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DOAM for Evolutionary Portfolio Optimization:

a computational study.

Gabriella Dellino∗, Mariagrazia Fedele†, and Carlo Meloni‡

February 8, 2008

Abstract

In this work, the ability of the Dynamic Objectives Aggregation
Methods to solve the portfolio rebalancing problem is investigated con-
ducting a computational study on a set of instances based on real data.
The portfolio model considers a set of realistic constraints and entails
the simultaneously optimization of the risk on portfolio, the expected
return and the transaction cost.

1 Introduction

The standard problem of portfolio selection consists in allocating wealth
among available investments. Let n be the number of available risky assets
with expected returns µi and variances σii; let σij be the covariance between
the asset i and the asset j and Σ = (σij) be the covariance matrix. We
denote with xi the proportion of the capital to be allocated to the asset
i. Therefore, the standard problem of portfolio selection can be stated as
follows:

min x′Σx, (Min-Risk) (1)

subject to
µ′x = µ, (2)

x′1 = 1, (3)

xi ≥ 0, i = 1, . . . , n; (4)

The solution of the previous problem is the portfolio with minimum risk
among those with a fixed expected return µ. Equations (3) and (4) represent
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the balance constraint and the non-negative constraint, respectively; the
latter is left out when short sales are allowed. Mean-variance approach
allows to trace out the efficient frontier, a set of portfolios that offer the
minimum risk level for a given level of reward. The shape of the efficient set
differs according to the assumptions in regard to the ability of the investor
to sell security short as well as the ability to lend and to borrow funds.
The scenario of the classical mean-variance model is an ideal market: no
transaction costs, no holding constraints, no limit on portfolio cardinality,
no regulatory requirements are present. Since any realistic portfolio problem
has to take into account these practical issues, it is necessary to consider a
model including costs and constraints. The introduction of such constraints,
particularly cardinality range, raises the computational complexity of the
portfolio model which turns out to be NP-hard.
In this work, a computational and comparative study on the application
of DOAMs on multi-objective rebalancing problem is proposed. Section 2
presents the portfolio rebalancing problem and describes the transaction
costs and the multi-objective rebalancing model. In section 3 the Dynamic
Objective Aggregation Methods are briefly introduced and the experimental
setting is described; section 4 presents the analysis of results, while in the
last section some comments are drawn.

2 Portfolio Rebalancing problem

Let us consider now the revision of the current portfolio x0; let the n vector
x0 = (x0

1, . . . , x
0
n) be the current portfolio and let x = (x1, . . . , xn) be the

portfolio after rebalance; x is a vector of fraction of the capital invested
in each asset, therefore the vector of amount of money actually invested
is Cx, where C stands for the available capital or, in rebalancing problem,
the value of the current portfolio x0. In any realistic portfolio rebalancing
the investors have to face transaction costs; let T x

x0
be the transaction cost

associated with the rebalance from x0 to x; T x
x0

is a function of the vector
of the trading volumes v = |x− x0|C:

vi =
{

(xi − x0
i )C if the exposure to the i asset is increased by purchases,

(x0
i − xi)C if the exposure to the i asset is reduced by sales.

In our model we assume that the transaction costs both for purchases and
sales are equal. Furthermore, it is assumed that the cost function is a
separable function:

T x
x0

(v) =
n∑

i=1

ti(vi).

We are considering small size of trade; in particular, from trading online
transaction costs we derive two type of transaction function according to
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the type of securities, t1i and t2i :

t1i (vi) =
{

0 if xi = x0
i

max{c1
min, c1r

i vi } otherwise
(5)

t2i (vi) =

{
0 if xi = x0

i

min
(

max{c2
min, c2r

i vi },c2
max

)
otherwise

(6)

where c1
min and c2

min denotes the minimum costs, c2
max the maximum costs,

c2r
i and c1r

i stand for the commission rates for the asset i. The first trading
function entails a fixed cost until a given level of amount traded v1; beyond
v1 the costs increase linearly with the volume transacted. In the second
function, there is an upper bound on the transaction costs, as well: beyond
an upper level v2 the transaction costs are fixed. The model proposed is the

