > 0 for all i, there is

a continuum of equilibria in the third stage of the game, one of which is Pareto dominant

from the perspective of the workers.7 (ii) If βi = β and ρi = 1/n for all i, the Pareto

dominant equilibrium is

Ti = g(Anθβ) (20)

for all i. (iii) [Legros and Matthews (1993)] In an EDP, the effort-employment relationship

is the same as the first best (13) in the Pareto dominant equilibrium.

The first result follows directly from the stochastic Leontief production technology.

Clearly, one equilibrium is for all agents to exert zero effort. In the proof (see the appendix),

we show that the Pareto dominant equilibrium is the effort profile which generates the

highest incentive compatible level of expected output, with a continuum of equilibria in

between. From now on, we assume that all players prior to stage (iii) believe that the

Pareto dominant equilibrium will obtain with probability one. This is the most reasonable

assumption to make, especially in the firm where all parties (including the budget-breaker)

have a similar incentive to coordinate and where the budget-breaker as the central party

to all contracts can easily perform this function.

The second result is one of the main insights of the paper: an increase in effort can

be achieved with an increase in incentives β and/or an increase in employment n. This is

because the agents’ expected marginal benefit of effort is the piece rate β times the expected

marginal product of effort. Given an equal division of labor, an increase in employment

leads to a greater degree of specialization and higher expected marginal productivity and

therefore induces greater effort.

7 I.e., all workers are strictly better off as compared with any other equilibrium.
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The third result is similar to Legros and Matthews (1993, Example B), with one crucial

distinction. In the case where n is exogenous, Legros and Matthews show that partnerships

can achieve the first best under general conditions which include a deterministic Leontief

production function. The difference is that team size is endogenous in our model and EDP

efforts are first best if and only if EDP employment is first best. In the next section, we

show that this is generally not the case. The result does show, however, that equal-division

incentives are high-powered or market incentives in the sense that they induce the first

best effort-employment relationship.

4. Equal Division Partnerships

In an EDP, there are no lump-sum transfers and revenue, tasks, and transaction costs are

all shared equally. After substituting the incentive compatibility constraint T (n) in (13),

the certainty equivalent payoff of the representative partner becomes

Up(n) = (1/n)py − C[T (n)]− (1/2)s(p/n)2 − (1/n)K(k, n)

= (1/n)V (n)− (1/2)s(p/n)2, (21)

where V (n) is the first best expected surplus defined in (17). Let np denote the optimal

EDP employment level (the maximizer for (21)) and Tp = T (np) optimal EDP effort. We

first consider the case of zero subjective risk (i.e., risk neutrality and/or zero objective

risk) so we can compare an EDP in our model with the deterministic cases in Holmström

and Legros and Matthews where team size is exogenous.

Lemma 2. Assume s = 0 and (10) and (11). If 1 < θ < 4/3 and (16) holds then

np =

[
2 (Ap)

2
2−θ (θ − 1)

θk

] 2−θ
4−3θ

, (22)

where np < nf and Tp < Tf .

When subjective risk is zero, we obtain a sharp result: an EDP is inefficiently small

with shirking relative to the first best. Although consistent with Alchian and Demsetz,

where partnerships are small to limit free-riding, the logic is actually the reverse. As in
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Legros and Matthews, the effort-employment relationship T (n) is the same as the first best.

It follows that the immediate distortion is not moral hazard but rather the Levin-Tadelis

1/n problem which distorts the Becker-Murphy tradeoff V (n) in (21) and causes an EDP

to be inefficiently small. Unlike Levin and Tadelis, who focus on worker selection issues

rather than moral hazard, in our model this results in less specialization, lower expected

productivity, and therefore less effort. In Alchian and Demsetz, partnerships are small

to control shirking, whereas in our model shirking occurs because partnerships are small.

The result also shows that the conclusions in Legros and Matthews can break down when

team size is endogenous. An EDP is efficient when team size is exogenous, but inefficient

otherwise because EDP employment is less than first best.

We now return to the case of positive subjective risk, which introduces a risk-reward

tradeoff into (21), in addition to the Becker-Murphy tradeoff V (n) and the 1/n problem.

Proposition 2. Assume 1 < θ < 4/3, (10) and (11), and(
2− θ
θ

)
(Ap)

2
2−θ ≥ k + sp2. (23)

(i) There is a unique solution np > 0 for (21) which is increasing in A, p, and s and

decreasing in k. (ii) (comparison with the first best)

sign (nf − np) = sign (Tf − Tp) = sign

{
4− 3θ

θ

[
A6p3θ−1

22(5−3θ)k2

] 1
4−3θ

− sp2
}
. (24)

A unique interior solution exists, but we can no longer provide a closed-form expression

for it as in Lemma 2. The comparative statics for A, k, and p are intuitively clear and

already reflected in (22). The new result is that an increase in subjective risk s leads to an

increase in optimal EDP employment, which reduces the equal-division incentive and hence

the representative partner’s exposure to risk. The comparison with the first best shows

that the characterization of the partnership in Alchian and Demsetz as inefficiently small

and prone to shirking is not robust and depends on s. In particular, an EDP is inefficiently

large when subjective risk is sufficiently high in the sense of (24). In that case, optimal

EDP effort will exceed the first best because effort (13) is increasing in employment. The

condition in (23) ensures Up ≥ 0 at the optimum.

12



Garicano and Hubbard (2009) study the division of labor in firms and markets using

data on law partnerships. They distinguish between individual and ex post law fields like

criminal law, where the client usually contacts the firm after the fact, and ex ante fields

like banking, corporate, and tax law, where the client is often proactive. They find that

the division of labor among individual and ex post fields is coordinated by the market,

but within the firm among ex ante fields. Since ex ante fields differ substantively from

one another with positively correlated demands, explanations based on mutual monitoring

and risk-sharing seem implausible.8 A more likely explanation is the theory of referrals

in Garicano and Santos (2004), which shows that partnerships can address the adverse

selection and moral hazard issues associated with matching individuals to tasks more

efficiently than the market. These issues are more salient in ex ante fields where the

client’s problem often requires an initial diagnosis and subsequent referral by an expert.

