# Dipartimento di Scienze Economiche, Matematiche e Statistiche 

Università degli Studi di Foggia

## R\&D Cooperation in Real Option Game Analysis

## Giovanni Villani

Quaderno n. 19/2008
"Esemplare fuori commercio per il deposito legale agli effetti della legge 15 aprile 2004 n. 106"
Quaderno riprodotto al
Dipartimento di Scienze Economiche, Matematiche e Statistiche
nel mese di ottobre 2008 e
depositato ai sensi di legge

Authors only are responsible for the content of this preprint.

# R\&D Cooperation in Real Option Game Analysis. 

Giovanni Villani<br>Department of Economics, Mathematics and Statistics, University of Foggia, Largo Papa Giovanni Paolo II,1,71100 - Foggia, Italy;<br>g.villani@unifg.it


#### Abstract

Cooperative investments in $R \& D$ are a significant driving force of the modern economy. As it well-known, the R\&D investments are uncertain and the strategic alliances create synergies and additional information that increase the success probabilities about R\&D projects. The theory of real option games takes into account both the flexibility value of an investment opportunity and the strategic considerations. In particular way, while the non-cooperative options are exercised in the interest of the option holders' payoffs, the cooperative ones are exercised in order to maximize the total partnership value. In our model we develop an interaction between two firms that invest in R\&D and we show the effects of cooperative synergies on several equilibriums. Moreover, we consider that the R\&D investments are characterized by positive network externalities that induce more benefits in case of reciprocal R\&D success.


Keywords: Real Exchange Options; Cooperation games; Information Revelation; R\&D investments.

JEL Classification: G13; C71; D80; O32.

## 1 Introduction

In recent years, the real option theory has been widely used in evaluating investment decisions in a dynamic environment. The market developments are complex and so the conventional NPV (Net Present Value) rule undervalues the value of a project because this method fails to take into account the market uncertainty, irreversibility of investment and ability to delay entry. So, a firm with an opportunity to invest is holding an "option" like to financial options. As it is well accepted, the real option theory becomes very important as it allows to capture the value of managerial flexibility to grow, delay or abandon projects.
Several models, such as [Shackleton and Wojakowski (2003)], [Trigeorgis (1991)] and [Lee (1997)] and so on, are based on the assumption that the option exercise price, and so the investement cost, is fixed. But, particularly for the R\&D investments, it is reasonable to consider that the evolution of the investment cost is uncertain. So,
the R\&D invesment opportunity corresponds to an exchange option and not to simple call option: it's the exchange of an uncertain investment cost for an uncertain gross project value. The most importants models that value exchange options are given in [Margrabe (1978)], [McDonald and Siegel (1985)], [Carr(1988)], [Carr(1995)] and [Armada et al.(2007)]. In particular way, [McDonald and Siegel (1985)] value a simple European exchange option while [Carr(1988)] develops a model to value a compound European exchange option. Both models consider that assets distribute "dividends" that, in real options context, are the opportunity costs if an investment project is postponed ([Majd and Pindyck (1987)]).
In addition, the real option approach, combined with game theory, allows to consider the strategic interactions among real option holders and also the market dynamics. The financial options literature does not consider the strategic policies because the option exercise does not influence the characteristic of the underlying security or the options themselves. Differently, real investment opportunities are not held by one firm in isolation and so, the optimal strategic exercise can be derived considering the interactions across option holders.
In this paper we analyse a cooperation between two firms that invest in R\&D. In particular way, following [Dias and Teixeira(2004)] and [Dias (2004)] models, we assume that the R\&D investments generate an "information revelation" about their success and so, by delaying an investment decision, new information can be revealed that might affect the profitability of the R\&D projects. So by the alliance between two players, we show as the information is wholly revealed and captured by two firms to improve their R\&D success probabilities. The mutual information gain implies positive network externalities (as it is shown in [Kong and Kwok (2007)] and [Huisman (2001)]) which lead more benefits in case of reciprocal R\&D success. Therefore, the externalities can involve different entry decisions and so to induce the cooperation between two firms in order to maximixe the partnership return. Accordingly to positive network externalities, we introduce the growth market coefficients depending by the success or failure of two players.
Moreover, we consider that the R\&D investment is realized in a two stage manner, with the commencement of second phase being dependent on the successful completion of the first one. This is known as sequential investment in which each stage provides information for the next thus creating an opportunity (option) for subsequent investment.
This article is suitable to model joint ventures of car producers, alliance between pharmaceutical and oil companies and other cooperation kinds that involve a reduction of R\&D risk. For istance, $[\operatorname{Kogut}(1991)]$, $[\operatorname{Chi}(2000)]$ demonstrated the power of viewing joint ventures as real options to expand in response to future technological and market developments. We differentiate from [Dias and Teixeira(2004)], [Kogut(1991)] and $[\mathrm{Chi}(2000)]$ because we use exchange options to value the $\mathrm{R} \& \mathrm{D}$ opportunities at initial time and so to determine the best cooperative strategies.
The paper is organized as follows. Section 2 reviews the Simple and Compound european exchange option pricing models and Section 3 introduces the basic model and derives also the final payoffs of two firms in a non cooperative framework. Section 4 analyses the cooperation between two firms and we show how both firms can split the surplus of cooperation and, in Section 5, we present two numerical examples for the cooperative R\&D game. Finally, Section 6 concludes.

## 2 Exchange Options Methodology

In this section we present the final results of the principal models to value European exchange options.

### 2.1 Simple european exchange option (SEEO)

[McDonald and Siegel (1985)]'s model gives the value of a SEEO to exchange asset $D$ for asset $V$ at time $T$. The asset given up is termed the delivery asset while the asset received is the optioned asset. Denoting with $s(V, D, T-t)$ the value of SEEO at time $t$, the final payoff at the option's maturity date $T$ is $s(V, D, 0)=\max \left[0, V_{T}-D_{T}\right]$.
So, assuming that $V$ and $D$ follow a geometric Brownian motion process given by:

$$
\begin{gather*}
\frac{d V}{V}=\left(\mu_{v}-\delta_{v}\right) d t+\sigma_{v} d Z_{v}  \tag{1a}\\
\frac{d D}{D}=\left(\mu_{d}-\delta_{d}\right) d t+\sigma_{d} d Z_{d}  \tag{1b}\\
\operatorname{cov}\left(\frac{d V}{V}, \frac{d D}{D}\right)=\rho_{v d} \sigma_{v} \sigma_{d} d t \tag{1c}
\end{gather*}
$$

where:

- $V$ and $D$ are the Gross Project Value and the Investment Cost, respectively;
- $\mu_{v}$ and $\mu_{d}$ are the equilibrium expected rate of return on asset $V$, and the expected growth rate of the investment cost;
- $\delta_{v}$ and $\delta_{d}$ are the "dividend-yields" of $V$ and $D$, respectively;
- $Z_{v}$ and $Z_{d}$ are the brownian standard motions of asset $V$ and $D$;
- $\sigma_{v}$ and $\sigma_{d}$ are the volatility of $V$ and $D$, respectively;
- $\rho_{v d}$ is the correlation between changes in $V$ and $D$.
[McDonald and Siegel (1985)] show that the value of a SEEO on dividend-paying assets, when the valuation date $t=0$, is given by:

$$
\begin{equation*}
s(V, D, T)=V e^{-\delta_{v} T} N\left(d_{1}(P, T)\right)-D e^{-\delta_{d} T} N\left(d_{2}(P, T)\right) \tag{2}
\end{equation*}
$$

where:

- $P=\frac{V}{D} ; \quad \sigma=\sqrt{\sigma_{v}^{2}-2 \rho_{v, d} \sigma_{v} \sigma_{d}+\sigma_{d}^{2}} ; \quad \delta=\delta_{v}-\delta_{d} ;$
- $d_{1}(P, T)=\frac{\log P+\left(\frac{\sigma^{2}}{2}-\delta\right) T}{\sigma \sqrt{T}} ; \quad d_{2}=d_{1}-\sigma \sqrt{T}$;
- $N(d)$ is the cumulative standard normal distribution.


### 2.2 Compound european exchange option (CEEO)

If the underlying asset is another option, the option is called compound. [Carr(1988)] develops a model to value the CEEO $c\left(s, \varphi D, t_{1}\right)$ whose final payoff at maturity date $t_{1}$ is:

$$
c(s, \varphi D, 0)=\max [0, s-\varphi D]
$$

The CEEO value, considering the valuation date $t=0$, is given by:

$$
\begin{align*}
c\left(s(V, D, T), \varphi D, t_{1}\right) & =V e^{-\delta_{v} T} N_{2}\left(d_{1}\left(\frac{P}{P^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -D e^{-\delta_{d} T} N_{2}\left(d_{2}\left(\frac{P}{P^{*}}, t_{1}\right), d_{2}(P, T) ; \rho\right) \\
& -\varphi D e^{-\delta_{d} t_{1}} N_{1}\left(d_{2}\left(\frac{P}{P^{*}}, t_{1}\right)\right) \tag{3}
\end{align*}
$$

where:

- $\varphi$ is the exchange ratio of CEEO;
- $t_{1}$ is the expiration date of the CEEO;
- $T$ is the expiration date of the SEEO, where $T>t_{1}$
- $\tau=T-t_{1}$ is the time to maturity of the SEEO and $\rho=\sqrt{\frac{t_{1}}{T}}$;
- $d_{1}\left(\frac{P}{P^{*}}, t_{1}\right)=\frac{\log \left(\frac{P}{P^{*}}\right)+\left(-\delta+\frac{\sigma^{2}}{2}\right) t_{1}}{\sigma \sqrt{t_{1}}} ; \quad d_{2}\left(\frac{P}{P^{*}}, t_{1}\right)=d_{1}\left(\frac{P}{P^{*}}, t_{1}\right)-\sigma \sqrt{t_{1}} ;$
- $P^{*}$ is the critical price ratio that solves the following equation:

$$
\begin{equation*}
P^{*} e^{-\delta_{v} \tau} N\left(d_{1}\left(P^{*}, \tau\right)\right)-e^{-\delta_{d} \tau} N\left(d_{2}\left(P^{*}, \tau\right)\right)=\varphi . \tag{4}
\end{equation*}
$$

- $N_{2}(a, b, \rho)$ is the standard bivariate normal distribution function evaluated at $a$ and $b$ with correlation coefficient $\rho$.


