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Abstract

Exchange options give the holder the right to exchange one risky asset
V for another risky asset D. The asset V is referred to as the optioned
(underlying) asset, while D is the delivery asset. So, when an exchange
option is valued, we generally are exposed to two sources of uncertainity,
namely we have two stochastic variables.
Exchange options arise quite naturally in a number of significant financial
arrangements including bond futures contracts, investment performance,
options whose strike price is an average of the experienced underlying
asset price during the life ot the option and so on.
In this paper we propose some algorithms to estimate exchange options
by Monte Carlo simulation reducing the bi-dimensionality of valuation
problem to single stochastic factor.

Keyword: Exchange Options; Monte Carlo Simulations.
JEL Codes: G13; C15.

1 Introduction

The pricing of options by simulation techniques is an important task especially
where analytical solutions are not available. With the aid of ever faster compu-
ters coupled with the development of new numerical methods, we are nowadays
able to solve numerically an increasing number of important security pricing
models. Even where we appear to have analytical solutions it is often desira-
ble to have an alternative implementation that is supposed to give the same
answer. Simulation methods for asset pricing were introduced in finance by
(Boyle, 1977). Since that time simulation has been successfully applied to a
wide range of pricing problems, particularly to value american options as wit-
nessed by the contributions of Tilley (1993), Barraquand & Martineau (1995),
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Broadie & Glasserman (1997), Raymar & Zwecher (1997).
The aim of this paper is to propose some algorithms, based on Monte Carlo
simulation, for the estimation of exchange options that give its owner the right
to exchange one risky asset for another. Exchange options arise quite naturally
in a number of significant financial arrangements such as bond futures contracts,
investment performance, options whose strike price is an average of the expe-
rienced underlying asset price during the life of the option.
The most relevant models that value exchange options are given in Margrabe
(1978), McDonald & Siegel (1985), Carr (1988,1995), Armada et al. (2007). We
can synthesize the main characteristics of these models.
Margrabe (1978) values an European exchange option which gives the right to
realize such exchange only at expiration. Margrabe (1978) also proves that
the exercise of American exchange option will only occur at expiration when
neither underlying asset pays dividends. McDonald & Siegel (1985) value an
European exchange option considering that the assets distribute dividends and
Carr (1988) values a compound European exchange option in which the under-
lying asset is another exchange option. However, when the asset to be received
in the exchange pays sufficient large dividends, there is a positive probability
that an American exchange option will be exercised strictly prior to expiration.
This positive probability induced additional value for an American exchange
option as given in Carr (1988,1995) and Armada et al. (2007).
The paper is organized as follows. The section (2) presents the estimation of an
European Exchange option, the section (3) introduces the Monte Carlo’s valua-
tion of a Compound European Exchange option while the section (4) gives us
the estimation of a Pseudo American Exchange option.
In the section (5) we present a numerical study to compare the results obtained
applying the theoretical models with those deriving by Monte Carlo simulations.
Finally, the section (6) concludes.

2 The Price of an European Exchange Option
(EEO)

We begin our discussion by focusing on an EEO to exchange asset D for asset
V at time T . Asset D is referred to as the delivery asset, and V the optioned
asset. Denoting with s(V,D, T − t) the value of EEO at time t , the final payoff
at the option’s maturity date T is s(V, D, 0) = max(0, VT − DT ) , where VT

and DT are the underlying assets’ terminal prices.
Following Margrabe (1978) and McDonald & Siegel (1985) models, we suppose
two Browninan processes (Zv

t )t∈[0,T ] and (Zd
t )t∈[0,T ] which are defined on a

filtered probability space (Ω,A,F ,P) . We assume that the risky assets V and
D are described by the following stochastic differential equations:

dV

V
= (µv − δv)dt + σvdZv

t (1)
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dD

D
= (µd − δd)dt + σddZ

d
t (2)

cov

(
dV

V
,
dD

D

)
= ρvdσvσd dt (3)

where µv and µd are the expected rates of return on the two assets, δv and δd

are the corresponding dividend yields, σ2
v and σ2

d are the respective variance
rates and ρvd is the correlation between changes in V and D .
So, under certain assumptions, Margrabe (1978) and McDonald & Siegel (1985)
show that the value of an EEO on dividend-paying assets, when the valuation
date is t = 0 , is given by:

s(V, D, T ) = V e−δvT N(d1(P, T ))−De−δdT N(d2(P, T )) (4)

where:

• P =
V

D
;

• σ =
√

σ2
v − 2ρv,dσvσd + σ2

d;

• δ = δv − δd;

• d1(P, T ) =
log P +

(
σ2

2 − δ
)

T

σ
√

T
;

• d2(P, T ) = d1(P, T )− σ
√

T ;

• N(d) is the cumulative standard normal distribution.

