
 
Dipartimento di Scienze Economiche, Matematiche e Statistiche 

 
Università degli Studi di Foggia 

____________________________________________________________________ 
 
 
 
 
 

A Data Set Generation Algorithm in 
Combinatorial Auctions 

 
Crescenzio Gallo 

Giancarlo De Stasio 
Cristina Di Letizia 

 
Quaderno n. 1/2006 

 
 
 
 
 
 
 

Quaderno riprodotto al  
Dipartimento di Scienze Economiche, Matematiche e Statistiche 

nel mese di gennaio 2006 e 
depositato ai sensi di legge 

 

Authors only are  responsible for  the content of this preprint. 

_______________________________________________________________________________ 
Dipartimento di Scienze Economiche, Matematiche e Statistiche, Largo Papa G. Paolo II, 1, 71100 

Foggia (Italy), Phone +39 0881-75.37.28, Fax +39 0881-77.56.16 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6804229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Data Set Generation Algorithm in
Combinatorial Auctions∗

Crescenzio Gallo(c.gallo@unifg.it)

Giancarlo De Stasio(g.destasio@unifg.it)

Cristina Di Letizia(c.diletizia@unifg.it)

Dipartimento di Scienze Economiche, Matematiche e Statistiche

Universit̀a di Foggia

Largo Papa Giovanni Paolo II, 1 - 71100 Foggia (Italy)

Abstract

The generation of realistic data sets in a Combinatorial Auction may be

a challenging problem. Well-formed data sets are very useful in the eval-

uation of algorithms trying to solve the winner determination problem. In

this paper a general data set generation scheme is presented, both from an

algorithmic and economic point of view. As a case study, a possible auction

setting is discussed where the goods on sale are connections between points

in space.
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1 INTRODUCTION

COMBINATORIAL AUCTIONS(CAs) are interesting both for Economics and Com-
puter Science researchers. In a CA a bidder can place unrestricted bids, econom-
ically evaluating the combination of sets of items. With respect to a traditional
auction, a bidder may take into account complementarities (i.e.,V (A andB) ≥
V (A) + V (B), beingV (X) the bidder’s valuation of goodX on sale) and substi-
tutabilities (i.e.,V (A andB) ≤ V (A) + V (B)). This makes it possible to design
auctions mechianisms that are economically more efficient.

CAs seem to be well suited for problems such as airport time slots allocation
(Rassenti and Bulfin (1982)), machine time scheduling (Wellman and MacKie-
Mason (1998)), real estate (Quan (1994)), delivery routes (MIT (1996)). A num-
ber of technical problems have to be solved before unrestricted CAs can be used
in practice.

For n items on sale, a bidder can place an offer of any subset of interest, with up
to 2n different bids for the auctioneer. Two issues are those of how to synthetically
express a bid and how to communicate it to the auctioneer efficiently (see Nisan
(2000)). Another fundamental problem is that of winner determination, aka the
allocation problem: i.e., after receiving a set of (combinatorial) bids, decide how
to allocate the goods in order to satisfy the constraints (a good to at most one
bidder) and to maximize the total bid takers payoff.

Although this is an NP-hard to approximate problem (Sandholm (1996), Vohra
and de Vries (2001)), in practical cases the situation may be substantially better,
leading various researchers to the proposition of polynomial time approximation
algorithms (e.g. Zurel and Nisan (2001)): this paper aims to contribute in the
experimentation of these theorical results with variable size data sets reflecting
the characteristics of the real algorithms input data.

As far as we know, the only attempt to provide a realistic suite for generating
test sets is the work by Leyton-Brown and Shoham (2000), in which they consider
a number of potential application areas for CAs and propose bid generation mech-
anisms that try to reflect the underlying structural as well economic factors, but
probably overlooking a number of economic issues that would greatly help in the
generation of realistic data sets. In this paper we concentrate on such economic
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issues and devise some high level guidelines to generate realistic bids. In partic-
ular, in Section II the properties of goods at auction and those of the bidders are
investigated, while in Section III a general scheme for bid generation in structured
domains is discussed. Finally, we briefly mention directions for further work.

