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Abstract. We model an International Environmental Agreement as a two
stages game: during the first stage each country decides whether or not to join
the agreement while, in the second stage, the quantity of emissions reduction is
choosen.
Players determine their abatement levels in a dynamic setting, given the dy-
namics of pollution stock and the strategies of other countries.
Players may act cooperatively, building coalitions and acting according to the
interest of the coalition, or they make their choices taking care of their individ-
ual interest only. Countries can behave myopically or in a farsighted way. As a
consequence, the size of stable coalition can completely change.
A continuous time framework is choosen in the present paper and consequently
the problem is studied by a differential game.

Keywords IEA, Differential games, Coalition stability.

1 Introduction

Over the last two decades, the interest in international environmental problems
such as climate change, ozone depletion, marine pollution has grown immensely
and it has drived an increased sense of interdipendence between countries.
Cooperation among different countries appears necessary and this results in
International Environmental Agreements (IEA) such as Helsinky and Olso Pro-
tocol signed in 1985 and 1994; Montreal Protocol on the reduction of CFCs
that deplete the ozone layer signed in 1987; Kyoto Protocol on the reduction
of greenhouse gases causing global warming signed in 1997. It is important to
observe that, in these IEAs, the number of signatories varies considerably and
this justifies the increasing interest of many authors to explain why IEAs are
ratified only by a fraction of the countries and to suggest strategies to increase
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the number of signatories.
Economists have emphasized two important aspects: agreements must be prof-
itable (there must be gains to all signatory countries), agreements must be
self-enforcing (in the absence of any international authority, there must be in-
centives for countries to join and to remain in an agreement).
Literature has focused on stability concepts for IEA’s in order to obtain some
conclusions on the size that can be expected and to explain why some IEAs
are large and others are not. Stable IEA means that no individual signatory
country has any incentive to leave the IEA and no non-signatory country has
an incentive to join the IEA.
Both Cooperative and Non-Cooperative game theory have been used to study
coalition formation.
In the Cooperative Game framework, using the γ-core concept and implement-
ing transfers to solve the heterogeneity of the countries, Chander and Tulkens
(1995) reach the conclusion that the grand coalition is stable. These results lead
to an optimistic view on the size of the stable coalition.
In the Non-Cooperative Game framework the concept of Internal and Exter-
nal stability has been applied to obtain the size of a coalition. The idea is to
check for which size of a coalition an individual country is indifferent between
remaining in the coalition or leaving it. Carraro and Siniscalco (1991,1993),
Hoel (1992), de Zeeuw(2008) show that if signatories act in a Cournot fashion
with respect to non-signatories then the size of a stable coalition is very small.
If countries act in a Stackelberg fashion, where signatories are the leaders and
non-signatories are the followers, a stable IEA can have any number of signato-
ries between two and the grand coalition (see Barret (1994), Diamantoudi and
Sartzetakis (2001), Rubio and Ulph (2004)).
Recent developments in game theory advocate the concept of farsighted stable
coalitions against previous notions of stability which are myopic and don’t re-
flect the complexity and foresight of countries’ decisions about agreements.
When an agent contemplates exiting a coalition, it compares the welfare it en-
joys as a member of the coalition with the welfare it will enjoy once it exits. The
agent implicitly assumes that once it deviates, no one else will want to deviate.
But this is not always the case. In fact, it is possible that another country may
wish to exit coalition and so on. Thus, the agent must compare the starting
situation with the outcome at the end of the process, after a number of devia-
tions. The final outcome can be characterized as such only if no more countries
wish to exit and no more countries wish to join.
The concept of farsightedness and its applications to IEAs inspired a series of
papers such as e.g. Chwe (1994), Diamantoudi and Sartzetakis (2002), Eyck-
mans (2003), de Zeeuw (2008).
This literature shows that farsightedness allows both large and small stable
coalitions and so this concept reconciles the cooperative and non-cooperative
approaches.
All papers quoted above study the stability of an IEA in a static context while
dynamic aspect of the problem are ignored, but, abatements processes are usu-
ally dynamic as well as stock pollutant. In most of models, it is assumed that
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countries reduce emissions in one step, but it is not realistic and also not ratio-
nal. For this reason we think that the analysis of the stability of an IEA must
be proposed in a dynamic setting. Other authors as, for example, Rubio and
Casino (2005) and de Zeeuw (2008) have applied differential games and optimal
control methodologies to analyse environmental problems. In particular, Rubio
and Casino (2005) analyse the internal and the external stability of environ-
mental agreements in a dynamic framework, when environmental damages are
associated with a stock externality. Coalition formation has been designed as a
two stages game in which, in the first stage each country decides to join or not
the coalition and in the second stage signatories and non signatories play an
emissions differential game. Authors calculate open loop equilibrium and show,
by a numerical simulation, that a bilateral coalition is the unique self enforcing
IEA. In de Zeeuw (2008) a model of abatement is proposed as a difference game,
because the state transition is given as a difference equation. The feedback Nash
equilibrium is found and, in order to study the stability of an IEA, the concept
of dynamic farsighted stability is introduced showing as large and small stable
coalitions can occur.
In this paper we propose an optimal control model with the objective to reduce
pollution at the lowest costs. Players determine their abatement levels in a
dynamic setting defined in continuous time. In the differential game proposed,
open loop Nash equilibria and Feedback Nash equilibria are calculated in order
to determine the optimal paths of the abatement levels and of the stock pollu-
tant. The results obtained are the same and depend on the parameter p which
can be seen as a measure of the environmental awareness of countries. Stability
conditions, such as internal and external stability or farsighted stability, are
applyed showing that different answers about the size of a stable IEA can be
given.
The paper is organized as follows. In section 2 we describe the model; in section
3 the open loop Nash equilibria of the differential game are calculated and in
section 4 the analysis of the stability is proposed. In section 5 Feedback Nash
equilibria are obtained showing that they agree with the ones obtained using
open loop strategies. Some concluding remarks are given in section 6.