The typical simulation approach is to price the EEO as the expectation value
of discounted cash-flows:

s(V, D, T ) = e−rT EQ[max(0, VT −DT )] (5)

where max[0, VT −DT ] denotes the payoff at expiration time T and the proba-
bility Q is the risk-neutral probability for the pricing problem. So, for the
risk-neutral version of the Eq. (1) and Eq. (2), it’s just replace the expected
rates of return µv and µd by the risk-free interest rate r plus the premium-risk,
namely µi = r + λiσi , for i = V, D . So, we obtain the risk-neutral stochastic
equations:

dV

V
= (r − δv)dt + σv(dZv

t + λvdt) = (r − δv)dt + σvdZ∗v (6)
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dD

D
= (r − δd)dt + σd(dZd

t + λddt) = (r − δd)dt + σddZ
∗
d (7)

Cov(dZ∗v , dZ∗d) = ρvddt (8)

The Brownian processes dZ∗v ≡ dZv
t +λvdt and dZ∗d ≡ dZd

t +λddt are the new
Geometric Brownian Motions under the filtered risk-neutral probability space
(Ω,A,F ,Q) . Applying the Ito’s lemma and using a logarithm transformation
(see Appendix A.1 and A.2), we can reach the equation for the ratio-price simu-

lation P =
V

D
under the risk-neutral measure Q :

dP

P
= (−δ + σ2

d − σvσdρvd) dt + σvdZ∗v − σddZ
∗
d (9)

where −δ = δd − δv . Applying the logarithm transformation for DT , under
the risk-neutral probability measure Q , it results that:

DT = D0 exp {(r − δd)T} · exp
(
−σ2

d

2
T + σdZ

∗
d(T )

)
(10)

where D0 is the value of asset D at initial time.

Since Z∗d(T ) ∼ N (0,
√

T ) we have that U ≡
(
−σ2

d

2
T + σdZ

∗
d(T )

)
∼ N

(
−σ2

d

2
T, σd

√
T

)

and therefore exp(U) is a log-normal which expectation value is:

EQ [exp(U)] = exp
(
−σ2

d

2
T +

σ2
d

2
T

)
= 1 (11)

So, by Girsanov’s theorem, we can define the new probability measure
∼
Q equiva-

lent to Q and the Radon-Nikodym derivative is:

d
∼
Q

dQ
= exp

(
−σ2

d

2
t1 + σdZ

∗
d(t1)

)
(12)

Hence, using the Eq. (10) we can write:

DT = D0 e(r−δd)T · d
∼
Q

dQ
(13)

By the Girsanov theorem, the process:

dẐd = dZ∗d − σddt (14)

is a Brownian motion under the new risk-neutral probability space (Ω,A,F ,
∼
Q) .

We can write dZ∗v as:

dZ∗v = ρvd dZ∗d +
√

1− ρ2
vd dZ ′ (15)
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where Z ′ is a Brownian motion independent of Z∗d under measure Q . But,

with
∼
Q defined by Eq. (12), Z ′ remains a Brownian motion under

∼
Q inde-

pendent of Ẑd . Hence dẐv defined by:

dẐv = ρvddẐd +
√

1− ρ2
vd dZ ′ (16)

is a Brownian motion under
∼
Q . Moreover, using the Eq. (14) for Ẑd , we can

rewrite the process Ẑv under the new risk-neutral probability space (Ω,A,F ,
∼
Q)

as:

dẐv = dZ∗v − ρvdσd dt (17)

By the Brownian motions defined in the Eq. (14) and Eq. (17), we can rewrite

the Eq.(9) for the asset P under the risk-neutral probability
∼
Q . So it results

that:

dP

P
= (−δ + σ2

d − σvσdρvd) dt + σvdZ∗v − σddZ
∗
d

= (−δ + σ2
d − σvσdρvd + σvσdρvd − σ2

d) dt + σv dẐv − σd dẐd

= −δ dt + σv dẐv − σd dẐd (18)

Using the Eq. (16), it results that:

σvdẐv − σddẐd = (σvρvd − σd) dẐd + σv

(√
1− ρ2

vd

)
dẐ ′ (19)

where Ẑv and Z ′ are independent under
∼
Q . Moreover, we have that:

E∼
Q

[
(σvρvd − σd) dẐd + σv

(√
1− ρ2

vd

)
dZ ′

]
= (σvρvd − σd) E∼

Q

[
d Ẑd

]

+ σv

(√
1− ρ2

vd

)
E∼
Q

[
dẐ ′

]

= 0 (20)
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V ar

[
(σvρvd − σd) dẐd + σv

(√
1− ρ2

vd

)
dZ ′

]
= (σvρvd − σd)

2
V ar

[
dẐd

]

+
(

σv

√
1− ρ2

vd

)2

V ar [dZ ′]

=
(
σ2

v + σ2
d − 2ρvdσvσd

)
dt

= σ2 dt (21)

Therefore, as (σvdẐv − σddẐd) ∼ N (0, σ
√

dt) , we can rewrite the Eq. (18):

dP

P
= −δ dt + σdZp (22)

where σ =
√

σ2
v + σ2

d − 2σvσdρvd and Zp is a Geometric Brownian motion

under
∼
Q .

Using the logarithm transformation, we obtain the equation for the risk-neutral
price simulation P :

P (t) = P0 exp
{(

−δ − σ2

2

)
t + σZp(t)

}
(23)

So, using the Eq.(13), we can price an EEO as the expectation value of dis-
counted cash-flows under the risk-neutral probability measure:

s(V, D, T ) = e−rT EQ[max(0, VT −DT )]

= e−rT EQ

[
max

(
0, DT

(
VT

DT
− 1

))]

= e−rT EQ [max(0, DT (PT − 1))]

= e−rT D0e
(r−δd)T EQ


max


0, (PT − 1)

d
∼
Q

dQ







= D0e
−δdT E∼

Q
[g(PT )] (24)

where g(PT ) = max(PT −1, 0) . In addition, the Appendix A.3 shows the valua-

tion of EEO under the risk-neutral probability
∼
Q .

The simulation of the risk-neutral price P (see the Eq.(23)) is performed ap-
plying the discretization dt from the continuous-time model:

P (t + dt) = P (t) exp {(δd − δv − 0.5 · σ2)t + σ
√

dt · ε(t)} (25)

where ε(t) ∼ N (0, 1) is a standard normal distribution. Therefore, if we know
the value of σv , σd , ρvd , δv , δd and P0 , it’s possible to compute, at any
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time t , the ratio-price P under the risk-neutral probability
∼
Q simulating the

standard Normal distribution ε(t) . The figures 1(a) and 1(b) show the com-
parison between the simulated lognormal distribution of P (using the function
“lognpdf”of Matlab Statistics Toolbox) and the theoretical one. We can observe
that, when the number of simulations increasing, than the simulated distribu-
tion converge to theoretical one.
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(b) Simulated distribution of P

Figure 1: Distribution of asset P .

Finally, it’s possible to implement the Monte Carlo simulation to approximate:

E∼
Q

[g(PT )] ≈ 1
n

n∑

i=1

g(Pi) (26)

where n is the number of simulated-paths effected, Pi for i = 1, 2...n are
the simulated values and g(Pi) = max(0, Pi − 1) . The section (2.1) shows
the Matlab algorithm to derive the simulated value of EEO s(V, D, T ) . The
function “randn (1,1)”generates the stochastic process ε(t) in order to descrive
the evolution of ratio-asset P .

2.1 Matlab Algorithm for the EEO

function EEO = MCEuroSimple (V0,D0,m,T,sigV,sigD,rhoVD,dV,dD,n)
%Statement of the counter:
SUM =0;
%Statement of the variables:
sig=sqrt(sigV.^2+sigD.^2-2*rhoVD*sigV*sigD);
P0=V0/D0;
d=dV-dD;
%Discretization of timing parameters:
dt=T/m;
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drifts = (-d-0.5*sig*sig).*dt;
stds = sig.*sqrt(dt);
%Computation of simulations:
P=zeros(m+1,1);
for I=1:n

P(1)=P0;
for j = 1:m

P(j+1)=P(j)*exp(drifts +stds*randn(1,1));
end
SUM = SUM + max(P(m+1)-1,0);

end
%Computation of European Exchange option:
EEO = D0*exp(-dD*T)*SUM/n

3 The price of a Compound European Exchange
Option (CEEO)

The CEEO is a derivative in which the underlying asset is another exchange
option. Carr (1988) develops a model to value the CEEO assuming that the
underlying asset is an EEO s(V,D, T ) whose maturity is T , the exercise price is
a ratio q of asset D at time t1 and the expiration date is t1 . So, considering
that the valuation date is t = 0 and assuming that the evolutions of assets V
and D are given by Eq. (1) and Eq. (2) respectively, under certain assump-
tions, the CEEO value given by Carr (1988) is:

c(s(V, D, T − t1), qD, t1) = V e−δvT N2

(
d1

(
P

P ∗2
, t1

)
, d1 (P, T ) ; ρ

)

