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Abstract

Cooperative investments in R&D are a significant driving force of the
modern economy. As it well-known, the R&D investments are uncertain
and the strategic alliances create synergies and additional information
that increase the success probabilities about R&D projects.
The theory of real option games takes into account both the flexibility
value of an investment opportunity and the strategic considerations. In
particular way, while the non-cooperative options are exercised in the in-
terest of the option holders’ payoffs, the cooperative ones are exercised in
order to maximize the total partnership value.
In our model we develop an interaction between two firms that invest in
R&D and we show the effects of cooperative synergies on several equilibri-
ums. Moreover, we consider that the R&D investments are characterized
by positive network externalities that induce more benefits in case of re-
ciprocal R&D success.

Keywords: Real Exchange Options; Cooperation games; Information
Revelation; R&D investments.

JEL Classification: G13; C71; D80; O32.

1 Introduction

In recent years, the real option theory has been widely used in evaluating investment
decisions in a dynamic environment. The market developments are complex and so
the conventional NPV (Net Present Value) rule undervalues the value of a project
because this method fails to take into account the market uncertainty, irreversibility
of investment and ability to delay entry. So, a firm with an opportunity to invest is
holding an “option” like to financial options. As it is well accepted, the real option
theory becomes very important as it allows to capture the value of managerial flexi-
bility to grow, delay or abandon projects.
Several models, such as [Shackleton and Wojakowski (2003)], [Trigeorgis (1991)] and
[Lee (1997)] and so on, are based on the assumption that the option exercise price,
and so the investement cost, is fixed. But, particularly for the R&D investments, it
is reasonable to consider that the evolution of the investment cost is uncertain. So,
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the R&D invesment opportunity corresponds to an exchange option and not to sim-
ple call option: it’s the exchange of an uncertain investment cost for an uncertain
gross project value. The most importants models that value exchange options are
given in [Margrabe (1978)], [McDonald and Siegel (1985)], [Carr(1988)], [Carr(1995)]
and [Armada et al.(2007)]. In particular way, [McDonald and Siegel (1985)] value a
simple European exchange option while [Carr(1988)] develops a model to value a com-
pound European exchange option. Both models consider that assets distribute “divi-
dends” that, in real options context, are the opportunity costs if an investment project
is postponed ([Majd and Pindyck (1987)]).
In addition, the real option approach, combined with game theory, allows to consider
the strategic interactions among real option holders and also the market dynamics.
The financial options literature does not consider the strategic policies because the
option exercise does not influence the characteristic of the underlying security or the
options themselves. Differently, real investment opportunities are not held by one firm
in isolation and so, the optimal strategic exercise can be derived considering the in-
teractions across option holders.
In this paper we analyse a cooperation between two firms that invest in R&D. In par-
ticular way, following [Dias and Teixeira(2004)] and [Dias (2004)] models, we assume
that the R&D investments generate an “information revelation” about their success
and so, by delaying an investment decision, new information can be revealed that might
affect the profitability of the R&D projects. So by the alliance between two players,
we show as the information is wholly revealed and captured by two firms to improve
their R&D success probabilities. The mutual information gain implies positive net-
work externalities (as it is shown in [Kong and Kwok (2007)] and [Huisman (2001)])
which lead more benefits in case of reciprocal R&D success. Therefore, the externali-
ties can involve different entry decisions and so to induce the cooperation between two
firms in order to maximixe the partnership return. Accordingly to positive network
externalities, we introduce the growth market coefficients depending by the success or
failure of two players.
Moreover, we consider that the R&D investment is realized in a two stage manner,
with the commencement of second phase being dependent on the successful completion
of the first one. This is known as sequential investment in which each stage provides
information for the next thus creating an opportunity (option) for subsequent invest-
ment.
This article is suitable to model joint ventures of car producers, alliance between phar-
maceutical and oil companies and other cooperation kinds that involve a reduction of
R&D risk. For istance, [Kogut(1991)], [Chi(2000)] demonstrated the power of view-
ing joint ventures as real options to expand in response to future technological and
market developments. We differentiate from [Dias and Teixeira(2004)], [Kogut(1991)]
and [Chi(2000)] because we use exchange options to value the R&D opportunities at
initial time and so to determine the best cooperative strategies.
The paper is organized as follows. Section 2 reviews the Simple and Compound eu-
ropean exchange option pricing models and Section 3 introduces the basic model and
derives also the final payoffs of two firms in a non cooperative framework. Section 4
analyses the cooperation between two firms and we show how both firms can split the
surplus of cooperation and, in Section 5, we present two numerical examples for the
cooperative R&D game. Finally, Section 6 concludes.
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2 Exchange Options Methodology

In this section we present the final results of the principal models to value European
exchange options.

2.1 Simple european exchange option (SEEO)

[McDonald and Siegel (1985)]’s model gives the value of a SEEO to exchange asset D
for asset V at time T . The asset given up is termed the delivery asset while the asset
received is the optioned asset. Denoting with s(V, D, T − t) the value of SEEO at time
t, the final payoff at the option’s maturity date T is s(V, D, 0) = max[0, VT − DT ].
So, assuming that V and D follow a geometric Brownian motion process given by:

dV

V
= (µv − δv)dt + σvdZv (1a)

dD

D
= (µd − δd)dt + σddZd (1b)

cov

(

dV

V
,
dD

D

)

= ρvdσvσd dt (1c)

where:

• V and D are the Gross Project Value and the Investment Cost, respectively;

• µv and µd are the equilibrium expected rate of return on asset V , and the
expected growth rate of the investment cost;

• δv and δd are the “dividend-yields” of V and D, respectively;

• Zv and Zd are the brownian standard motions of asset V and D;

• σv and σd are the volatility of V and D, respectively;

• ρvd is the correlation between changes in V and D.

[McDonald and Siegel (1985)] show that the value of a SEEO on dividend-paying as-
sets, when the valuation date t = 0, is given by:

s(V, D, T ) = V e−δvT N(d1(P, T )) − De−δdT N(d2(P, T )) (2)

where:

• P =
V

D
; σ =

√

σ2
v − 2ρv,dσvσd + σ2

d ; δ = δv − δd;

• d1(P, T ) =
log P +

(

σ2

2
− δ
)

T

σ
√

T
; d2 = d1 − σ

√
T ;

• N(d) is the cumulative standard normal distribution.

2.2 Compound european exchange option (CEEO)

If the underlying asset is another option, the option is called compound. [Carr(1988)]
develops a model to value the CEEO c(s, ϕD, t1) whose final payoff at maturity date
t1 is:

c(s, ϕD, 0) = max[0, s − ϕD]
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The CEEO value, considering the valuation date t = 0, is given by:

c(s(V, D, T ), ϕD, t1) = V e−δvT N2

(

d1

(

P

P ∗
, t1

)

, d1 (P, T ) ; ρ

)

− De−δdT N2

(

d2

(

P

P ∗

, t1

)

, d2 (P, T ) ; ρ

)

− ϕDe−δdt1N1

(

d2

(

P

P ∗
, t1

))

(3)

where:

• ϕ is the exchange ratio of CEEO;

• t1 is the expiration date of the CEEO;

• T is the expiration date of the SEEO, where T > t1

• τ = T − t1 is the time to maturity of the SEEO and ρ =

√

t1
T

;

• d1

(

P
P∗

, t1
)

=
log
(

P
P∗

)

+
(

−δ + σ2

2

)

t1

σ
√

t1
; d2

(

P
P∗

, t1
)

= d1

(

P
P∗

, t1
)

− σ
√

t1 ;

• P ∗ is the critical price ratio that solves the following equation:

P ∗e−δvτN(d1(P
∗, τ )) − e−δdτN(d2(P

∗, τ )) = ϕ. (4)

• N2(a, b, ρ) is the standard bivariate normal distribution function evaluated at
a and b with correlation coefficient ρ.