## 3 The Basic Model Game

In our model we consider two firms $(A$ and $B$ ) that have the option to realize their $\mathrm{R} \& \mathrm{D}$ investment at initial time $t_{0}$ or to delay the decision at time $t_{1}$. As it is know, the $R \& D$ investments depends on the resolution of several source of uncertainty that may influence the investment decision of each firm. Assuming by $q$ and $p$ the R\&D success probability of firms A and B respectively, we can represent this situation by two Bernoulli distributions $Y$ and $X$ :

$$
Y:\left\{\begin{array}{cc}
1 & q \\
0 & 1-q
\end{array} \quad X:\left\{\begin{array}{cc}
1 & p \\
0 & 1-p
\end{array}\right.\right.
$$

The R\&D success or failure of one firm generates an information revelation that influences the investment decision of the other firm. So, if firm A's R\&D is successful, the firm B's probability $p$ changes in positive information revelation $p^{+}$, while $p$ changes in negative information revelation $p^{-}$in case of A's failure. Simmetrically, the firm A's R\&D success changes in $q^{+}$or in $q^{-}$in case of success or failure of firm B at time $t_{0}$. Following [Dias (2004)]'s model about the information revelation process, it results that:

$$
\begin{align*}
& p^{+}=\operatorname{Prob}[X=1 / Y=1]=p+\sqrt{\frac{1-q}{q}} \cdot \sqrt{p(1-p)} \cdot \rho(X, Y)  \tag{5a}\\
& p^{-}=\operatorname{Prob}[X=1 / Y=0]=p-\sqrt{\frac{q}{1-q}} \cdot \sqrt{p(1-p)} \cdot \rho(X, Y)  \tag{5b}\\
& q^{+}=\operatorname{Prob}[Y=1 / X=1]=q+\sqrt{\frac{1-p}{p}} \cdot \sqrt{q(1-q)} \cdot \rho(Y, X)  \tag{5c}\\
& q^{-}=\operatorname{Prob}[Y=1 / X=0]=q-\sqrt{\frac{p}{1-p}} \cdot \sqrt{q(1-q)} \cdot \rho(Y, X) \tag{5d}
\end{align*}
$$

where the correlations $\rho(X, Y)$ and $\rho(Y, X)$ are a measure of information revelation from $Y$ to $X$ and from $X$ to $Y$, respectively. Obviously, the information revelation is considerable when the investment is not realized in the same time. So, if both players invest simultaneously in $\mathrm{R} \& \mathrm{D}$ ore they wait to invest, ther is not information revelation and so $\rho(X, Y)=\rho(Y, X)=0$ and consequently it results that $p=p^{+}=p^{-}$and $q=q^{+}=q^{-}$.
The information revelation is a public information process accessible to the other competitors that influences their choices. For istance, it is known that good information about drugs is available in pharmaceutical industry after clinical testing, and so in the first stages of R\&D.
The condition to respect to have $0 \leq p^{+} \leq 1$ and $0 \leq p^{-} \leq 1$ according to the positive information revelation that benefits the firm $B$, namely $\rho(X, Y) \geq 0$ is that:

$$
\begin{equation*}
0 \leq \rho(X, Y) \leq \min \left\{\sqrt{\frac{p(1-q)}{q(1-p)}}, \sqrt{\frac{q(1-p)}{p(1-q)}}\right\} \tag{6}
\end{equation*}
$$

The condition (6) must to be respected also for the information revelation process that benefits firm $A$, namely $\rho(Y, X)$, to have that $0 \leq q^{+} \leq 1$ and $0 \leq q^{-} \leq 1$.
So, with the alliance between A and B , we can assume that information is wholly revealed and we can setting that the cooperative information $\rho_{\max }$ is equal to:

$$
\begin{equation*}
\rho_{\max }=\min \left\{\sqrt{\frac{p(1-q)}{q(1-p)}}, \sqrt{\frac{q(1-p)}{p(1-q)}}\right\} \tag{7}
\end{equation*}
$$

We can observe that in the symmetrical case in which both firms have the same success probability $p=q$, then it results $\rho_{\max }=1$ and so $q^{+}=1$ and $p^{+}=1$. This means that, in case of $A$ 's $\mathrm{R} \& \mathrm{D}$ success at time $t_{0}$, it involves the $B$ 's success at time $t_{1}$ in the cooperation treatment since the information revelation is fully captured and vice-versa.
Moreover, we assume that R\&D investments are characterized by network externalities that induce more benefits in case of reciprocal $R \& D$ success. So we denote by:

$$
\begin{array}{lllll}
K_{0_{S} 0_{S}}
\end{array}, \quad K_{0_{S} 1_{S}}, \quad K_{1_{S} 0_{S}}, \quad K_{1_{S} 1_{S}}
$$

the growth market coefficients in case of A and B success. The 0 and 1 mean that the R\&D investment is realized at time $t_{0}$ or $t_{1}$ respectively, while the $S$ denotes the success. The first part denotes the operation of considered firm, while the second part is the situation of the other firm. So, if A and B invest successfully in R\&D at
time $t_{0}$ and $t_{1}$ respectively, firm A takes $K_{0_{S} 1_{S}}$ while B obtains $K_{1_{S} 0_{S}}$. If both firms invest simultaneously with success at time $t_{0}$, then they will take $K_{0_{S} 0_{S}}$, while if the investments are realized at time $t_{1}$ they will have $K_{1_{S} 1_{S}}$. In the same way we denote by:

$$
K_{0_{S} 0_{F}}, \quad K_{0_{S} 1_{F}}, \quad K_{1_{S} 0_{F}}, \quad K_{1_{S} 1_{F}}
$$

the market coefficients for the winning firm assuming the failure, denoted by F , by the other player. Moreover, as the unsuccess of one player does not produce network externaility, we can write that:

$$
K_{0_{S} 0_{F}}=K_{0_{S} 1_{F}} \equiv K_{0_{S}} ; \quad K_{1_{S} 0_{F}}=K_{1_{S} 1_{F}} \equiv K_{1_{S}}
$$

Finally, in case of failure of considered firm, its market coefficient will be equal to zero whether in case of success or failure of other firm. So we have that:

$$
K_{0_{F} 0_{S}}=0, \quad K_{0_{F} 1_{S}}=0, \quad K_{1_{F} 0_{S}}=0, \quad K_{1_{F} 1_{S}}=0
$$

and

$$
K_{0_{F} 0_{F}}=0, \quad K_{0_{F} 1_{F}}=0, \quad K_{1_{F} 0_{F}}=0, \quad K_{1_{F} 1_{F}}=0
$$

Now, we can set the relations among the growth market coefficients $K$ using these assumptions:

- Positive Network Externality: as it is shown [Huisman (2001)], the growth market coefficient in case of both R\&D success will be bigger than the situation in which only one firm invests successfully, and so:

$$
\begin{equation*}
K_{S S}>K_{S} \tag{8a}
\end{equation*}
$$

- R\&D Success Time: the market coefficient increases if the reciprocal R\&D success is realized at time $t_{0}$ rather than $t_{1}$, because there is more time to benefit both network externalities and R\&D innovations. In the situation in which only one firm invests successfully, the market coefficient enlarges if the success is realized at time $t_{0}$ rather than $t_{1}$ :

$$
\begin{equation*}
K_{0_{S} 0_{S}}>K_{1_{S} 1_{S}} ; \quad K_{0_{S}}>K_{1_{S}} \tag{8b}
\end{equation*}
$$

- First Mover's Advantage: the firm that realizes with success the R\&D investment at time $t_{0}$ will receive an higher market coefficient than other player that postpones successfully the project at time $t_{1}$ :

$$
\begin{equation*}
K_{0_{S} 1_{S}}>K_{1_{S} 0_{S}} \tag{8c}
\end{equation*}
$$

To determine the growth market coefficients $K$, we assume that they depend by a parameter $k$ involving the $\mathrm{R} \& \mathrm{D}$ innovation and by length of $\mathrm{R} \& \mathrm{D}$ benefits until the expiration time $T$. For the positive network externality, we take into account two times the one firm market coefficient. So, assuming that the initial time $t_{0}=0$, we have that:

$$
\begin{align*}
K_{0_{S}} & =k T  \tag{9a}\\
K_{0_{S} 0_{S}} & =2 k T  \tag{9b}\\
K_{1_{S}} & =k\left(T-t_{1}\right)  \tag{9c}\\
K_{1_{S} 1_{S}} & =2 k\left(T-t_{1}\right) \tag{9d}
\end{align*}
$$

We suppose to fix $T$, it is obviuos that if $t_{1}$ decreasing, then the coefficients $K_{1_{S} 1_{S}}$ and $K_{1_{S}}$ increase their value. In fact, if $t_{1}=0$ then there is not delay and $K_{1_{S} 1_{S}}=K_{0_{S} 0_{S}}$ and $K_{1_{S}}=K_{0_{S}}$. Finally, to determine $K_{0_{S} 1_{S}}$ and $K_{1_{S} 0_{S}}$, we assume that:

$$
\begin{align*}
K_{0_{S} 1_{S}} & =2 k\left(T-t_{1}\right)+k t_{1}  \tag{9e}\\
K_{1_{S} 0_{S}} & =2 k\left(T-t_{1}\right)-k t_{1} \tag{9f}
\end{align*}
$$

If one firm invests successfully at time $t_{0}$ and the other player at time $t_{1}$, we have that the first firm takes the network externality starting from time $t_{1}$, namely $K_{1_{S} 1_{S}}$ plus the first mover's advantatege $k t_{1}$ until time $t_{1}$. Simmetrically, the market coefficient $K_{1_{S} 0_{S}}$ for the second firm that postpones its choice will be $K_{1_{S} 1_{S}}$ minus $k t_{1}$. We can observe that if $t_{1}=0$, so if there is not postponement, then $K_{0_{S} 1_{S}}=K_{1_{S} 0_{S}}=$ $K_{0_{S} 0_{S}}$. Finally, to ensure that condition (8a) holds, we need to impose that $t_{1}<\frac{T}{3}$. This condition is reasonable with the consideration that the information revelation disappears in time and furthermore, if one firm invests at time $t_{0}$, the other firm decision will be made within $t_{1}<\frac{T}{3}$ to allow the realization of development phase in $T-t_{1}$.
First to start, we state as Leader the pionner firm (A or B) that invests in R\&D at time $t_{0}$ earlier than other one, namely the Follower, that postpones the R\&D investment decision at time $t_{1}$. We denote by $R$ the $\mathrm{R} \& \mathrm{D}$ investment for the development of a new product, $V$ the overall market value deriving by $\mathrm{R} \& \mathrm{D}$ innovations and $D$ is the total investment cost to realize new goods. We consider that the production investment of each firm is proportional to its market share and it can be realized only at time $T$, that is the time needed for to develop the new product. Hence, we suppose that the option to enter in the market is like an European exchange option.

