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1 Introduction

Our work aims to study the possible applications of Baum-Eagon inequality

[3] to the “labeling” problems, which consist in assigning classes (labels)

to objects. For example, let us consider an image whose included objects’

contours we want to outline (edge detection). In this case, the objects are

pixels of which the image is made of, and the labels (classes) assignable to

every pixel can be “contour pixel”, “not-contour pixel”.

Many authors have faced this problem; in particular, Faugeras and Berth-

od [1] require every object to be related with one or more neighbor ones.

This situation can be represented by a graph, in which nodes are objects

and edges represent existing relations [2] between objects. Such concept can

be exemplified considering a phrase containing an ambiguous word: to get

its meaning, it may suffice to understand the meaning of neighbor words

(context). The fact that a word in the phrase allows to go back to the

ambiguous word’s meaning shows a certain relation between them. Generally,

in a phrase the words nearest to the ambiguous one are those useful for its

meaning’s discovery.

The assignment of a label to an object depends on the labels currently

assigned to the related objects: in other words, the context of the object

under examination is taken into account. To formalize all this, let us consider,

at the beginning, N objects a1, a2, . . . , aN and L labels λ1, λ2, . . . , λL. It is

necessary to suppose to be able to define a set of initial probabilities, which

represent the probability of assigning each label to an object. Elements of

such a set are indicated by pi(λk), for i = 1, . . . , N and k = 1, . . . , L, and

represent the probability to assign the label λk to the object i.
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Contextual Faugeras and Berthod’s information is represented by a con-

ditional probability set pi,j(λk|λl), where i, j = 1, . . . , N and k, l = 1, . . . , L,

representing the probability of assigning label λk to the object i, currently

having neighbor object j assigned label λl. The object j must belong to the

set Vi(λk), which is the set of objects related to i, the object currently having

label λk assigned to it. In many applications, objects related to a specific one

do not depend on the label currently assigned to it; in such a case, the set

Vi(λk) will be simply denoted by Vi (aka “homogeneous case”). In practical

problems, the initial probabilities suffer from two lacks, i.e.:

1. Inconsistency. In practice, they do not verify the relationship

pi(λk) =
∑

j∈Vi(λk)

L∑
l=1

pij(λk|λl)pj(λl) (1)

In other words, initial probabilities are not compatible with conditional

probabilities.

2. Ambiguity. The initial probabilities are ambiguous if, for at least

one i = 1, . . . , N , there exists at least one l = 1, . . . , L such as vector

pi = [pi(λ1), . . . , pi(λl), . . . , pi(λL)] 6= [0, . . . , 1, . . . , 0] (i.e., there is an

ambiguity for an object when it tends to fall in more than one class).

2 Consistency and ambiguity functions

Faugeras and Berthod define two functions C1 and C2 measuring, respec-

tively, consistency and ambiguity. Consistency is measured through the for-
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mula:

C1 =
1

2N

N∑
i=1

‖pi − qi‖
2

where qi is a vector having, for each i, the form [qi(λ1), qi(λ2), . . . , qi(λL)].

Fixed i and k, the values qi(λk) are given by the following formula:

qi(λk) =
Qi(λk)

L∑
l=1

Qi(λl)

where

Qi(λk) =
1

|Vi(λk)|
∑

j∈Vi(λk)

L∑
l=1

pij(λk|λl)pj(λl).

The values qi(λk) represent an estimate of the probability pi(λk) on the ba-

sis of the set of conditional probabilities pij(λk|λl) [1]; Faugeras and Berthod’s

consistency is guaranteed by the equivalence pi(λk) = qi(λk)
1. From this, the

aim is to minimize the function C1 (which just represents the Euclidean dis-

tance between pi and qi). The factor 1
2N

is for bounding C1 between 0 and

1.

Ambiguity is measured through the following function:

C2 =
L

L− 1

[
1− 1

N

N∑
i=1

‖pi‖
2

]

where pi is the probability vector [pi(λ1), pi(λ2), . . . , pi(λL)]. Let us observe

that in C2 the factor in square brackets represents the entropy function;

the factor L
L−1

also here serves to bound C2 between 0 and 1. Entropy

function has its minimum when vector pi = [pi(λ1), pi(λ2), . . . , pi(λL)] =

1Tipically, in image processing problems holds the “homogeneous” case, and then

Vi(λk) = Vi
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[0, . . . , 1, . . . , 0], i.e. it is totally unambiguous. In this case, too, the aim is

to find C2’s minimum because it guarantees a non-ambiguous labeling. From

C1 and C2 derives the function named Global Criterion C = αC1+(1−α)C2,

where 0 ≤ α ≤ 1. The value α is a constant which represents the relative

weight we want to assign to C1 and C2; an higher value of α favours C1 (i.e.

consistency), vice versa C2 (ambiguity).