2 The Model

Let us assume that n identical countries decide to abate emissions in order to
reduce the environmental pollution.
Initially the accumulated emissions are at a level s0 and each country i chooses
to abate the quantity of emissions ai(t) (for i = 1, 2, ..., n) where ai(t) ≥ 0.
The dynamic of accumulated emissions is given by the following differential
equation

ṡ(t) = L−
n∑
i=1

ai(t)− k s(t) s(0) = s0 (1)
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where L represents a constant source of pollutant and k a positive rate of natural
decay.
Since s(t) ≥ 0 the following constraint must be satisfies

0 ≤ ai(t) ≤
L

n
∀ i = 1, 2, ..., n (2)

so, we suppose, by the simmetry, that a single country is allowed to abate only
a fraction of the emissions produced by itself.
We assume that players minimize a cost function ci(ai(t)) which is the sum of
two terms: the abatement costs and the costs due to remaining pollution. It is
very common in literature to consider this kind of cost functions in which the
two terms can be linear or quadratic function. In this model we consider the
first term quadratic and the second one linear. So, the cost function for each
country is

ci(ai(t)) =
1
2
ai(t)2 +

1
2
p s(t) (3)

A major role is played by the parameter p > 0; it can be seen as a measure of
the environmental awareness of the country, i.e. it denotes the relative weight
attached to the damage costs as compared to the abatement costs. By symmetry,
p is the same for every country.
To analyze the stability of an IEA with a stock pollutant we consider a two
stages game, in which in the first stage each country decides whether to join or
not the agreement while in the second stage each country chooses his abatement
level.
The game is solved in a backward order. Let assume that, as the outcome of
the first stage game, there are m signatory countries (i = 1, ...,m) and n −m
non signatory countries (j = m + 1, ..., n). So, we consider a simple structure
in which there is only one coalition while the other countries play as individual
outsiders.
In the second stage, as usual, non signatory countries choose their abatement
levels acting noncooperatively in order to minimize the present value of their
costs taking as given the strategy of the other countries; signatory countries
choose their abatement levels acting noncooperatively against non signatories
in order to minimize the present value of the aggregate costs of the m signatories.
Signatories also take as given the strategies of non signatories.
The optimal abatement levels and accumulated emission paths are given by the
Nash equilibria of a differential game. Consequently it is possible to obtain the
equilibrium present value of the costs of a signatory country Ci(m) and of a non
signatory country Cj(m).
In the first stage countries play a simultaneous open membership game; in
a game of this kind, the strategies for each countries are to sign or not an
agreement and any player is free to join it. The choice between the two different
kinds of behaviour is simultaneous and the agreement is formed by all players
that have choosen to cooperate, the others are non signatories. The usual
approach to the self enforcing IEA is based on the use of internal and external
stability conditions. They have been proposed for static emission games, but
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can be extended to dynamic games.