### 3.1 The Leader's Payoff

We analyse the Leader's payoff assuming that firm A (Leader) invests in R\&D at time $t_{0}$ while firm B (Follower) decides to wait to invest. So, the Leader spends the investment $R$ at time $t_{0}$ and obtains, in case of its $\mathrm{R} \& \mathrm{D}$ success with probability $q$, the development option. In particular way, if also the Follower's R\&D invesment is successfully at time $t_{1}$, the growth market coefficient will be $K_{0_{S} 1_{S}}$ and the Leader holds the development option $s\left(K_{0_{S}{ }^{1} S} V, K_{0_{S}{ }_{S}} D, T\right)$ to invest $K_{0_{S} 1_{S}} D$ and claims a market value equal to $K_{0_{S} 1_{S}} V$ as it is illustred in the Fig.(1(a)). So the Leader's payoff is:

$$
\begin{aligned}
L_{A}^{S}(V, D) & =-R+q \cdot s\left(K_{0_{S} 1_{S}} V, K_{0_{S} 1_{S}} D, T\right) \\
& =-R+q k\left(2 T-t_{1}\right)\left(V e^{-\delta_{v} T} N\left(d_{1}(P, T)\right)-D e^{-\delta_{d} T} N\left(d_{2}(P, T)\right) \gamma_{10}\right)
\end{aligned}
$$

The probability to have $K_{00^{1}}$ depending by the Follower's $\mathrm{R} \& \mathrm{D}$ success that is $p^{+}$ since it receives the information revelation from Leader's investment occurred at time $t_{0}$. But, if the Follower's R\&D fails, the Leader's market coefficient in case of its R\&D success is $K_{0_{S}}$ and it receives the following payoff:

$$
\begin{align*}
L_{A}^{F}(V, D) & =-R+q \cdot s\left(K_{0_{S}} V, K_{0_{S}} D, T\right) \\
& =-R+q k T\left(V e^{-\delta_{v} T} N\left(d_{1}(P, T)\right)-D e^{-\delta_{d} T} N\left(d_{2}(P, T)\right)\right) \tag{11}
\end{align*}
$$

as it is shown in the Fig.(1(b)). So, computing the expectation value between Eqs. (10) and (11), the Leader's payoff (firm A) is:

$$
\begin{equation*}
L_{A}(V, D)=p^{+} \cdot L_{A}^{S}(V, D)+\left(1-p^{+}\right) \cdot L_{A}^{F}(V, D) \tag{12}
\end{equation*}
$$

Simmetrically, assuming that firm B (Leader) invests at time $t_{0}$ while firm A (Follower) decides to postpone its decision, the Leader's payoff became:

$$
\begin{equation*}
L_{B}(V, D)=q^{+} \cdot L_{B}^{S}(V, D)+\left(1-q^{+}\right) \cdot L_{B}^{F}(V, D) \tag{13}
\end{equation*}
$$


(a) Leader's payoff in case of Follower's success

(b) Leader's payoff in case of Follower's failure

Figure 1: Leader's payoffs

### 3.2 The Follower's Payoff

Now we focus on the Follower's payoff assuming that firm $B$ (Follower) decides to postpone its $\mathrm{R} \& \mathrm{D}$ investment decision at time $t_{1}$ and firm $A$ (Leader) invests at time $t_{0}$. If the Leader's R\&D investment is successfully (with a probability $q$ ), then the Follower's probability success became $p^{+}$and its growth market coefficient is $K_{1_{S} 0_{S}}$. So, after the investment $R$, the Follower holds with a probability $p^{+}$the development option $s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right)$ to invest $K_{1_{S} 0_{S}} D$ and claims a market value equal to $K_{1_{S} 0_{S}} V$. So the Follower's payoff at time $t_{0}$ is a CEEO with maturity $t_{1}$, exercise price equal to $R$ and the underlying asset is the development option $s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right)$ as it is represented in the Fig.(2(a)).
The CEEO payoff at expiration date $t_{1}$ with positive information revelation is:

$$
c\left(p^{+} s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right), R, 0\right)=\max \left[p^{+} s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right)-R, 0\right]
$$

According to $[\operatorname{Carr}(1988)]$ 's model, we assume that $R=\varphi D$ is a proportion $\varphi$ of asset $D$. Hence, denoting by $c\left(p^{+}\right)$the CEEO at time $t_{0}$, namely:

$$
c\left(p^{+}\right) \equiv c\left(p^{+} s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right), \varphi D, t_{1}\right)
$$

we can write, using the Eq. (3), the value of CEEO with positive information:

$$
\begin{align*}
c\left(p^{+}\right)= & p^{+} k\left(2 T-3 t_{1}\right) V e^{-\delta_{v} T} N_{2}\left(d_{1}\left(\frac{P}{P_{u p B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -p^{+} k\left(2 T-3 t_{1}\right) D e^{-\delta_{d} T} N_{2}\left(d_{2}\left(\frac{P}{P_{u p B}^{*}}, t_{1}\right), d_{2}(P, T) ; \rho\right) \\
& -\varphi D e^{-\delta_{d} t_{1}} N_{1}\left(d_{2}\left(\frac{P}{P_{u p B}^{*}}, t_{1}\right)\right) \tag{14}
\end{align*}
$$

where $P_{u p B}^{*}$ is the critical value that makes the underlying asset of $c\left(p^{+}\right)$equal to exercise value. Hence $P_{u p B}^{*}$ solves the following equation:

$$
p^{+} s\left(K_{1_{S} 0_{S}} V, K_{1_{S} 0_{S}} D, \tau\right)=\varphi D
$$

and assuming the asset $K_{1{ }_{S} 0_{S}} D$ as numeraire we can rewrite the above equation as:

$$
\begin{equation*}
P_{u p B}^{*} e^{-\delta_{v} \tau} N\left(d_{1}\left(P_{u p B}^{*}, \tau\right)\right)-e^{-\delta_{d} \tau} N\left(d_{2}\left(P_{u p B}^{*}, \tau\right)\right)=\frac{\varphi}{p^{+} \cdot\left(2 T-3 t_{1}\right)} \tag{15}
\end{equation*}
$$

Alternatively, in case of Leader's failure, the Follower's R\&D success probability changes in $p^{-}$and its market coefficient is $K_{1_{S}}$. So, the Follower's payoff at time $t_{0}$ is a CEEO with maturity $t_{1}$, exercise price equal to $R$ and underlying asset is the development option $s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right)$ as it is shown in the Fig.(2(b)). Hence, the CEEO payoff at expiration date $t_{1}$ with negative information revelation is:

$$
c\left(p^{-} s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right), R, 0\right)=\max \left[p^{-} s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right)-R, 0\right]
$$

Denoting with $c\left(p^{-}\right)$the CEEO at time $t_{0}$ with negative information, i.e.:

$$
c\left(p^{-}\right) \equiv c\left(p^{-} s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right), \varphi D, t_{1}\right)
$$

we can write, using the Eq. (3), the value of CEEO with negative information:

$$
\begin{align*}
c\left(p^{-}\right)= & p^{-} k\left(T-t_{1}\right) V e^{-\delta_{v} T} N_{2}\left(d_{1}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -p^{-} k\left(T-t_{1}\right) D e^{-\delta_{d} T} N_{2}\left(d_{2}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right), d_{2}(P, T) ; \rho\right) \\
& -\varphi D e^{-\delta_{d} t_{1}} N_{1}\left(d_{2}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right)\right) \tag{16}
\end{align*}
$$

where $P_{d w B}^{*}$ is the critical price that solves the following equation:

$$
\begin{equation*}
P_{d w B}^{*} e^{-\delta_{v} \tau} N\left(d_{1}\left(P_{d w B}^{*}, \tau\right)\right)-e^{-\delta_{d} \tau} N\left(d_{2}\left(P_{d w B}^{*}, \tau\right)\right)=\frac{\varphi}{p^{-} \cdot k\left(T-t_{1}\right)} \tag{17}
\end{equation*}
$$

The Follower obtains the CEEO $c\left(p^{+}\right)$in case of Leader's success with a probability $q$ or the CEEO $c\left(p^{-}\right)$in case of Leader's failure with a probability $(1-q)$. Hence, the Follower's payoff at time $t_{0}$ is the expectation value:

$$
\begin{equation*}
F_{B}(V, D)=q c\left(p^{+}\right)+(1-q) c\left(p^{-}\right) \tag{18}
\end{equation*}
$$

Similary, if we consider that firm B (Leader) invests in R\&D at time $t_{0}$ and firm A (Follower) decides to wait to invest we have that:

$$
\begin{equation*}
F_{A}(V, D)=p c\left(q^{+}\right)+(1-p) c\left(q^{-}\right) \tag{19}
\end{equation*}
$$


(a) Follower's payoff in case of Leader's success

(b) Follower's payoff in case of Leader's failure

Figure 2: Follower's payoffs

### 3.3 The A and B payoffs in case of simultaneous investment

In this case, we analyse the situation in which both firms invest in R\&D at time $t_{0}$. We can assume that there is not information revelation since the investment is simultaneous but both players can benefice of network externalities. First of all, we determine the firm's $A$ payoff. Assuming the firm $B$ 's R\&D success, $A$ receives the development option with a growth market coefficient $K_{0_{S} 0_{S}}$ in case of its R\&D success. So, after the investment R at time $t_{0}$, player A receives the development option $s\left(K_{0_{S} 0_{S}} V, K_{0_{S} 0_{S}} D, T\right)$ with a probability $q$ :

$$
\begin{align*}
S_{A}^{S}(V, D) & =-R+q \cdot s\left(K_{0_{S} 0_{S}} V, K_{0_{S} 0_{S}} D, T\right) \\
& =-R+q 2 k T\left(V e^{-\delta_{v} T} N\left(d_{1}(P, T)\right)-D e^{-\delta_{d} T} N\left(d_{2}(P, T)\right)\right) \tag{20}
\end{align*}
$$

But, assuming the firm $B$ failure, A receives the development option with a growth market coefficient $K_{0_{S}}$ in case of its success:

$$
\begin{align*}
S_{A}^{F}(V, D) & =-R+q \cdot s\left(K_{0_{S}} V, K_{0_{S}} D, T\right) \\
& =-R+q k T\left(V e^{-\delta_{v} T} N\left(d_{1}(P, T)\right)-D e^{-\delta_{d} T} N\left(d_{2}(P, T)\right)\right) \tag{21}
\end{align*}
$$

So, recalling that firm B's probability success is equal to $p$, the firm's $A$ payoff in case of simultaneous investment will be the expectation value between Eqs. (20) and (21):

$$
\begin{equation*}
S_{A}(V, D)=p \cdot S_{A}^{S}(V, D)+(1-p) \cdot S_{A}^{F}(V, D) \tag{22}
\end{equation*}
$$

Simmetrically, the firm's $B$ payoff will be:

$$
\begin{equation*}
S_{B}(V, D)=q \cdot S_{B}^{S}(V, D)+(1-q) \cdot S_{B}^{F}(V, D) \tag{23}
\end{equation*}
$$

