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Abstract. Several approaches for solving multi-objective optimization
problems entail a form of scalarization of the objectives. This paper pro-
poses a study of different dynamic objectives aggregation methods in the
context of evolutionary algorithms. These methods are mainly based on
both weighted sum aggregations and curvature variations. A comparison
analysis is presented on the basis of a campaign of computational exper-
iments on a set of benchmark problems from the literature.

Keywords: Multi-objective optimization, Evolutionary algorithms, Ag-
gregate objective functions

1 Introduction

A multi-objective nonlinear optimization problem with m objectives (or cri-
teria) can be stated as follows: min f(x) = (f1(x), f2(x), . . . , fm(x)), where
x = (x1, . . . , xn) is a decision vector which, possibly, has to satisfy a certain num-
ber of constraints. We denote the image of the feasible region X with Z = f(X)
and the criteria vectors belonging to Z are called feasible criteria vectors. The
goal of a multi-objective optimizer is to achieve a set of Pareto optimal solu-
tions. Since every Pareto point is of potential interest, the target is to capture
the whole Pareto front. There are several methods for solving multi-objective
optimization problems; a classical approach entails a form of scalarization of the
criteria vector. Repeated applications of these methods are performed to achieve
an estimation of the Pareto front. The aggregate objective function methods
transform a multi-criteria optimization problem into a scalar problem using free
parameters to be set; for every set of parameter values, the scalar optimization
problem is solved to seek a Pareto solution. Hence, the original problem is trans-
formed as follows: minx∈X G(x) = F (f1(x), . . . , fm(x)), with F : Z ⊂ Rm → R.
The main issue of a scalarization approach is determining whether the trans-
formed problem and the original one are equivalent. In order to provide the
decision maker the chance to choose among all optimal points, an aggregate



function should be able to capture any existing Pareto solution. It is possible to
prove that any Pareto optimal point can be captured if there is an appropriate
aggregate function [14], where a point x is called capturable if it is a local opti-
mum of the obtained scalar problem. Therefore, a main issue of this approach
is the determination of an appropriate function structure able to provide all the
optimal points according to free parameter values.
In this work, an experimental comparative study of different Dynamic Objectives
Aggregation Methods (DOAMs) in the context of evolutionary optimization al-
gorithms is proposed. The study is conducted on a set of benchmark problems
from the literature. Section 2 presents methods based on both weighted sum
aggregations, and curvature variations. In Section 3 the experimental setting is
described. In Section 4, the analysis of results is reported, and some conclusions
are drawn.

2 Dynamic Objectives Aggregation Methods

The aim of this section is the introduction of the evolutionary dynamic ob-
jectives aggregation methods to solve multi-objective optimization problems.
An aggregate objective function method transforms a multi-objective optimiza-
tion problem into a scalar optimization problem. The most common and widely
used aggregate function is the weighted sum. Although it has been shown that
weighted sum is unable to deal with multi-objective optimization problems with
a concave Pareto front, in [6, 7] it is investigated the possibility to capture also
the points on concave Pareto front by using a dynamic weighted aggregation
combined with evolution strategies. In [8] the phenomenon of global convexity
is introduced in order to explain the potential success of dynamic weighted ag-
gregation. However, no analytical characterization is given in order to identify
a global convex problem, therefore the discussion is based on an observed be-
haviour rather than theoretical analysis.
From an implementation point of view, classical methods that scalarize multi-
ple objectives, perform repeated applications in order to achieve a set of non-
dominated solutions. While dynamic weighted aggregation provides in a single
run an entire front of non-dominated solutions. At this aim, these procedures
generally use an archive to store the non-dominated solutions obtained during
the search process. Empirical results in the literature show that the evolutionary
dynamic weighted sum is able to provide the entire non-dominated front in one
run of the evolutionary algorithm capturing in some cases the points on concave
parts of the Pareto frontier. On the other hand, the method based on the in-
crease of the aggregate function curvature seems to be able to capture the points
on concave regions of the front where the weighted sum fails. The rationale be-
hind an integration of the two methods can be summarized observing that by
increasing the curvature it may be possible to reach the concave part of the front
and by dynamically varying the weights it may be possible to move close to the
concave Pareto frontier.
The remainder of the section is devoted to introduce the algorithmic approaches



investigated in our computational study: i) dynamic weighted sum methods, and
ii) dynamic curvature variations methods.