Our model is highly complementary with theirs in the sense that an institution which

is superior at allocating individuals to tasks based on comparative advantage should also

be superior at coordinating a division of labor in a team production context. Indeed, Lang

and Gordon (1995) note that complex corporate cases usually involve teams of lawyers

from different specialities. While the fact that the average law firm in the United States

is quite small (3.65 lawyers) is consistent with the free-riding explanation in Alchian and

Demsetz, the fact that the size distribution is highly skewed to the right, with the largest

law firms having a thousand or more partners, suggests that other forces may be at work.

From the perspective of Proposition 2, this is consistent with a large number of small law

firms handling low-risk σ2 low-reward p cases with a minimal division of labor, and a small

number of large law firms handling cases of the opposite type with an extensive division

of labor.

5. The Firm

We now introduce a budget-breaker. The firm’s profit equals revenue less the payments to

8 It is important to distinguish between risk-sharing in the portfolio sense (which is how Garicano and
Hubbard use the term) and the risk-reward tradeoff. Indeed, in our model the demands for the outputs of
individual workers are perfectly positively correlated, but an increase in team size nevertheless reduces the
workers’ exposure to risk. Gaynor and Gertler (1995) find evidence for the risk-reward tradeoff in medical
partnerships, in that incentives are decreasing in the average risk aversion in the group.

13



workers and transaction costs

pQ−
∑
i

Ii −K(k, n). (25)

The budget-breaker chooses the number n of workers, the contracts {(αi, βi)}, and task

assignments {ρi} to maximize expected profits

py −
∑
i

(αi + βiy)−K(k, n) (26)

subject to incentive compatibility (the Pareto dominant equilibrium in Lemma 1) and the

participation constraints Ui ≥ 0, where Ui was defined in (19). The lump sums αi are

chosen to make the participation constraints bind. Substituting these into (26),

Π(n, {βi}, {ρi}, {Ti}) = py −
∑
i

C(Ti)− (1/2)s
∑
i

β2
i −K(k, n). (27)

We assume the following condition for the rest of the paper.

Assumption 2. For all 1 ≤ θ < 4/3 and Ti > 0,

4θf ′ + Tif
′′ ≥ 0. (28)

This condition is crucial for our next result, which simplifies the analysis considerably.

Note that the quadratic cost function in (10) satisfies both Assumptions 1 and 2.

Lemma 3. Assume a given number n > 0 of agents. Given any profile of incentives {βi}

and task assignments {ρi}, the budget-breaker can achieve the same expected output but

higher expected profits with an equal division of labor and an incentive β which is the

same for all agents.

The intuition is as follows. Let {Ti} be the Pareto dominant equilibrium corresponding

to the given incentives {βi} and task assignment {ρi}. Since expected output is Leontief,

it may be possible to implement {Ti} with weaker incentives. Let {βi(ρi)} be the weakest

incentive profile that implements {Ti} (see (A.17) in the appendix). If necessary, the

budget-breaker can increase expected profit by reducing the original incentives to {βi(ρi)}.

The minimum incentive βi(ρi) is increasing in ρi because an increase in the latter reduces
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specialization and expected marginal productivity and therefore requires an increase in

incentives to maintain the desired effort Ti. As shown in the proof, (28) ensures that

βi(ρi)
2 is a convex function of ρi, so an increase in ρi above 1/n increases the risk premium

in (27) at an increasing rate. The budget-breaker therefore chooses an equal division of

labor. The idea of the proof is to show that
∑
i βi(ρi)

2 behaves like a Herfindahl index

with “market shares” ρi, so “concentration” is minimized with equal market shares. This

implies the same incentive for all agents. The main consequence is that we can re-write

(27) as the much more manageable

Π(β, n, T ) = p
A

θ
(nT )θ − n

[
C(T ) + (1/2)sβ2

]
−K(k, n). (29)

Proposition 3 below formalizes another central insight of the paper. Its statement

involves concepts from lattice programming formally defined in the appendix. Let F (x, a)

be a twice continuously differentiable function of a vector x of choice variables and a vector

a of parameters. The variables xi and xj are strategic complements if ∂2F/∂xi∂xj ≥ 0

on the entire domain of F , so an increase in xi increases the marginal effect of xj and

vice-versa. The function F is supermodular in x with increasing differences in (x, a) if

∂2F/∂xi∂xj ≥ 0 for all i 6= j and ∂2F/∂ak∂xi ≥ 0 for all i and k. In that case, an

increase in the parameter ak will induce an increase in the maximizers xi for all i. If

∂2F/∂xi∂xj ≤ 0 then xi and xj are strategic substitutes. After a change of variable, xi

and zj = 1/xj are strategic complements.

We want to show that employment n and effort T are strategic complements, while

β is a substitute for n and T . The problem is that the relevant cross-partials do not have

the appropriate signs on the entire domain of Π, which necessitates the more complicated

statement below. What we can show is that there exists a subset S of the constraint

set which has the following properties: (i) S is a lattice (defined in the appendix), (ii)

the optimum lies in S for all permissible values of the parameters (A, k, p, s), and (iii) Π

is supermodular in (z, n, T ) with increasing differences in (z, n, T ) and (p, w) on S (but

not on the entire domain of Π), where z = 1/β and w = 1/k. It follows that incentives

and employment are substitutes at the optimum, so a reduction in price or an increase

in communication costs induces the budget-breaker to reduce employment and increase

incentives.
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Proposition 3. Assume 1 ≤ θ < 4/3 and that the firm’s problem has a unique interior

solution (βb, nb, Tb) for all A, k, p, s > 0. Let w = 1/k, z = 1/β, and

h(z, n) = min
{
g(Anθ(1/z)), g(Anθ−1)

}
. (30)

(i) The set

S = {(z, n, T ) | z > 0, n > 0, and T = h(z, n)} (31)

is a lattice which contains the optimum for all A, k, p, s > 0. (ii) Π in (29) is supermodular

in (z, n, T ) with increasing differences in (z, n, T ) and (p, w) for all

(z, n, T, p, w) ∈ S × [(1/θ),∞)× (0,∞). (32)

(iii) In particular, n and T are increasing and β decreasing in p and w.