### 3.4 The $A$ and $B$ payoffs when both firms wait to invest

Finally, we suppose that both firms decide to delay their R\&D investment decision at time $t_{1}$ and we can setting that there is not information revelation. First of all, we analyse the situation of firm $A$. Assuming the $\mathrm{R} \& \mathrm{D}$ success of firm B , then the growth market coefficient of player A will be $K_{1_{S} 1_{S}}$. So, after the investment R at time $t_{1}$, firm A holds with a probability $q$ the development option $s\left(K_{1_{S} 1_{S}} V, K_{1_{S} 1_{S}} D, \tau\right)$ to invest $K_{1_{S} 1_{S}} D$ and claims a market value equal to $K_{1_{S}{ }_{S}} V$. Then the firm's A payoff at time $t_{0}$ is a CEEO with maturity $t_{1}$, the exercise price equal to $R$ and the underlying asset is the development option $s\left(K_{1_{S} 1_{S}} V, K_{1_{S}{ }_{S}} D, \tau\right)$ with a probability $q$. Thus, according to $[\operatorname{Carr}(1988)]$ 's model, and assuming that $R$ is a proportion $\varphi$ of asset $D$, the CEEO in case of firm's $B$ success is:

$$
\begin{equation*}
W_{A}^{S}(V, D)=c\left(q \cdot s\left(K_{1_{S} 1_{S}} V, K_{1_{S} 1_{S}} D, \tau\right), \varphi D, t_{1}\right) \tag{24}
\end{equation*}
$$

and specifically:

$$
\begin{align*}
W_{A}^{S}(V, D)= & q 2 k\left(T-t_{1}\right) V e^{-\delta_{v} T} N_{2}\left(d_{1}\left(\frac{P}{P_{w s A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -q 2 k\left(T-t_{1}\right) D e^{-\delta_{d} T} N_{2}\left(d_{2}\left(\frac{P}{P_{w s A}^{*}}, t_{1}\right), d_{2}(P, T) ; \rho\right) \\
& -\varphi D e^{-\delta_{d} t_{1}} N_{1}\left(d_{2}\left(\frac{P}{P_{w s A}^{*}}, t_{1}\right)\right) \tag{25}
\end{align*}
$$

where $P_{w s A}^{*}$ is the critical value that solves the following equation:

$$
q \cdot s\left(K_{1_{S}{ }_{S}} V, K_{1_{S} 1_{S}} D, \tau\right)=\varphi D
$$

and assuming the asset $K_{1_{S} 1_{S}} D$ as numeraire we can rewrite the above equation as:

$$
\begin{equation*}
P_{w s A}^{*} e^{-\delta_{v} \tau} N\left(d_{1}\left(P_{w s A}^{*}, \tau\right)\right)-e^{-\delta_{d} \tau} N\left(d_{2}\left(P_{w s A}^{*}, \tau\right)\right)=\frac{\varphi}{q \cdot 2 k\left(T-t_{1}\right)} \tag{26}
\end{equation*}
$$

But, in case of firm's B failure, the firm A growth market coefficient will be $K_{1_{S}}$. So, after the investment $R$ at time $t_{1}$, firm A obtains with a probability $q$ the development option $s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right)$. Thus, using [Carr(1988)]'s model, the firm' A payoff at time $t_{0}$ is a CEEO where the underlying asset is $s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right)$ with a probability $q$ :

$$
\begin{equation*}
W_{A}^{F}(V, D)=c\left(q \cdot s\left(K_{1_{S}} V, K_{1_{S}} D, \tau\right), \varphi D, t_{1}\right) \tag{27}
\end{equation*}
$$

and specifically:

$$
\begin{align*}
W_{A}^{F}(V, D)= & q k\left(T-t_{1}\right) V e^{-\delta_{v} T} N_{2}\left(d_{1}\left(\frac{P}{P_{w f A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -q k\left(T-t_{1}\right) D e^{-\delta_{d} T} N_{2}\left(d_{2}\left(\frac{P}{P_{w f A}^{*}}, t_{1}\right), d_{2}(P, T) ; \rho\right) \\
& -\varphi D e^{-\delta_{d} t_{1}} N_{1}\left(d_{2}\left(\frac{P}{P_{w f A}^{*}}, t_{1}\right)\right) \tag{28}
\end{align*}
$$

where, as seen before, $P_{w f A}^{*}$ is the critical value that solves the following equation:

$$
q \cdot s\left(K_{1_{S}} V, D_{1_{S}} D, \tau\right)=\varphi D
$$

and assuming the asset $K_{1_{S}} D$ as numeraire we can rewrite the above equation as:

$$
\begin{equation*}
P_{w f A}^{*} e^{-\delta_{v} \tau} N\left(d_{1}\left(P_{w f A}^{*}, \tau\right)\right)-e^{-\delta_{d} \tau} N\left(d_{2}\left(P_{w f A}^{*}, \tau\right)\right)=\frac{\varphi}{q \cdot k\left(T-t_{1}\right)} \tag{29}
\end{equation*}
$$

Hence, recalling that the firm B success is equal to $p$, we can compute the firm A payoff as the expectation value between Eqs. (24) and (27):

$$
\begin{equation*}
W_{A}(V, D)=p W_{A}^{S}(V, D)+(1-p) W_{A}^{F}(V, D) \tag{30}
\end{equation*}
$$

Similary, the firm B payoff is:

$$
\begin{equation*}
W_{B}(V, D)=q W_{B}^{S}(V, D)+(1-q) W_{B}^{F}(V, D) \tag{31}
\end{equation*}
$$

### 3.5 Non cooperative Critical market values

Now, to determine the non cooperative Nash equilibriums denoted by $v(A)$ and $v(B)$, we analyse the relations among the strategic payoffs according to several expected market values $V$ at time $t_{0}$ and considering fixed the invest cost $D$ at time $t_{0}$. Therefore, we are able to determine the critical market values that delimite the several Nash equilibriums.
First of all, we analyse the relation between the Leader and the Waiting strategy considering only the variable $V$ and, to simplify the notation, we do not considering the dividends to compute the derivatives. We can observe that:

$$
\text { - } L_{i}(0)=-R ; \quad W_{i}(0)=0
$$

- $\frac{\partial L_{A}}{\partial V}=q N\left(d_{1}(P, T)\right) k\left[p^{+}\left(2 T-t_{1}\right)+\left(1-p^{+}\right) T\right] ;$
- $\frac{\partial L_{B}}{\partial V}=p N\left(d_{1}(P, T)\right) k\left[q^{+}\left(2 T-t_{1}\right)+\left(1-q^{+}\right) T\right] ;$
- $\frac{\partial W_{A}}{\partial V}=2 p q k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w s A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$ $+(1-p) q k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) ;$
- $\frac{\partial W_{B}}{\partial V}=2 q p k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w s B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$ $+(1-q) p k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) ;$
- $\frac{\partial L_{i}}{\partial V}>\frac{\partial W_{i}}{\partial V}>0$;
for $i=A, B$, as it is shown in the proof (1).

Proof 1 We can observe that, when the information revalation $\rho(X, Y)$ and $\rho(Y, X)$ increase, then also the derivatives $\frac{\partial L_{A}}{\partial V}$ and $\frac{\partial L_{B}}{\partial V}$ raise because $2 T-t_{1}>T$. So, assuming $\rho(X, Y)=\rho(Y, X)=0$, we can observe that $p^{+}=p$ and $q^{+}=q$. Moreover, as $2 T-t_{1} \geq 2\left(T-t_{1}\right)$ and $N(b)=N_{2}(a, b ; \rho)+N_{2}(-a, b ;-\rho)$, it's obvious that $\frac{\partial L_{i}}{\partial V}>\frac{\partial W_{i}}{\partial V}>0$ for $i=A, B$.

Then, the following proposition holds:
Proposition 1 There exists, for each firm $i=A, B$, a unique critical market value $V_{i}^{W}$ that makes $L_{i}\left(V_{i}^{W}\right)=W_{i}\left(V_{i}^{W}\right)$. Denoting by $V_{W}^{*}=\min \left(V_{A}^{W}, V_{B}^{W}\right)$ and $V_{Q}^{*}=$ $\max \left(V_{A}^{W}, V_{B}^{W}\right)$, it results that:

$$
\begin{array}{lll}
L_{i}(V)<W_{i}(V) & \text { for } & V<V_{W}^{*} \\
L_{i}(V)>W_{i}(V) & \text { for } & V>V_{Q}^{*}
\end{array}
$$

Moreover, if A's success probability $q$ is higher than $B$, for $V \in] V_{W}^{*}, V_{Q}^{*}[$ it results:

$$
L_{A}(V)>W_{A}(V) ; \quad L_{B}(V)<W_{B}(V)
$$

otherwise, if B's success probability $p$ is higher than $A$, for $V \in] V_{W}^{*}, V_{Q}^{*}[$ it results:

$$
L_{A}(V)<W_{A}(V) ; \quad L_{B}(V)>W_{B}(V)
$$

Now we analyse the relation between the Follower and the Simultaneous strategies. Then, we can observe that:

- $F_{i}(0)=0 ; \quad S_{i}(0)=-R ;$
- $\frac{\partial F_{A}}{\partial V}=p q^{+} k\left(2 T-3 t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{u p A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$ $+(1-p) q^{-} k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{d w A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) ;$
- $\frac{\partial F_{B}}{\partial V}=q p^{+} k\left(2 T-3 t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{u_{p B}}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$ $+(1-q) p^{-} k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) ;$
- $\frac{\partial S_{A}}{\partial V}=q N\left(d_{1}(P, T)\right) k T[1+p] ;$
- $\frac{\partial S_{B}}{\partial V}=p N\left(d_{1}(P, T)\right) k T[1+q]$
- $\frac{\partial F_{i}}{\partial V}>0 ; \quad \frac{\partial S_{i}}{\partial V}>0$
for $i=A, B$. In this case we have that both derivatives are positive but the intersection between Follower and Simultaneous strategies exists if $\frac{\partial S_{i}}{\partial V}>\frac{\partial F_{i}}{\partial V}$ for $i=A, B$. So the following proposition holds:

Proposition 2 If $\frac{\partial S_{A}}{\partial V}>\frac{\partial F_{A}}{\partial V}$ then there exists a unique critical market value $V_{P}^{*}$ that makes $S_{A}\left(V_{P}^{*}\right)=F_{A}\left(V_{P}^{*}\right)$ and it results that:

$$
\begin{array}{lll}
S_{A}(V)<F_{A}(V) & \text { for } & V<V_{P}^{*} \\
S_{A}(V)>F_{A}(V) & \text { for } & V>V_{P}^{*}
\end{array}
$$

otherwise, if $\frac{\partial S_{A}}{\partial V} \leq \frac{\partial F_{A}}{\partial V}$ then $S_{A}(V)<F_{A}(V)$ for every value of $V$.
If $\frac{\partial S_{B}}{\partial V}>\frac{\partial F_{B}}{\partial V}$ then there exists a unique critical market value $V_{S}^{*}$ that makes $S_{B}\left(V_{S}^{*}\right)=$ $F_{B}\left(V_{S}^{*}\right)$ and it results that:

$$
\begin{array}{lll}
S_{B}(V)<F_{B}(V) & \text { for } & V<V_{S}^{*} \\
S_{B}(V)>F_{B}(V) & \text { for } & V>V_{S}^{*}
\end{array}
$$

otherwise, if $\frac{\partial S_{B}}{\partial V} \leq \frac{\partial F_{B}}{\partial V}$ then $S_{B}(V)<F_{B}(V)$ for every value of $V$.
Moreover, if A's success probability $q$ is higher than firm $B$, then $V_{P}^{*}<V_{S}^{*}$ otherwise $V_{S}^{*}<V_{P}^{*}$.

It's evident that in the simmetric case in which both players have the same success probability $p=q$, it results that $V_{W}^{*}=V_{Q}^{*}$ and $V_{S}^{*}=V_{P}^{*}$.
By the Propositions (1) and (2), we are able to setting the several Nash equilibriums $v(A)$ and $v(B)$ in case of no partneship with information revelation $\rho(X, Y)$ and $\rho(Y, X)$.