−De−δdT N2

(
d2

(
P

P ∗2
, t1

)
, d2 (P, T ) ; ρ

)

−qDe−δdt1N1

(
d2

(
P

P ∗2
, t1

))
(27)

where:

• q is the exchange ratio of CEEO;

• t1 and T are the expiration dates of the CEEO and EEO, respectively,
where T > t1 ;

• τ = T − t1 is the time to maturity of EEO;

8



• d1

(
P

P ∗2
, t1

)
=

log
(

P
P∗2

)
+

(
−δ + σ2

2

)
t1

σ
√

t1
;

• d2

(
P

P ∗2
, t1

)
= d1

(
P

P ∗2
, t1

)
− σ

√
t1;

• ρ =

√
t1
T

;

• P ∗2 is the critical price ratio that solves the following equation:

P ∗2 e−δvτN(d1(P ∗2 , τ))− e−δdτN(d2(P ∗2 , τ)) = q. (28)

The critical ratio-price P ∗2 makes equal the underlying asset and the exercise
price. It’s obvious that the CEEO will be exercised at time t1 if the ratio-price
P at time t1 is higher than P ∗2 , namely if Pt1 ≥ P ∗2 .
We price the CEEO as the expectation value of discounted cash-flows under the
risk-neutral probability Q :

c(s, qD, t1) = e−rt1EQ[g(s, qD)] (29)

where g(s, qD) is the CEEO final payoff at the maturity t1 , namely:

g(s, qD) = max[s(Vt1 , Dt1 , τ)− qDt1 , 0]

= max[(Vt1 e−δvτN(d1(Pt1 , τ))−Dt1 e−δdτN(d2(Pt1 , τ))− qDt1)1(Pt1≥P∗2 )]

If we assume Dt1 as numeraire and considering that Dt1 = D0e
(r−δd)t1 · d

∼
Q

dQ
(see Eq.(13)), we obtain:

c = e−rt1EQ[Dt1(Pt1 e−δvτN(d1(Pt1 , τ))− e−δdτN(d2(Pt1 , τ))− q)1(Pt1≥P∗2 )]

= e−rt1D0e
(r−δd)t1E∼

Q
[(Pt1 e−δvτN(d1(Pt1 , τ))− e−δdτN(d2(Pt1 , τ))− q)1(Pt1≥P∗2 )]

= D0e
−δd t1E∼

Q
[g′(s(Pt1), qD)] (30)

where c ≡ c(s, qD, t1) is the CEEO and:

g′(s(Pt1), qD) = max[Pt1 e−δvτN(d1(Pt1 , τ))− e−δdτN(d2(Pt1 , τ)− q, 0] (31)

Using Monte Carlo simulation, it’s possible to approximate the value of CEEO
as:

c(s, qD, t1) ≈ D0e
−δdt1

(∑n
i=1 g′(s(P i

t1), qD)
n

)
(32)
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where n is the number of simulated-paths. Furthermore, the section (3.1) shows
the Monte Carlo algorithm to simulate the CEEO.

3.1 Matlab Algorithm for the CEEO

function CEEO=MCEuroComp(V0,D0,q,dV,dD,m,T1,T2,sigV,sigD,rhoVD,n)
%Statement of the counters:
SUM=0;
%Statement of the variables:
sig=sqrt(sigV.^2+sigD.^2-2*rhoVD.*sigV.*sigD);
P0=V0/D0;
d=dV-dD;
%Discretization of timing parameters:
dT1=T1/m;
drifts=(dD-dV-0.5*sig.*sig).*dT1;
stds=sig.*sqrt(dT1);
P=zeros(m+1,1);
%Computation of simulations:
for i=1:n

P(1)=P0;
for j =1:m

P(j+1)=P(j)*exp((drifts)+stds*randn(1,1));
end
d1=(log(P(m+1)*exp(-d*(T2-T1)))+ 0.5*(sig.^2)*(T2-T1))/...
(sig*sqrt(T2-T1));
d2=(log(P(m+1)*exp(-d*(T2-T1)))- 0.5*(sig.^2)*(T2-T1))/...
(sig*sqrt(T2-T1));
SUM = SUM +max(P(m+1)*exp(-dV*(T2-T1))*normcdf(d1)-...
exp(-dD*(T2-T1))*normcdf(d2)-q,0);

end
%Computation of Compound European Exchange option:
CEEO=D0*exp(-dD*T1)*SUM/n

4 The price of a Pseudo American Exchange
Option (PAEO)

Let t = 0 the evaluation date and T be the maturity date of the exchange
option. Let S2 the value of a PAEO that can be exercised at time T