3 The Basic Model Game

In our model we consider two firms (A and B) that have the option to realize their
R&D investment at initial time t0 or to delay the decision at time t1. As it is know,
the R&D investments depends on the resolution of several source of uncertainty that
may influence the investment decision of each firm. Assuming by q and p the R&D
success probability of firms A and B respectively, we can represent this situation by
two Bernoulli distributions Y and X:

Y :

{

1 q
0 1 − q

X :

{

1 p
0 1 − p

The R&D success or failure of one firm generates an information revelation that influ-
ences the investment decision of the other firm. So, if firm A’s R&D is successful, the
firm B’s probability p changes in positive information revelation p+, while p changes
in negative information revelation p− in case of A’s failure. Simmetrically, the firm
A’s R&D success changes in q+ or in q− in case of success or failure of firm B at time
t0. Following [Dias (2004)]’s model about the information revelation process, it results
that:
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p+ = Prob[X = 1/Y = 1] = p +

√

1 − q

q
·
√

p(1 − p) · ρ(X, Y ) (5a)

p− = Prob[X = 1/Y = 0] = p −
√

q

1 − q
·
√

p(1 − p) · ρ(X, Y ) (5b)

q+ = Prob[Y = 1/X = 1] = q +

√

1 − p

p
·
√

q(1 − q) · ρ(Y,X) (5c)

q− = Prob[Y = 1/X = 0] = q −
√

p

1 − p
·
√

q(1 − q) · ρ(Y,X) (5d)

where the correlations ρ(X,Y ) and ρ(Y,X) are a measure of information revelation
from Y to X and from X to Y , respectively. Obviously, the information revelation is
considerable when the investment is not realized in the same time. So, if both players
invest simultaneously in R&D ore they wait to invest, ther is not information revela-
tion and so ρ(X,Y ) = ρ(Y,X) = 0 and consequently it results that p = p+ = p− and
q = q+ = q−.
The information revelation is a public information process accessible to the other com-
petitors that influences their choices. For istance, it is known that good information
about drugs is available in pharmaceutical industry after clinical testing, and so in the
first stages of R&D.
The condition to respect to have 0 ≤ p+ ≤ 1 and 0 ≤ p− ≤ 1 according to the positive
information revelation that benefits the firm B, namely ρ(X,Y ) ≥ 0 is that:

0 ≤ ρ(X, Y ) ≤ min

{
√

p(1 − q)

q(1 − p)
,

√

q(1 − p)

p(1 − q)

}

(6)

The condition (6) must to be respected also for the information revelation process that
benefits firm A, namely ρ(Y, X), to have that 0 ≤ q+ ≤ 1 and 0 ≤ q− ≤ 1.
So, with the alliance between A and B, we can assume that information is wholly
revealed and we can setting that the cooperative information ρmax is equal to:

ρmax = min

{
√

p(1 − q)

q(1 − p)
,

√

q(1 − p)

p(1 − q)

}

(7)

We can observe that in the symmetrical case in which both firms have the same success
probability p = q, then it results ρmax = 1 and so q+ = 1 and p+ = 1. This means
that, in case of A’s R&D success at time t0, it involves the B’s success at time t1
in the cooperation treatment since the information revelation is fully captured and
vice-versa.
Moreover, we assume that R&D investments are characterized by network externalities
that induce more benefits in case of reciprocal R&D success. So we denote by:

K0S0S , K0S1S , K1S0S , K1S1S

the growth market coefficients in case of A and B success. The 0 and 1 mean that
the R&D investment is realized at time t0 or t1 respectively, while the S denotes the
success. The first part denotes the operation of considered firm, while the second
part is the situation of the other firm. So, if A and B invest successfully in R&D at
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time t0 and t1 respectively, firm A takes K0S1S while B obtains K1S0S . If both firms
invest simultaneously with success at time t0, then they will take K0S0S , while if the
investments are realized at time t1 they will have K1S1S . In the same way we denote by:

K0S0F , K0S1F , K1S0F , K1S1F

the market coefficients for the winning firm assuming the failure, denoted by F, by
the other player. Moreover, as the unsuccess of one player does not produce network
externaility, we can write that:

K0S0F = K0S1F ≡ K0S ; K1S0F = K1S1F ≡ K1S

Finally, in case of failure of considered firm, its market coefficient will be equal to zero
whether in case of success or failure of other firm. So we have that:

K0F 0S = 0, K0F 1S = 0, K1F 0S = 0, K1F 1S = 0

and
K0F 0F = 0, K0F 1F = 0, K1F 0F = 0, K1F 1F = 0

Now, we can set the relations among the growth market coefficients K using these
assumptions:

• Positive Network Externality: as it is shown [Huisman (2001)], the growth mar-
ket coefficient in case of both R&D success will be bigger than the situation in
which only one firm invests successfully, and so:

KSS > KS (8a)

• R&D Success Time: the market coefficient increases if the reciprocal R&D suc-
cess is realized at time t0 rather than t1, because there is more time to benefit
both network externalities and R&D innovations. In the situation in which only
one firm invests successfully, the market coefficient enlarges if the success is re-
alized at time t0 rather than t1:

K0S0S > K1S1S ; K0S > K1S (8b)

• First Mover’s Advantage: the firm that realizes with success the R&D invest-
ment at time t0 will receive an higher market coefficient than other player that
postpones successfully the project at time t1:

K0S1S > K1S0S ; (8c)

To determine the growth market coefficients K, we assume that they depend by a
parameter k involving the R&D innovation and by length of R&D benefits until the
expiration time T . For the positive network externality, we take into account two
times the one firm market coefficient. So, assuming that the initial time t0 = 0, we
have that:

K0S = kT (9a)

K0S0S = 2kT (9b)

K1S = k(T − t1) (9c)

K1S1S = 2k(T − t1) (9d)
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We suppose to fix T , it is obviuos that if t1 decreasing, then the coefficients K1S1S and
K1S increase their value. In fact, if t1 = 0 then there is not delay and K1S1S = K0S0S

and K1S = K0S . Finally, to determine K0S1S and K1S0S , we assume that:

K0S1S = 2k(T − t1) + kt1 (9e)

K1S0S = 2k(T − t1) − kt1 (9f)

If one firm invests successfully at time t0 and the other player at time t1, we have that
the first firm takes the network externality starting from time t1, namely K1S1S plus
the first mover’s advantatege kt1 until time t1. Simmetrically, the market coefficient
K1S0S for the second firm that postpones its choice will be K1S1S minus kt1. We
can observe that if t1 = 0, so if there is not postponement, then K0S1S = K1S0S =
K0S0S . Finally, to ensure that condition (8a) holds, we need to impose that t1 < T

3
.

This condition is reasonable with the consideration that the information revelation
disappears in time and furthermore, if one firm invests at time t0, the other firm
decision will be made within t1 < T

3
to allow the realization of development phase in

T − t1.
First to start, we state as Leader the pionner firm (A or B) that invests in R&D at time
t0 earlier than other one, namely the Follower, that postpones the R&D investment
decision at time t1. We denote by R the R&D investment for the development of a new
product, V the overall market value deriving by R&D innovations and D is the total
investment cost to realize new goods. We consider that the production investment of
each firm is proportional to its market share and it can be realized only at time T ,
that is the time needed for to develop the new product. Hence, we suppose that the
option to enter in the market is like an European exchange option.