2.1 Dynamic weighted sum methods

The most widely used aggregate function is the weighted sum; the corresponding
aggregate optimization problem can be stated as:

min
x

m∑

i=1

wifi(x), (1)

where wi is a non-negative weight and
∑m

i=1 wi = 1. For every choice of the
weights vector w, the problem (1) yields an optimal Pareto point. It is well-
known that a weakness of this aggregate function is the failure to capture the
points on a concave Pareto fronts. In fact, it is possible to prove that every point
captured by

∑m
i=1 wifi is in a convex region of the non-dominated frontier. In [6]

the dynamic weighted aggregation method combined with evolution strategies
has been studied and it has been shown that this method is able to reach the
entire Pareto frontier in one run and the points in concave regions as well. This
procedure is based on the dynamic aggregation approach. While conventionally
the scalarization function weights are fixed during optimization, the main idea
on which the method is based is that the weights systematically change during
evolution; so the function to be minimized dynamically changes. In this way the
optimizer moves close to the frontier, once it achieves a non-dominated solution.
Several ways of changing weights have been proposed: randomly, switching be-
tween 0 and 1, periodically. In the first case, the weights are generated from a
uniform random distribution changing in each generation. The second way of
varying the weights is realized by switching them from zero to one abruptly and
viceversa. Literature results suggest that the weights should vary gradually and
periodically. In particular, a gradual and continuous change is needed to keep the
points on a convex front: an abrupt switch of the search direction does not allow
the optimizer to move close to the front, storing non-dominated points. During
the evolution the population goes through the Pareto frontier, and therefore an
archive is needed to record all the Pareto solutions encountered. Although it has
been extensively shown that the conventional weighted sum is unable to provide
the Pareto solutions on concave regions, the dynamic weighted sum method suc-
ceeds in obtaining non-dominated solutions in concave regions as well, traversing
the frontier dynamically. Empirical results highlight the important role of law of
the varying weights [6,7]. Since the incorporation of chaos in population-based
optimization algorithms has been shown to enhance the searching ability [2, 5,
12], in this study it is proposed to introduce the chaotic behaviour in the dynamic
weights generation as well.

2.2 Dynamic curvature variation methods

In order to overcome the drawbacks of the weighted sum scalarization function,
several aggregate functions have been introduced in the literature. In particular,



to enhance the capability of objective functions to capture also the points on
a concave Pareto front, in [14] it is suggested to increase the curvature of the
aggregate function. The corresponding scalar optimization problem can be stated
as follows:

min
x

m∑

i=1

wi(fi(x))t, (2)

where t is a positive real number. It is found that varying all the free parameters
(i.e. weights and exponents), it is possible to achieve all the points on the Pareto
frontier. This aggregate function is also investigated in [10,11], where it has
been proved that applying the t-th power to the objective functions the convex-
ification of non-dominated frontier can be achieved in an appropriate equivalent
objective space. The main problem is again the choice of a function structure
enable to provide all the Pareto solutions for some values of the parameters used
in aggregate function. Assuming that the aggregate objective function and the
Pareto frontier satisfy certain differentiability requirements, the necessary and
sufficient condition for an admissible aggregate objective function to capture the
Pareto points has been developed by Messac [14]. Although these conditions are
inapplicable if the Pareto frontier is not known — as it is in real applications
— Messac suggested the use of an aggregate function (2) whose curvature can
be increased by setting free parameters with the aim to enhance the capability
of objective functions to capture also the points on concave Pareto front. This
t-th power approach is also investigated in [10]. For sufficiently large values of
t, the efficient frontier in the [f t

1, ..., f
t
m] space is guaranteed to be convex under

certain conditions. Therefore, the weighted sum of the t-th power of the objec-
tives is able to solve the problem in the [f t

1, ..., f
t
m] space. In [4] the properties

of the weighted t-th power approach are summarized: i) the optimal solutions
of the t-th power problem (2) are efficient solutions of the multi-objective prob-
lem; ii) for every efficient solution there exists a t̂ > 0 such that for all t ≥ t̂
the t-th power aggregate function captures that solution. This result guarantees
the existence of a t-th power aggregate function that is able to capture all the
Pareto front. Therefore this is an important theoretical support for this work in
which different rules to change the values of t are considered in addition to those
concerning the weights wi.