To understand the mechanics of the model, consider an increase in price p. From the

incentive compatibility constraint (20), the budget-breaker can increase expected output

by increasing employment n and/or increasing incentives β. In the standard linear model

with one agent and quadratic cost of effort (10), the optimal incentive is β = p/(1 + s)

(see Bolton and Dewatripont (2005, p. 139)), so an increase in price leads to an increase in

incentives. In our model, however, the budget-breaker has a choice and instead increases

employment. This follows from two aspects of the structure of expected profits in (29).

First, incentives and employment are strategic substitutes in terms of the aggregate risk

premium, so an increase in one will be associated with a decrease in the other to reduce the

agents’ exposure to risk. Second, employment and effort are strategic complements in the

production function, so the budget-breaker will change both in the same direction when

the price is high enough (note the condition p ≥ 1/θ in (32)). Since the budget-breaker

desires more output, she will increase n and T and reduce β to reduce the aggregate risk

premium. The overall effect of the increase in specialization and reduction in incentives is

to increase effort.

The closest result in the literature is Lin (1997), who considers two risk-neutral agents

and a deterministic production function which can be linear in efforts or Leontief. He

shows that the incentives which implement the first best are lower in the Leontief case
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where efforts are complementary, so incentives have positive spillovers. He also shows that

the first best incentives are lower when the number of agents is exogenously increased

from two to four. The same effect is evident in (20), augmented by the increasing returns

θ to specialization, where a given level of effort can be achieved with lower incentives

when employment is higher. In our model with uncertainty and risk aversion, incentives

and employment are substitutes not because of the Lin effect but rather because of their

relationship with the aggregate risk premium.

The existing evidence is highly indirect but nevertheless consistent with our prediction

that larger firms offer weaker incentives (i.e., that n and β are substitutes). Rasmusen

and Zenger (1990) show (their lemma 1) that smaller firms are more efficient at detecting

shirking in a purely statistical sense (they do not model optimal incentives or employment).

They therefore predict that small firms will compensate more on the basis of performance,

while large firms will emphasize easily observable employee characteristics such as tenure.

Empirically, they find that the positive relationship between wages and tenure is stronger

in large firms. Furthermore, regressions of weekly earnings on tenure, outside experience,

and education have a larger residual variance for small firms, which is consistent with

the hypothesis that small firms reward performance instead. Brown and Medoff (1989, p.

1054) find that the standard deviation of wages is smaller at large firms after controlling

for the wider range of occupations, which is also consistent with weaker incentives.

For purposes of comparison with the first best and an EDP, we express expected

profits solely in terms of n and T . Substituting the incentive compatibility constraint (20),

Π(n, T ) = p
A

θ
(nT )θ − n

{
C(T ) + (1/2)s

[
f(T )

Anθ

]2}
−K(k, n). (33)

The budget-breaker therefore chooses n ≥ 0 and T ≥ 0 to maximize (32). We now contrast

the firm’s optimum (nb, Tb) with the first best solution (nf , Tf ) under some basic regularity

conditions.

Proposition 4. Assume a unique interior optimum (ni, Ti) for i = b, f . If there exists

an open convex subset of [0,∞)× [0,∞) which contains both solutions and where (33) is

strictly concave then nb > nf , Tb < Tf , and βb < p/nf .
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According to this result, the firm is inefficiently large nb > nf with less than first best

effort Tb < Tf . Although the budget-breaker could offer the incentive β = p/nf which

implements the first best effort in (13), she instead offers weaker incentives to reduce the

agents’ exposure to risk. This result generalizes the standard risk-reward tradeoff in the

sense that now the budget-breaker has a choice: she can reduce the aggregate risk premium

in (29) with high incentives and low employment or the reverse. In our model, the budget-

breaker chooses high employment and low incentives for two reasons. First, the marginal

rate of substitution for the iso-effort curve defined by the incentive compatibility constraint

(20) favors high employment when there are increasing returns θ > 1 to specialization. To

see this, consider the option of high incentives and low employment. When θ > 1, the

budget-breaker can achieve the same effort level with a lower aggregate risk premium with

a large decrease in incentives and a small increase in employment. A similar statement

holds for the high employment option, but the marginal rate of substitution is smaller in

absolute terms. Second, the aggregate risk premium is convex in incentives but only linear

in team size, which also favors the high employment option. The overall effect of weaker

incentives but greater specialization is shirking relative to the first best.

The assumed regularity conditions are fairly mild. Note that we do not require global

strict concavity of (33), which generally fails, but rather local strict concavity on a convex

neighborhood which contains both solutions. Under these assumptions, we can use the

relevant first-order conditions to compare the firm’s optimum with the first best. An

example is provided in the next section.

We therefore obtain the novel result that firms promote excessive specialization and

division of labor relative to the first best. As far as we know, the only literature which

makes similar claims is the Marxist literature on labor processes initiated by Braverman

(1974). Braverman’s main contention is that capitalists use machinery and the division of

labor not only to improve productivity, but also to divide the work into simpler components

so they can reduce wages and achieve greater control over the production process. In

contrast, in the example in the next section we show that an increase in the productivity

parameter A (e.g., an investment in machinery) leads to an increase in specialization and

the division of labor and a reduction in incentives, but an increase in wages (i.e., expected
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pay). Wallace and Kalleberg (1982) and Borghans and Bas ter Weel (2006) (in the case

of fast computer adopters) find evidence for Braverman’s de-skilling hypothesis, although

the latter paper does not belong to the Marxist literature and is seemingly unaware of it.

Following Holmström (1982), we now compare firms and partnerships. In Holmström,

the partnership is defined as a budget-balanced sharing rule, where the payments to workers

sum to revenue. An example is the equal-division sharing rule in this paper. He first shows

(his theorem 1) that budget-balanced sharing rules cannot achieve the first best because

agents receive less than their full marginal products. As in Alchian and Demsetz, the

partnership is therefore prone to free-riding.