A coalition of size m is internally stable if no member has an incentive to leave
the coalition because the costs for an outsider to a coalition of size m − 1 are
larger than the costs for a member of an m− sized coalition. External stability
means that no country has an incentive to join a coalition of size m because
the cost for a member of a coalition of size m + 1 is higher than the ones for
an outsider to a coalition of size m. A coalition is called stable if it is both
internally and externally stable, that is if the following inequalities hold:

Ci(m) ≤ Cj(m− 1) Ci(m+ 1) ≥ Ci(m).

A deeper investigation shows that the stability definition assumes, in some sense,
a myopic behaviour of players. To overcome this drawback, the concept of
farsightedness has been introduced in literature, see e.g. Chwe (1994).
A country belonging to a coalition of size m decides to abandon the coalition if
its current cost Ci(m) is higher than the cost he should pay going outside the
coalition. Neverthless, by the farsighted approach, he will not simply compare
its actual cost with the outsider cost Cj(m − 1), but he will take into account
the possibility that if he leaves the coalition then other coalition members may
find convenient to abandon the coalition, too. So, a disgregation process of the
coalition can arise and then a country which decides to abandon a coalition
of size m must compare its cost as a member of the coalition with the cost
that it should pay as an outsider of the remaining coalition at the end of this
disgregation process. If no country has an incentive to leave a coalition of size m,
behaving in a farsighted way, then the coalition is said to be internally farsighted
stable.
A similar definition is given for the external farsighted stability.
It is clear that the concept of internal/external farsighted stability is a recursive
one. For a precise formal definition see Chwe (1994).
Now, we look for a self enforcing IEA calculating the open loop Nash equilibria
of the abatements differential game.

3 The open loop Nash equilibria of the differen-
tial game

Let us assume that δ > 0 is the discount rate. Taken as given the abatement
levels of outsiders, signatories commit to a level of abatement that minimize the
sum of the costs present value of the countries in the agreement

min
ai

m∑
h=1

∫ +∞

0

e−δt
(

1
2
ah(t)2 +

1
2
p s(t)

)
dt (4)

which is equivalent to

max
ai

m∑
h=1

∫ +∞

0

− e−δt
(

1
2
ah(t)2 +

1
2
p s(t)

)
dt (5)
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Taken as given the abatement levels of cooperators, non signatories commit to
a level of abatement that minimize the discount present value of the costs which
is equivalent to

max
aj

∫ +∞

0

− e−δt
(

1
2
aj(t)2 +

1
2
p s(t)

)
dt (6)

In both cases, countries face the same dynamics

ṡ(t) = L−
m∑
i=1

ai(t)−
n∑

j=m+1

aj(t)− k s(t) s(0) = s0 (7)

with the constraint on the control variables given by (2).
Let us define the current value of the Hamiltonian in the standard way

Hi =

− m∑
h=1

(
1
2
a2
h +

1
2
p s

)
+ λi

L− m∑
h=1

ah −
n∑

j=m+1

aj − ks

 , i = 1, ...,m

Hj = −
(

1
2
a2
j +

1
2
p s

)
+ λj

L− m∑
i=1

ai −
n∑

j=m+1

aj − ks

 , j = m+ 1, ..., n

where λi and λj are the adjoint variables. We obtain the following set of neces-
sary conditions for an interior open-loop equilibrium