3 Computational Experiments

In this section the experimental setting is illustrated. The evolutionary algo-
rithms involved in the test and their configurations are described in Subsection
3.1. Another subsection reports on the different DOAMs considered in the ex-
periments. In order to evaluate and compare the effectiveness of the proposed
methods, a suite of test problems is employed as will be described in Subsection
3.3.



3.1 Evolutionary algorithms and their configurations

To test the method proposed in this work, the standard genetic algorithm in-
cluded in the Matlab’s Genetic Algorithm and Direct Search Toolbox [13] has
been used. This algorithm enables to solve single-objective optimization prob-
lems and can be easily adapted to work with both constraints and dynamic
objectives aggregation. Some parameters values need to be specified, before the
algorithm execution: we adopted a stochastic uniform selection operator, a scat-
tered crossover function with probability 0.7 and a Gaussian mutation function
with probability 0.3; the number of best individuals that will survive to the
next population has been fixed to 2 and the stopping criterion is based on the
maximum number of generations to be produced. Several settings have been
considered for the genetic algorithm, by varying the population size (in the set
{25, 50, 100}) and the performed iterations (100, 500 or 1000); thus, 9 overall
different configurations of the genetic algorithm are used.
The considered DOAMs require to solve single-objective optimization problems,
given by the dynamic weighted sum of the objectives we are really interested in.
To keep all the non-dominated solutions provided by the evolutionary process,
the algorithm is equipped with an archive in which they are dynamically stored.
The use of the archive requires a capacity control: a domination and crowding
analysis is conducted on the elements that are proposed to be enclosed in it.
The evolutionary optimizer at each iteration proposes the feasible elements con-
tained in its current population to the archive which is updated, removing all
dominated solutions. A well-known multi-objective genetic algorithm (MOGA),
NSGA-II — extensively described by Deb in [3] — has also been used, aiming
to compare the solutions obtained with the proposed method with those pro-
vided by a native MOGA. The algorithm configurations described before have
also been applied to NSGA-II, except for the dominance management which is
implicitly guaranteed by the algorithm itself.

3.2 The set of DOAMs

Several DOAMs have been used in the campaign of experiments conducted in
this work, involving both the variation of the weights (only) and the combined
variation of the weights and the exponents of (2). For the sake of simplicity, in
order to describe the methods, a bi-objective problem is considered. In this case,
the aggregate function corresponding to the k-th generation can be stated as
follows:

G(x, k) = w1(k)f t
1(x) + w2(k)f t

2(x), (3)

where the expressions of w1 and w2 and the value of t depend on the adopted
variation law; clearly, for t = 1 the simpler weighted sum aggregated function is
obtained. The weights wi can be dynamically modified according to a rule R(k)
described by a specific function of k:

w1(k) = R(k), w2(k) = 1 − w1(k). (4)



We consider different rule functions: one, switch, sin, triangle, rand, chaos. The
first refers to the case of fixed unitary weights (i.e. the aggregate function is
simply given by the sum of the objectives). In the second case w1 periodically
changes from 0 to 1, with a given period T = 200 (in terms of the number of
algorithm’s generations). Similarly, a periodical changing of the weights can be
obtained also according to a sin or triangle wave in the successive adopted rules.
The rand rule, at each iteration k, generates a random value in (0, 1) for w1.
Whereas, the last rule applies a chaotic variation law to the weights. A logistic
equation — which is extensively used to describe a chaotic system [1,2] — is
employed as follows:

w1(k + 1) = µw1(k)(1 − w1(k)), w2(k) = 1 − w1(k). (5)