0 0v
1 v

1 v
2

C1
min

C2
min

C2
max

T1
T2

Figure 1: Transaction cost function

following:

min x′Σx,

max x′µ, (7)

min
n∑

i=1

ti(|xi − x0
i |C)

x′1 = 1,

K1 ≤
n∑

i=1

Zi ≤ K2,

liZi ≤ xi ≤ uiZi, i ∈ {1, . . . , n}
Zi ∈ {0, 1}, i ∈ {1, . . . , n}.

ti denotes the cost function of the asset i; K1 and K2 are the minimum and
maximum number of assets that must be in portfolio; li and ui are lower
and upper bound on the holdings in each asset, respectively.
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3 DOAMs’ Configuration

To solve the portfolio rebalancing problem as a multi-criteria optimization
problem, a dynamic scalarization method based on different aggregate func-
tions in an evolutionary optimization scheme is used. The Dynamic Ob-
jective Aggregation Methods are based on the standard genetic algorithm
included in the Matlab’s Genetic Algorithm and Direct Search Toolbox [7].
These algorithms with different rules of weights changing have been first
tested on benchmark problems from the literature and compared with a
widely used standard multi-objective algorithm: NSGA-II [3]. Computa-
tional results of this preliminary campaign of experiments are reported in
[4]. The algorithms achieving better results are employed in a second cam-
paign of experiments devoted to tackle the multi-objective portfolio rebal-
ancing problem; therefore, we investigate the ability of the heuristic DOAMs
to solve the portfolio rebalancing model. Among the 24 DOAMs tested in
the preliminary study [4], obtained combining the weights generation rules
and the four strategies considered for the variation of the exponents, the
best 6 algorithms are chosen, namely: chaotic, sinusoidal and triangular
weights generators are combined with exponents fixed to one (Chaos-Gen,
Sin-Gen, Trian-Gen) and with the adaptive scheme (Chaos+Exp, Sin+Exp,
Trian+Exp). In the adaptive scheme the exponent value is incremented
when there is no improvement in the optimization process for a given num-
ber of iterations, which has been fixed to ∆ = 0.05 N , being N the maximum
number of generations that can be produced.
In the preliminary computational study [4], we used the DOAMs for two-
objective problems; as the model (7) has three objectives, the aggregate
function has the following expression

F (x, k) = w1(k)f t
1(x) + w2(k)f t

2(x) + w3(k)f t
3(x).

The weights wk are dynamically modified according to a function R(k) of
the generation number k:

w1(k) = R(k), w2(k) = (1− w1)w1, w3(k) = 1− w1 − w2.

A periodical changing of the weights can be obtained according to a sin or
triangle wave; the sinusoidal rule is the following:

R(k) = | sin(2πk/F )|, (8)

where F is the frequency and it has been fixed to F = 200. Whereas, a
chaotic variation law to the weights is employed as follows:

w1(k + 1) = µw1(k)(1− w1(k)). (9)

When µ = 4 and w1(0) 6∈ {0, 0.25, 0.5, 0.75, 1}, the previous equation shows
chaotic behaviour.
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As the DOAMs are based on the standard genetic algorithm included in the
Matlab’s Genetic Algorithm and Direct Search Toolbox, some parameters
values need to be specified, before the algorithm execution: we adopted a
stochastic uniform selection operator, a scattered crossover function with
probability 0.7 and a Gaussian mutation function with probability 0.3; the
number of best individuals that will survive to the next population has been
fixed to 2.
The population size is of 100 individuals; the archive used is made up of 500
individuals.
In our experiments, we consider two different stopping criteria: in the first
set of computational tests the stopping criterion is based on the maximum
number of generations to be produced and it is fixed to 500; therefore the
computational time can be considered as a performance indicator. Since
from the first results it seems evident that the DOAMs are faster than
the NSGA-II, the computational tests are then repeated considering the
execution time as stopping criterion, i.e. a time limit of 600 seconds is
adopted.