## 4 The Cooperation between A and B

In this section we analyse the cooperation between firms A and B that allows to capture the whole information revelation and so to improve the R\&D success probabilities. In particular way we assume that the value achieved by the cooperation can be trasferred from one player to the other. We show as the strategic alliance is the joint best response to the non-cooperative alternative and so the equilibriums that both firms obtain through the cooperation are Pareto-dominate all the non-cooperative ones. As we consider two players, we denote by $C(A \cup B)$ the feasible set for the coalition, namely is the set of outcome which can be obtained by the two players acting together. The cooperation value is given by the sum of two firm's payoff using the
whole information revelation $\rho_{\text {max }}$ deriving by two firms' R\&D investments. Both players can agree upon several partnership contracts. For istance firms A and B can share equitably the surplus of cooperation using the Shapley values:

$$
\begin{align*}
& S h_{A}=v(A)+\frac{C(A \cup B)-(v(A)+v(B))}{2}  \tag{32a}\\
& S h_{B}=v(B)+\frac{C(A \cup B)-(v(A)+v(B))}{2} \tag{32b}
\end{align*}
$$

where $C(A \cup B)-(v(A)+v(B))$ is the surplus of cooperation. This solution looks natural in the symmetric case $p=q$ in which both firms have the same success probability otherwise, we can assume also asymmetric shares. For istance, we can split the cooperation value $C(A \cup B)$ as:

$$
\begin{align*}
& P_{A}=v(A)+\frac{q}{p+q}(C(A \cup B)-(v(A)+v(B)))  \tag{33a}\\
& P_{B}=v(B)+\frac{p}{p+q}(C(A \cup B)-(v(A)+v(B))) \tag{33b}
\end{align*}
$$

We can observe that, if $p=q$, then $S h_{i}=P_{i}$ for $i=A, B$ and the efficiency property is satisfied as $S h_{A}+S h_{B}=P_{A}+P_{B}=C(A \cup B)$.
The cooperative information $\rho_{\text {max }}$ influences the Leader and Follower payoffs that we denote by $L_{i}^{C}(V)$ and $F_{i}^{C}(V)$ for $i=A, B$, where $C$ means the cooperative action. The four possible cooperation strategies are:

- Both players decide to wait to invest at time $t_{0}$. Then, their cooperation value will be:

$$
C(A \cup B)=W_{A}(V)+W_{B}(V) \equiv W_{C}(V)
$$

- The firm $A$ invests at time $t_{0}$ while the firm $B$ delays its decision at time $t_{1}$. The firm $B$ obtains the overall information revelation $\rho_{\max }$ :

$$
C(A \cup B)=L_{A}^{C}(V)+F_{B}^{C}(V) \equiv L F_{C}(V)
$$

- Simmetrically, the firm $B$ invests at time $t_{0}$ and the firm $A$ delays its decision at time $t_{1}$. In this case it results:

$$
C(A \cup B)=F_{A}^{C}(V)+L_{B}^{C}(V) \equiv F L_{C}(V)
$$

- Both players decide to invest at time $t_{0}$. In this case, their cooperation value will be:

$$
C(A \cup B)=S_{A}(V)+S_{B}(V) \equiv S_{C}(V)
$$

The two-by-two matrix represented in the Fig.(3) summarizes the final payoffs considering both the cooperative and the non cooperative strategies. The first upper value in each cell indicates the strategic investment opportunity for A at time $t_{0}$, while the second represents the firm B's value. Moreover, in the lower part of each cell we denote the overall value that both firms can realize by cooperation according to several strategic actions.

FIRM B

|  | Wait FIRM B Invest |  |
| :---: | :---: | :---: |
|  | Non-Cooperation $\left(W_{A}, W_{B}\right)$ <br> Cooperation $W_{C}$ | Non-Cooperation $\left(F_{A}, L_{B}\right)$ <br> Cooperation $\mathrm{FL}_{\mathrm{C}}$ |
| $\begin{aligned} & \bar{\infty} \\ & \stackrel{\infty}{心} \end{aligned}$ | Non-Cooperation $\left(L_{A}, F_{B}\right)$ <br> Cooperation $\mathrm{LF}_{\mathrm{C}}$ | Non-Cooperation $\left(S_{A}, S_{B}\right)$ <br> Cooperation $S_{C}$ |

Figure 3: Final payoffs at time $t_{0}$

### 4.1 Cooperative Critical market values

The aim of two firm acting together is to improve their position compared with no parteship and to reach a Pareto optimal solution. To realize this objective, we have to determine the maximum value among the four cooperation strategies according to several expected market values $V$ at time $t_{0}$. Therefore we compute the cooperative critical market values that delimite the maximum payoff $C(A \cup B)$. So it results that:

- $W_{C}(0)=0 ; \quad S_{C}(0)=-2 R$;
- $L F_{C}(0)=-R ; \quad F L_{C}(0)=-R$;

When the market value $V$ is equal to zero, both firms realize a loss equivalent to the R\&D investment made at time $t_{0}$. Now, we analyse the relations among the four alliance strategies. In particular way, we compute the derivatives without to consider the dividends that allow us to obtain the cooperative critical market values:

- $\frac{\partial W_{C}}{\partial V}=2 k\left(T-t_{1}\right) p q\left[N_{2}\left(d_{1}\left(\frac{P}{P_{w s A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)+N_{2}\left(d_{1}\left(\frac{P}{P_{w s B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)\right]$

$$
+k\left(T-t_{1}\right)\left[(1-p) q N_{2}\left(d_{1}\left(\frac{P}{P_{w f A}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)+(1-q) p N_{2}\left(d_{1}\left(\frac{P}{P_{w f B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)\right]
$$

- $\frac{\partial S_{C}}{\partial V}=q k T N\left(d_{1}(P, T)\right)[2 p+(1-p)]+p k T N\left(d_{1}(P, T)\right)[2 q+(1-q)] ;$
- $\frac{\partial S_{C}}{\partial V}>\frac{\partial W_{C}}{\partial V}>0$.
as $N(a)>N_{2}(a, b ; \rho)$. Now we can remark that, if $q=p$, then it results $L F_{C}(V)=$ $F L_{C}(V)$ as $L_{A}^{C}(V)=L_{B}^{C}(V)$ and $F_{A}^{C}(V)=F_{B}^{C}(V)$. So in this case both strategies give the same value. But, if $q>p$, then we have that $L F_{C}(V)>F L_{C}(V)$ and, if $q<p$, then $L F_{C}(V)<F L_{C}(V)$. The Tables (3) and (7) illustrate some numerical examples how $L F_{C}(V)>F L_{C}(V)$ when $q>p$.
So, to determine the maximun value, we consider the cooperation strategy in which
the Leader is the firm with the highest success probability. Assuming that $q \geq p$, we take into account the cooperative strategy $L F_{C}$. It results that:
$\frac{\partial L F_{C}}{\partial V}=q N\left(d_{1}(P, T)\right) k\left[p^{+}\left(T-t_{1}\right)+T\right]+q p^{+} k\left(2 T-3 t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{u p B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$
$+(1-q) p^{-} k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$.
The proof (2) shows that $\frac{\partial L F_{C}}{\partial V}>\frac{\partial W_{C}}{\partial V}>0$.
Proof 2 In the case $p=q$, it results that $\rho_{\max }=1$ and $p^{+}=1$. After some manipulation and leaving out to simplify the positive quantity of $L F_{C}$ strategy:

$$
(1-q) p^{-} k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{d w B}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)
$$

we have that $\frac{\partial L F_{C}}{\partial V}>\frac{\partial W_{C}}{\partial V}$ if:

$$
\begin{equation*}
A q^{2}+B q<0 \tag{34}
\end{equation*}
$$

where:
where:
$A=4\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w s}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)-2\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) ;$
$B=2\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)-\left(2 T-t_{1}\right) N\left(d_{1}(P, T)\right)$
$-\left(2 T-3 t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{u p}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)$
Since $P_{u p}^{*}<P_{w s}^{*}<P_{w f}^{*}$ and therefore:

$$
N_{2}\left(d_{1}\left(\frac{P}{P_{u_{p}}^{*}}, t_{1}\right), d_{1} ; \rho\right)>N_{2}\left(d_{1}\left(\frac{P}{P_{w s}^{*}}, t_{1}\right), d_{1} ; \rho\right)>N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1} ; \rho\right)
$$

we have that $A>0$ and $B<0$ and $\frac{-B}{A}>1$. So the disequation (34) is satisfied for every value of $0 \leq q \leq 1$. For the case $q>p$, we will give some numerical examples illustred in the Table (9).

So, the following proposition holds:
Proposition 3 There exists a unique critical market value $V_{C}^{*}$ such that $L F_{C}\left(V_{C}^{*}\right)=$ $W_{C}\left(V_{C}^{*}\right)$ and:

$$
\begin{array}{ll}
L F_{C}(V)<W_{C}(V) & \text { for } \\
L F_{C}(V)>V_{C}^{*} \\
W_{C}(V) & \text { for }
\end{array} \quad V>V_{C}^{*}
$$

Now we analyse the several cooperative equilibriums that can be occour.

### 4.1.1 First case

If $\frac{\partial L F_{C}}{\partial V} \geq \frac{\partial S_{C}}{\partial V}$ then there is not intersection between the functions $L F_{C}$ and $S_{C}$. Moreover, the intersection $L F_{C}$ and $W_{C}$ occurs before than $S_{C}$ and $W_{C}$. So, in this case, we have to consider only the critical market value $V_{C}^{*}$ given by Proposition (3) and we can state that:

- If $V<V_{C}^{*}$ the maximum payoff that both player can obtain by cooperation is

$$
C(A \cup B)=W_{C}(V)
$$

- If $V>V_{C}^{*}$ the maximum payoff attainable cooperating is

$$
C(A \cup B)=L F_{C}(V)
$$

In this case, the best strategic cooperation is the waiting policy ( $W_{C}$ ) until the expected market value $V$ is below the critical value $V_{C}^{*}$ and, if $V>V_{C}^{*}$, the optimal strategy is the Leader-Follower one $\left(L F_{C}\right)$ in which the firm with higher success probability realizes the $\mathrm{R} \& \mathrm{D}$ investment at time $t_{0}$ and the other player postpones its decision at time $t_{1}$. This is the best payoff attainable through cooperation considering both the whole information revelation $\rho_{\max }$ and the effects of network externalities.

### 4.1.2 Second case

If $\frac{\partial L F_{C}}{\partial V}<\frac{\partial S_{C}}{\partial V}$ then there is intersection between the functions $L F_{C}$ and $S_{C}$. So the following proposition holds:

Proposition 4 If $\frac{\partial L F_{C}}{\partial V}<\frac{\partial S_{C}}{\partial V}$ the there exists a unique critical market value $V_{G}^{*}$ such that $L F_{C}\left(V_{G}^{*}\right)=S_{C}\left(V_{G}^{*}\right)$ and it results that:

$$
\begin{array}{lll}
S_{C}(V)<L F_{C}(V) & \text { for } & V<V_{G}^{*} \\
S_{C}(V)>L F_{C}(V) & \text { for } & V>V_{G}^{*}
\end{array}
$$

Moreover, the proof (3) shows as $V_{C}^{*}<V_{G}^{*}$ and so the intersection between $L F_{C}$ and $W_{C}$ happens before than $L F_{C}$ and $S_{C}$.