The search for C’s minimum represents the “weak point” of Faugeras and

Berthod’s algorithm, because this is implemented with the gradient projec-

tion method [5] and requires quite complex operations, as well as a relatively

high computational cost. More precisely, the algorithm passes from a labeling

xn to the next xn+1 according to the formula:

xn+1 = xn + ρnun

where un is the negative of C’s gradient in xn, and ρn is a positive number

calculated in such a way to minimize C(xn+1). In this case the problem

consists in the fact that the searched minimum is linearly bounded by
L∑

k=1

pi(λk) = 1 (i=1,. . . ,N)

pi(λk) ≥ 0

(2)

This involves the computation, at every iteration, of a projection operator

Pn. The computation of Pn becames necessary because the negative of un

gradient may point out of (2) hyperplane.

The complexity of Faugeras and Berthod’s algorithm leads to a difficult

implementation, even with the use of parallel computing architectures; in

fact, the work done by every single processor remains heavy. Its complex-

ity becames high especially in the non-homogeneous case (though this last
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is rarely applied) in which same authors do not define the number of com-

putations necessary to obtain ρn. So, we aim to simplify the algorithm’s

complexity, exploiting Baum-Eagon’s theorem. It applies to homogeneous

polynomials of degree d; another theorem (Baum-Sell [4]) removes this limi-

tation.

Baum-Eagon’s Theorem [4]: Let P (x) = P ({xij}) an homogeneous poly-

nomial with nonnegative coefficients in variables {xij} verifying

xij ≥ 0,
L∑

j=1

xij = 1, i = 1, . . . , N.

Let

F (xij) =
xij

∂P
∂xij

(x)

L∑
j=1

xij
∂P
∂xij

(x)

Then P (F (x)) > P (x) until F (x) = x.

Faugeras and Berthod’s C function is a quasi-homogeneous polynomial2

of degree two, if we consider the homogeneous case (see section 1). In prac-

tice, because C polynomial does not generally have nonnegative coefficients

(as required by the previous theorem), it is necessary to transform C in

such a manner that the theorem be applied to another polynomial C ′ with

nonnegative coefficients.

Formally, polynomial C has the form:

C =
∑
i,j

∑
k,l

kijklxikxjl

2Except for a constant, which disappears after the application of the partial derivatives
∂P

∂xij
(x)
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where kijkl are the (not all nonnegative) coefficients of the polynomial, xik

(i, j = 1, . . . , N ; k, l = 1, . . . , L) are the unknown factors of the polyno-

mial. Baum-Eagon’s theorem leads to an increasing transformation, so as

it searches relative maximum points. The case of C is different, because

we must minimize instead of maximize. So, instead of minimizing C, we

equivalently maximize −C. Then, let:

C(−) = −C = −
∑
i,j

∑
k,l

kijklxikxjl.

C(−) is still a polynomial with not all nonnegative coefficients. It is possible

to make C(−)’s coefficients nonnegative increasing each coefficient kijkl by the

quantity

m = min

{
min
i,j,k,l

{kijkl} , 0

}
(3)

so C(−) becames:

C(T ) = −
∑
i,j

∑
k,l

(kijkl + m)xikxjl

= −
∑
i,j

∑
k,l

(kijklxikxjl + mxikxjl)

= −
∑
i,j

∑
k,l

kijklxikxjl −m
∑
i,j

∑
k,l

xikxjl

= C(−) −mN2

where it is to be considered that holds the relation:
L∑

k=1

xik = 1, for each

i = 1, . . . , N .

Applying Baum-Eagon’s theorem to C(T ), we have:

C(T )(x) ≤ C(T )(F (x))
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from which:

[
C(−)(x)−mN2

]
≤

[
C(−)(F (x))−mN2

]
C(−)(x) ≤ C(−)(F (x))

C(x) ≥ C(F (x))

The above steps then show that, shifting polynomial coefficients by a

constant quantity and applying the theorem, we obtain the growing of both

C(T ) and C(−), which coincides with the decreasing of the Faugeras and

Berthod’s C function.

3 Experimental results

Baum-Eagon’s theorem application requires, from a practical point of view,

the writing of the function C in polynomial form. The development of the

function

C = αC1 + (1− α)C2

(see appendix A) leads to the following (quasi-homogeneous) polynomial

form:

C =
3αL− α − 2L

2N(L− 1)

N∑
i=1

L∑
k=1

x2
ik

− α

N

N∑
i=1

L∑
k=1

xik

∑
j∈Vi

L∑
l=1

pij(λk|λl)xjl

+
α

2N

N∑
i=1

L∑
k=1

xik

∑
j∈Vi

L∑
l=1

pij(λk|λl)xjl

∑
ω∈Vi

L∑
v=1

pωi(λv|λk)

+ M
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where:

• L is the number of labels,

• N is the number of objects,

• Vi is the set of objects related to the object i3,

• M = (1−α)L
L−1

,

• xik = pi(λk).