3.1 Cardinality and Holding Constraints

Since the DOAMs are population based algorithms, at each generation a
population of individuals (children) or solutions are produced by genetic
operators of selection, crossover and mutation from the previous genera-
tion (parents). Not all possible individuals correspond to feasible portfolios,
because of the holdings and cardinality constraints; therefore a procedure
provided by Chang et al., [2] is used to assure the individuals to be always
feasible.
Let us consider n real numbers si, 0 ≤ si ≤ 1, i = 1, . . . , n; let the vector
(s1, . . . , sn) be an individual (child) of the population generated by the algo-
rithm. Considering the set Q = {i s.t. si 6= 0} ⊂ {1, . . . , n}, K = |Q| is the
number of non-zero elements of the individual (s1, . . . , sn). If K is greater
than K1 and lower then K2, then the individual satisfies the cardinality
constraint; otherwise a procedure to assure the cardinality constraints are
satisfied is used. This procedure is described in the pseudo-code 1:

After we have assured that the number of non-zero si is between K1

and K2, we use a procedure to assure that the holding and the balance
constraints are satisfied too. This procedure is shown in a pseudo-code in
Table 2.

3.2 Portfolio Data Set

The comparison of different DOAMs implementations is performed on a set
of instances based on a public data set provided by Beasley and available
from OR-Library [1].
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Table 1: Procedure for the fulfillment of cardinality constraints
A the set of assets that are in the parents, but are not in the child
P the set of assets i with i ∈ Q ,

while |Q| > K2 delete the asset i with the smallest si

while |Q| < K1 do % add asset from parent if possible
if |A| 6= 0 then
add to P a randomly chosen asset j from A
A = A \ {j}
else
add to P a randomly chosen asset j /∈ Q and set sj = 0
end if
end while

Table 2: Feasibility recovery procedure
begin
if
P

i∈Q li > 1 or
P

i∈Q ui < 1 then return % infeasible

L :=
P

i∈Q si

F := 1−Pi∈Q li % F is the free proportion of the portfolio

xi := li + siF/L∀i ∈ Q % xi satisfies lower holding and balance

%iterative procedure for upper holding constraint
R := ∅ % R contains i with xi = ui

while there exists an i ∈ Q \R with xi > ui do % iterate until feasible
for all i ∈ Q \R if xi > ui then R := R ∪ {i}
L :=

P
i∈Q\R si

F := 1− (
P

i∈Q\R li +
P

i∈R ui) % F is the free proportion of the portfolio

xi := li + siF/L∀i ∈ Q \R
xi = ui ∀i ∈ R
end while
end

The financial data sets (means and variance matrix) are constructed using
the stocks involved in five capital market indices. The weekly prices from
March 1992 to September 1997 are taken into account for the stocks of Hang
Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), SP 100 (USA)
and Nikkei 225 (Japan). The size of the five tests problems varies from
n = 31 (Hang Seng) to n = 225 (Nikkei).
We extended the Beasley’s original instances introducing our more realis-
tic aspects in both objectives and constraints. We use the two transaction
costs structures defined by equations (5), (6). The data used for the param-
eters characterizing the commission costs are realistic values obtained from
available trading online data:

c1
min = 15, c1r

i = 0.30%,

c2
min = 2.5, c2r

i = 0.20%, c2
max = 20.

Two different configurations of constraints are considered:

Configuration 1 : K1 = 9, K2 = 11,K0 = 10, li = 0.05, ui = 0.75,
Configuration 2 : K1 = 18, K2 = 22,K0 = 20, li = 0.02, ui = 0.75.
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Combining the two transaction cost functions with the two constraints’ con-
figurations, 4 overall different formulations of the problems are considered.
In the conducted experiments we assume the invested capital C = 100000,
while the initial portfolios are generated randomly.