3.1 The Leader’s Payoff

We analyse the Leader’s payoff assuming that firm A (Leader) invests in R&D at
time t0 while firm B (Follower) decides to wait to invest. So, the Leader spends the
investment R at time t0 and obtains, in case of its R&D success with probability q,
the development option. In particular way, if also the Follower’s R&D invesment is
successfully at time t1, the growth market coefficient will be K0S1S and the Leader
holds the development option s (K0S1S V, K0S1S D, T ) to invest K0S1S D and claims
a market value equal to K0S1S V as it is illustred in the Fig.(1(a)). So the Leader’s
payoff is:

LS
A(V, D) = −R + q · s (K0S1S V, K0S1S D, T )

= −R + qk(2T − t1)
(

V e−δvT N(d1(P, T )) − De−δdT N(d2(P, T ))
)

(10)

The probability to have K0S1S depending by the Follower’s R&D success that is p+

since it receives the information revelation from Leader’s investment occurred at time
t0. But, if the Follower’s R&D fails, the Leader’s market coefficient in case of its R&D
success is K0S and it receives the following payoff:

LF
A(V, D) = −R + q · s (K0S V, K0S D, T )

= −R + qkT
(

V e−δvT N(d1(P, T )) − De−δdT N(d2(P, T ))
)

(11)

as it is shown in the Fig.(1(b)). So, computing the expectation value between Eqs.
(10) and (11), the Leader’s payoff (firm A) is:

LA(V, D) = p+ · LS
A(V, D) + (1 − p+) · LF

A(V, D) (12)
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Simmetrically, assuming that firm B (Leader) invests at time t0 while firm A (Follower)
decides to postpone its decision, the Leader’s payoff became:

LB(V, D) = q+ · LS
B(V, D) + (1 − q+) · LF

B(V, D) (13)

t
0
 T 

K
0

S
1

S

D 

 K
0

S
1

S

V 

R 

qs(K
0

S
1

S

V,K
0

S
1

S

D ,T) 

(a) Leader’s payoff in case of
Follower’s success

t
0
 T 

K
0

S

D 

 K
0

S

V 

R 

qs(K
0

S

V,K
0

S

D ,T) 

(b) Leader’s payoff in case of
Follower’s failure

Figure 1: Leader’s payoffs

3.2 The Follower’s Payoff

Now we focus on the Follower’s payoff assuming that firm B (Follower) decides to
postpone its R&D investment decision at time t1 and firm A (Leader) invests at time
t0. If the Leader’s R&D investment is successfully (with a probability q), then the
Follower’s probability success became p+ and its growth market coefficient is K1S0S .
So, after the investment R, the Follower holds with a probability p+ the development
option s(K1S0S V, K1S0S D, τ ) to invest K1S0S D and claims a market value equal to
K1S0S V . So the Follower’s payoff at time t0 is a CEEO with maturity t1, exercise price
equal to R and the underlying asset is the development option s(K1S0S V, K1S0S D, τ )
as it is represented in the Fig.(2(a)).
The CEEO payoff at expiration date t1 with positive information revelation is:

c(p+s(K1S0S V, K1S0S D, τ ),R, 0) = max[p+s(K1S0S V, K1S0S D, τ ) − R, 0]

According to [Carr(1988)]’s model, we assume that R = ϕD is a proportion ϕ of asset
D. Hence, denoting by c(p+) the CEEO at time t0, namely:

c(p+) ≡ c(p+s(K1S0S V, K1S0S D, τ ), ϕD, t1)

we can write, using the Eq. (3), the value of CEEO with positive information:

c(p+) = p+k(2T − 3t1)V e−δvT N2

(

d1

(

P

P ∗

upB

, t1

)

, d1 (P, T ) ; ρ

)

−p+k(2T − 3t1)De−δdT N2

(

d2

(

P

P ∗

upB

, t1

)

, d2 (P, T ) ; ρ

)

−ϕDe−δdt1N1

(

d2

(

P

P ∗

upB

, t1

))

(14)

where P ∗

upB is the critical value that makes the underlying asset of c(p+) equal to
exercise value. Hence P ∗

upB solves the following equation:

p+s(K1S0S V, K1S0S D, τ ) = ϕD
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and assuming the asset K1S0S D as numeraire we can rewrite the above equation as:

P ∗

upB e−δvτN(d1(P
∗

upB, τ )) − e−δdτN(d2(P
∗

upB, τ )) =
ϕ

p+ · (2T − 3t1)
(15)

Alternatively, in case of Leader’s failure, the Follower’s R&D success probability
changes in p− and its market coefficient is K1S . So, the Follower’s payoff at time
t0 is a CEEO with maturity t1, exercise price equal to R and underlying asset is the
development option s(K1S V, K1S D, τ ) as it is shown in the Fig.(2(b)). Hence, the
CEEO payoff at expiration date t1 with negative information revelation is:

c(p−s(K1S V, K1S D, τ ), R, 0) = max[p−s(K1S V, K1S D, τ ) − R, 0].

Denoting with c(p−) the CEEO at time t0 with negative information, i.e.:

c(p−) ≡ c(p−s(K1S V, K1S D, τ ), ϕD, t1)

we can write, using the Eq. (3), the value of CEEO with negative information:

c(p−) = p−k(T − t1)V e−δvT N2

(

d1

(

P

P ∗

dwB

, t1

)

, d1 (P, T ) ; ρ

)

−p−k(T − t1)De−δdT N2

(

d2

(

P

P ∗

dwB

, t1

)

, d2 (P, T ) ; ρ

)

−ϕDe−δdt1N1

(

d2

(

P

P ∗

dwB

, t1

))

(16)

where P ∗

dwB is the critical price that solves the following equation:

P ∗

dwB e−δvτN(d1(P
∗

dwB , τ )) − e−δdτN(d2(P
∗

dwB , τ )) =
ϕ

p− · k(T − t1)
. (17)

The Follower obtains the CEEO c(p+) in case of Leader’s success with a probability q
or the CEEO c(p−) in case of Leader’s failure with a probability (1 − q). Hence, the
Follower’s payoff at time t0 is the expectation value:

FB(V, D) = q c(p+) + (1 − q) c(p−) (18)

Similary, if we consider that firm B (Leader) invests in R&D at time t0 and firm A
(Follower) decides to wait to invest we have that:

FA(V, D) = p c(q+) + (1 − p) c(q−) (19)

t
0
 t

1
 T 

R K
1

S
0

S

D 

τ 

p+s(K
1

S
0

S

V,K
1

S
0

S

D,τ) K
1

S
0

S

V c(p+s,R,t
1
) 

(a) Follower’s payoff in case of
Leader’s success

t
0
 t

1
 T 

R K
1

S

D 

τ 

p−s(K
1

S

V,K
1

S

D,τ) K
1

S

V c(p−s,R,t
1
) 

(b) Follower’s payoff in case of
Leader’s failure

Figure 2: Follower’s payoffs
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3.3 The A and B payoffs in case of simultaneous investment

In this case, we analyse the situation in which both firms invest in R&D at time
t0. We can assume that there is not information revelation since the investment
is simultaneous but both players can benefice of network externalities. First of all,
we determine the firm’s A payoff. Assuming the firm B’s R&D success, A receives
the development option with a growth market coefficient K0S0S in case of its R&D
success. So, after the investment R at time t0, player A receives the development
option s(K0S0S V, K0S0S D, T ) with a probability q:

SS
A(V, D) = −R + q · s (K0S0S V, K0S0S D, T )

= −R + q2kT
(

V e−δvT N(d1(P, T )) − De−δdT N(d2(P, T ))
)

(20)

But, assuming the firm B failure, A receives the development option with a growth
market coefficient K0S in case of its success:

SF
A (V, D) = −R + q · s (K0S V, K0S D, T )

= −R + qkT
(

V e−δvT N(d1(P, T )) − De−δdT N(d2(P, T ))
)

(21)

So, recalling that firm B’s probability success is equal to p, the firm’s A payoff in case
of simultaneous investment will be the expectation value between Eqs. (20) and (21):

SA(V, D) = p · SS
A(V, D) + (1 − p) · SF

A (V, D) (22)

Simmetrically, the firm’s B payoff will be:

SB(V, D) = q · SS
B(V, D) + (1 − q) · SF

B(V, D) (23)

3.4 The A and B payoffs when both firms wait to invest

Finally, we suppose that both firms decide to delay their R&D investment decision
at time t1 and we can setting that there is not information revelation. First of all,
we analyse the situation of firm A. Assuming the R&D success of firm B, then the
growth market coefficient of player A will be K1S1S . So, after the investment R at time
t1, firm A holds with a probability q the development option s(K1S1S V, K1S1S D, τ )
to invest K1S1S D and claims a market value equal to K1S1S V . Then the firm’s A
payoff at time t0 is a CEEO with maturity t1, the exercise price equal to R and the
underlying asset is the development option s(K1S1S V, K1S1S D, τ ) with a probability
q. Thus, according to [Carr(1988)]’s model, and assuming that R is a proportion ϕ of
asset D, the CEEO in case of firm’s B success is:

W S
A (V, D) = c (q · s(K1S1S V, K1S1S D, τ ), ϕD, t1) (24)

and specifically:

W S
A (V, D) = q2k(T − t1)V e−δvT N2

(

d1

(

P

P ∗

wsA

, t1

)

, d1 (P, T ) ; ρ

)

−q2k(T − t1)De−δdT N2

(

d2

(

P

P ∗

wsA

, t1

)

, d2 (P, T ) ; ρ

)

−ϕDe−δdt1N1

(

d2

(

P

P ∗

wsA

, t1

))

(25)
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where P ∗

wsA is the critical value that solves the following equation:

q · s (K1S1S V, K1S1S D, τ ) = ϕD

and assuming the asset K1S1S D as numeraire we can rewrite the above equation as:

P ∗

wsAe−δvτN(d1(P
∗

wsA, τ )) − e−δdτN(d2(P
∗

wsA, τ )) =
ϕ

q · 2k(T − t1)
(26)

But, in case of firm’s B failure, the firm A growth market coefficient will be K1S . So,
after the investment R at time t1, firm A obtains with a probability q the development
option s(K1S V, K1S D, τ ). Thus, using [Carr(1988)]’s model, the firm’ A payoff at time
t0 is a CEEO where the underlying asset is s(K1S V, K1S D, τ ) with a probability q:

W F
A (V, D) = c (q · s(K1S V, K1S D, τ ), ϕD, t1) (27)

and specifically:

W F
A (V, D) = qk(T − t1)V e−δvT N2

(

d1

(

P

P ∗

wfA

, t1

)

, d1 (P, T ) ; ρ

)

−qk(T − t1)De−δdT N2

(

d2

(

P

P ∗

wfA

, t1

)

, d2 (P, T ) ; ρ

)

−ϕDe−δdt1N1

(

d2

(

P

P ∗

wfA

, t1

))

(28)

where, as seen before, P ∗

wfA is the critical value that solves the following equation:

q · s (K1S V, D1S D, τ ) = ϕD

and assuming the asset K1S D as numeraire we can rewrite the above equation as:

P ∗

wfAe−δvτN(d1(P
∗

wfA, τ )) − e−δdτN(d2(P
∗

wfA, τ )) =
ϕ

q · k(T − t1)
(29)

Hence, recalling that the firm B success is equal to p, we can compute the firm A
payoff as the expectation value between Eqs. (24) and (27):

WA(V, D) = p W S
A (V, D) + (1 − p) W F

A (V, D) (30)

Similary, the firm B payoff is:

WB(V, D) = q W S
B(V, D) + (1 − q)W F

B (V, D) (31)

3.5 Non cooperative Critical market values

Now, to determine the non cooperative Nash equilibriums denoted by v(A) and
v(B), we analyse the relations among the strategic payoffs according to several ex-
pected market values V at time t0 and considering fixed the invest cost D at time t0.
Therefore, we are able to determine the critical market values that delimite the several
Nash equilibriums.
First of all, we analyse the relation between the Leader and the Waiting strategy con-
sidering only the variable V and, to simplify the notation, we do not considering the
dividends to compute the derivatives. We can observe that:

• Li(0) = −R; Wi(0) = 0;

11



• ∂LA

∂V
= qN(d1(P, T ))k[p+(2T − t1) + (1 − p+)T ];

• ∂LB

∂V
= pN(d1(P, T ))k[q+(2T − t1) + (1 − q+)T ];

• ∂WA

∂V
= 2pqk(T − t1)N2

(

d1

(

P
P∗

wsA
, t1
)

, d1(P, T );ρ
)

+ (1 − p)qk(T − t1)N2

(

d1

(

P
P∗

wfA
, t1
)

, d1(P, T );ρ
)

;

• ∂WB

∂V
= 2qpk(T − t1)N2

(

d1

(

P
P∗

wsB
, t1
)

, d1 (P, T ) ; ρ
)

+ (1 − q)pk(T − t1)N2

(

d1

(

P
P∗

wfB
, t1
)

, d1 (P, T ) ; ρ
)

;

• ∂Li

∂V
> ∂Wi

∂V
> 0;

for i = A, B, as it is shown in the proof (1).

Proof 1 We can observe that, when the information revalation ρ(X,Y ) and ρ(Y, X)
increase, then also the derivatives ∂LA

∂V
and ∂LB

∂V
raise because 2T − t1 > T . So,

assuming ρ(X,Y ) = ρ(Y,X) = 0, we can observe that p+ = p and q+ = q. More-
over, as 2T − t1 ≥ 2(T − t1) and N(b) = N2(a, b; ρ) + N2(−a, b;−ρ), it’s obvious that
∂Li

∂V
> ∂Wi

∂V
> 0 for i = A,B.

Then, the following proposition holds:

Proposition 1 There exists, for each firm i = A, B, a unique critical market value
V W

i that makes Li(V
W
i ) = Wi(V

W
i ). Denoting by V ∗

W = min(V W
A , V W

B ) and V ∗

Q =
max(V W

A , V W
B ), it results that:

Li(V ) < Wi(V ) for V < V ∗

W

Li(V ) > Wi(V ) for V > V ∗

Q

Moreover, if A’s success probability q is higher than B, for V ∈]V ∗

W , V ∗

Q[ it results:

LA(V ) > WA(V ); LB(V ) < WB(V )

otherwise, if B’s success probability p is higher than A, for V ∈]V ∗

W , V ∗

Q[ it results:

LA(V ) < WA(V ); LB(V ) > WB(V )

Now we analyse the relation between the Follower and the Simultaneous strategies.
Then, we can observe that:

• Fi(0) = 0; Si(0) = −R;

• ∂FA

∂V
= pq+k(2T − 3t1)N2

(

d1

(

P
P∗

upA
, t1
)

, d1(P, T ); ρ
)

+ (1 − p)q−k(T − t1)N2

(

d1

(

P
P∗

dwA
, t1
)

, d1(P, T ); ρ
)

;
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• ∂FB

∂V
= qp+k(2T − 3t1)N2

(

d1

(

P
P∗

upB
, t1
)

, d1(P, T ); ρ
)

+ (1 − q)p−k(T − t1)N2

(

d1

(

P
P∗

dwB
, t1
)

, d1(P, T ); ρ
)

;

• ∂SA

∂V
= qN(d1(P, T ))kT [1 + p];

• ∂SB

∂V
= pN(d1(P, T ))kT [1 + q]

• ∂Fi

∂V
> 0; ∂Si

∂V
> 0

for i = A, B. In this case we have that both derivatives are positive but the intersection
between Follower and Simultaneous strategies exists if ∂Si

∂V
> ∂Fi

∂V
for i = A, B. So the

following proposition holds:

Proposition 2 If ∂SA

∂V
> ∂FA

∂V
then there exists a unique critical market value V ∗

P that
makes SA(V ∗

P ) = FA(V ∗

P ) and it results that:

SA(V ) < FA(V ) for V < V ∗

P

SA(V ) > FA(V ) for V > V ∗

P

otherwise, if ∂SA

∂V
≤ ∂FA

∂V
then SA(V ) < FA(V ) for every value of V .

If ∂SB

∂V
> ∂FB

∂V
then there exists a unique critical market value V ∗

S that makes SB(V ∗

S ) =
FB(V ∗

S ) and it results that:

SB(V ) < FB(V ) for V < V ∗

S

SB(V ) > FB(V ) for V > V ∗

S

otherwise, if ∂SB

∂V
≤ ∂FB

∂V
then SB(V ) < FB(V ) for every value of V .

Moreover, if A’s success probability q is higher than firm B, then V ∗

P < V ∗

S otherwise
V ∗

S < V ∗

P .