From the above we note the quasi-homogeneity of C (in the variables xik)

apart of constant M , that does not influence the computation of the partial

derivatives, used for the implementation of the algorithm.

The algorithm which implements the above mentioned method must ini-

tially find a constant value such as it makes all polynomial coefficients non-

negative, so obtaining a new polynomial to which is possible to apply Baum-

Eagon theorem. Such a constant value is obtained by increasing every coef-

ficient by a quantity equal to the minimum m as in (3).

Labeling through Baum-Eagon theorem has been tested on the threshold-

ing problem. This one consists in the transformation of an image, made of a

matrix of different grey level tones pixels, into another image made only of

black and white pixels. Formalizing the problem, the image is made of n×m

objects and L = 2 labels, corresponding to “light pixel” and “dark pixel”.

The initial probability set is computed according to a method suggested by

Rosenfeld and Russel [7]: let d and l be, respectively, the toward “dark” and

toward “light” grey levels; let zi be the grey level of the i-th pixel. Then, for

3We assume the “homogeneous” case, so Vi(λk) = Vi
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that pixel we’ll have the following initial probabilities: pi,dark = (l−zi)/(l−d)

and pi,light = (zi − d)/(l − d).

As far as the conditional probabilities set is concerned, Rosenfeld and

Peleg [8] suggest a method based on statistical computation. Initially, there

is an estimate of the probability that every pixel has a certain label λ; this

is realized through the formula:

P (λ) =
1

N

∑
(x,y)

P(x,y)(λ)

where N is the number of pixels, and pairs (x, y) are the coordinates of every

pixel. Then, it is computed the joint probability of every pair (x, y) and

(x + i, y + j) of neighbor points have assigned, respectively, labels (λ, λ′)

according to the formula:

Pij(λ, λ′) =
1

N

∑
(x,y)

P(x,y)(λ)P(x+i,y+j)(λ
′)

From the two above derives the conditional probabilities formula:

Pij(λ|λ′) =
Pij(λ, λ′)

P (λ′)

which has been used in our experimental tests to set the initial probabilities.

4 Conclusion

The goodness of Baum-Eagon approach has been hypotetized in various envi-

ronments, especially in probabilistic labeling problems, well suited to AI with
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parallel computing architecture. Starting with Faugeras and Berthods overly

computationally complex algorithm, we developed a simplified version using

Baum-Eagon inequality, and reached positive experimental results, which

encourage us to refine and carry on trying more complex test sets.

In Appendix A is reported the detailed development of the Baum-Eagon

C function in a quasi-homogeneous polynomial form of degree two, and in

Appendix C the experimental results obtained are illustrated.

A Development of the Baum-Eagon C func-

tion

In order to obtain the final form of C = αC1 + (1− α)C2 we first consider

C1 =
1

2N

N∑
i=1

‖pi − qi‖2

Developing C1 we obtain:

C1 =
1

2N

N∑
i=1

‖pi − qi‖2

=
1

2N

N∑
i=1

L∑
k=1

[pi(λk)− qi(λk)]
2

=
1

2N

N∑
i=1

L∑
k=1

pi(λk)−

1
|Vi|

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

L∑
m=1

1
|Vi|

∑
j∈Vi

L∑
l=1

pij(λm|λl)pj(λl)


2

=
1

2N

N∑
i=1

L∑
k=1

[
pi(λk)−

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

]2
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In the last step we made use of the relation:
L∑

m=1

∑
j∈Vi

L∑
l=1

pij(λm|λl)pj(λl) = 1.

Now, developing the expression in the above square brackets:

C1 =
1

2N

N∑
i=1

L∑
k=1

[pi(λk)
2 − 2pi(λk)

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

piω(λk|λv)pω(λv)]

and then:

C1 =
1

2N

N∑
i=1

L∑
k=1

pi(λk)
2 − 1

N

N∑
i=1

L∑
k=1

pi(λk)
∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
1

2N

N∑
i=1

L∑
k=1

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

piω(λk|λv)pω(λv)

In order to obtain a form of C1 more suited to the partial derivatives

needed for the development of our algorithm, let us consider the case of

image processing (which we are treating in our work). In this situation, from

the Euclidean distance it is obvious to derive a sort of “reciprocity” in the

sequence of indexes involved in the formula, in the sense that if a pixel i is

at distance d from a pixel j, obviously the same holds for j respect to i.