4 Computational Results

To compare the different DOAMs on portfolio instances, we use four per-
formance indexes; we consider the hyperarea ratio (HR), and the number
of non-dominated elements setting up the efficient frontier (ND); we report
the fractional contribution (FC) defined as the percentage of non dominated
points contributed by an algorithm on the total efficient frontier obtained
unifying all the efficient sets produced by all the algorithms on the same
instance. Precisely, the total efficient frontier is obtained unifying all the
efficient frontier and executing a dominance analysis: dominated points or
eventually double points are removed. The fractional contribution is cal-
culated as the number of points achieved by an algorithm that are present
in the total front, out of the number of solutions in total frontier. As last
indicator, we report the spacing (S).
Since the first experiments are made using the number of iterations as stop-
ping criterion, we can consider the computational time (T) as performance
indicator. As in the second set of experiments a time limit of 600 seconds
is adopted, the number of generations (G) is also reported as performance
index.
For each experiment three different runs have been executed initializing al-
gorithms with random populations; therefore the values of performance indi-
cators have to be considered as mean values. Tables 3 - 7 contain the average
results on 3 runs for each of the 4 algorithms configurations described; the
computational results reported are obtained for the five portfolio problems
with the stopping criterion of 500 iterations. Tables 8 - 12 contain the av-
erage results on 3 runs for each algorithms configurations obtained with a
time limit of 600 seconds.
From the first campaign of experiments, as global observation, we can say
that all the DOAMs present a promising behavior, but no dynamic objec-
tives algorithm perform always better than others. Furthermore, it can be
observed that the DOAMs are, on the whole, faster than the NSGA-II for
every instance and for every problem. While the fractional contribution FC
of the NSGA-II is generally greater than that one of the DOAMS, the val-
ues of the main performance index, i.e. the hyperarea ratio, do not present
relevant differences on the average.
Similar arguments can be used also in the experiments made with a fixed
computation time. It can be observed that, although the NSGA-II presents
again much more high percentages of fractional contributes and higher num-
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ber of nondominated points, the hyperarea values of the DOAMs are compa-
rable with that one of NSGA-II, and in several cases they are even better. In
particular, in the 20, 8% and 23, 3% of cases DOAMs outperform NSGA-II
in the first and second group of experiments, respectively. The compara-
tive evaluation on this computational campaign of experiments restricted to
DOAMs shows Trian-Gen and Sin-Gen and their t-power counterparts as
better strategies.

5 Concluding Considerations

We have provided a reliable and general, yet improvable, algorithmic instru-
ment to solve realistic multi-objective optimization problems. The multi-
objective approach allows us to solve re-weighting portfolio problem also
minimizing transaction costs. The proposed resolution methods based on
evolutionary schemes and working with populations of solutions result - af-
ter different campaigns of experiments - to be a suitable instrument to solve
multi-objective problems. Eventually other objectives can be taken into ac-
count in the portfolio problem without the algorithmic approach is changed.
Future researches may be done both on the portfolio model and on the
algorithmic methods. Since we have considered only the commissions’ com-
ponent of the transaction costs, the market impact cost could be considered.
From the algorithmic point of view, in order to exploit the speed of DOAMs,
an algorithm combining NSGA-II (or another standard population-based
multi-objective algorithm) with a DOAM as local search algorithm deserves
to be experimentally evaluated.
Moreover, other DOAMs with different aggregating functions can be con-
sidered: in addition to the t-power transformation, e.g. Lin et al. in [5]
investigated the exponential transformation of the objective functions and
its capability to convexify the efficient frontier.
The analysis of the impact of algorithm’s parameters on the achievable com-
putational performance is another topic for further research. It could be
devoted to point out suitable procedures for the fine tuning of these param-
eters.
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Table 3: Average values of T, ND, HR, FC and S for the portfolio problem
1 with a fixed (500) number of generations.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

T(sec.) 1494 429 521 475 470 459 495
I ND 497 201 338 313 205 208 221

HR(%) 11 7 8 9 8 7 7
FC(%) 65.22 3.08 13.03 10.93 2.79 2.45 2.97
S 94.03 158.01 140.98 175.35 77.21 146.71 97.67
T(sec.) 1242 423 460 508 453 464 492

II ND 455 143 184 158 96 104 115
HR(%) 10 8 12 12 11 12 9
FC(%) 88.77 2.40 3.80 3.50 0.33 0.47 0.61
S 0.62 2.04 0.95 1.43 2.08 1.95 2.65
T(sec.) 1412 469 559 542 531 585 523

III ND 496 417 442 453 424 440 426
HR(%) 14 17 9 8 9 11 10
FC(%) 55.19 6.78 8.06 7.69 7.43 7.51 6.36
S 94.14 198.46 89.50 150.51 106.92 254.01 110.74
T(sec.) 1299 487 525 541 495 520 533

IV ND 465 187 213 179 165 181 198
HR(%) 15 11 11 9 7 12 13
FC(%) 84.94 2.95 2.66 3.16 2.64 2.28 1.67
S 0.68 2.30 1.08 1.25 1.94 2.13 1.08
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Table 4: Average values of T, ND, HR, FC and S for the portfolio problem
2 with a fixed (500) number of generations.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