It’s evident that in the simmetric case in which both players have the same success
probability p = q, it results that V ∗

W = V ∗

Q and V ∗

S = V ∗

P .
By the Propositions (1) and (2), we are able to setting the several Nash equilibri-
ums v(A) and v(B) in case of no partneship with information revelation ρ(X,Y ) and
ρ(Y,X).

4 The Cooperation between A and B

In this section we analyse the cooperation between firms A and B that allows to
capture the whole information revelation and so to improve the R&D success prob-
abilities. In particular way we assume that the value achieved by the cooperation
can be trasferred from one player to the other. We show as the strategic alliance is
the joint best response to the non-cooperative alternative and so the equilibriums that
both firms obtain through the cooperation are Pareto-dominate all the non-cooperative
ones. As we consider two players, we denote by C(A∪B) the feasible set for the coali-
tion, namely is the set of outcome which can be obtained by the two players acting
together. The cooperation value is given by the sum of two firm’s payoff using the

13



whole information revelation ρmax deriving by two firms’ R&D investments. Both
players can agree upon several partnership contracts. For istance firms A and B can
share equitably the surplus of cooperation using the Shapley values:

ShA = v(A) +
C(A ∪ B) − (v(A) + v(B))

2
(32a)

ShB = v(B) +
C(A ∪ B) − (v(A) + v(B))

2
(32b)

where C(A ∪ B) − (v(A) + v(B)) is the surplus of cooperation. This solution looks
natural in the symmetric case p = q in which both firms have the same success proba-
bility otherwise, we can assume also asymmetric shares. For istance, we can split the
cooperation value C(A ∪ B) as:

PA = v(A) +
q

p + q
(C(A ∪ B) − (v(A) + v(B))) (33a)

PB = v(B) +
p

p + q
(C(A ∪ B) − (v(A) + v(B))) (33b)

We can observe that, if p = q, then Shi = Pi for i = A,B and the efficiency property
is satisfied as ShA + ShB = PA + PB = C(A ∪ B).
The cooperative information ρmax influences the Leader and Follower payoffs that we
denote by LC

i (V ) and F C
i (V ) for i = A, B, where C means the cooperative action.

The four possible cooperation strategies are:

• Both players decide to wait to invest at time t0. Then, their cooperation value
will be:

C(A ∪ B) = WA(V ) + WB(V ) ≡ WC(V )

• The firm A invests at time t0 while the firm B delays its decision at time t1.
The firm B obtains the overall information revelation ρmax:

C(A ∪ B) = LC
A(V ) + F C

B (V ) ≡ LFC(V )

• Simmetrically, the firm B invests at time t0 and the firm A delays its decision
at time t1. In this case it results:

C(A ∪ B) = F C
A (V ) + LC

B(V ) ≡ FLC(V )

• Both players decide to invest at time t0. In this case, their cooperation value
will be:

C(A ∪ B) = SA(V ) + SB(V ) ≡ SC(V )

The two-by-two matrix represented in the Fig.(3) summarizes the final payoffs consid-
ering both the cooperative and the non cooperative strategies. The first upper value
in each cell indicates the strategic investment opportunity for A at time t0, while the
second represents the firm B’s value. Moreover, in the lower part of each cell we de-
note the overall value that both firms can realize by cooperation according to several
strategic actions.
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Figure 3: Final payoffs at time t0

4.1 Cooperative Critical market values

The aim of two firm acting together is to improve their position compared with no
parteship and to reach a Pareto optimal solution. To realize this objective, we have
to determine the maximum value among the four cooperation strategies according to
several expected market values V at time t0. Therefore we compute the cooperative
critical market values that delimite the maximum payoff C(A∪B). So it results that:

• WC(0) = 0; SC(0) = −2R;

• LFC(0) = −R; FLC(0) = −R;

When the market value V is equal to zero, both firms realize a loss equivalent to the
R&D investment made at time t0. Now, we analyse the relations among the four
alliance strategies. In particular way, we compute the derivatives without to consider
the dividends that allow us to obtain the cooperative critical market values:

• ∂WC

∂V
= 2k(T−t1)pq

[

N2

(

d1

(

P
P∗

wsA
, t1
)

, d1(P, T );ρ
)

+ N2

(

d1

(

P
P∗

wsB
, t1
)

, d1(P, T );ρ
)]

+k(T−t1)
[

(1 − p)qN2

(

d1

(

P
P∗

wfA
, t1
)

, d1(P, T );ρ
)

+ (1 − q)pN2

(

d1

(

P
P∗

wfB
, t1
)

, d1(P, T );ρ
)]

• ∂SC

∂V
= qkTN(d1(P, T )) [2p + (1 − p)] + pkTN(d1(P, T )) [2q + (1 − q)];

• ∂SC

∂V
> ∂WC

∂V
> 0.

as N(a) > N2(a, b; ρ). Now we can remark that, if q = p, then it results LFC(V ) =
FLC(V ) as LC

A(V ) = LC
B(V ) and F C

A (V ) = F C
B (V ). So in this case both strategies

give the same value. But, if q > p, then we have that LFC(V ) > FLC(V ) and, if
q < p, then LFC(V ) < FLC(V ). The Tables (3) and (7) illustrate some numerical
examples how LFC(V ) > FLC(V ) when q > p.
So, to determine the maximun value, we consider the cooperation strategy in which
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the Leader is the firm with the highest success probability. Assuming that q ≥ p, we
take into account the cooperative strategy LFC . It results that:

∂LFC

∂V
= qN(d1(P, T ))k[p+(T−t1)+T ]+qp+k(2T−3t1)N2

(

d1

(

P
P∗

upB
, t1
)

, d1(P, T ); ρ
)

+ (1 − q)p−k(T − t1)N2

(

d1

(

P
P∗

dwB
, t1
)

, d1(P, T );ρ
)

.

The proof (2) shows that ∂LFC

∂V
> ∂WC

∂V
> 0.

Proof 2 In the case p = q, it results that ρmax = 1 and p+ = 1. After some manipu-
lation and leaving out to simplify the positive quantity of LFC strategy:

(1 − q)p−k(T − t1)N2

(

d1

(

P

P ∗

dwB

, t1

)

, d1(P, T );ρ

)

we have that ∂LFC

∂V
> ∂WC

∂V
if:

Aq2 + Bq < 0 (34)

where:
A = 4(T − t1)N2

(

d1

(

P
P∗

ws
, t1
)

, d1(P, T );ρ
)

−2(T − t1)N2

(

d1

(

P
P∗

wf
, t1
)

, d1(P, T );ρ
)

;

B = 2(T − t1)N2

(

d1

(

P
P∗

wf
, t1
)

, d1(P, T ); ρ
)

− (2T − t1)N(d1(P, T ))

− (2T − 3t1)N2

(

d1

(

P
P∗

up
, t1
)

, d1(P, T );ρ
)

Since P ∗

up < P ∗

ws < P ∗

wf and therefore:

N2

(

d1

(

P

P ∗

up

, t1

)

, d1; ρ

)

> N2

(

d1

(

P

P ∗

ws

, t1

)

, d1; ρ

)

> N2

(

d1

(

P

P ∗

wf

, t1

)

, d1; ρ

)

we have that A > 0 and B < 0 and −B
A

> 1. So the disequation (34) is satisfied for
every value of 0 ≤ q ≤ 1. For the case q > p, we will give some numerical examples
illustred in the Table (9).

So, the following proposition holds:

Proposition 3 There exists a unique critical market value V ∗

C such that LFC(V ∗

C) =
WC(V ∗

C) and:
LFC(V ) < WC(V ) for V < V ∗

C

LFC(V ) > WC(V ) for V > V ∗

C

Now we analyse the several cooperative equilibriums that can be occour.

4.1.1 First case

If ∂LFC

∂V
≥ ∂SC

∂V
then there is not intersection between the functions LFC and SC .