So we may write the final form of C1:

C1 =
1

2N

N∑
i=1

L∑
k=1

pi(λk)
2 − 1

N

N∑
i=1

L∑
k=1

pi(λk)
∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
1

2N

N∑
i=1

L∑
k=1

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

pωi(λv|λk)pi(λk)
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Let us consider the development of C2. We obtain:

C2 =
L

L− 1

[
1− 1

N

N∑
i=1

‖pi‖
2

]

=
L

L− 1

[
1− 1

N

N∑
i=1

L∑
k=1

pi(λk)
2

]

Multiplying C1 and C2 respectively by α and (1−α) we obtain the poly-

nomial form of “Global Criterion” C function. Developing in detail we have:

C = αC1 + (1− α)C2

=
α

2N

N∑
i=1

‖pi − qi‖
2 + (1− α)

L

L− 1

[
1− 1

N

N∑
i=1

‖pi‖
2

]

=
α

2N

N∑
i=1

L∑
k=1

pi(λk)
2 − α

N

N∑
i=1

L∑
k=1

pi(λk)
∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
α

2N

N∑
i=1

L∑
k=1

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

pωi(λv|λk)pi(λk)

+
(1− α)L

L− 1
− (1− α)L

N(L− 1)

N∑
i=1

L∑
k=1

pi(λk)
2

=
3αL− α − 2L

2N(L− 1)

N∑
i=1

L∑
k=1

pi(λk)
2

− α

N

N∑
i=1

L∑
k=1

pi(λk)
∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
α

2N

N∑
i=1

L∑
k=1

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

pωi(λv|λk)pi(λk)

+
(1− α)L

L− 1
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From the above formula it is simple to get the partial derivatives:

∂C

∂pi(λk)
=

3αL− α − 2L

N(L− 1)
pi(λk)−

α

N

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)

+
α

2N

∑
j∈Vi

L∑
l=1

pij(λk|λl)pj(λl)
∑
ω∈Vi

L∑
v=1

pωi(λv|λk)
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B Glossary

Ambiguous (labeling): A labeling is ambiguous when, for each object, there

is no certainty to assign a label λ to it. Formally, exists at least one object i

and a label λ for which results pi(λ) 6=1.

Entropy : a function used in thermodynamics and in information the-

ory. In information theory it measures the average amount of information

contained in a statistical set of messages.

Inconsistent (labeling) [1]: a labeling is inconsistent if, on the basis of

conditional probabilities, is obtained an estimate qi(λk) of the probabilities

pi(λk) (for i = 1, . . . , N number of objects, and k = 1, . . . , L number of

labels) so that it results qi(λk) 6= pi(λk). In other words, the set of conditional

probabilities is not coherent with the set of probabilities pi(λk).

Object : any entity classifyable in one of L distinct classes.

Homogeneous (case): is the case in which, given an object i, the set of

objects related to i does not depend on the label currently assigned to i.

Label : one of the possibile classes that may be assigned to an object.

Labeling : process consisting in the assignment of L classes (labels) to N

objects.

Pixel : the most basic component of any digital image.

Homogeneous polynomial of degree d: is a polynomial whose mono-

mials are all of degree d.

Initial probabilities : is a set of initially assignable probabilities, that

suffer from ambiguity and inconsistency problems. In [8] are illustrated some

statistical methods of initial probabilities computation.

Relation (between objects): an object i is related to another object j if
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the probabilities pi(λk) (k = 1, . . . , L number of labels) depend on the label

currently assigned to the object j.

C Experimental results

We got our experimental results using a dual-processor 2GHz PowerMac G5

with 1GB of RAM and Mac OS X 10.3 Operating System; the software has

been implemented in Gnu C. We aim to completely rewrite our code so as to

parallelize and test it on significant data sets (derived from bitmap images),

to strength and verify our “simplified” algorithm.

Here follows a list of tests operated on sample images, with a few sig-

nificant iterations showing the ongoing labeling process (”dark” or ”light”

progressive assignment to image pixels, depending on neighbor labels).
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Figure 1: Test 1 - Initial labeling and iteration #1
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Figure 2: Test 1 - Iterations #16 and 17
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Figure 3: Test 2 - Initial labeling and iterations #1
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Figure 4: Test 2 - Iterations #4, 5 and 10
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Figure 5: Test 3 - Initial labeling and iteration #1
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Figure 6: Test 3 - Iterations #4 and 5
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Figure 7: Test 3 - Iterations #8 and 9
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Figure 8: Test 4 - Initial labeling and iteration #2
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Figure 9: Test 4 - Iterations #10, 14 and 16
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