The result indicates that in closed (budget-balanced) organizations like a labor-managed firm
or a partnership, free-rider problems are likely to lead to an insufficient supply of productive inputs
like effort. This observation is the starting point for Alchian and Demsetz’ (1972) well-known
theory of the firm. They argue that the inefficiency of a partnership will cause an organizational
change. To secure a sufficient supply of effort, firms should hire a principal to monitor the behavior
of agents. The monitor should be given title to the net earnings of the firm so that he has the
proper incentives to work. Such an arrangement will restore efficiency. At the same time, it will
change the partnership into a capitalistic firm with the monitor acting effectively as the owner.
There is a simpler solution, however, at least under certainty.

(p. 327)

The simpler solution is a Mirrlees contract, which imposes group penalties when a specified

output level is not achieved (theorem 2). Alternatively, the budget-breaker can implement

the first best with ownership incentives (see Bolton and Dewatripont (2005, p. 302-3)),

where agents are paid their full marginal products and the principal extracts the entire

surplus with up-front fees. In the case of uncertainty, a Mirrlees contract can approximate

the first best arbitrarily closely (theorem 3). In each case, the role of the budget-breaker

is the same: to provide strong incentives.

Empirically, the role of the budget-breaker in Holmström conflicts with the well-known

stylized fact that incentives are weak in firms (see Prendergast (1999)). From a theoretical

perspective, we now show that the result is not robust and that the role of the budget-

breaker is fundamentally altered when employment as well as incentives is chosen in the

context of uncertainty, specialization, and the division of labor.

Proposition 5. Assume a unique interior optimum (ni, Ti) for i = b, p and 1 < θ < 4/3

or Up > 0 at the EDP optimum. If there exists an open convex subset of [0,∞) × [0,∞)
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which contains both solutions and where (33) is strictly concave then nb > np, βb < p/np,

and Tb < Tp.

It is important to distinguish this result from Proposition 4 above: the present one

is stronger when an EDP is inefficiently large np > nf and weaker otherwise. The result

that partnerships are smaller than firms np < nb is consistent with Alchian and Demsetz,

but the fact that incentives are weaker βb < p/np and shirking more prevalent Tb < Tp

in the firm represents a complete reversal from Holmström. In our model, the role of the

budget-breaker is to promote and coordinate specialization and the division of labor and

to reduce the agents’ exposure to risk rather than to provide strong incentives.

The first element in the intuition is that the budget-breaker can choose incentives

and team size independently, whereas in an EDP the employment decision simultaneously

determines equal-division incentives. The second is the insight in Legros and Matthews

that partnerships offer first best incentives when output is deterministic Leontief and

team size is exogenous. Note that the Leontief assumption is quite natural in a division

of labor context, where the production process is broken into smaller components which

are subsequently assembled into final output. Likewise, in our model the EDP incentive

induces the same effort-employment relationship as the first best (Lemma 1(iii)). Unlike

Alchian and Demsetz and Holmström, the problem is not that EDP incentives are too

weak, but that they are too strong. The budget-breaker therefore offers weaker incentives

to reduce the agents’ exposure to risk. At the same time, unencumbered by the 1/n

problem, the budget-breaker increases employment above the EDP level, so that firms

exhibit a greater degree of specialization and division of labor. The overall effect of weaker

incentives and greater employment is shirking relative to an EDP.

6. Example and Further Comparative Statics

This example serves two purposes. First, it provides an instance where the regularity

conditions in Propositions 4 and 5 are satisfied and can be given economic content. Second,

it allows us to derive further comparative statics results which can be compared with several

institutional stylized facts and recent organizational trends.
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Assume θ = 1 and the functional forms in (10) and (11). From (13) and (15), the first

best solution is Tf = Ap and nf = (Ap)2/(2k). In an EDP, the certainty equivalent payoff

of the representative partner is

Up = pAT − (1/2)T 2 − (1/2)s(p/n)2 − (1/2)kn, (34)

with solution Tp = Tf = Ap and np = (2p2s/k)1/3. Note that most of Proposition 2 above

continues to hold when θ = 1. In particular, np is increasing in price p and subjective risk

s and decreasing in the transaction cost parameter k. Furthermore, np < nf when s is

sufficiently low and inefficiently large otherwise. If

A6p4 ≥ (27/4)sk2 (35)

then Up ≥ 0 at the optimum and the EDP will operate. The budget-breaker’s expected

profit is

Π = pAnT − n
[
(1/2)T 2 + (1/2)sβ2

]
− (1/2)kn2. (36)

From (20), the incentive compatibility constraint is T = Anβ.

Lemma 4. (i) If

A6p4 > 4sk2 (37)

then in this example the budget-breaker’s problem has a unique interior solution with

positive expected profits. (ii) If (35) holds and s is sufficiently small then there exists an

open convex subset of [0,∞)× [0,∞) which contains (ni, Ti) for i = b, f, p and where (33)

is strictly concave.

In the proof, we show that

n >
(Ap− T )2

k
(38)

is a sufficient condition for the firm’s expected profits in (33) to be strictly concave in n

and T . As required, (38) defines an open convex subset of the nonnegative orthant. Since

Tf = Tp = Ap, the first best and EDP solutions clearly satisfy the condition. Furthermore,

(38) does not depend on s and (nb, Tb) → (nf , Tf ) as s → 0, so the firm’s solution will

also satisfy the condition when s is sufficiently small. In that case, the open convex region
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defined by (38) will contain all three solutions and the hypotheses of Propositions 4 and 5

will all be satisfied.

In Proposition 3 above, we derived the firm’s comparative statics results with respect

to k and p. We now consider the two remaining parameters A and subjective risk s.

Substituting the incentive compatibility constraint into (36),

Π = (1/2)n
{
β
[
A2n(2p− nβ)− sβ

]
− kn

}
. (39)

The optimal incentive is therefore

β =
A2np

A2n2 + s
. (40)

Note that β is increasing in n for all 0 ≤ n ≤
√
s/A and decreasing thereafter, so an

exogenous increase in employment can increase incentives when employment is low. In

contrast, Proposition 3 shows that incentives and employment move in opposite directions

when team size is endogenous because the budget-breaker never chooses employment in

the range 0 ≤ n ≤
√
s/A. Likewise, an increase in p leads to an increase in β when n is

exogenous (as in standard agency theory) but not when it is endogenous.