Moreover, the intersection LFC and WC occurs before than SC and WC . So, in this
case, we have to consider only the critical market value V ∗

C given by Proposition (3)
and we can state that:

• If V < V ∗

C the maximum payoff that both player can obtain by cooperation is

C(A ∪ B) = WC(V )
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• If V > V ∗

C the maximum payoff attainable cooperating is

C(A ∪ B) = LFC(V )

In this case, the best strategic cooperation is the waiting policy (WC) until the ex-
pected market value V is below the critical value V ∗

C and, if V > V ∗

C , the optimal
strategy is the Leader-Follower one (LFC) in which the firm with higher success prob-
ability realizes the R&D investment at time t0 and the other player postpones its
decision at time t1. This is the best payoff attainable through cooperation considering
both the whole information revelation ρmax and the effects of network externalities.

4.1.2 Second case

If ∂LFC

∂V
< ∂SC

∂V
then there is intersection between the functions LFC and SC . So

the following proposition holds:

Proposition 4 If ∂LFC

∂V
< ∂SC

∂V
the there exists a unique critical market value V ∗

G

such that LFC(V ∗

G) = SC(V ∗

G) and it results that:

SC(V ) < LFC(V ) for V < V ∗

G

SC(V ) > LFC(V ) for V > V ∗

G

Moreover, the proof (3) shows as V ∗

C < V ∗

G and so the intersection between LFC and
WC happens before than LFC and SC .

Proof 3 The condition to have V ∗

C < V ∗

G is that:

∂(LFC − WC)

∂V
≥ ∂(SC − LFC)

∂V
(35)

The first part of inequality (35) is the reduction of slope to reach the critical market

value V ∗

C . It’s obviuos that if this reduction is faster then ∂(SC−LFC)
∂V

, then V ∗

C will be
smaller than V ∗

G.
Considering to simplify the simmetrical case p = q such that p+ = 1, the conditions
(35) holds if:

Uq2 + Zq ≥ 0 (36)

where:

U = − 2kTN(d1(P, T )) + 2k(T − t1)N2

(

d1

(

P

P ∗

wf

, t1

)

, d1(P, T );ρ

)

− 4k(T − t1)N2

(

d1

(

P

P ∗

ws

, t1

)

, d1(P, T );ρ

)

;

Z =2k(T − t1)N(d1(P, T )) + 2k(2T − 3t1)N2

(

d1

(

P

P ∗

up

, t1

)

, d1(P, T ); ρ

)

− 2k(T − t1)N2

(

d1

(

P

P ∗

wf

, t1

)

, d1(P, T );ρ

)

Since t1 ≤ T
3

and N2

(

d1

(

P
P∗

up
, t1
)

, d1; ρ
)

> N2

(

d1

(

P
P∗

wf
, t1
)

, d1; ρ
)

it results that

U < 0, Z > 0 and −U > Z. So the condition (35) holds for every value of 0 ≤ q ≤ 1.
For the case q > p we give some numerical applications summarized in the Table (9).

17



So, using the Propositions (3) and (4) we observe that:

• If V < V ∗

C the maximum payoff that both firms can obtain with cooperation is

C(A ∪ B) = WC(V )

• If V ∗

C < V < V ∗

G the maximum payoff attainable through the cooperation is

C(A ∪ B) = LFC(V )

• If V > V ∗

G the maximum payoff that both player can obtain cooperating is

C(A ∪ B) = SC(V )

In this case the optimal cooperation strategy is to wait to invest (WC) when the
expected market value V is below V ∗

C while, if V is in the range [V ∗

C , V ∗

G], then the
maximum payoff is obtained by the cooperation strategy Leader-Follower (LFC) and
finally, if V > V ∗

G, both players realize their R&D investment simultaneously at time
t0.

5 Real Applications

5.1 Assumptions and Inputs

To illustrate the concepts and equations presented, we develop some numerical
examples for the cooperative R&D game between firms A and B with the following
parameters and we focus on the several noncooperative and cooperative equilibriums
according to different expected market value V deriving by R&D innovations:

• R&D Investment: R= 250 000 $;

• Development Investment: D= 400 000 $;

• Market and Costs Volatility: σv = 0.93; σd = 0.23;

• Proportion of D required for R: ϕ = R
D

= 0.625

• Correlation between V and D: ρvd = 0.15;

• Dividend-Yelds of V and D: δv = 0.15; δd = 0;

• R&D innovation parameter k = 0.30

• Expiration Time of Simple Option: T = 3 years;

• A and B success probability: q = 0.60; p = 0.55;

• Non Cooperative Information Revelation: ρ(X, Y ) = ρ(Y,X) = 0.40;

• Cooperative Information Revelation: ρmax = 0.9026;

The overall investment cost D is the exercise price for the development option. We
consider that the investment cost is proportional to market share, namely if the firm
market share is K0S0S then the investment cost will be K0S0S D. We assume that D
follows the Brownian motion process defined in Eq. (1b).
The R&D investment R can be realized at time t0 or t1. If it is made in t0, then
R = 250 000 $, otherwise the investment R assumes the identical stochastic process of
D, except that it occours at time t1 and it is proportional to ϕ = 0.625 of D.
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Appropriately, we assume that the volatility of quoted shares and traded options is an
adequate proxy for the volatility of assets V and D.
According to financial options, δ denotes the opportunity cost in holding the option
instead of the stock. So, in real option world, δv is the opportunity cost of deferring
the project and δd is the “dividend yield”on asset D. As at the beginning the cash
flows are very low, we assume that δv = 0.15 and δd = 0.
The time to maturity T denotes project’s deferment option after that each opportunity
disappears and we adopt T = 3 years.
We assume also that firm A has an higher and more efficient Know-How than firm
B and so, firm A’success probability is q = 0.60 while firm B’s one is p = 0.55 but
we suppose that the intesity of noncoopertive information revelation is equal for both
players and so we state ρ(X, Y ) = ρ(Y, X) = 0.40. Moreover, using the Eq. (7), it
results that the cooperative information revelation is ρmax = 0.9026;
Finally, we assume that the R&D innovation parameter k = 0.30 and we analyse the
two cases according to postponement time t1. We remark that t1 ≤ T

3
to allow the

development phase of R&D project and so, considering our adapted parameter values,
the maximum postponemet time t1 is 1 year.

5.2 Numerical application of First case

Assuming that the R&D investment decision can be delay at time t1 = 0.5 year,
we obtain, using the Eqs. (9a)-(9f), the following growth market coefficients:

K0S0S = 1.8; K0S1S = 1.65; K1S1S = 1.50; K1S0S = 1.35; K0S = 0.90; K1S = 0.75

As we can show in the Fig.(4), the ∂SC

∂V
< ∂LFC

∂V
and so, using the Proposition (3), we

compute the critical market value V ∗

C to determine the best cooperation strategy. For
our adapted number, it results that V ∗

C = 700 037. So, if V < 700 037 both players
decide to wait to invest and C(A ∪ B) = WC(V ) otherwise, if V > 700 037 the best
cooperation strategy is the Leader-Follower one in which firm A invests at time t0 and
firms B delays its decision at time t1, so C(A ∪ B) = LFC(V ).