−ai − λi = 0, i = 1, ...,m (8)

−aj − λj = 0, j = m+ 1, ..., n (9)

and the adjoint equations are

λ̇i = (δ + k)λi +
1
2
mp, i = 1, ...,m (10)

λ̇j = (δ + k)λj +
1
2
p, j = m+ 1, ..., n (11)

The trasversality conditions are

lim
t→+∞

e−δtλi = 0 i = 1, ...,m (12)

lim
t→+∞

e−δtλj = 0 j = m+ 1, ..., n (13)

Because of the symmetry assumption, the n equations given by (10) and (11)
reduce to two, solving it and using the trasversality conditions (12) and (13)
which are sufficient because the Hamiltonian functions are strictly concave in s,
we obtain

λi = − mp

2(δ + k)
and λj = − p

2(δ + k)
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The constraint on the control variables given by (2); (8) and (9) lead to the
following optimal abatement levels

ai =



0 if
mp

2(δ + k)
< 0

mp

2(δ + k)
if 0 ≤ mp

2(δ + k)
≤ L

n
i = 1, ...,m

L

n
if

mp

2(δ + k)
>
L

n

for a signatory country;

aj =



0 if
p

2(δ + k)
< 0

p

2(δ + k)
if 0 ≤ p

2(δ + k)
≤ L

n
j = m+ 1, ..., n

L

n
if

p

2(δ + k)
>
L

n

for a non signatory country.

Let

r =
2L(δ + k)

np
.

We distinguish three different cases depending on the value of the parameter r.

CASE I

If r ≥ m then

ai =
mp

2(δ + k)
i = 1, ...,m and aj =

p

2(δ + k)
j = m+ 1, ..., n. (14)

Signatories abate m times more than the non signatories. The optimal path for
the state variable s is

s(t) = s0e
−kt +

1
k

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
(1− e−kt) (15)

which is a positive, increasing and concave function if s0 <
1
k

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
otherwise it is a decreasing and convex one. Moreover, in both cases, for
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t→ +∞, s(t) approaches the value
1
k

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
.

CASE II

If 1 ≤ r < m then

ai =
L

n
i = 1, ...,m and aj =

p

2(δ + k)
j = m+ 1, ..., n; (16)

that is cooperators stop to produce emissions at all. The optimal path for the
state variable s is

s(t) = s0e
−kt +

(n−m)
k

[
L

n
− p

2(δ + k)

]
(1− e−kt) (17)

which is a positive, increasing and concave function if s0 <
(n−m)

k

[
L

n
− p

2(δ + k)

]
otherwise it is a decreasing and convex one. Moreover, in both cases, for

t→ +∞, s(t) approaches the value
(n−m)

k

[
L

n
− p

2(δ + k)

]
.

CASE III

If r < 1 then

ai =
L

n
i = 1, ...,m and aj =

L

n
j = m+ 1, ..., n (18)

and so both cooperators cease to produce emissions. In this case the role of a
signatory and of a non signatory is the same. The optimal path for the state
variable s is

s(t) = s0e
−kt (19)

which is a positive, decreasing and convex function and for t → +∞, it ap-
proaches zero.

4 Nash equilibria and Stability

In order to apply the stability conditions proposed in the above sections, we
need to calculate Ci(m) and Cj(m).
Substituting the obtained optimal control paths of the pollution stock and of
the abatement levels in (4) and in (6), we obtain the following results

CASE I

If r ≥ m then

Ci(m) =
m2p2

8δ(δ + k)2
+

p

2δ(δ + k)

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
+

ps0
2(δ + k)

(20)
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Cj(m) =
p2

8δ(δ + k)2
+

p

2δ(δ + k)

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
+

ps0
2(δ + k)

(21)

CASE II

If 1 ≤ r < m then

Ci(m) =
L2

2δn2
+
p(n−m)
2δ(δ + k)

[
L

n
− p

2(δ + k)

]
+

ps0
2(δ + k)

(22)

Cj(m) =
p2

8δ(δ + k)2
+
p(n−m)
2δ(δ + k)