Substituting (40) into (39), we obtain the firm’s expected profits

Π =
n2(A4p2n−A2kn2 − ks)

2(A2n2 + s)
(41)

solely as a function of employment n. From (41), it is a simple matter to solve for the

maximizer nb numerically.9

Numerical Result 1. (i) An increase in A or p increases n, T , and expected pay α+ βy

and decreases β. (ii) An increase in k increases β and decreases n, T , and expected pay.

(iii) An increase in s decreases β, T , and expected pay and increases n.

An improvement in productivity A (e.g., an investment in machinery) or an increase

in price p leads to an increase in employment n and effort T because these parameters and

9 Although Mathematica does provide a closed-form solution for (41), the expression is complicated and
ill-behaved because of rounding errors. We instead used Solve to find the zeros of the first-order condition
for (41) and chose the largest one in accordance with the proof of Lemma 4. We then substituted the
global maximizer nb into (40) to find βb and both solutions into the incentive compatibility constraint to
find Tb. The Mathematica notebook is available at http://web.me.com/mtrauh/Site/Welcome.html.
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variables are complementary in production. At the same time, the budget-breaker reduces

incentives β which are substitutes for employment. A decrease in subjective risk s (e.g., an

improvement in monitoring technology which makes performance easier to measure) leads

to stronger incentives β because of the risk-reward tradeoff and a reduction in employment.

The overall effect is to increase effort.10

These results are consistent with a constellation of stylized facts related to firm size,

measured in terms of employment. As previously discussed, size is positively correlated

with division of labor and vertical differentiation (see section 1) and negatively correlated

with incentives (this section). Large firms also tend to pay higher wages, which is referred

to as the size-wage effect. For example, Brown and Medoff (1989) find that establishment

and company size have independent positive effects on wages and that worker quality only

explains about one-half of the size premium. Kalleberg and Van Buren (1996) note that

large firms tend to be more capital intensive (p. 50) and find that size, wages, formalization

(explicit rules and procedures), and industry concentration are all positively correlated.

Our comparative statics results are consistent with these findings if greater capital intensity

is associated with higher A and greater concentration with higher prices p because such

firms will be larger; with greater specialization and a more extensive division of labor;

higher transaction costs (e.g., formalization and vertical differentiation); weaker incentives;

and higher wages.

Note that most of these correlations vanish in the Kalleberg and Van Buren regressions

which control for size. Likewise, Brown and Medoff find that concentration (proxied by

industry dummies) has no effect on the size-wage relationship. The problem with such

regressions which include size as an independent variable is that size is endogenous and

may therefore soak up the explanatory power of the parameters. We should also point out

that not all of our results are consistent with the empirical literature. A notable exception

is the finding by Kalleberg and Van Buren that wages are positively correlated with the

10 We were unable to prove the comparative statics results for A in the context of Proposition 3 above
because we have not been able to show that the incentive compatibility constraint is increasing in A in
the sense of Veinott (see Vives (1999, p. 23)). Since the relevant cross-partial conditions do not hold
(see (iii) where n and T move in opposite directions), we cannot use the lattice programming methods
of Proposition 3 to derive the comparative statics results for subjective risk s. In both cases, we were
therefore forced to resort to numerical methods.
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difficulty of measuring performance, whereas in our model expected pay is decreasing in

subjective risk.

In The Modern Firm, Roberts (2004) documents relatively recent fundamental shifts in

firms’ strategies and organizational structures driven by increased global competition, more

demanding capital markets, and technological advances in communication, data processing,

flexible production technologies, and transportation (also see Lindbeck and Snower (1996,

2000)). The main features of the new paradigm include: outsourcing and a focus on

the firm’s core competencies; cooperative relationships with external suppliers; within the

firm, small business units and more intensive incentives; a shift away from mass production

(specialization, division of labor, and returns to scale) towards modern manufacturing

(short production runs, broad human capital, and employee initiative); downsizing and

delayering (e.g., fewer hierarchical layers); and training and development. An example of

the old paradigm is Ford in the Model T era, while Toyota exemplifies the new (Roberts

(2004, p. 48-49)).

Our model is too simple to capture all of these aspects, but it does address the two

central themes related to incentives and the division of labor. In our model, a reduction

in price p due to an increase in competition would lead to an increase in incentives and a

decrease in specialization and division of labor. Roberts himself suggests that improved

information and data-processing systems have made performance measurement easier and

tipped the risk-reward tradeoff in the direction of stronger incentives. The same effect

is also present in our model, where a reduction in σ2 with risk aversion r held constant

decreases subjective risk s = rσ2 and increases incentives, but also reduces specialization

and the division of labor. A coarser division of labor should also result in delayering and

a reduction in the transaction costs associated with communication, coordination, and

supervision. To be consistent with these trends, these forces would have to be stronger

than those associated with improvements in communication (a reduction in k), which

would have the opposite effect on incentives and employment.

Lindbeck and Snower (1996, 2000) are concerned with the same issue as this paper:

the division of labor within the firm. In their model, there are two types of workers,

1 and 2, and two tasks, 1 and 2, which are complementary in production. A type i
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worker has a comparative advantage in the performance of task i (workers are otherwise

identical). After paying the workers’ reservation wage, the firm allocates them between the

two tasks. This allocation is determined by three forces: (i) the gains from specialization,

(ii) informational task complementarities (productivity in one task is increasing in the

time spent on the other), and (iii) workers’ preferences for specialization (as reflected in

the reservation wage). A Tayloristic organization is one where type i workers completely

specialize in task i; otherwise the organization is holistic. The authors explain the current

trend towards holism in terms of a reduction in the gains from specialization, stronger

informational task complementarities, stronger preferences for diverse work, and broader

human capital. Their paper is highly complementary to ours in that they consider different

tradeoffs (e.g., informational task complementarities and preferences for diversity in work),

whereas in this paper we incorporate moral hazard and focus on the tradeoff between

incentives and specialization.