2 ECONOMIC PARAMETERS IN REALISTIC CAS

Let S denote the set of items on sale and letI = |S| be the cardinality of the set
S. Also, letB denote the set of bidders submitting bids to the auctioneer. Here
we analyze the parametersB andI that characterize realistic auction settings, and
the distribution of the value of items and size of bidders.

2.1 Bidders number

The parameterB can vary greatly if bidders are firms instead of individuals. In the
case of firms, substantiallyB ≤ 100; in a typical business-to-consumer auction,
instead,B can be up to10, 000 (if, for example, we consider an auction taking
place over the Internet). A more interesting measure is the number of bidders
relative toI, reasonably beingB/I ≤ 10, with the special casesB/I = 1, 2

interesting for most economic phenomena.

2.2 Items number

It ranges from a few dozens (in auctions involving consumer products or complex
industrial items, such as spectrum frequencies or intermediate goods), to a few
hundreds (in auctions involving a long list of heterogeneous products, such as
spare parts); there may also be auctions involving a large number of items (I >>

100), but in this case it is likely that the goods on sale are of quasi-homogeneous
type.
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2.3 Items value

It is likely that for any given item the bidder gives it a value close to its market
value. If the average value is small, then it is conceivable that there are few items
with comparatively large value (i.e.,r = ”value of most expensive item”/ ”value
of less expensive item”>> 1). In this case, the actual values can be generated
using a left skewed distribution, such as the log-normal or Pareto distribution. On
the other hand, when the items have high values, it is more likely that the ratio
r is bounded (r = 2 or r = 3); in this case the actual values can be generated
using a symmetric distribution, such as the uniform or normal distribution. If the
set of items on sale is structured, other considerations may apply as well. For
instance, when the items are paths in space, which is our case study in Section
IV, it is reasonable that the value of a pathP may affect the value of paths that
have points in common withP (e.g., the value of a side connection may depend
on the value of the backbone connection which the side one originates from). In
these cases, the market values may be generated using some sort of structural
computations (as we shall see in Section IV).

2.4 Bidders’ size

For individual bidders the size is the income (and the value of items never exceeds
it), while for companies is the total assets (with debt possible but excluded for
financial markets limitations). In case of small value items, the size of bidders is
usually not relevant (we assume unlimited budget); but if the ratio average bidder
size / average item value tends to be small, then an important role is played by
the size distribution function. Size, in general, follows a left skewed distribution,
because both individual income and firm size are asymmetrically distributed (see
Ijiri and H. Simon (1977)). In this case, it may be assumed a support 0 to 1 billion
dollars for income and 0 to 100 billion dollars for assets. Once a left skewed
distribution has been fixed, we only need to pick the distribution parameters in
such a way that the ratio AS ( = average bidders’ size) / AV ( = average value of
items) is of the desired value (and possibly inversely correlated to the number of
auctioned items).
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2.5 Operational indications

The above indications lead to the following general scheme for the generation of
the item values and the size of bidders.

1. Fix the number of items.

2. Fix the ratioB/I to define the number of bidders.

3. Choose a distribution for the value of items.

4. If the size of bidders is relevant, choose a left skewed distribution for it.

5. Fix the distribution parameters of3 and4 in such a way thatAS/AV is of
the desired value. Let us consider, for example, the Pareto distribution. A
random variableX has a Pareto distribution if its density function is given
by f(X) = aX − (a + 1), with a > 1. For such random variableE(X) =

a/(a − 1). Hence, if3 and4 are both Pareto,a and b are (respectively)
the parameters for the firm size and item value distribution, and the desired
ratioAS/AV = 2, thena andb must be chosen in such a way that[a/(a −
1)]/[b/(b−1)] = 2. Upon having chosen3 and4 (and fixed their parameters
according to5):

6. Generate a random sample of numbers from3 and4, with the sample size
determined by1 and2.

3 BID GENERATION IN STRUCTURED DOMAINS

In this section we sketch the general ideas for the generation of realistic bids in
structured domains, i.e., when the goods on sale can be seen as the element of a
space’ equipped (at least) with a distance function. These ideas will be made more
precise in the next Section, where we address our case study.