[
L

n
− p

2(δ + k)

]
+

ps0
2(δ + k)

(23)

CASE III

If r < 1 then

Ci(m) = Cj(m) =
L2

2δn2
+

ps0
2(δ + k)

(24)

In this case the costs are the same no matter of participation to a coalition.
Therefore in the following we definitively assume that r ≥ 1. We want to
determine the size of farsighted stable coalitions. We use a recursive argument.
Let us assume that a farsighted stable coalition of size m ≥ 1 exists and we start
supposing that m satisfies the constraint given by the first case, i.e. r ≥ m. In
order to have the smallest farsighted stable coalition larger than the coalition
of size m, we need to find the smallest integer h such that 1 ≤ h ≤ n−m and

Ci(m+ h) ≤ Cj(m) (25)

Before studying the conditions for which (25) is satisfied, we have to characterize
the costs of cooperators and of defectors which depend on the relative positions
of m+ h and r. Infact, if m+ h ≤ r, then Ci and Cj are given, respectively by
(20) and (21); if m+ h > r then Ci is given by (22) while Cj by (21), again.
If we suppose that m+ h ≤ r, then (25) becomes:

(m+ h)2p2

8δ(δ + k)2
+

p

2δ(δ + k)

[
L− (m+ h)2p

2(δ + k)
− (n−m− h)p

2(δ + k)

]
+

ps0
2(δ + k)

≤

p2

8δ(δ + k)2
+

p

2δ(δ + k)

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
+

ps0
2(δ + k)

which is satisfied if
h ≥

√
2m(m− 1)− (m− 1) ,

that is
m+ h ≥

√
2m(m− 1) + 1

Let g(m) defined as the smallest integer greater than or equal to
√

2m(m− 1)+
1, i.e.

g(m) = [
√

2m(m− 1) + 1].
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If g(m) ≤ min{[r], n} then the size of the smallest farsighted stable coalition
larger than the coalition of size m is g(m).
If we suppose that m+ h > r, then (25) becomes:

L2

2δn2
+
p(n−m− h)

2δ(δ + k)

[
L

n
− p

2(δ + k)

]
+

ps0
2(δ + k)

≤

p2

8δ(δ + k)2
+

p

2δ(δ + k)

[
L− m2p

2(δ + k)
− (n−m)p

2(δ + k)

]
+

ps0
2(δ + k)

which is satisfied if

h ≤ 1
2

(r + 1) +
m(m− r)
r − 1

,

and so

m+ h ≤ 2m2 − 2m− 1 + r2

2(r − 1)
≡ λ.

Let w(m) defined as the smallest integer greater than or equal to λ, i.e.

w(m) = [λ] .

If w(m) ≥ [r] + 1 and [r] + 1 ≤ n then the size of the smallest farsighted stable
coalition larger than the coalition of size m is [r] + 1.

Now, we suppose that 1 ≤ r < m, then Ci and Cj , in (25), are given by
(22) and (23) and we have:

L2

2δn2
+
p(n−m− h)

2δ(δ + k)

[
L

n
− p

2(δ + k)

]
+

ps0
2(δ + k)

≤

p2

8δ(δ + k)2
+
p(n−m)
2δ(δ + k)

[
L

n
− p

2(δ + k)

]
+

ps0
2(δ + k)

which is satisfied if
h ≥ r + 1

2
and so

m+ h ≥ m+
r + 1

2
.

Let z(m) defined as the smallest integer greater than or equal to m+
r + 1

2
, i.e.

z(m) =
[
m+

r + 1
2

]
then the size of the smallest farsighted stable coalition larger than the coalition
of size m is z(m), provided that z(m) ≤ n.