Proof 3 The condition to have $V_{C}^{*}<V_{G}^{*}$ is that:

$$
\begin{equation*}
\frac{\partial\left(L F_{C}-W_{C}\right)}{\partial V} \geq \frac{\partial\left(S_{C}-L F_{C}\right)}{\partial V} \tag{35}
\end{equation*}
$$

The first part of inequality (35) is the reduction of slope to reach the critical market value $V_{C}^{*}$. It's obviuos that if this reduction is faster then $\frac{\partial\left(S_{C}-L F_{C}\right)}{\partial V}$, then $V_{C}^{*}$ will be smaller than $V_{G}^{*}$.
Considering to simplify the simmetrical case $p=q$ such that $p^{+}=1$, the conditions (35) holds if:

$$
\begin{equation*}
U q^{2}+Z q \geq 0 \tag{36}
\end{equation*}
$$

where:

$$
\begin{aligned}
U= & -2 k T N\left(d_{1}(P, T)\right)+2 k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -4 k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w s}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
Z= & 2 k\left(T-t_{1}\right) N\left(d_{1}(P, T)\right)+2 k\left(2 T-3 t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{u p}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right) \\
& -2 k\left(T-t_{1}\right) N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1}(P, T) ; \rho\right)
\end{aligned}
$$

Since $t_{1} \leq \frac{T}{3}$ and $N_{2}\left(d_{1}\left(\frac{P}{P_{u p}^{*}}, t_{1}\right), d_{1} ; \rho\right)>N_{2}\left(d_{1}\left(\frac{P}{P_{w f}^{*}}, t_{1}\right), d_{1} ; \rho\right)$ it results that $U<0, Z>0$ and $-U>Z$. So the condition (35) holds for every value of $0 \leq q \leq 1$. For the case $q>p$ we give some numerical applications summarized in the Table (9).

So, using the Propositions (3) and (4) we observe that:

- If $V<V_{C}^{*}$ the maximum payoff that both firms can obtain with cooperation is

$$
C(A \cup B)=W_{C}(V)
$$

- If $V_{C}^{*}<V<V_{G}^{*}$ the maximum payoff attainable through the cooperation is

$$
C(A \cup B)=L F_{C}(V)
$$

- If $V>V_{G}^{*}$ the maximum payoff that both player can obtain cooperating is

$$
C(A \cup B)=S_{C}(V)
$$

In this case the optimal cooperation strategy is to wait to invest $\left(W_{C}\right)$ when the expected market value $V$ is below $V_{C}^{*}$ while, if $V$ is in the range $\left[V_{C}^{*}, V_{G}^{*}\right]$, then the maximum payoff is obtained by the cooperation strategy Leader-Follower ( $L F_{C}$ ) and finally, if $V>V_{G}^{*}$, both players realize their R\&D investment simultaneously at time $t_{0}$.

## 5 Real Applications

### 5.1 Assumptions and Inputs

To illustrate the concepts and equations presented, we develop some numerical examples for the cooperative $\mathrm{R} \& D$ game between firms $A$ and $B$ with the following parameters and we focus on the several noncooperative and cooperative equilibriums according to different expected market value $V$ deriving by $\mathrm{R} \& \mathrm{D}$ innovations:

- R\&D Investment: $R=250000 \$$;
- Development Investment: $D=400000 \$$;
- Market and Costs Volatility: $\sigma_{v}=0.93 ; \sigma_{d}=0.23$;
- Proportion of $D$ required for $R: ~ \varphi=\frac{R}{D}=0.625$
- Correlation between $V$ and $D: \rho_{v d}=0.15$;
- Dividend-Yelds of $V$ and $D: \quad \delta_{v}=0.15 ; \quad \delta_{d}=0$;
- R\&D innovation parameter $k=0.30$
- Expiration Time of Simple Option: $T=3$ years;
- A and B success probability: $q=0.60 ; p=0.55$;
- Non Cooperative Information Revelation: $\rho(X, Y)=\rho(Y, X)=0.40$;
- Cooperative Information Revelation: $\quad \rho_{\max }=0.9026$;

The overall investment cost $D$ is the exercise price for the development option. We consider that the investment cost is proportional to market share, namely if the firm market share is $K_{0_{S} 0_{S}}$ then the investment cost will be $K_{0_{S} 0_{S}} D$. We assume that $D$ follows the Brownian motion process defined in Eq. (1b).
The $\mathrm{R} \& \mathrm{D}$ investment $R$ can be realized at time $t_{0}$ or $t_{1}$. If it is made in $t_{0}$, then $R=250000 \$$, otherwise the investment $R$ assumes the identical stochastic process of $D$, except that it occours at time $t_{1}$ and it is proportional to $\varphi=0.625$ of $D$.

Appropriately, we assume that the volatility of quoted shares and traded options is an adequate proxy for the volatility of assets $V$ and $D$.
According to financial options, $\delta$ denotes the opportunity cost in holding the option instead of the stock. So, in real option world, $\delta_{v}$ is the opportunity cost of deferring the project and $\delta_{d}$ is the "dividend yield" on asset $D$. As at the beginning the cash flows are very low, we assume that $\delta_{v}=0.15$ and $\delta_{d}=0$.
The time to maturity $T$ denotes project's deferment option after that each opportunity disappears and we adopt $T=3$ years.
We assume also that firm A has an higher and more efficient Know-How than firm B and so, firm A'success probability is $q=0.60$ while firm B's one is $p=0.55$ but we suppose that the intesity of noncoopertive information revelation is equal for both players and so we state $\rho(X, Y)=\rho(Y, X)=0.40$. Moreover, using the Eq. (7), it results that the cooperative information revelation is $\rho_{\max }=0.9026$;
Finally, we assume that the R\&D innovation parameter $k=0.30$ and we analyse the two cases according to postponement time $t_{1}$. We remark that $t_{1} \leq \frac{T}{3}$ to allow the development phase of R\&D project and so, considering our adapted parameter values, the maximum postponemet time $t_{1}$ is 1 year.

### 5.2 Numerical application of First case

Assuming that the R\&D investment decision can be delay at time $t_{1}=0.5$ year, we obtain, using the Eqs. (9a)-(9f), the following growth market coefficients:

$$
K_{0_{S} 0_{S}}=1.8 ; K_{0_{S} 1_{S}}=1.65 ; K_{1_{S} 1_{S}}=1.50 ; K_{1_{S} 0_{S}}=1.35 ; K_{0_{S}}=0.90 ; K_{1_{S}}=0.75
$$

As we can show in the Fig.(4), the $\frac{\partial S_{C}}{\partial V}<\frac{\partial L F_{C}}{\partial V}$ and so, using the Proposition (3), we compute the critical market value $V_{C}^{*}$ to determine the best cooperation strategy. For our adapted number, it results that $V_{C}^{*}=700037$. So, if $V<700037$ both players decide to wait to invest and $C(A \cup B)=W_{C}(V)$ otherwise, if $V>700037$ the best cooperation strategy is the Leader-Follower one in which firm $A$ invests at time $t_{0}$ and firms $B$ delays its decision at time $t_{1}$, so $C(A \cup B)=L F_{C}(V)$.


Figure 4: First case

Now, to determine the partnership shares $\left(S h_{A}, S h_{B}\right)$ and $\left(P_{A}, P_{B}\right)$, we need to compute the non cooperative critical market values $V_{W}^{*}, V_{Q}^{*}, V_{P}^{*}$ and $V_{S}^{*}$ that allow to determine the Nash equilibriums. So, using the Propositions (1) and (2), it results
that:

$$
V_{W}^{*}=1028380 ; \quad V_{Q}^{*}=1066240 ; \quad V_{P}^{*}=1200470 ; \quad V_{S}^{*}=1268650 ;
$$

The Fig.(5) summarizes the relations among the four non cooperative strategies that allow to determine the Nash equilibriums. We can observe that, if $V<1028380$ the waiting policy $\left(W_{A}, W_{B}\right)$ is optimal in Nash meaning for both player at time $t_{0}$, if $1028380<V<1066240$ and $1200470<V<1268650$ we have one Nash non cooperative equilibrium $\left(L_{A}, F_{B}\right)$ in which the firm $A$, that has an higher success probability, decides to invest in R\&D earlier than player B, if $1066240<V<1200470$ then we obtain two Nash equilibriums $\left(L_{A}, F_{B}\right)$ and $\left(F_{A}, L_{B}\right)$ and at last, if $V>1268650$ it results one Nash equilibrium $\left(S_{A}, S_{B}\right)$ in which both player decide to invest simultaneously in $\mathrm{R} \& \mathrm{D}$ at time $t_{0}$.


Figure 5: Relations among the non cooperative strategies with $t_{1}=0.5$

Let us examine the partnership between firms A and B combining the cooperative and non cooperative critical market values. The Tables (1) and (2) summarize the non-cooperative payoffs of both firms considering the most notable several expected market values. With these values we are able to compute the Nash-equilibriums $v(A)$ and $v(B)$ that are listed in the second and third column of Table (4). Moreover the Table (3) summarizes the cooperative values $C(A \cup B)$ according to four strategic cooperations and, in particulare way, the bold type values are the maximum ones deriving by the optimal strategic alliance. Using the Eqs. (32) and (33), firms A and B can split the cooperative value $C(A \cup B)$ by the Shapley $\left(S h_{A}, S h_{B}\right)$ or the Asimmetric $\left(P_{A}, P_{B}\right)$ values that are shown in the Table (4). Comparing the cooperative and the non cooperative values, we can observe that the partnership is favorable for both players since each firm improve its payoff deriving from non cooperative Nash equilibrium. So we can state that the couples $\left(S h_{A}, S h_{B}\right)$ and ( $P_{A}, P_{B}$ ) are Pareto optimals with respect to $(v(A), v(B))$. Only if $V<700037$, and so $V=600000$, then the partnership does not add value to each player because the surplus of cooperation $W_{C}(V)-\left(W_{A}(V)+W_{B}(V)\right)$ is equal to zero. So we can state that the waiting policy is optimal for both players at time $t_{0}$ also in cooperative alternative and firms A and B prefer to wait better market conditions.
Finally, the Fig.(6) represents the overall situation assuming $V=1400000$. In particular way, the black line denotes the the feasible set of partnership, namely it represents all the combinations to split $C(A \cup B)$. But only the segment T-H is interesting, because otherwise firms have the incentive to deviate from cooperation. In fact we can observe that Shapley $\left(S h_{A}, S h_{B}\right)$ and Asimmetric $\left(P_{A}, P_{B}\right)$ values belong to the segment T-H. Moreover, the Fig.(6) shows the four non cooperative strategies and in particular way the Nash-equilibriums $\left(S_{A}, S_{B}\right)$. We can notice that the segment joins the couples
$\left(S_{A}, S_{B}\right)$ and $\left(S h_{A}, S h_{B}\right)$ has a $45^{\circ}$ slope since, by the Shapley value, A and B share equitably (simmetrically) the surplus of cooperation $C(A \cup B)-(v(A)+v(B))$. So, if firms agree to split the surplus differently, then other solutions will be chosen on the segment T-H.