This equation shows chaotic behaviour when µ = 4 and w1(0) 6∈ {0, 0.25, 0.5, 0.75, 1}.
Clearly, some other well-known chaotic maps could also be employed instead of
the logistic one to generate the weights in the aggregate objective functions [2].
In order to let the curvature of the aggregate function vary during the evolution
process four possible strategies are proposed for the variation of the exponent. In
all the cases considered in the following, the exponent value ranges between t = 1
and t = 4, retaining that greater values of t would not provide further improve-
ments in the optimization results achieved so far. A first scheme (one) considers
only fixed unitary exponents. The second scheme (step) establishes to increment
the exponent value every N/4 iterations, N being the maximum number of gen-
erations that can be produced. An adaptive scheme (adapt) has also been tested,
according to which the exponent value is incremented when there is no improve-
ment in the optimization process for a given number of iterations, which has been
fixed to ∆ = 0.05 N . According to both these strategies, the exponent value is
always a positive integer number; the last strategy (cont) considered in this work
let it range among the (positive) real numbers, i.e. the interval (0, N ) has been
mapped into the interval (1, 4) such that the exponent t can vary continuously
in this range. Combining the aforementioned weights-exponents strategies, 24
different DOAMs are obtained. Hereinafter, each of them will be denoted indi-
cating the strategies as an ordered pair (e.g. chaos-step represents the strategy
with the chaotic rule for the weights and the step for exponents, respectively).

3.3 Test Problems

The computational test of the methods has been conducted on a set of bench-
mark problems, characterized by different specific features in the Pareto front,
so that the general results obtained would not depend on the particular test
problem chosen. Problems P1-P7 are discussed by Y. Jin et al. in [6–8]: in P2-P5

it is assumed that xi ∈ [0, 1] for all i = 1, . . . , n; while in P1, P6, and P7 there are
no restrictions on the range of the decision variables. The problem P1 is defined
by the following equations:

f1 =
1
n

n∑

i=1

x2
i ; f2 =

1
n

n∑

i=1

(xi − 2)2 (6)



and produces a uniform Pareto front. P2 is described by:

f1 = x1 (7)

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi (8)

f2 = g (1 −
√

f1/g). (9)

having a convex Pareto front. Because of the interest in studying problems show-
ing non-convex or discontinuous Pareto front, some instances belonging to this
class have been considered. The following problem, P3, has a concave Pareto
front and is defined as follows:

f1 = x1 (10)

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi (11)

f2 = g (1 − (f1/g)2). (12)

The fourth problem, P4, has been obtained through combining — in some sense
— P2 and P3:

f1 = x1 (13)

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi (14)

f2 = g (1 − 4
√

f1/g − (f1/g)4). (15)

Its Pareto front is neither purely convex nor purely concave. The following prob-
lem, P5, is characterized by a Pareto front consisting of a number of separated
convex parts.

f1 = x1 (16)

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi (17)

f2 = g (1 −
√

f1/g − (f1/g) sin(10πf1)) (18)

Problem P6 is defined through the following equations:

f1 = 1 − exp

{
−

n∑

i=1

(
xi −

1√
n

)2
}

(19)

f2 = 1 − exp

{
−

n∑

i=1

(
xi +

1√
n

)2
}

(20)

showing a concave Pareto front. Another problem P7, is obtained in [8] extending
one of the test function proposed in literature [15] to the two-dimensional case:

f1 = exp(−x1) + 1.4 exp(−x2
1) + exp(−x2) + 1.4 exp(−x2

2) (21)
f2 = exp(x1) + 1.4 exp(−x2

1) + exp(x2) + 1.4 exp(−x2
2) (22)



The resulting Pareto front is continuous and non-convex. Even if the problem is
considered an easy task for evolutionary optimizers [8], the region that defines the
Pareto front in the parameter space is disconnected; so, it could be an interesting
problem to be studied. In the following, two other benchmark problems, P8-P9,
are considered, because of the particular shape of their feasible region and/or
Pareto front. These problems are described in [16]. Problem P8 is referred to as
the TNK problem. The objectives are very simple, and defined by

f1 = x1, f2 = x2, (23)

where
x1 ∈ [0, π], x2 ∈ [0, π].

The constraints are

g1 = −x2
1 − x2

2 + 1 + 0.1 cos(16arctg(x2/x1)) ≤ 0, (24)
g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5. (25)

Problem P9 is the so-called Poloni test problem: the objective functions are de-
fined as

f1 = 1 + (a − b)2 + (c − d)2, f2 = (x1 + 3)2 + (x2 + 1)2, (26)

where the parameters introduced in the expression of f1 are:

a = 0.5sin(1) − 2.0cos(1) + 1.0sin(2) − 1.5cos(2)
b = 0.5sin(x1) − 2.0cos(x1) + 1.0sin(x2) − 1.5cos(x2)
c = 1.5sin(1) − 1.0cos(1) + 2.0sin(2) − 0.5cos(2)
d = 1.5sin(x1) − 1.0cos(x1) + 2.0sin(x2) − 0.5cos(x2)

The variables ranges are: x1 ∈ [−π, π]; and x2 ∈ [−π, π].