We propose some numerical examples which show how the size of the farsighted
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stable coalitions changes, as the value of p varies.
We fix the following values:

n = 100 , L = 100 , k = 1 , δ = 1 , s0 = 0

Let p = 0.01, then the following coalitions are farsighted stable

m = 2
m = 3
m = 5
m = 8
m = 12
m = 18
m = 26
m = 38
m = 55
m = 79

Let p = 0.1, then the following coalitions are farsighted stable

m = 2
m = 3
m = 5
m = 8
m = 12
m = 18
m = 26
m = 38
m = 41
m = 62
m = 83

Let p = 1, then the coalitions of size m = 2 and m = 3 are farsighted stable.
Moreover any coalition of size m = 3t−1 with t = 2, 3, ..., 33 is farsighted stable.
The largest farsighted stable coalition is m = 98.

Let p ≥ 4, then any coalition is farsighted stable.

5 Feedback Nash equilibrium

Open loop strategies imply that each player commits himself to his entire course
of action at the beginning of the game and will not revise it at any subsequent
moment. In this section we abandon this assumption assuming that players use
feedback strategies. A feedback strategy consists of a contingency plan that
indicates the optimal value of the control variable for each value of the state
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variable at each point in time. It has the property of being subgame perfect,
because after each player’s actions have caused the state of the system to evolve
from its initial state to a new state, the continuation of the game may be re-
garded as a subgame of the original game. We can say that in this case each
player has committed to a rule which yields the optimal value of the control
variable in each moment as a function of the state of the system at that mo-
ment.
A feedback strategy must satisfy the principle of optimality of dynamic pro-
gramming.
The Hamilton-Jacobi-Bellman equation for signatories is

δVi = max
{ai}

−
m∑
h=1

(
1
2
a2
h +

1
2
p s

)
+ V ′i

L− m∑
h=1

ah −
n∑

j=m+1

aj − ks

 (26)

The Hamilton-Jacobi-Bellman equation for non signatories is

δVj = max
{aj}

−
(

1
2
a2
j +

1
2
p s

)
+ V ′j

L− m∑
i=1

ai −
n∑

j=m+1

aj − ks

 (27)

where Vi(s) and Vj(s) represent the optimal control value functions of the coali-
tion and of a non signatory associated with the optimization problem (5) and
(6), i.e. they denote the minimum present value of the cost flow subject to
the dynamic constraint of the accumulated emissions; V ′i and V ′j are the first
derivative with respect to the state variable s.

The optimal value of the control variables must satisfy the necessary condi-
tions for an interior feedback Nash equilibrium, that is

−ai − V ′i = 0 i = 1, ...,m (28)

−aj − V ′j = 0 j = m+ 1, ..., n (29)

These conditions define the optimal strategies for abatements as functions of
accumulated emissions; so, the constraint on the control variables given by (2);
(28) and (29) lead to the following conditions on the abatement levels

ai =



0 if − V ′i < 0

−V ′i if 0 ≤ −V ′i ≤
L

n
i = 1, ...,m

L

n
if − V ′i >

L

n

for a signatory country;

12



aj =



0 if − V ′j < 0

−V ′j if 0 ≤ −V ′j ≤
L

n
j = m+ 1, ..., n

L

n
if − V ′j >

L

n

for a non signatory country.
We have analysed all possible combinations between interior and boundary ai
and aj values.

If we suppose that 0 ≤ −V ′i ≤
L

n
and 0 ≤ −V ′j ≤

L

n
, then ai = −V ′i and

aj = −V ′j . Substituting these abatement level expressions in (26) and in (27),
we obtain the following nonlinear differential equations

δVi =
m

2
(V ′i )2 + V ′i (L+ (n−m)V ′j − ks)−

1
2
mps (30)

δVj =
(

2n− 2m− 1
2

)
(V ′j )2 + V ′j (L+mV ′i − ks)−

1
2
ps (31)

In order to compute the solution of these equations, given the linear quadratic
structure of the game, we guess that the optimal value functions are quadratic
and consequently the equilibrium strategies are linear respect to the state vari-
able. Precisely, we postulate quadratic value functions of this form

Vi =
1
2
αis

2 + βis+ µi (32)