| Market | Leader's Value | Follower's Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | ---: |
| Value $V$ | $L_{A}$ | $F_{A}$ | $S_{A}$ | $W_{A}$ |
| 600000 | -63344 | 41217 | -68466 | 33244 |
| 900000 | 71204 | 110957 | 62390 | 96736 |
| 1050000 | 141889 | 154226 | 131135 | 137826 |
| 1100000 | 165819 | 169582 | 154408 | 152591 |
| 1250000 | 238525 | 217964 | 225119 | 199561 |
| 1400000 | 312391 | 269253 | 296958 | 249879 |

Table 1: Firm A's final payoffs assuming $k=0.30$ and $t_{1}=0.5$

| Market | Leader's Value | Follower's Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | :---: |
| Value $V$ | $L_{B}$ | $F_{B}$ | $S_{B}$ | $W_{B}$ |
| 600000 | -73104 | 37018 | -78226 | 29024 |
| 900000 | 54409 | 101802 | 45595 | 86609 |
| 1050000 | 121398 | 142306 | 110644 | 124373 |
| 1100000 | 144077 | 156705 | 132666 | 138001 |
| 1250000 | 212981 | 202120 | 199575 | 181499 |
| 1400000 | 282984 | 250310 | 267552 | 228291 |

Table 2: Firm B's final payoffs assuming $k=0.30$ and $t_{1}=0.5$

### 5.3 Numerical application of Second case

If we assume now that $t_{1}=0.8$ year, so the postponement time increases, using Eqs. (9a)-(9e) we have that the growth market coefficients are:

$$
K_{0_{S} 0_{S}}=1.8 ; K_{0_{S} 1_{S}}=1.56 ; K_{1_{S} 1_{S}}=1.32 ; K_{1_{S} 0_{S}}=1.08 ; K_{0_{S}}=0.90 ; K_{1_{S}}=0.66
$$

As is shown in the Fig.(7), the $\frac{\partial S_{C}}{\partial V}>\frac{\partial L F_{C}}{\partial V}$ and so we have two critical market values $V_{C}^{*}$ and $V_{G}^{*}$.
Numerically we compute that $V_{C}^{*}=815710$ and $V_{G}^{*}=1796130$ and, using the Propositions (3) and (4), we are able to state the optimal cooperation strategy. So, if $V<815710$ the best partnership strategy is to wait to invest and $C(A \cup B)=W_{C}(V)$, if $815710<V<1796130$ then both player choise the cooperation form $L F_{C}$ beneficing of information revelation $\rho_{\max }$ and network externalities and hence $C(A \cup B)=$ $L F_{C}(V)$ and finally, if $V>1796130$ then both player prefer to invest simultanoeusly at time $t_{0}$ and so $C(A \cup B)=S_{C}(V)$.
Now, to determine the partnership shares $\left(S h_{A}, S h_{B}\right)$ and ( $P_{A}, P_{B}$ ), we need to com-

| Market | Leader-Follower Value | Follower-Leader Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | :---: |
| Value $V$ | $L F_{C}$ | $F L_{C}$ | $S_{C}$ | $W_{C}$ |
| 600000 | 17412 | 12486 | -146693 | $\mathbf{6 2 2 6 9}$ |
| 900000 | $\mathbf{2 5 7 8 5 4}$ | 248968 | 107985 | 183345 |
| 1050000 | $\mathbf{3 9 0 0 8 3}$ | 378605 | 241780 | 262199 |
| 1100000 | $\mathbf{4 3 5} \mathbf{3 8 6}$ | 422974 | 287075 | 290593 |
| 1250000 | $\mathbf{5 7 4 2 2 0}$ | 558837 | 424694 | 381060 |
| 1400000 | $\mathbf{7 1 6 6 0 0}$ | 698053 | 564510 | 478170 |

Table 3: Firms A and B cooperative payoff assuming $k=0.30$ and $t_{1}=0.5$

| Market | Non-Coop. | Non-Coop. | Shapley Value | Shapley Value | Asim. Value | Asim. value |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Value $V$ | $(A)$ | $v(B)$ | ${S h_{A}}^{c}$ | $S_{B}$ | $P_{A}$ | $P_{B}$ |
| 600000 | 33244 | 29024 | 33244 | 29024 | 33244 | 29024 |
| 900000 | 96736 | 86609 | 133990 | 123863 | 135610 | 122244 |
| 1050000 | 141889 | 142306 | 194833 | 195250 | 197135 | 192948 |
| 1100000 | 165819 | 156705 | 222250 | 213136 | 224704 | 210682 |
| 1100000 | 169582 | 144077 | 230445 | 204940 | 233092 | 202294 |
| 1250000 | 238525 | 202120 | 305312 | 268907 | 308216 | 266004 |
| 1400000 | 296958 | 267552 | 373003 | 343597 | 376309 | 340291 |

Table 4: Shapley and Asimmetric values assuming $k=0.30$ and $t_{1}=0.5$


Figure 6: A and B equilibriums when $V=1400000$


Figure 7: Second case
pute the four non cooperative critical market values $V_{W}^{*}, V_{Q}^{*}, V_{P}^{*}$ and $V_{S}^{*}$ by Propositions (1) and (2). So, it results that:

$$
V_{P}^{*}=1019230 ; \quad V_{S}^{*}=1064060 ; \quad V_{W}^{*}=1075210 ; \quad V_{Q}^{*}=1120840
$$

The Fig.(8) shows the relations among the non cooperative strategic values and the several Nash equilibriums. We can observe that, if $V<1064060$, both players prefers to wait $\left(W_{A}, W_{B}\right)$ and to defer their R\&D decision at time $t_{1}$, if $1064060<V<$ 1075210 we obtain two Nash equilibriums $\left(W_{A}, W_{B}\right)$ and $\left(S_{A}, S_{B}\right)$ and finally, if $V>1075210$, then the simultenous R\&D investment $\left(S_{A}, S_{B}\right)$ at time $t_{0}$ is optimal in Nash meaning.


| $\begin{aligned} & \mathrm{L}_{A}<W_{A} \\ & \mathrm{~F}_{\mathrm{A}}>\mathrm{S}_{\mathrm{A}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{A}<W_{A} \\ & \mathrm{~F}_{\mathrm{A}}<\mathrm{S}_{\mathrm{A}} \end{aligned}$ | $\begin{aligned} & L_{A}<W_{A} \\ & F_{A}<S_{A} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{A}>W_{A} \\ & \mathrm{~F}_{\mathrm{A}}<\mathrm{S}_{\mathrm{A}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{A}>W_{A} \\ & \mathrm{~F}_{\mathrm{A}}<\mathrm{S}_{\mathrm{A}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{L}{B}<W_{B} \\ & \mathrm{~F}_{\mathrm{B}}>\mathrm{S}_{\mathrm{B}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{\mathrm{B}}<\mathrm{W}_{\mathrm{B}} \\ & \mathrm{~F}_{\mathrm{B}}>\mathrm{S}_{\mathrm{B}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{\mathrm{B}}<\mathrm{W}_{\mathrm{B}} \\ & \mathrm{~F}_{\mathrm{B}}<\mathrm{S}_{\mathrm{B}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{\mathrm{B}}<\mathrm{W}_{\mathrm{B}} \\ & \mathrm{~F}_{\mathrm{B}}<\mathrm{S}_{\mathrm{B}} \end{aligned}$ | $\begin{aligned} & \mathrm{L}_{\mathrm{B}}>\mathrm{W}_{\mathrm{B}} \\ & \mathrm{~F}_{\mathrm{B}}<\mathrm{S}_{\mathrm{B}} \end{aligned}$ |

Figure 8: Relations among the non cooperative strategies with $t_{1}=0.8$

As we have seen for the first case, the Tables (5) and (6) include the non cooperative payoffs considering the most notable expected market that allow us to compute the Nash equilibriums $v(A)$ and $v(B)$ summarized in the Table (8). Moreover, in the Table (7) are listed the partnership values $C(A \cup B)$ according to four cooperative strategies and, in particular way, the bold type values are the maximum payoffs deriving by best alliance. Both players can split the cooperative value $C(A \cup B)$ by the Shapley $\left(S h_{A}, S h_{B}\right)$ or the Asimmetric $\left(P_{A}, P_{B}\right)$ values (see Eqs. (32) and (33) ) that are shown in the Table (8). We can observe that, if $V=600000$ and more generally $V<815710$, then the cooperation does not add any value because the cooperation surplus $W_{C}(V)-\left(W_{A}(V)+W_{B}(V)\right)$ is equal to zero. So wait and see policy is optimal also considering the cooperation way between A and B. Even if $V=1900000$ and more
generally $V>1796130$, then the cooperative gain $S_{C}(V)-\left(S_{A}(V)+S_{B}(V)\right)$ is equal to zero. So the simultaneous R\&D investment at time $t_{0}$ is preferable both in the cooperative strategy and in the non-cooperative one.
Moreover, the Fig.(9) shows the overall situation when $V=1200000$. Also in this case we can remark as only the segment $\mathrm{T}-\mathrm{H}$ is interesting for the splitting of cooperation value $C(A \cup B)$ otherwise firms A and B have the incentive to deviate and to leave the alliance. Also in this case we can observe that the segment joins the couples $\left(S_{A}, S_{B}\right)$ and $\left(S h_{A}, S h_{B}\right)$ has a $45^{\circ}$ slope, since by the Shapley value A and B share equitably (simmetrically) the surplus of cooperation $C(A \cup B)-(v(A)+v(B))$.

| Market | Leader's Value | Follower's Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | :---: |
| Value $V$ | $L_{A}$ | $F_{A}$ | $S_{A}$ | $W_{A}$ |
| 600000 | -71689 | 36723 | -68466 | 37169 |
| 900000 | 56844 | 90807 | 62390 | 94187 |
| 1040000 | 119817 | 121657 | 126501 | 127095 |
| 1070000 | 133495 | 128638 | 140425 | 134565 |
| 1100000 | 147230 | 135738 | 154408 | 142169 |
| 1200000 | 193398 | 160209 | 201411 | 168420 |
| 1900000 | 528189 | 356418 | 542253 | 380026 |

Table 5: Firm A's final payoffs assuming $k=0.30$ and $t_{1}=0.8$

| Market | Leader's Value | Follower's Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | :---: |
| Value $V$ | $L_{B}$ | $F_{B}$ | $S_{B}$ | $W_{B}$ |
| 600000 | -81449 | 33170 | -78226 | 33138 |
| 900000 | 40049 | 83037 | 45595 | 85282 |
| 1040000 | 99575 | 111633 | 106259 | 115633 |
| 1070000 | 112504 | 118113 | 119434 | 122539 |
| 1100000 | 125487 | 124707 | 132666 | 129576 |
| 1200000 | 169129 | 147452 | 177142 | 153905 |
| 1900000 | 485595 | 330439 | 499659 | 351367 |