Leader-Follower Coop.
Simultaneous Coop.
Waiting Coop.
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Figure 4: First case

Now, to determine the partnership shares (ShA, ShB) and (PA, PB), we need to com-
pute the non cooperative critical market values V ∗

W , V ∗

Q, V ∗

P and V ∗

S that allow to
determine the Nash equilibriums. So, using the Propositions (1) and (2), it results
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that:

V ∗

W = 1028 380; V ∗

Q = 1066 240; V ∗

P = 1200 470; V ∗

S = 1268 650;

The Fig.(5) summarizes the relations among the four non cooperative strategies that
allow to determine the Nash equilibriums. We can observe that, if V < 1 028 380 the
waiting policy (WA, WB) is optimal in Nash meaning for both player at time t0, if
1 028 380 < V < 1 066 240 and 1 200 470 < V < 1 268 650 we have one Nash non coop-
erative equilibrium (LA, FB) in which the firm A, that has an higher success probabil-
ity, decides to invest in R&D earlier than player B, if 1 066 240 < V < 1 200 470 then
we obtain two Nash equilibriums (LA, FB) and (FA, LB) and at last, if V > 1 268 650
it results one Nash equilibrium (SA, SB) in which both player decide to invest simul-
taneously in R&D at time t0.
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Figure 5: Relations among the non cooperative strategies with t1 = 0.5

Let us examine the partnership between firms A and B combining the cooperative
and non cooperative critical market values. The Tables (1) and (2) summarize the
non-cooperative payoffs of both firms considering the most notable several expected
market values. With these values we are able to compute the Nash-equilibriums v(A)
and v(B) that are listed in the second and third column of Table (4). Moreover the
Table (3) summarizes the cooperative values C(A ∪ B) according to four strategic
cooperations and, in particulare way, the bold type values are the maximum ones de-
riving by the optimal strategic alliance. Using the Eqs. (32) and (33), firms A and
B can split the cooperative value C(A ∪ B) by the Shapley (ShA, ShB) or the Asim-
metric (PA, PB) values that are shown in the Table (4). Comparing the cooperative
and the non cooperative values, we can observe that the partnership is favorable for
both players since each firm improve its payoff deriving from non cooperative Nash
equilibrium. So we can state that the couples (ShA, ShB) and (PA, PB) are Pareto
optimals with respect to (v(A), v(B)). Only if V < 700 037, and so V = 600 000, then
the partnership does not add value to each player because the surplus of cooperation
WC(V )− (WA(V ) + WB(V )) is equal to zero. So we can state that the waiting policy
is optimal for both players at time t0 also in cooperative alternative and firms A and
B prefer to wait better market conditions.
Finally, the Fig.(6) represents the overall situation assuming V = 1400 000. In partic-
ular way, the black line denotes the the feasible set of partnership, namely it represents
all the combinations to split C(A∪B). But only the segment T-H is interesting, because
otherwise firms have the incentive to deviate from cooperation. In fact we can observe
that Shapley (ShA, ShB) and Asimmetric (PA, PB) values belong to the segment T-H.
Moreover, the Fig.(6) shows the four non cooperative strategies and in particular way
the Nash-equilibriums (SA, SB). We can notice that the segment joins the couples
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(SA, SB) and (ShA, ShB) has a 45◦ slope since, by the Shapley value, A and B share
equitably (simmetrically) the surplus of cooperation C(A∪B)− (v(A) + v(B)). So, if
firms agree to split the surplus differently, then other solutions will be chosen on the
segment T-H.

Market Leader’s Value Follower’s Value Simultaneous Value Waiting Value
Value V LA FA SA WA

600 000 -63 344 41 217 -68 466 33 244
900 000 71 204 110 957 62 390 96 736

1 050 000 141 889 154 226 131 135 137 826
1 100 000 165 819 169 582 154 408 152 591
1 250 000 238 525 217 964 225 119 199 561
1 400 000 312 391 269 253 296 958 249 879

Table 1: Firm A’s final payoffs assuming k = 0.30 and t1 = 0.5

Market Leader’s Value Follower’s Value Simultaneous Value Waiting Value
Value V LB FB SB WB

600 000 -73 104 37 018 -78 226 29 024
900 000 54 409 101 802 45 595 86 609

1 050 000 121 398 142 306 110 644 124 373
1 100 000 144 077 156 705 132 666 138 001
1 250 000 212 981 202 120 199 575 181 499
1 400 000 282 984 250 310 267 552 228 291

Table 2: Firm B’s final payoffs assuming k = 0.30 and t1 = 0.5

5.3 Numerical application of Second case

If we assume now that t1 = 0.8 year, so the postponement time increases, using
Eqs. (9a)-(9e) we have that the growth market coefficients are:

K0S0S = 1.8; K0S1S = 1.56; K1S1S = 1.32; K1S0S = 1.08; K0S = 0.90; K1S = 0.66

As is shown in the Fig.(7), the ∂SC

∂V
> ∂LFC

∂V
and so we have two critical market values

V ∗

C and V ∗

G.
Numerically we compute that V ∗

C = 815 710 and V ∗

G = 1796 130 and, using the Propo-
sitions (3) and (4), we are able to state the optimal cooperation strategy. So, if
V < 815 710 the best partnership strategy is to wait to invest and C(A∪B) = WC(V ),
if 815 710 < V < 1 796 130 then both player choise the cooperation form LFC benefic-
ing of information revelation ρmax and network externalities and hence C(A ∪ B) =
LFC(V ) and finally, if V > 1 796 130 then both player prefer to invest simultanoeusly
at time t0 and so C(A ∪ B) = SC(V ).
Now, to determine the partnership shares (ShA, ShB) and (PA, PB), we need to com-
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Market Leader-Follower Value Follower-Leader Value Simultaneous Value Waiting Value
Value V LFC FLC SC WC

600 000 17 412 12 486 -146 693 62 269

900 000 257 854 248 968 107 985 183 345
1 050 000 390 083 378 605 241 780 262 199
1 100 000 435 386 422 974 287 075 290 593
1 250 000 574 220 558 837 424 694 381 060
1 400 000 716 600 698 053 564 510 478 170

Table 3: Firms A and B cooperative payoff assuming k = 0.30 and t1 = 0.5

Market Non-Coop. Non-Coop. Shapley Value Shapley Value Asim. Value Asim. value
Value V v(A) v(B) ShA ShB PA PB

600 000 33 244 29 024 33 244 29 024 33 244 29 024
900 000 96 736 86 609 133 990 123 863 135 610 122 244

1 050 000 141 889 142 306 194 833 195 250 197 135 192 948
1 100 000 165 819 156 705 222 250 213 136 224 704 210 682
1 100 000 169 582 144 077 230 445 204 940 233 092 202 294
1 250 000 238 525 202 120 305 312 268 907 308 216 266 004
1 400 000 296 958 267 552 373 003 343 597 376 309 340 291

Table 4: Shapley and Asimmetric values assuming k = 0.30 and t1 = 0.5
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Figure 6: A and B equilibriums when V = 1 400 000
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Figure 7: Second case

pute the four non cooperative critical market values V ∗

W , V ∗

Q, V ∗

P and V ∗

S by Proposi-
tions (1) and (2). So, it results that:

V ∗

P = 1019 230; V ∗

S = 1064 060; V ∗

W = 1075 210; V ∗

Q = 1120 840;

The Fig.(8) shows the relations among the non cooperative strategic values and the
several Nash equilibriums. We can observe that, if V < 1 064 060, both players prefers
to wait (WA, WB) and to defer their R&D decision at time t1, if 1 064 060 < V <
1 075 210 we obtain two Nash equilibriums (WA, WB) and (SA, SB) and finally, if
V > 1 075 210, then the simultenous R&D investment (SA, SB) at time t0 is optimal
in Nash meaning.
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Figure 8: Relations among the non cooperative strategies with t1 = 0.8

As we have seen for the first case, the Tables (5) and (6) include the non cooperative
payoffs considering the most notable expected market that allow us to compute the
Nash equilibriums v(A) and v(B) summarized in the Table (8). Moreover, in the Table
(7) are listed the partnership values C(A∪B) according to four cooperative strategies
and, in particular way, the bold type values are the maximum payoffs deriving by
best alliance. Both players can split the cooperative value C(A ∪ B) by the Shapley
(ShA, ShB) or the Asimmetric (PA, PB) values (see Eqs. (32) and (33) ) that are
shown in the Table (8). We can observe that, if V = 600 000 and more generally
V < 815 710, then the cooperation does not add any value because the cooperation
surplus WC(V )−(WA(V )+WB(V )) is equal to zero. So wait and see policy is optimal
also considering the cooperation way between A and B. Even if V = 1900 000 and more
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generally V > 1 796 130, then the cooperative gain SC(V )− (SA(V )+SB(V )) is equal
to zero. So the simultaneous R&D investment at time t0 is preferable both in the
cooperative strategy and in the non-cooperative one.
Moreover, the Fig.(9) shows the overall situation when V = 1200 000. Also in this case
we can remark as only the segment T-H is interesting for the splitting of cooperation
value C(A∪B) otherwise firms A and B have the incentive to deviate and to leave the
alliance. Also in this case we can observe that the segment joins the couples (SA, SB)
and (ShA, ShB) has a 45◦ slope, since by the Shapley value A and B share equitably
(simmetrically) the surplus of cooperation C(A ∪ B) − (v(A) + v(B)).