7. Conclusion

In this paper, we extended the classical teams framework in Holmström (1982) to the

case where team size is endogenous. Our results essentially reverse Alchian and Demsetz

(1972) and Holmström, but are consistent with a sizable body of empirical evidence. A re-

appraisal of the institutions of partnership and firm is therefore warranted. In Becker and

Murphy (1992), the social planner faces a tradeoff between the gains from specialization and

the transaction costs associated with larger teams. In our model, the optimal partnership

size balances the risk-reward and Becker-Murphy tradeoffs, where the latter is distorted

by the 1/n problem. Contrary to Alchian and Demsetz, in our model partnerships are not

necessarily small, either in absolute terms or in comparison with the first best, nor are they

necessarily characterized by shirking. As in Legros and Matthews (1993), equal division is

a high-powered incentive in the sense that it implements the first best effort-employment

relationship. Our comparative statics results provide a simple explanation for the size

distribution of partnerships documented in Garicano and Hubbard (2009). The model

complements the theory of referrals in Garicano and Santos (2004) and worker selection

in Levin and Tadelis (2005).
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The firm acquires two novel characteristics when team size is endogenous and workers

can specialize within a division of labor: (i) the budget-breaker can increase effort with

an increase in incentives and/or specialization and (ii) incentives and employment are

substitutes. The latter implies that incentives decline with firm size, which is consistent

with some evidence. In Holmström, the role of the budget-breaker is to promote efficiency

with high-powered incentives, which is inconsistent with the stylized fact that incentives

are weak in firms. In contrast, in our model the budget-breaker offers incentives that are

weaker than first best and optimal equal-division incentives, so shirking is more prevalent

in firms than in partnerships. These results reverse the classical depictions of the firm and

partnership. Since incentives and team size are substitutes, the budget-breaker increases

employment above the first best and optimal partnership levels, so firms are inefficiently

large. In our model, the role of the budget-breaker is to reduce agents’ exposure to risk

and to promote and coordinate specialization and the division of labor rather than to offer

high-powered incentives. Our comparative statics results are consistent with the empirical

findings that firm size, wages, specialization and division of labor, capital intensity, and

industry concentration are positively correlated. They are also consistent with recent

organizational trends towards more intensive incentives and a reduced emphasis on returns

to scale, specialization, and division of labor.

Appendix

Proof of Proposition 1

We first prove (i). Fix 0 < n ≤ N . From (8), efficiency requires Ti/ρi = R for all i for

some constant R. Given any such {ρi} and {Ti}, consider the alternative T = R/n and

ρ = 1/n which produces the same expected output. By Jensen’s inequality,

C(T ) = C(R/n) = C

[∑
i

(1/n)(ρiR)

]
≤ (1/n)

∑
i

C(ρiR) = (1/n)
∑
i

C(Ti) (A.1)

and

nC(T ) ≤
∑
i

C(Ti), (A.2)
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so we can restrict attention to an equal division of labor ρi = 1/n and Ti the same for all

i. The problem is now to choose n and T to maximize

p
A

θ
(nT )

θ − nC(T )−K(k, n). (A.3)

Differentiating with respect to T ,

pAn (nT )
θ−1 − nC ′(T ) = nT θ−1

[
pAnθ−1 − f(T )

]
. (A.4)

Under Assumptions 1, (A.3) has a local minimum at T = 0, increases up to its global

maximum at (13), and then decreases thereafter. To prove (ii), we substitute

T (n) =
(
pAnθ−1

) 1
2−θ , (A.5)

(10), and (11) into (A.3),

V (n) = (1/2)n2
[

2− θ
θ

(Ap)
2

2−θ n
3θ−4
2−θ − k

]
. (A.6)

V (n) has two zeros, n = 0 and n = n0f defined in (14). Differentiating,

V ′(n) = (1/2)n
[
(Ap)

2
2−θ n

3θ−4
2−θ − 2k

]
, (A.7)

with critical points n = 0 and n = ncf defined in (15). If 4/3 < θ < 2 the exponent

(3θ − 4)/(2 − θ) in (A.6) and (A.7) is positive. It follows that V (n) is negative between

n = 0 and n = n0f and then positive, increasing, and unbounded thereafter. In that case,

nf = 0 when N < n0f and nf = N otherwise. If 1 ≤ θ < 4/3 then V (n) is positive between

n = 0 and n = n0f and then negative, decreasing, and unbounded thereafter. From (A.7),

the slope of V (n) is positive and then negative, so ncf is the unique global unconstrained

maximum. It is the constrained maximum when it satisfies 0 < n ≤ N . From (A.6), the

condition in (16) ensures nonnegative expected total surplus when n = 1, so the social

planner operates.
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Proof of Lemma 1

We first prove (i). Given the choices of the other agents, let y−i = infs∈S/Si qs (the infimum

over all other agents’ tasks) and

Ty−i = ρi

(
θy−i
A

)1/θ

, (A.8)

the minimum total effort necessary for agent i to produce y−i [the solution to (8)]. The

agent’s certainty equivalent payoff is

Ui = αi + βi
A

θ

(
Ti
ρi

)θ
− C(Ti)− (1/2)sβ2

i (A.9)

when Ti ≤ Ty−i and

Ui = αi + βiy−i − C(Ti)− (1/2)sβ2
i (A.10)

otherwise. Differentiating (A.9) with respect to Ti,

AβiT
θ−1
i

ρθi
− C ′(Ti) = T θ−1i

[
Aβi
ρθi
− f(Ti)

]
. (A.11)

Given our assumptions on f in Assumptions 1, it is clear that (A.9) has a local minimum

at Ti = 0 and a global maximum at

Tβi = g

(
Aβi
ρθi

)
. (A.12)

The agent’s best response is therefore Tβi when Tβi ≤ Ty−i and Ty−i otherwise. Clearly,

{Ti} is a Nash equilibrium which generates expected output y iff Ti = Ti,y and Ti,y ≤ Tβi
for all i, where Ti,y is the minimum total effort by i necessary to produce y. We can

re-write Ti,y ≤ Tβi as y ≤ Yi for all i, where

Yi =
A

θ

[
1

ρi
g

(
Aβi
ρθi

)]θ
. (A.13)

It follows that there exists a continuum of Nash equilibria corresponding to each y such

that 0 ≤ y ≤ mini Yi. Since Ti,y is increasing in y and each agent wants to be as close

to Tβi as possible, the Pareto dominant equilibrium corresponds to y = mini Yi. We now

prove (ii). If βi = β and ρi = 1/n for all i then Yi is the same for all i, y = Yi and Ti,y = Tβ
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for all i at the Pareto dominant equilibrium, and (20) follows from (A.12). To prove (iii),

substitute β = p/n into (20) and compare with (13).