Table 6: Firm B's final payoffs assuming $k=0.30$ and $t_{1}=0.8$

### 5.4 Sensitivity analysis

In this section we study the effects that the parameters $k, t_{1}$ and $p$ have on the equilibriums and, in particular way, on the interval in which the optimal cooperation strategy is $L F_{C}$. We recall that only the partnership $L F_{C}$ allows to benefit of a cooperation gain deriving by the whole information revelation $\rho_{\max }$ unlike the waiting $W_{C}$ and the simultaneous $S_{C}$ policies.
As it is shown in the Table (9), we assume several combinations of $k$ and $t_{1}$ that give the respectives growth market coefficients $K$. Supposing that $q=0.60$, we propose

| Market | Leader-Follower Value | Follower-Leader Value | Simultaneous Value | Waiting Value |
| ---: | :---: | :---: | :---: | :---: |
| Value $V$ | $L F_{C}$ | $F L_{C}$ | $S_{C}$ | $W_{C}$ |
| 600000 | -2942 | -9300 | -146693 | $\mathbf{7 0 3 0 7}$ |
| 900000 | $\mathbf{2 0 6} \mathbf{6 9 1}$ | 195683 | 107985 | 179469 |
| 1040000 | $\mathbf{3 1 3} \mathbf{4 1 3}$ | 299940 | 232760 | 242729 |
| 1070000 | $\mathbf{3 3 6 8 3 0}$ | 322809 | 259860 | 257105 |
| 1100000 | $\mathbf{3 6 0 4 1 9}$ | 345844 | 287075 | 271745 |
| 1200000 | $\mathbf{4 4 0 1 9 0}$ | 423726 | 378553 | 322325 |
| 1900000 | 1032079 | 1001380 | $\mathbf{1 0 4 1 9 1 2}$ | 731393 |

Table 7: Firms A and B cooperative payoffs assuming $k=0.30$ and $t_{1}=0.8$

| Market | Non-Coop. | Non-Coop. |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value $V$ | $v(A)$ | $v(B)$ | Shapley Value | Shapley Value | Asim. Value | Asim. value |
| 600000 | 37169 | 33138 | 37169 | $S h_{A}$ | 33138 | $P_{A}$ |

Table 8: Shapley and Asimmetric values assuming $k=0.30$ and $t_{1}=0.8$


Figure 9: A and B equilibriums when $V=1200000$
three level of firm's B success probability: $p=0.60$ that give a cooperative information revelation $\rho_{\max }=1, p=0.55$ with $\rho_{\max }=0.9026$ and finally $p=0.50$ with $\rho_{\max }=$ 0.8165 .

When $t_{1}=0.25,0.50$, we obtain the first case in which the cooperation strategy $L F_{C}$ is optimal for every $V>V_{C}^{*}$. So we can observe that, when the $\mathrm{R} \& \mathrm{D}$ innovation parameter $k$ increases, then the threshold value $V_{C}^{*}$ decreases and hence the region $] V_{C}^{*},+\infty\left[\right.$ enlarges. But, if the postponement time $t_{1}$ increases, then the compound european exchange option (CEEO) and the growth market coefficients related to $t_{1}$ decrease. In other words, the follower values decreases and so the critical market value $V_{C}^{*}$ raises. Moreover we can observe that, if the probability $p$ decreases and so also the cooperative information $\rho_{\max }$, then the critical market $V_{C}^{*}$ increases.
Finally, when $t_{1}=0.75,1$, we have the second case and so the $L F_{C}$ strategy is bounded by the critical market values $] V_{C}^{*}, V_{G}^{*}[$. In this situation, the follower value decreases and so the simultaneous $\mathrm{R} \& \mathrm{D}$ investment is profitable for $V>V_{G}^{*}$. We can note that, when the postponement time $t_{1}$ increases, then $V_{C}^{*}$ enlarges and $V_{G}^{*}$ decreases and so the range $] V_{C}^{*}, V_{G}^{*}$ [, in which the optimal strategy is $L F_{C}$, goes down. While, if $k$ raises, then both $V_{C}^{*}$ and $V_{G}^{*}$ go down and we can observe that the length of interval $] V_{C}^{*}, V_{G}^{*}$ [ decreases. We can observe also that, if probability $p$ decreases, then both the thresholds $V_{C}^{*}$ and $V_{G}^{*}$ go up. This means that, both the critical market value $V_{C}^{*}$ until is better to wait and the threshold $V^{G}$ from which is profitable the simultaneous R\&D investment increase their values. Moreover, we can note that $V_{C}^{*}$ is always smaller than $V_{G}^{*}$.

| $k$ | $t_{1}$ | $p=0.60$ | $p=0.55$ | $p=0.50$ |
| :---: | :---: | :--- | :--- | :--- |
| $0.25 ; 0.25$ | $] 686846,+\infty[$ | $] 719123,+\infty[$ | $] 755413,+\infty[$ |  |
| $0.25 ; 0.50$ | $] 774857,+\infty[$ | $] 808293,+\infty[$ | $] 845441,+\infty[$ |  |
| $0.25 ; 0.75$ | $] 876617,2345271[$ | $] 909670,2520902[$ | $] 945839,2731506[$ |  |
| $0.25 ; 1.00$ | $] 994768,1317283[$ | $] 1024608,1408848[$ | $] 1056646,1517632[$ |  |
| $0.50 ; 0.25$ | $] 421901,+\infty[$ | $] 440341,+\infty[$ | $] 460997,+\infty[$ |  |
| $0.50 ; 0.50$ | $] 476010,+\infty[$ | $] 495107,+\infty[$ | $] 516256,+\infty[$ |  |
| $0.50 ; 0.75$ | $] 537974,1344397[$ | $] 556746,1438431[$ | $] 577229,1550730[$ |  |
| $0.50 ; 1.00$ | $] 609405,786341[$ | $] 626119,837313[$ | $] 644013,897603[$ |  |
| $0.75 ; 0.25$ | $] 322244,+\infty[$ | $] 335757,+\infty[$ | $] 350864,+\infty[$ |  |
| $0.75 ; 0.50$ | $] 363666,+\infty[$ | $] 377661,+\infty[$ | $] 393135,+\infty[$ |  |
| $0.75 ; 0.75$ | $] 410794,987646[$ | $] 424509,1053888[$ | $] 439450,1132786[$ |  |
| $0.75 ; 1.00$ | $] 464869,590763[$ | $] 476979,627524[$ | $] 489922,670892[$ |  |
| $1.00 ; 0.25$ | $] 267910,+\infty[$ | $] 278827,+\infty[$ | $] 291016,+\infty[$ |  |
| $1.00 ; 0.50$ | $] 302420,+\infty[$ | $] 313729,+\infty[$ | $] 326218,+\infty[$ |  |
| $1.00 ; 0.75$ | $] 341490,799562[$ | $] 352549,851599[$ | $] 364582,913457[$ |  |
| $1.00 ; 1.00$ | $] 386159,485529[$ | $] 395866,514887[$ | $] 406229,549459[$ |  |

Table 9: Interval $] V_{C}^{*}, V_{G}^{*}\left[\right.$ in which is optimal $L F^{C}$ cooperation strategy

In this paper we have proposed an $\mathrm{R} \& \mathrm{D}$ cooperation between two firms using the real option approach to value their payoffs. By the alliance, the information revelation is wholly revealed and captured by two players. Moreover, we have shown that the unique cooperation strategy that allows to increase the information revelation with respect to the non cooperative situation is the Leader-Follower strategy, in which one firm realizes the $\mathrm{R} \& \mathrm{D}$ invesment at time $t_{0}$ and other one postpones its decision at time $t_{1}$. In particular way, as the mutual information gain implies positive network externalities, we have shown that the Leader role is assumed by the firm with the highest success probability.
Finally, computing the non cooperative and the cooperative critical market values, we are able to determine the range game in which is optimal every partnership strategy and also the combinations to split the surplus of cooperation. Using the Shapley value both firms split equitably the surplus but they can agree upon several partnership contracts, such as the asymmetric shares $P_{A}$ and $P_{B}$ based on different success probability.

## References

[Armada et al.(2007)] Armada, M.R., Kryzanowsky, L. \& Pereira, P.J. (2007). "A Modified Finite-Lived American Exchange Option Methodology Applied to Real Options Valuation," Global Finance Journal, Vol. 17, Issue 3, 419-438.
[Carr(1988)] Carr, Peter (1988). "The Valuation of Sequential Exchange Opportunities," The Journal of Finance, Vol. 43, Issue 5, 1235-1256.
[Carr(1995)] Carr, P. (1995). The Valuation of American Exchange Options with Application to Real Options. in: Real Options in Capital Investment: Models, Stratigies and Applications ed. by Lenos Trigeorgis, Westport Connecticut, London, Praeger.
[Chi(2000)] Chi, T. (2000). "Option to acquire or divest a joint venture," Strategic Management Journal, Vol. 21, Issue 6, 665-688.
[Dias and Teixeira(2004)] Dias, M.A.G and J.P. Teixeira (2004). "Continuous-Time Option Games Part 2: Oligopoly, War of Attrition and Bargaining under Uncertainty", Working Paper, PUC-Rio, proceeding at $8^{\text {th }}$ Annual International Conference on Real Options, Montreal, June 2004.
[Dias (2004)] Dias, M.A.G (2004). "Real Options, Learing Measures, and Bernoulli Revelation Processes", Working paper, Puc-Rio, proceeding at $8^{\text {th }}$ Annual International Conference on Real Options, Paris, June 2005.
[Lee (1997)] Lee, Moon Hoe (1997). "Valuing Finite-Maturity Investment-Timing Options", Financial Management, Vol. 26, Issue 2, 58-66.
[Majd and Pindyck (1987)] Majd, Saman and Robert S. Pindyck (1987). "Time to Build, Option Value and Investment Decisions", Journal of Financial Economics, Vol. 18, Issue 1, 7-27.
[Huisman (2001)] Huisman, K.J.M. (2001). "Technology Investment: A Game Theoretic Real Options Approach", Kluwer Academic Publichers, Boston.
[Margrabe (1978)] Margrabe, William (1978). "The Value of an Exchange Option to Exchange One Asset for Another", The Journal of Finance, Vol. 33, Issue 1, 177-186.
[McDonald and Siegel (1985)] McDonald, Robert L. and Daniel R. Siegel (1985). "Investiment and the Valuation of Firms When There is an Option to Shut Down", International Economic Review, Vol. 28, Issue 2, 331-349.
[Kogut(1991)] Kogut, Bruce (1991). "Joint venturese and option to expand and acquire", Managemente Science, Vol. 37, Issue 1, 19-33.
[Kong and Kwok (2007)] Kong, Jean J. and Yue K. Kwok (2007). "Real options in strategic invesments games between two asymmetric firms", European Journal of Operational Research, Vol. 181, Issue: 2, 967-985.
[Shackleton and Wojakowski (2003)] Shackleton, Mark and Rafal Wojakowski (2003). "The Expected Return and Exercise Time of Merton-style Real Options", Journal of Business Finance $\mathcal{E B}^{\prime}$ Accounting,Vol. 29, Issue 3-4, 541-555.
[Trigeorgis (1991)] Trigeorgis, Lenos (1991). "Anticipated competitive entry and early preemptive investment in deferrable projects", Journal of Economics and Business, Vol. 43, Issue 2, 143-156.