First of all, a bidder must be assigned a goal that she will pursue subject to
her size (and hence budget) limitations. Clearly, goals are highly dependent on
the nature and structure of the items on sale. As an example, if items can be

6



represented as the edges of a graph (as in the case study of Section IV), then a
reasonable goal is that of acquiring a (simple) path joining two nodes. Once the
goal has been fixed, the actual bids can be produced. For both goal generation
and bidding a certain degree of randomness must be introduced to model the facts
that: (1) different bidders may be interested in different sets of items, and that (2)
different bidders can make different valuations of the same set of items.

Let us consider the goal generation problem in more details. LetS be a subset
of S; S should include the most valuable’ items inS. Each bidder selects a random
subset ofS and ranks all the elements inS according to their average distance
from the elements in the random subset selected. Clearly, different bidders will
have different rankings with high probability. Now, given a budget and a ranking
of the items, we are able to generate a goal for a bidder as follows: we start by
selecting the highest ranked item e and form a bid by adding as many items as
possible among those close to e. Clearly, if e is too much expensive, we try with
the next highest ranked item. Obviously, as pointed out at the beginning of this
Section, much fine tuning is necessary as to precisely define the goal in a number
of cases.

Once the items to be included in the bid have been determined, the actual price
offered is essentially the sum of their market values. However, the bidder’s valua-
tion of a single item needs not coincide with its market value (generated according
to the above scheme), as it also depends on subjective evaluations. Yet it is reason-
able to regard the market value of an item as the indicative price an individual or a
firm is willing to pay for that item. We can take subjective elements into account
by simply perturbing the market value. As an example, we can generate bidder’s
valuations by sampling from a (quite narrow) normal distribution with mean the
market value. A similar approach (but possibly using a left skewed distribution)
can be adopted to produce superadditive valuations of sets of items.

4 GENERATING REALISTIC DATA SETS

In this section we specialize the economic parameters and the high level scheme
of Sections II and III to the generation of realistic test sets for the allocation of
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the rights to use railroad tracks. A railroad network is an example of a structured
domain, and we will use the underlying properties to both assign values to the
items on sale and to generate the bids.

As in Leyton-Brown and Shoham (2000), the first step is the generation of the
railroad map. We propose a different algorithm to generate families of graphs that,
in our opinion, better reflects the way actual railroad networks have developed,
i.e., by the merging of local and/or regional (or even national) networks, which
were originally independent or very weakly interconnected.

4.1 Railroad network generation

Given an euclidean graphG, let the distance between two different connected
componentsG1 andG2 of G be defined as the minimum, over all pairs(a, b) such
thata ∈ G1 andb ∈ G2, of the distances betweena andb. The network generation
algorithm is the following.

1. Randomly placen1 points on a square region and connect each point with
its k closest neighbors.

2. Repeat the following:

(a) check whether the graph is connected;

(b) if connected, then go to 3;

(c) make each connected component biconnected, and connect each (bi)
connected component with the component at minimum distance;

(d) goto 2a.

3. Make the graph biconnected.

4. Randomly placen2 points.

5. Connect each new point with its closest neighbor in the initial set of random
points.
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Figure 1: Generation of the railroad network
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Fig. 1 illustrates the process of construction of an example railroad network,
with parametersn1 = 13, k = 1, andn2 = 3, according to the above algorithm.
The reason why we make each connected component biconnected is that a railroad
network hardly contains articulation points, except possibly for nodes with degree
1 (which we add as the last step of our algorithm).

Here the goods on sale are the edges of the network; however, the network
generation algorithm presented above is parametrized by the number of nodes
(i.e., cities) rather than edges. It is possible to prove that, whenk = 1, the number
of edges generated does not exceed2n1 + n2 ≥ n1 + n2 = n (number of items).
We will assumen1 ≤ 50 andn2 ≤ 10 with eitherk = 1 or k = 2; for the number
of bidders, we shall fixB = min{2I, 100}.