Vj =
1
2
αjs

2 + βjs+ µj (33)

where α, β, µ are constant parameters of the unknown value functions which are
to be determined. Using (32) and (33) to eliminate Vi, Vj , V ′i and V ′j from (30)
and from (31), and equating we yield the following system of algebraic Riccati
equations for the coefficients of the value functions
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1
2αiδ =

m

2
α2
i + (n−m)αiαj − kαi

βiδ = mαiβi + Lαi + (n−m)αiβj + (n−m)βiαj − kβi − 1
2mp

µiδ = βi

[m
2
βi + L+ (n−m)βj

]
1
2αjδ =

(
2n− 2m− 1

2

)
α2
j +mαiαj − kαj

βjδ = (2n− 2m− 1)αjβj + Lαj − kβj +mαjβi +mαiβj − 1
2p

µjδ = βj

[(
2n− 2m− 1

2

)
βj + L+mβi

]

This system has four solutions, but only one produces value functions satis-
fying the stability condition. To obtain this condition we substitute the linear
strategies

ai = −αis− βi , aj = −αjs− βj (34)

in the dynamical constraint of accumulated emissions. We obtain the following
differential equation

ṡ = [mαi + (n−m)αj − k]s+ L+mβi + (n−m)βj (35)

The stability condition is

dṡ

ds
= mαi + (n−m)αj − k < 0

which is satisfied only by the following solution of the system

αi = αj = 0 , βi = − mp

2(k + δ)
, βj = − p

2(k + δ)

µi = −mp(4kL+ 4Lδ − p(m2 − 2m+ 2n))
8δ(k + δ)2

µj = −p(4kL+ 4Lδ − p(2m2 − 2m+ 2n− 1))
8δ(k + δ)2

This solution, combined with the constraints 0 ≤ −V ′i ≤
L

n
and 0 ≤ −V ′j ≤

L

n
,

gives us the optimal abatement levels:

ai =
mp

2(δ + k)
and aj =

p

2(δ + k)
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when the following condition on p is satisfied

p ≤ 2L(δ + k)
mn

which is equivalent to
m ≤ r .

It is possible to conclude that the Feedback Nash equilibrium obtained, coincide
with the open loop Nash equilibrium given by case I.

If we suppose that −V ′i >
L

n
and 0 ≤ −V ′j ≤

L

n
, then ai =

L

n
and aj = −V ′j .

Argumenting as above we obtain

ai =
L

n
and aj =

p

2(δ + k)

when the following condition on p is satisfied

2L(δ + k)
mn

< p ≤ 2L(δ + k)
n

which is equivalent to
1 ≤ r < m .

Again we conclude that the Feedback Nash equilibrium obtained coincides with
the corresponding open loop one.
If we consider the remaining combinations between ai and aj values, it is possible
to prove that solutions of the Riccati system don’t satisfy the constraints and
so they don’t represent feedback Nash equilibria.
So, we conclude this analysis, claiming that, in the model proposed, Feedback
and Open Loop Nash equilibria are the same.

6 Concluding remarks

The present paper studies the problem of computing the size of a stable coali-
tion in an International Environmental Agreement.
We studied a differential game in which abatement levels are associated with a
stock pollutant. Coalition formation has been designed as a two stages game in
which in the first stage each country decides if to join or not a coalition, instead,
in the second stage, non signatories and signatories determine the optimal paths
of the abatements and so , also, the path of the global emissions.
The model is characterized by the presence of a parameter p which gives us
the measure of the environmental awareness of countries. The results obtained
show that if p is quite small, only coalitions of size 2 or 3 are internally and
externally stable, but if we consider the farsighted stability, then large stable
coalitions can occur.
If p increases it is possible to obtain value of it for which no coalition is internally
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and externally stable. Moreover, also in this case it it possible to observe that
if we consider farsighted stability both large and small coalitions can be stable.
Only if cooperators and defectors abate the same quantities then myopic stabil-
ity conditions and so farsighted conditions are satisfied, whatever is coalitions’
size.
Open loop Nash equilibria and Feedback Nash equilibria have been analysed
showing that they carry out to the same solution of the differential game.
A possible step for a forthcoming paper could be the study of stable coalitions
modifying the costs function or relaxing some assumptions of the game’s rules.
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