4 Results

In order to test and compare the different DOAMs on the considered benchmark
problems, we adopt as main performance indicator the hyperarea ratio (HR) [9].
As secondary indicators we report the number of non-dominated elements (ND)
and the spacing (S). For each experiment three different runs have been executed
initializing algorithms with random populations.
Table 1 contains the average results on 3 runs for each of the 9 algorithms
configurations described in Subsection 3.1, so each entry is the average on 27
experimental values. The collected results show that methods based on period-
ical changes of weights often achieve relative good performances with respect
to other DOAMs as well as to a state-of-the-art (native) multi-objective opti-
mizer. This behaviour seems to be reinforced by the use of exponents variation.
Nonetheless, it is noticeable the competitive performance of the DOAMs based



on a chaos rule in terms of HR, ND, and S. On the other hand, strategies based
on the switch rule (no matter what strategy is adopted for exponents) almost
always give relative poor results.
Although each average is composed of a large number of data points, it is nec-
essary to carry out a statistical analysis to assess if the observed differences in
the average values are indeed statistically significant. Since in non-parametric
testing a lot of information is lost because the data have to be ranked and the
differences in the values are transformed into a rank value. We consider para-
metric ANOVA analysis and non-parametric Friedman rank-based test. These
analyses assume only HR as response variable.
Figures 1 and 2 show the means plot in the Friedman and ANOVA analysis,
respectively. The analyses are conducted on the algorithm factor considering 24
different DOAMs and NSGA-II with three repetition for each experiment which
is characterized by the problem and by the algorithm configuration (a total of
81 combinations are considered). Thus, in our Friedman analysis, for every ex-
periment 75 ranks are obtained, assigning a larger rank to better results. For
both tests we use a confidence interval of 95% and adopt the Tukey’s HSD in-
tervals. As it can be seen, the non-parametric test is less powerful presenting
much wider intervals (in which overlapping intervals indicate a non-statistically
significant difference on the average performance of the algorithms) and neglect-
ing the differences in the response variables. These analyses clearly confirm the
negative assessment on switch strategies and the promising behaviour of chaos-
based DOAMs which are often the best strategy (e.g. see DOAM13 in Figure
1) being able to dominate the performance of different candidates (see figures 1
and 2). This result seems to support the increasing research interest about the
introduction of some form of chaotic behaviour in stochastic optimizers [1, 2, 5,
12].
These experimental results are of interest also in different contexts such as
the development of multi-objective optimization algorithms starting from well-
established evolutionary single-objective optimizers, in the design of compact
(and fast) local search procedures, in surrogate-based optimization, and in land-
scape approximation of costly functions. However, the observations based on
the encouraging results from the conducted experiments indicate that different
aspects deserve further research efforts. Mainly, it seems useful to extend the
experimental campaign: i) on a wider set of problems (also from real applica-
tions); ii) to include different quality indicators; iii) to compare DOAMs and
other state-of-the-art MOGAs; iv) to better enlighten the effects of the inter-
actions of weights and exponents based rules; and v) to include other chaotic
DOAMs in order to deeply investigate their effectiveness.
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Table 1. Average values of HR (in %), ND, and S achieved by the algorithms for each
problem.