Proof of Proposition 2

From (21) and (A.6),

Up = (1/2)

[(
2− θ
θ

)
(Ap)

2
2−θ n

2(θ−1)
2−θ − kn− s

( p
n

)2]
. (A.14)

Differentiating with respect to n,

Upn = (1/2)

[
2(θ − 1)

θ

(Ap)
2

2−θ

n
4−3θ
2−θ

+
2sp2

n3
− k

]
. (A.15)

This is strictly decreasing in n so Up is strictly concave in n. Since Upn > 0 for n sufficiently

small and Upn < 0 for n sufficiently large, Up has a unique global maximizer n∗p. The

comparative statics results in (i) are clear by inspection of (A.15). To prove (ii), substitute

ncf in (15) into (A.15),

Upn = s

[
(2k)

3(2−θ)

A6p2(3θ−1)

] 1
4−3θ

− k
(

4− 3θ

2θ

)
. (A.16)

Since Up is strictly concave in n, nf < np iff (A.16) is positive and np < nf iff (A.16) is

negative. Re-arranging (A.16) yields (24).

Proof of Lemma 2

The expression in (22) is obtained from (A.15) with s = 0.

Proof of Lemma 3

Fix n > 0. Given {βi} and {ρi}, let {Ti} be the corresponding Pareto dominant equilibrium

with expected output y. From the proof of Lemma 1, Ti = Ti,y and Ti,y ≤ Tβi for all i,

with equality for those agents with Tβi = minj Tβj . The budget-breaker can reduce each

βi until Ti,y = Tβi or

βi =
ρθi f(ρiz)

A
(A.17)

29



for all i, where

z =

(
θy

A

) 1
θ

(A.18)

(see (A.8) and (A.12)). This increases expected profit in (27) by reducing the agents’ risk

premia without affecting efforts {Ti} or expected output y. Define ρ = 1/n, T = z/n, and

β =
f(T )

Anθ
. (A.19)

Substituting β into (20), the Pareto dominant equilibrium is Ti = T for all i. Substituting

T into (8), expected output is the same as before. We now compare expected profit under

ρ, β, and T versus the initial task assignments {ρi}, the improved incentives {βi} in (A.17),

and {Ti}. We have (A.2) as before. We now substitute (A.17)∑
i

β2
i = (1/A2)

∑
i

ρ2θi f
2(ρiz). (A.20)

Differentiating the summand in (A.20) twice with respect to ρi,

2ρ
2(θ−1)
i

[
θ(2θ − 1)f2 + ρ2i z

2(f ′)2 + ρizf (4θf ′ + ρizf
′′)
]
. (A.21)

It follows from (28) that the summand is convex in ρi and from theorems 1 and 3 in Encaoua

and Jacquemin (1980) that (A.20) is minimized at ρi = ρ or βi = β. The alternative ρ,

β, and T therefore produces the same expected output with lower costs and lower risk

premia.

Since the derivative is defined on open sets and S in (31) is not open, we need definitions for

“supermodularity” and “increasing differences” which make no reference to differentiation.

Let R be the space of real numbers. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors

in Rn then x ≥ y iff xi ≥ yi for all i. Let X ⊆ Rn. If x, y ∈ X then when they exist

x ∨X y = sup
X
{x, y}

x ∧X y = inf
X
{x, y}. (A.22)

X is a lattice if x ∨X y and x ∧X y exist and are in X for all x, y ∈ X. X is a sublattice

if x ∨Rn y and x ∧Rn y are in X for all x, y ∈ X. If X is a lattice then f : X → R is

supermodular iff

f(x ∨X y) + f(x ∧X y) ≥ f(x) + f(y) (A.23)
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for all x, y ∈ X. If T ⊆ Rm then f : X × T → R has increasing differences on X × T iff

f(x, t) − f(x, t′) is increasing in x for all t ≥ t′. If f is twice continuously differentiable

on X × T these definitions are equivalent to the ones in the text. Standard references on

these topics include Milgrom and Roberts (1990), Vives (1999), and Topkis (1998).

Proof of Proposition 3

Since S is not open, the idea of the proof is to use the relevant cross-partials to establish

supermodularity and increasing differences on a set S̃ where Π is differentiable and then

restrict the constraint set to S ⊆ S̃. The problem is to choose (β, n, T ) to maximize (29)

subject to β ≥ 0, n ≥ 0, T ≥ 0, and incentive compatibility (20). Substituting (20) into

(29),

Πβ = pAnθ+1g′
[
A(ng)θ−1 − C ′

]
− nsβ. (A.24)

Assuming a unique interior solution,

A(ng)θ−1 − C ′ > 0 ⇐⇒ T = g
(
Anθβ

)
< g

(
Anθ−1

)
, (A.25)

so the optimum lies in S for all A, k, p, s > 0.

The relevant cross-partials of (29) are

Πβn = −sβ ≤ 0 ΠnT = pAθ(nT )θ−1 − C ′ ΠβT = 0

Πβk = 0 Πnk = −Knk ≤ 0 ΠTk = 0

Πβp = 0 Πnp = Anθ−1T θ ≥ 0 ΠTp = AnθT θ−1 ≥ 0.

(A.26)

Since

ΠnT ≥ 0 ⇐⇒ T ≤ g
(
pAθnθ−1

)
, (A.27)

after the change of variables z = 1/β and w = 1/k the cross-partials have the appropriate

signs on S̃ × (0,∞)× (0,∞), where S̃ is defined by z > 0, n > 0, T > 0, and (A.27). It is

easy to show that n > 0, T > 0, and (A.27) define a sublattice in R2 because g is strictly

increasing. Since a product of sublattices is a sublattice, Π is supermodular in (z, n, T )

with increasing differences in (z, n, T ) and (p, w) on S̃ × (0,∞)× (0,∞).
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We now show that S in (31) is a lattice. Let (z1, n1, T1), (z2, n2, T2) ∈ S and n1 ≥ n2
without loss of generality. We need to show that

(z1, n1, T1) ∨S (z2, n2, T2) ∈ S. (A.28)

Note that h in (30) is strictly increasing in n and weakly decreasing in z. We first consider

the case z1 ≥ z2. If T1 ≥ T2 the supremum is clearly (z1, n1, T1) ∈ S. If T1 < T2 the

supremum is (z1, n3, T2), where n3 > n1 is defined by T2 = h(z1, n3). Now consider the

case z2 > z1, which implies T1 ≥ T2. Let T3 = h(z2, n1) ≤ T1. If T3 = T1 the supremum

is (z2, n1, T1). If T3 < T1 the supremum is (z2, n3, T1), where n3 > n1 and T1 = h(z2, n3).