Market Leader’s Value Follower’s Value Simultaneous Value Waiting Value
Value V LA FA SA WA

600 000 -71 689 36 723 -68 466 37 169
900 000 56 844 90 807 62 390 94 187

1 040 000 119 817 121 657 126 501 127 095
1 070 000 133 495 128 638 140 425 134 565
1 100 000 147 230 135 738 154 408 142 169
1 200 000 193 398 160 209 201 411 168 420
1 900 000 528 189 356 418 542 253 380 026

Table 5: Firm A’s final payoffs assuming k = 0.30 and t1 = 0.8

Market Leader’s Value Follower’s Value Simultaneous Value Waiting Value
Value V LB FB SB WB

600 000 -81 449 33 170 -78 226 33 138
900 000 40 049 83 037 45 595 85 282

1 040 000 99 575 111 633 106 259 115 633
1 070 000 112 504 118 113 119 434 122 539
1 100 000 125 487 124 707 132 666 129 576
1 200 000 169 129 147 452 177 142 153 905
1 900 000 485 595 330 439 499 659 351 367

Table 6: Firm B’s final payoffs assuming k = 0.30 and t1 = 0.8

5.4 Sensitivity analysis

In this section we study the effects that the parameters k, t1 and p have on the
equilibriums and, in particular way, on the interval in which the optimal cooperation
strategy is LFC . We recall that only the partnership LFC allows to benefit of a
cooperation gain deriving by the whole information revelation ρmax unlike the waiting
WC and the simultaneous SC policies.
As it is shown in the Table (9), we assume several combinations of k and t1 that give
the respectives growth market coefficients K. Supposing that q = 0.60, we propose
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Market Leader-Follower Value Follower-Leader Value Simultaneous Value Waiting Value
Value V LFC FLC SC WC

600 000 -2 942 -9 300 -146 693 70 307

900 000 206 691 195 683 107 985 179 469
1 040 000 313 413 299 940 232 760 242 729
1 070 000 336 830 322 809 259 860 257 105
1 100 000 360 419 345 844 287 075 271 745
1 200 000 440 190 423 726 378 553 322 325
1 900 000 1 032 079 1 001 380 1 041 912 731 393

Table 7: Firms A and B cooperative payoffs assuming k = 0.30 and t1 = 0.8

Market Non-Coop. Non-Coop. Shapley Value Shapley Value Asim. Value Asim. value
Value V v(A) v(B) ShA ShB PA PB

600 000 37 169 33 138 37 169 33 138 37 169 33 138
900 000 94 187 85 282 107 798 98 893 108 390 98 301

1 040 000 127 095 115 633 162 437 150 975 163 974 149 439
1 070 000 134 565 122 539 174 428 162 402 176 161 160 669
1 070 000 140 425 119 434 178 910 157 919 180 584 156 246
1 100 000 154 408 132 666 191 080 169 338 192 675 167 744
1 200 000 201 411 177 142 232 229 207 960 233 569 206 621
1 900 000 542 253 499 659 542 253 499 659 542 253 499 659

Table 8: Shapley and Asimmetric values assuming k = 0.30 and t1 = 0.8
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Figure 9: A and B equilibriums when V = 1 200 000
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three level of firm’s B success probability: p = 0.60 that give a cooperative information
revelation ρmax = 1, p = 0.55 with ρmax = 0.9026 and finally p = 0.50 with ρmax =
0.8165.
When t1 = 0.25, 0.50, we obtain the first case in which the cooperation strategy LFC

is optimal for every V > V ∗

C . So we can observe that, when the R&D innovation
parameter k increases, then the threshold value V ∗

C decreases and hence the region
]V ∗

C , +∞[ enlarges. But, if the postponement time t1 increases, then the compound
european exchange option (CEEO) and the growth market coefficients related to t1
decrease. In other words, the follower values decreases and so the critical market value
V ∗

C raises. Moreover we can observe that, if the probability p decreases and so also
the cooperative information ρmax, then the critical market V ∗

C increases.
Finally, when t1 = 0.75, 1, we have the second case and so the LFC strategy is bounded
by the critical market values ]V ∗

C , V ∗

G[. In this situation, the follower value decreases
and so the simultaneous R&D investment is profitable for V > V ∗

G. We can note that,
when the postponement time t1 increases, then V ∗

C enlarges and V ∗

G decreases and
so the range ]V ∗

C , V ∗

G[, in which the optimal strategy is LFC , goes down. While, if k
raises, then both V ∗

C and V ∗

G go down and we can observe that the length of interval
]V ∗

C , V ∗

G[ decreases. We can observe also that, if probability p decreases, then both the
thresholds V ∗

C and V ∗

G go up. This means that, both the critical market value V ∗

C until
is better to wait and the threshold V G from which is profitable the simultaneous R&D
investment increase their values.
Moreover, we can note that V ∗

C is always smaller than V ∗

G.

k t1 p = 0.60 p = 0.55 p = 0.50
0.25; 0.25 ]686 846, +∞[ ]719 123, +∞[ ]755 413, +∞[
0.25; 0.50 ]774 857, +∞[ ]808 293, +∞[ ]845 441, +∞[
0.25; 0.75 ]876 617, 2 345 271[ ]909 670, 2 520 902[ ]945 839, 2 731 506[
0.25; 1.00 ]994 768, 1 317 283[ ]1 024 608, 1 408 848[ ]1 056 646, 1 517 632[
0.50; 0.25 ]421 901, +∞[ ]440341, +∞[ ]460 997, +∞[
0.50; 0.50 ]476 010, +∞[ ]495 107, +∞[ ]516 256, +∞[
0.50; 0.75 ]537 974, 1 344 397[ ]556 746, 1 438 431[ ]577 229, 1 550 730[
0.50; 1.00 ]609 405, 786 341[ ]626 119, 837 313[ ]644 013, 897 603[
0.75; 0.25 ]322 244, +∞[ ]335 757, +∞[ ]350 864, +∞[
0.75; 0.50 ]363 666, +∞[ ]377 661, +∞[ ]393 135, +∞[
0.75; 0.75 ]410 794, 987 646[ ]424 509, 1 053 888[ ]439 450, 1 132 786[
0.75; 1.00 ]464 869, 590 763[ ]476 979, 627 524[ ]489 922, 670 892[
1.00; 0.25 ]267 910, +∞[ ]278 827, +∞[ ]291 016, +∞[
1.00; 0.50 ]302 420, +∞[ ]313 729, +∞[ ]326 218, +∞[
1.00; 0.75 ]341 490, 799 562[ ]352 549, 851 599[ ]364 582, 913 457[
1.00; 1.00 ]386 159, 485 529[ ]395 866, 514 887[ ]406 229, 549 459[

Table 9: Interval ]V ∗

C
, V ∗

G
[ in which is optimal LFC cooperation strategy
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6 Concluding Remarks

In this paper we have proposed an R&D cooperation between two firms using the real
option approach to value their payoffs. By the alliance, the information revelation
is wholly revealed and captured by two players. Moreover, we have shown that the
unique cooperation strategy that allows to increase the information revelation with
respect to the non cooperative situation is the Leader-Follower strategy, in which one
firm realizes the R&D invesment at time t0 and other one postpones its decision at
time t1. In particular way, as the mutual information gain implies positive network
externalities, we have shown that the Leader role is assumed by the firm with the
highest success probability.
Finally, computing the non cooperative and the cooperative critical market values,
we are able to determine the range game in which is optimal every partnership strat-
egy and also the combinations to split the surplus of cooperation. Using the Shapley
value both firms split equitably the surplus but they can agree upon several partner-
ship contracts, such as the asymmetric shares PA and PB based on different success
probability.
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