T(sec.) 2173 993 1019 1033 1088 1052 1085
I ND 496 154 177 171 168 171 190

HR(%) 10 3 11 12 5 6 3
FC(%) 78.82 1.32 5.76 5.76 0.87 2.05 3.91
S 27.39 108.50 241.20 355.41 162.25 180.05 151.65
T(sec.) 2067 991 985 1028 1019 1024 1064

II ND 495 106 110 104 86 793 827
HR(%) 6 6 7 8 6 6 5
FC(%) 87.06 2.22 7.39 2.93 0.11 0.11 0.17
S 0.45 2.30 1.50 2.75 2.54 2.24 2.75
T(sec.) 2078 1025 1087 1098 1043 1042 990

III N.pt 498 276 244 249 268 275 227
HR(%) 12 9 9 11 9 8 11
FC(%) 60.61 8.12 6.54 5.71 5.67 5.71 4.44
S 59.39 343.47 337.37 216.04 337.89 196.35 391.83
T(sec.) 1978 1042 1069 1198 1058 1106 1105

IV ND 492 123 123 105 121 125 131
HR(%) 20 5 5 6 6 5 6
FC(%) 88 1.12 2.14 2.85 1.31 1.32 1.61
S 0.55 4.25 2.76 3.16 2.42 3.10 3.07

Table 5: Average values of T, ND, HR, FC and S for the portfolio problem
3 with a fixed (500) number of generations.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

T(sec.) 2150 1057 1102 1156 1094 1156 1141
I ND 498 219 287 271 218 197 192

HR(%) 6 8 7 6 5 5 8
FC(%) 65.20 2.96 12.21 9.64 1.91 1.45 5.50
S 35.55 219.53 118.27 149.65 123.68 184.15 332.23
T(sec.) 2125 1006 1055 1083 1032 1046 1066

II ND 497 138 143 137 98 104 119
HR(%) 12 9 13 10 10 11 5
FC(%) 84.61 2.54 7.11 3.36 0.71 1.14 0.34
S 0.79 3.12 1.47 2.11 2.70 4.47 3.19
T(sec.) 2088 1170 1202 1249 1206 1270 1153

III ND 499 442 399 439 434 446 442
HR(%) 12 8 10 8 11 10 8
FC(%) 46.69 8.30 8.28 9.58 8.64 9.03 10.19
S 69.09 114.66 349.14 199.19 222.33 326.37 198.90
T(sec.) 2044 1081 1120 1160 1083 1254 1086

IV ND 497 180 186 163 172 191 169
HR(%) 14 9 10 7 10 7 6
FC(%) 76.28 10.50 4.60 2.48 2.00 2.16 1.25
S 0.48 3.64 2.91 2.47 4.34 2.94 2.39

Table 6: Average values of T, ND, HR, FC and S for the portfolio problem
4 with a fixed (500) number of generations.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

T(sec.) 2316 1233 1266 1293 1248 1281 1255
I ND 498 254 349 335 278 265 282

HR (%) 6 7 6 7 4 9 5
FC (%) 72.45 2.90 9.59 10.48 1.21 1.04 1.80
S 89.85 105.19 97.61 122.26 106.07 137.73 126.58
T(sec.) 2347 1123 1288 1212 1151 1179 1200

II ND 499 176 227 215 123 130 139
HR (%) 18 11 17 15 6 8 7
FC (%) 76.86 2.62 11.03 8.30 0.62 0.77 0.10
S 0.49 1.62 1.36 1.54 1.88 1.61 0.58
T(sec.) 2269 1493 1363 1401 1451 1393 1365

III ND 499 408 457 431 428 409 500
HR (%) 8 6 9 6 13 13 9
FC (%) 57.59 5.83 6.41 7.43 8.08 7.46 7.58
S 68.97 108.26 157.97 123.16 162.36 172.88 143.67
T(sec.) 2240 1277 1297 1369 1280 1435 1300

IV ND 497 228 237 234 244 208 207
HR (%) 12 6 9 10 9 9 10
FC (%) 82.58 5.36 6.31 2.91 0.38 0.38 1.00
S 0.99 2.08 1.56 1.81 1.49 2.13 2.01
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Table 7: Average values of T, ND, HR, FC and S for the portfolio problem
5 with a fixed (500) number of generations.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