The rules according to which we assign market values to the items are the
most crucial of the whole bid generation procedure. We begin by observing that
the value of a train path depends on the expected number of passengers that travel
on it in the unit of time. In turn, this depends on the importance of the nodes
(cities) touched by that path. The value of a city does depend on external (with
respect to the railway system) factors but also on the degree of the corresponding
node and, in a recursive way, from the value of the nodes which is connected to.
Hence we assign market values to the edges of the graph by first assign values to
the nodes. After that, we assign an edgee = (c1, c2) the valueV (e) = [V (c1) +

V (c2)]d(c1, c2), whereV denotes the market value function (for both nodes and
edges) andd(·, ·) denotes the euclidean distance.

The problem is thus that of assigning values to the cities. Our approach is
to assign to nodei the value of thei-th component of the normalized eigenvector
associated with the eigenvalue of maximum absolute value of the adjacency matrix
of the graph. The argument (which is commonly used in different contexts, for
instance to compute the authority weight of web sites (Kleinberg (1999)) is that
the importance of a city is given by the importance of the cities it is connected
to. If we ignore factors external to the railway systems, the value can then be
computed by the iterated powers method applied to the adjacency matrix, and this
can be easily proved to converge to the principal eigenvector. In Fig. 2 we show
the values this method gives to the nodes (cities) of the example network of Fig.
1.
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According to the general scheme of Section II, the size of bidders is generated
using a left skewed distribution (either lognormal or Pareto). The average size can
be taken (parametrically) up to ten times the average value of the items on sale.

Figure 2: Node valuation by iterated powers method

4.2 Bid Generation

The actual bid generation follows the general guidelines outlined in Section III.
Let S denote the set of the first10 to 20 most valuable edges of the graph. A
bidderi randomly selects a subsetSi of S of cardinalityb|S|/hc, whereh = 2, 3

typically. As already pointed out,Si will be used to rank all the edges in the
graph. The rank of an edge is computed by calculating its average distance from
the edges inSi; here we define the distance between two edgese1 ande2 as the
minimum distance in the graph between endpoints ofe1 ande2. The rank of an
edge is then given by the rank of the corresponding average distance in the set of
all the computed distances.

Given a budget and an ordering of the edge set, a bidder formulates a bid
according to the algorithm given below. We assume that the goal of the bidder is
to get a set of edges of total length greater than a minimum required value, and
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whose ranks are as highest as possible.

4.3 Algorithm “Bid Generation”

1. Select the next highest ranked edge (among those not yet considered). If the
rank is below a given threshold, we assume failure for the current bidder.

2. Select a few other edges that form (together with the edge devised at step 1)
a path in the graph. This path will form the “backbone of the bid.

3. Select a few edges that represent connections from and to the backbone.
Each connection, together with the backbone, will form a separate bid.
Clearly the bids are (implicitly) xor-ed, since they all share the backbone.
The value associated to a bid is given by the sum of the bidder’s valuations
of the edges included in the bid. These valuations are determined by slightly
(and randomly) perturbing the market prices.

4. If the budget constraint is violated, step 3 is repeated. If this happens re-
peatedly, the algorithm goes back to step 1.

5. (Success) The value of the bid generated can be increased by a small random
amount (not more than10% of the value computed so far) as a function of
the rank of the edges included. This can actually produce superadditive
bids.

5 FURTHER WORK

Currently we are implementing a suite for the generation of realistic data sets in
structured domains. One such domain is the allocation of paths in space discussed
in this paper (a different domain we are working with is real estate). The goal is
to use this data to perform in-depth analyses of the performance of a number of
approximation algorithms that have been proposed in the literature. A related goal
is to get insights that will possibly help to devise more time-and-space-efficient
allocation algorithms that closely approximate the optimum values on realistic
data.
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