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

A
lg

o
ri
th

m
D

e
sc

ri
p
ti
o
n

H
R

N
D

S
H

R
N

D
S

H
R

N
D

S
H

R
N

D
S

H
R

N
D

S
H

R
N

D
S

H
R

N
D

S
H

R
N

D
S

H
R

N
D

S
D

O
A

M
1

ch
a
o
s-

o
n
e

7
4

2
5
.3

7
0
.3

6
9
0

1
0
.6

7
0
.4

2
8
5

6
.2

6
0
.1

7
8
1

7
.0

0
0
.2

9
8
6

6
.0

4
0
.2

1
2
1

1
6
.7

9
0
.1

4
1
0
0

3
2
8
.1

9
3
.4

1
2
3

4
.7

0
0
.1

8
9
1

2
2
4
.7

9
0
.2

1
D

O
A

M
2

o
n
e
-o

n
e

7
4

2
4
.8

5
0
.3

8
9
1

7
.5

9
0
.4

5
8
3

4
.3

3
0
.2

9
8
1

7
.0

4
0
.2

5
8
3

5
.1

9
0
.4

0
2
1

1
5
.2

9
0
.1

4
1
0
0

1
5
2
.9

3
1
.5

e
5
6

2
1

4
.8

9
0
.1

2
8
9

1
2
6
.2

5
0
.6

3
D

O
A

M
3

ra
n
d
-o

n
e

7
5

2
5
.4

1
0
.2

9
9
1

8
.5

2
0
.3

2
8
4

4
.9

6
0
.3

5
8
1

6
.3

3
0
.2

9
8
4

5
.2

6
0
.5

6
2
1

1
6
.1

3
0
.1

8
1
0
0

3
1
0
.3

7
3
.6

8
2
2

4
.6

3
0
.1

4
9
1

2
1
2
.9

2
0
.2

7
D

O
A

M
4

sw
it
ch

-o
n
e

7
3

2
3
.5

2
0
.5

3
8
8

3
.4

8
0
.1

8
8
2

2
.2

2
0
.1

3
8
1

5
.7

8
0
.2

9
8
3

3
.7

8
0
.4

2
2
2

1
4
.9

6
0
.1

4
1
0
0

4
7
4
.5

9
1
.7

e
1
1

2
1

4
.4

8
0
.1

8
8
2

3
6
.6

3
1
.5

6
D

O
A

M
5

si
n
-o

n
e

7
5

2
4
.9

3
0
.3

1
9
1

8
.0

7
0
.2

4
8
5

4
.4

4
0
.1

8
8
1

6
.3

7
0
.2

5
8
6

5
.0

7
0
.3

3
2
2

1
9
.1

7
0
.1

1
1
0
0

3
7
1
.5

6
8
.9

8
2
2

4
.6

7
0
.1

6
9
1

1
6
0
.5

8
1
.1

8
D

O
A

M
6

tr
ia

n
g
le

-o
n
e

7
6

2
4
.1

5
0
.3

3
9
0

6
.1

1
0
.3

7
8
5

5
.2

2
0
.1

8
8
1

6
.7

4
0
.2

7
8
5

5
.7

4
0
.3

6
2
3

2
0
.4

6
0
.1

0
1
0
0

3
2
7
.0

0
4
.8

2
2
1

4
.4

8
0
.1

6
9
1

1
6
6
.2

9
1
.2

9
D

O
A

M
7

ch
a
o
s-

st
e
p

7
5

2
5
.0

7
0
.3

6
9
0

8
.0

4
0
.3

0
8
4

5
.1

1
0
.3

2
8
1

6
.4

1
0
.2

5
8
5

6
.4

4
0
.3

6
2
1

1
7
.4

6
0
.1

6
1
0
0

3
2
9
.5

2
5
.3

1
2
1

4
.1

1
0
.1

4
9
1

2
4
4
.5

0
0
.2

3
D

O
A

M
8

o
n
e
-s

te
p

7
5

2
5
.0

0
0
.3

8
9
0

7
.7

8
0
.2

8
8
4

4
.0

4
0
.3

0
8
1

7
.4

8
0
.3

1
8
3

5
.4

1
0
.5

5
2
1

1
5
.0

8
0
.1

8
1
0
0

1
4
1
.9

3
3
.5

4
2
2

5
.0

0
0
.1

3
9
1

1
5
8
.4

6
0
.2

7
D

O
A

M
9

ra
n
d
-s

te
p

7
6

2
4
.7

0
0
.3

1
9
1

6
.9

3
0
.4

0
8
4

4
.3

3
0
.2

9
8
1

6
.6

7
0
.2

7
8
5

5
.2

2
0
.3

6
2
1

1
7
.0