T(sec.) 10014 8171 7935 8190 9102 8314 8361
I ND 497 108 165 175 120 129 104

HR(%) 10 8 6 5 7 7 6
FC(%) 72.53 1.78 7.98 9.18 4.43 4.19 1.63
S 61.34 324.77 457.75 321.42 585.95 290.02 355.67
T(sec.) 9384 8253 8422 8386 9167 8530 9227

II ND 478 48 73 58 42 61 46
HR(%) 16 9 8 9 8 8 8
FC(%) 89.24 1.40 5.22 3.17 0.43 0.79 0.06
S 0.47 4.05 4.77 7.10 7.18 5.18 3.03
T(sec.) 8728 7949 7292 7803 7874 8337 8495

III ND 499 143 179 164 167 149 153
HR(%) 10 2 3 2 2 3 3
FC(%) 69.20 4.31 11.11 5.30 3.75 3.61 3.09
S 75.41 864.95 634.14 959.51 832.01 435.95 416.52
T(sec.) 9063 9281 7448 8352 8658 9438 8701

IV ND 490 86 59 71 72 81 73
HR(%) 23 3 4 3 3 3 4
FC(%) 89.00 0.79 2.81 1.89 1.88 1.63 0.86
S 0.60 5.23 13.90 11.30 18.68 10.38 3.02

Table 8: Average values of G, ND, HR, FC and S with time fixed to 10
minutes for the portfolio problem 1.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

G 223 602.33 573.67 572.67 666 678 685.33
ND 496 248 273 238 260 270 258

I HR (%) 20 14 12 14 12 12 12
FC (%) 67.99 5.55 5.14 5.22 4.23 4.64 5.66
S 25.94 75.45 117.63 135.15 108.89 146.53 325.56
G 278 604 600.33 611.33 715.33 689.33 721
ND 394 164 185 162 103 112 113

II HR (%) 29 27 25 28 24 22 24
FC (%) 78.37 6.04 7.10 6.16 0.69 0.69 1.16
S 0.55 1.22 1.25 1.13 1.70 1.34 1.71
G 211.67 462 467.67 469.33 505.33 496 489.67
ND 496 430 437 419 468 443 446

II HR (%) 23 10 10 18 13 12 11
FC (%) 53.01 6.89 7.52 8.36 7.76 7.36 7.69
S 61.03 86.27 154.89 201.22 121.19 153.87 130.12
G 241.33 531.67 525.67 528.33 570 580.33 633.33
ND 455 181 193 172 187 182 187

II HR (%) 15 10 11 12 10 11 12
FC (%) 83.51 2.85 4.68 1.61 1.80 1.91 2.14
S 0.50 1.84 1.24 1.51 1.67 1.03 2.30

Table 9: Average values of G, ND, HR, FC and S with time fixed to 10
minutes for the portfolio problem 2.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

G 157.33 278.67 283.67 281 304 306 308.33
ND 489 160 156 140 150 137 128

I HR (%) 10 9 8 8 8 9 10
FC (%) 82.89 1.63 3.80 4.05 1.99 1.82 2.91
S 13.67 176.26 55.53 177.18 184.57 265.95 239.83
G 163 293.67 292.33 287 299 299.33 303.33
ND 487 77 101 91 84 83 69

II HR (%) 14 15 18 16 14 16 14
FC (%) 84.53 3.03 5.78 4.09 1.62 1.86 0.35
S 0.43 3.04 2.55 3.60 2.10 2.00 3.30
G 154.67 265 264.67 264 288.67 276 276.33
ND 496 205 204 211 203 215 196

III HR (%) 17 9 5 9 9 8 6
FC (%) 66.59 5.61 5.19 5.95 6.55 6.59 4.94
S 57.79 302.44 349.65 407.66 263.01 243.07 257.12
G 162.67 269.33 271.33 273 279.67 276.67 293
ND 463 135 136 120 131 126 141

IV HR (%) 25 9 9 7 6 7 8
FC (%) 83.69 4.27 2.38 2.84 210 1.91 2.43
S 0.67 4.19 2.60 3.36 3.74 2.48 2.18
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Table 10: Average values of G, ND, HR, FC and S with time fixed to 10
minutes for the portfolio problem 3.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