The proof for the infimum is similar, which completes the proof of (i).

If pθ ≥ 1 then g
(
Anθ−1

)
≤ g

(
pAθnθ−1

)
and S ⊆ S̃, which proves (ii). Finally, (iii)

follows from an application of theorem 2.3 in Vives (1999, p. 26) (where S = X in his

notation and statement).

Proof of Proposition 4

Let

V (n, T ) = p
A

θ
(nT )θ − nC(T )−K(k, n), (A.29)

the first best expected surplus with the same effort for all agents and an equal division of

labor as in Proposition 1(i). We can re-write (33) as

Π(n, T ) = V (n, T )− sf2

2A2n2θ−1
. (A.30)

Differentiating with respect to n and T ,

Πn = Vn +
(2θ − 1)sf2

2A2n2θ
(A.31)

ΠT = VT −
sff ′

A2n2θ−1
. (A.32)

The expression in (A.31) is positive and that in (A.32) negative at the first best solution

(nf , Tf ) because 1 ≤ θ < 4/3, f ′ > 0, and Vn = VT = 0. Since (33) is strictly concave

on an open convex neighborhood of both solutions, Tb < Tf and nb > nf . From (13) and

(20),

Tb < Tf ⇐⇒ βb <
p

nb

(
nf
nb

)θ−1
<

p

nf
, (A.33)
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which completes the proof.

Proof of Proposition 5

We re-write (33) as

Π(n, T ) = nUp(n, T ) + (1/2)s

(
p2

n
− f2

A2n2θ−1

)
, (A.34)

where

Up(n, T ) = (p/n)(A/θ)(nT )θ − C(T )− (1/2)s(p/n)2 − (1/n)K(k, n). (A.35)

Since

ΠT = nUpT −
(

sff ′

A2n2θ−1

)
, (A.36)

ΠT < 0 at the EDP solution. Since

Πn = nUpn + Up + (1/2)s

[
(2θ − 1)f2

A2n2θ
− p2

n2

]
(A.37)

and Upn = 0 and Up ≥ 0 at the EDP solution, we focus on the term in square brackets.

(2θ − 1)f2

A2n2θ
− p2

n2
= (2θ − 1)β2 − p2

n2
=

(2θ − 1)p2

n2
− p2

n2
=

2p2(θ − 1)

n2
≥ 0 (A.38)

because β = p/n for an EDP.

Before proving Lemma 4, we recall some facts about strictly quasi-concave functions. Let

X ⊆ Rn be open and convex and f : X → R twice continuously differentiable. First,

f is strictly quasi-concave on X if for all x ∈ X its Hessian (the matrix of second-order

partial derivatives) evaluated at x is negative definite on the tangent to the level set of f

through x. It follows that, in one dimension, f is strictly quasi-concave if f ′′ < 0 wherever

f ′ = 0. If X ⊆ R then f is strictly quasi-concave iff either it is increasing, decreasing, or

increasing for all x < x∗ and decreasing for all x > x∗. Similar statements hold for strictly

quasi-convex functions.
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Proof of Lemma 4

We start with (41) in the text. If (37) holds then (41) has three zeros

n = 0, nb1 =
A3p2 −

√
A6p4 − 4sk2

2Ak
, and nb2 =

A3p2 +
√
A6p4 − 4sk2

2Ak
, (A.39)

where Π < 0 on (0, nb1), Π > 0 on (nb1, nb2), and Π < 0 and diverges to −∞ on (nb2,∞).

Since Π is continuous and [nb1, nb2] is compact, a global maximum with positive expected

profits exists on (nb1, nb2). Differentiating (41),

Πn =
nh

2(A2n2 + s)2
, (A.40)

whose sign is determined by

h = A6p2n3 − 4A2ksn2 − 2ks2 +A4n(3p2s− 2kn3). (A.41)

Setting (A.41) equal to zero, solving for k, and substituting,

Πnn = −
A4p2n

(
A4n4 + 6A2n2s− 3s2

)
2(A2n2 + s)3

. (A.42)

This expression has zeros at n = 0 and

nq =

[(
2
√

3− 3
)
s

A2

]1/2
. (A.43)

It follows that Π is strictly quasi-convex on (0, nq) and strictly quasi-concave on (nq,∞).

Since Π is decreasing near n = 0, it cannot be increasing on (0, nq). Suppose it is decreasing.

In that case, Π is negative at nq and nq < nb1. Since Π is increasing at n = nb1, decreasing

at n = nb2, and strictly quasi-concave on (nq,∞), it must increase from nq up to a unique

global maximum and then decrease thereafter. It follows that nq is a local minimum where

Πnn > 0, a contradiction. We conclude that Π decreases to a local minimum on (0, nq),

then increases to a unique global maximum, and then decreases thereafter, which proves

(i). Differentiating (33),

ΠTT = −
(
n+

s

A2n

)
< 0,

Πnn = −
(
k +

sT 2

A2n3

)
< 0, (A.44)
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and

ΠTTΠnn −Π2
nT =

A2n2
[
kn− (Ap− T )2

]
+ s [kn− T (2Ap− 3T )]

A2n2
. (A.45)

If (A.45) is positive then (33) is strictly concave in n and T . A sufficient condition is

therefore (38) with a weak inequality and

n ≥ T (2Ap− 3T )

k
(A.46)

with at least one inequality strict. Since

(Ap− T )2

k
− T (2Ap− 3T )

k
=

(Ap− 2T )2

k
≥ 0, (A.47)

(38) is sufficient. The rest of the proof is supplied in the text.
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