4
0
.1

2
1
0
0

3
1
5
.3

7
3
.7

8
2
1

4
.3

7
0
.1

6
9
1

2
3
1
.0

0
0
.2

6
D

O
A

M
1
0

sw
it
ch

-s
te

p
7
5

2
3
.5

2
0
.4

6
8
9

3
.6

7
0
.1

6
8
2

2
.5

9
0
.2

3
8
0

5
.4

8
0
.3

5
8
4

3
.8

5
0
.3

4
2
1

1
5
.9

2
0
.1

2
1
0
0

4
7
5
.7

4
1
.8

e
1
0

2
2

4
.5

9
0
.1

5
8
3

3
8
.7

1
1
.6

0
D

O
A

M
1
1

si
n
-s

te
p

7
5

2
4
.6

3
0
.3

2
9
1

7
.2

2
0
.2

8
8
4

4
.1

1
0
.1

7
8
1

7
.1

5
0
.2

9
8
5

5
.4

4
0
.2

7
2
3

2
0
.8

3
0
.1

5
1
0
0

3
7
3
.4

4
9
.3

7
2
1

4
.3

0
0
.1

8
9
1

1
7
6
.7

5
0
.6

8
D

O
A

M
1
2

tr
ia

n
g
le

-s
te

p
7
5

2
5
.4

4
0
.2

8
9
1

8
.3

3
0
.3

1
8
4

4
.6

7
0
.3

1
8
1

7
.5

2
0
.2

7
8
5

5
.3

3
0
.3

2
2
4

2
0
.2

1
0
.1

1
1
0
0

3
2
5
.2

2
3
.7

0
2
2

4
.1

5
0
.1

2
9
1

1
8
4
.7

5
0
.6

0
D

O
A

M
1
3

ch
a
o
s-

a
d
a
p
t

7
4

2
4
.8

5
0
.3

2
9
1

8
.9

6
0
.2

0
8
4

4
.8

9
0
.2

1
8
1

7
.1

5
0
.2

6
8
5

5
.7

8
0
.2

8
2
2

1
7
.9

6
0
.1

1
1
0
0

3
3
9
.4

4
3
.9

0
2
2

4
.4

8
0
.1

4
9
1

2
4
3
.4

2
0
.4

1
D

O
A

M
1
4

o
n
e
-a

d
a
p
t

7
6

2
5
.9

3
0
.3

2
9
1

7
.4

1
0
.2

5
8
4

3
.8

9
0
.2

5
8
1

7
.4

4
0
.2

8
8
3

5
.3

3
0
.6

0
2
0

1
6
.7

5
0
.1

4
1
0
0

1
4
4
.7

0
4
.0

8
2
2

4
.7

8
0
.1

3
9
1

1
4
2
.4

2
0
.2

7
D

O
A

M
1
5

ra
n
d
-a

d
a
p
t

7
3

2
5
.3

3
0
.3

1
9
0

6
.0

7
0
.3

0
8
5

4
.7

0
0
.1

4
8
1

6
.7

8
0
.3

1
8
3

6
.1

5
0
.4

2
2
1

1
6
.7

9
0
.1

2
1
0
0

3
1
9
.7

8
3
.9

2
2
1

4
.1

5
0
.1

2
9
1

2
1
8
.1

3
0
.2

4
D

O
A

M
1
6

sw
it
ch

-a
d
a
p
t

7
3

2
4
.2

6
0
.5

9
8
8

3
.0

4
0
.1

3
8
3

3
.0

0
0
.1

8
8
0

4
.7

4
0
.3

7
8
4

4
.0

7
0
.3

2
2
1

1
5
.6

3
0
.1

4
1
0
0

4
7
8
.6

3
1
.3

e
1
2

2
1

4
.1

1
0
.1

6
8
5

3
9
.4

6
0
.9

6
D

O
A

M
1
7

si
n
-a

d
a
p
t

7
5

2
5
.3

0
0
.2

7
9
1

6
.6

7
0
.1

3
8
5

4
.8

5
0
.1

4
8
1

6
.7

4
0
.3

2
8
6

5
.4

8
0
.4

1
2
4

2
1
.2

1
0
.0

8
1
0
0

3
7
5
.2

2
1
1
.7

0
2
0

4
.3

0
0
.1

4
9
1

1
7
1
.4

2
0
.8

9
D

O
A

M
1
8

tr
ia

n
g
le

-a
d
a
p
t

7
6

2
5
.1

5
0
.3

8
9
1

8
.5

2
0
.2

5
8
4

4
.5

6
0
.3

2
8
2

7
.4

4
0
.2

3
8
5

6
.2

6
0
.3

1
2
3

1
9
.1

3
0
.1

4
1
0
0

3
3
2
.1

5
4
.1

9
2
2

4
.5

9
0
.1

9
9
1

1
9
6
.7

5