G 154.67 271.33 280.67 268 297.67 295 297.67
ND 493 165 166 211 164 180 170

I HR (%) 22 11 12 14 14 14 16
FC (%) 70.10 3.83 4.75 6.31 4.69 5.09 4.20
S 51.01 313.49 322.60 184.93 272.19 183.89 139.44
G 158.67 275.33 279.67 284.67 290.33 297.67 296.33
ND 485 93 126 95 88 93 80

II HR (%) 20 20 19 24 20 22 22
FC (%) 86.69 2.52 5.73 2.98 0.91 0.67 1.17
S 0.53 4.67 0.98 5.66 4.98 4.35 3.50
G 149.33 242.33 245.67 247.33 258.67 254.67 257.67
ND 497 365 343 358 364 338 327

III HR (%) 17 13 10 15 8 11 10
FC (%) 49.70 9.22 8.11 8.74 8.08 7.40 7.71
S 119.62 329.52 324.19 303.40 236.53 242.83 353.28
G 158.67 264.67 268 266.33 276.33 269.67 291.33
ND 466 161 143 166 152 161 141

IV HR (%) 18 10 14 8 13 11 12
FC (%) 76.08 8.26 4.06 1.87 1.34 1.85 6.19
S 0.57 4.37 3.71 3.03 4.08 7.86 4.96

Table 11: Average values of G, ND, HR, FC and S with time fixed to 10
minutes for the portfolio problem 4.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

G 140.67 236.33 245.33 245.67 252.33 247.67 258
ND 496 248 215 219 224 231 218

I HR (%) 8 8 8 9 12 10 11
FC (%) 82.80 6.13 2.09 1.15 2.14 2.09 1.65
S 54.56 128.78 128.21 153.19 135.09 127.00 123.11
G 140 256.67 252.33 249.33 256 264.33 259.67
ND 495 135 158 145 96 119 100

II HR (%) 15 9 18 15 10 22 16
FC (%) 77.80 6.83 8.37 6.62 0.05 0.16 0.17
S 0.71 3.10 2.10 1.65 0.84 0.61 0.48
G 136.67 220.67 222.67 222.33 215.33 218 224
ND 496 359 311 357 348 376 377

III HR (%) 6 10 9 8 9 9 9
FC (%) 60.54 6.72 6.99 5.64 6.19 6.27 6.09
S 51.22 137.55 166.41 171.04 166.23 177.56 196.87
G 140.33 236.33 236.33 236.67 238.67 249.33 248
ND 494 201 175 210 226 200 213

IV HR (%) 12 9 8 7 8 8 7
FC (%) 77.45 2.25 3.06 5.43 4.47 4.32 3.68
S 0.89 1.55 2.17 1.74 2.24 1.54 1.73

Table 12: Average values of G, ND, HR, FC and S with time fixed to 10
minutes for the portfolio problem 5.

Chaos+ Sin.+ Trian.+Form. Perf.Indic. NSGAII Chaos-Gen Sin-Gen Trian-Gen
Exp Exp Exp

G 31.67 28 28.33 28.33 29.33 28.67 31
ND 182 47 54 45 55 41 41

I HR (%) 18 7 8 8 6 7 8
FC (%) 78.22 2.63 3.09 5.62 3.84 2.70 2.76
S 118.73 428.42 589.26 799.14 473.94 1182.36 594.27
G 31.67 28.67 28.67 27.33 30 28.67 29.67
ND 140 26 29 30 26 35 26

II HR (%) 19 6 6 7 6 6 5
FC (%) 81.48 1.41 0.23 11.54 1.78 1.62 1.63
S 1.24 4.83 10.89 5.28 11.14 4.73 7.80
G 29.33 30.67 29.67 32 33 32.67 34.33
ND 146 31 43 51 39 38 39

III HR (%) 26 5 6 7 5 5 7
FC (%) 76.06 0.33 7.92 5.47 3.83 3.58 3.47
S 153.33 1585.88 933.33 539.71 1175.15 887.59 1116.28
G 30.67 32.67 29.67 29.33 31.33 32 34
ND 79 29 20 33 29 38 38

IV HR (%) 26 7 4 4 6 3 3
FC (%) 75.88 8.47 4.57 2.22 5.26 4.96 2.16
S 2.61 12.67 16.03 17.02 9.43 13.27 6.28
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