0
.9

1
D

O
A

M
1
9

ch
a
o
s-

c
o
n
t

7
5

2
4
.9

3
0
.3

0
9
0

8
.5

2
0
.2

5
8
4

5
.2

2
0
.4

1
8
1

7
.1

1
0
.2

9
8
5

6
.6

3
0
.2

7
2
1

1
7
.0

8
0
.1

3
1
0
0

2
8
7
.0

0
4
.5

5
2
1

4
.1

5
0
.1

2
9
1

2
1
0
.8

3
0
.2

6
D

O
A

M
2
0

o
n
e
-c

o
n
t

7
5

2
5
.2

2
0
.3

3
9
1

7
.9

3
0
.2

3
8
4

5
.0

7
0
.3

7
8
1

7
.1

1
0
.3

1
8
5

5
.7

4
0
.4

0
2
1

1
5
.5

4
0
.2

0
1
0
0

9
3
.5

2
3
.2

7
2
2

4
.4

8
0
.1

5
9
1

1
4
8
.5

0
0
.2

9
D

O
A

M
2
1

ra
n
d
-c

o
n
t

7
5

2
3
.8

9
0
.3

8
9
1

7
.0

7
0
.3

1
8
3

4
.1

9
0
.3

1
8
1

6
.7

8
0
.3

0
8
5

6
.1

1
0
.4

3
2
2

1
7
.1

7
0
.1

4
1
0
0

2
5
6
.8

5
4
.4

5
2
3

4
.5

6
0
.1

5
9
1

1
8
4
.9

6
0
.2

7
D

O
A

M
2
2

sw
it
ch

-c
o
n
t

7
4

2
3
.8

5
0
.4

8
8
9

3
.7

4
0
.2

6
8
2

3
.0

4
0
.1

0
8
0

5
.4

8
0
.3

2
8
3

3
.9

6
0
.1

2
2
2

1
6
.3

8
0
.1

3
1
0
0

4
8
2
.8

9
2
.9

e
1
0

2
1

4
.3

0
0
.1

1
8
0

3
2
.2

5
1
.1

7
D

O
A

M
2
3

si
n
-c

o
n
t

7
5

2
4
.8

1
0
.3

3
9
1

7
.6

3
0
.3

6
8
4

5
.4

8
0
.5

8
8
1

7
.1

5
0
.2

5
8
5

5
.8

9
0
.3

2
2
3

1
9
.2

5
0
.1

0
1
0
0

2
9
0
.7

8
5
.8

5
2
2

4
.4

8
0
.1

7
9
1

1
6
2
.5

0
1
.0

8
D

O
A

M
2
4

tr
ia

n
g
le

-c
o
n
t

7
6

2
5
.5

9
0
.3

3
9
0

7
.3

0
0
.4

2
8
4

5
.8

5
0
.3

0
8
1

7
.1

9
0
.2

2
8
5

5
.8

9
0
.4

9
2
3

2
0
.1

7
0
.1

1
1
0
0

2
5
8
.7

4
3
.4

9
2
2

4
.3

3
0
.1

3
9
1

1
7
1
.5

8
1
.2

0
N

S
G

A
-I

I
m

u
lt
i-
o
b
j

6
5

2
6
.5

2
0
.0

7
9
0

4
.1

9
0
.1

7
8
4

2
.5

9
0
.1

5
8
1

4
.9

6
0
.2

1
8
6

4
.1

1
0
.2

5
1
8

1
6
.9

2
0
.0

3
1
0
0

4
1
1
.3

3
1
.5

e
1
1

1
6

2
.4

8
0
.1

2
9
1

4
4
0
.4

2
0
.1

6



15 20 25 30 35 40 45 50 55

NSGA-II

DOAM24

DOAM23

DOAM22

DOAM21

DOAM20

DOAM19

DOAM18

DOAM17
DOAM16

DOAM15

DOAM14

DOAM13

DOAM12

DOAM11

DOAM10

DOAM9

DOAM8

DOAM7
DOAM6

DOAM5

DOAM4

DOAM3

DOAM2

DOAM1

Fig. 1. Means plot and Tukey’s HSD confidence intervals (α = 0.05) resulting from
the Rank-based Friedman analysis on HR.
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Fig. 2. Means plot and Tukey’s HSD confidence intervals (α = 0.05) resulting from
the ANOVA analysis on HR.
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