2 or T .
Following Carr (1988,1995), the payoff of PAEO (S2 ) can be replicate by a
portafolio containing two EEOs and one CEEO. Hence, the value of PAEO is:

S2 = V e−δvT N2 (−d∗1, d1;−ρ)−De−δdT N2 (−d∗2, d2;−ρ)

+V e−δv
T
2 N(d∗1)−De−δd

T
2 N(d∗2) (33)
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where:

• d1 ≡ d1(P, T ); d2 ≡ d2(P, T ) ;

• d∗1 ≡ d1

(
P

P ∗1
,
T

2

)
=

log( P
P∗1

) +
(

σ2

2 − δ
)

T
2

σ
√

T
2

;

• d∗2 ≡ d2

(
P

P ∗1
,
T

2

)
= d∗1 − σ

√
T

2
;

• ρ =

√
T

2 · T =
√

0.5 ;

• N2(x1, x2; ρ) is the standard bivariate normal distribution function eval-
uated at x1 and x2 with correlation ρ :

N2(x1, x2; ρ) ≡
∫ x1

−∞

∫ x2

−∞

exp{− 1
2(1−ρ2) [z

2
1 − 2ρz1z2 + z2

2 ]}
2π

√
1− ρ2

dz2dz1

• P ∗1 is the unique value which makes indifferent the option exercise or not
at time T

2 and it solves the following equation:

P ∗1 e−δv
T
2 N

(
d1

(
P ∗1 , T

2

))− e−δd
T
2 N

(
d2

(
P ∗1 , T

2

))
= P ∗1 − 1

The PAEO (S2) will be exercised at mid-life time T
2 if the cash flows (VT/2 −

DT/2) exceeds the opportunity cost of exercise, i.e the value of the option
s(V, D, T/2) :

VT/2 −DT/2 ≥ s(V,D, T/2) (34)

It’s clear that if the PAEO ( S2 ) is not exercised at time T
2 , then it’s just the

value of an EEO (s) with maturity T
2 as given by Eq. (4). However, the exercise

condition can be re-expressed in terms of just one random variable by taking the
delivery asset as numeraire. Dividing by the delivery asset price DT/2 it results:

PT/2 − 1 ≥ PT/2 e−δv
T
2 N(d1(PT/2, T/2))− e−δd

T
2 N(d2(PT/2, T/2)) (35)

So, if the condition (35) takes place, namely, if the value of P is higher than
P ∗1 at moment T

2 , the PAEO will be exercised at time T
2 and the payoff will

be (VT/2 − DT/2) otherwise the PAEO will be exercised at time T and the
payoff will be max[VT −DT , 0]. So, using Monte Carlo approach, we can value
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the PAEO (S2) as the expectation value of discounted cash flows under the
risk-neutral probability measure:

S2(V, D, T ) = e−r T
2 EQ[(VT/2 −DT/2)1(PT/2≥P∗1 )]

+ e−rT EQ[max(0, VT −DT )1(PT/2<P∗1 )] (36)

Using the Eq. (13) for DT/2 and DT , with the same previous method we can
write that:

S2(V,D, T ) = D0e
−δd

T
2 E∼

Q
[(PT/2 − 1)1(PT/2≥P∗1 )]

+ D0e
−δdT E∼

Q
[max(0, PT − 1)1(PT/2<P∗1 )] (37)

Hence we have that:

S2(V,D, T ) = D0

(
e−δd

T
2 E∼

Q
[g(PT/2)] + e−δd T E∼

Q
[g(PT )]

)
(38)

where g(PT/2) = (PT/2 − 1) if PT/2 ≥ P ∗1 and g(PT ) = max[PT − 1, 0] if
PT/2 < P ∗1 .
So, with the simulation, we can approximate the PAEO as:

S2(V, D, T ) ' D0

(∑
i∈A g(P i

T/2)e
−δdT/2 +

∑
i∈B g(P i

T )e−δdT

n

)
(39)

where A = {i = 1..n s.t. P i
T/2 ≥ P ∗1 } and B = {i = 1..n s.t. P i

T/2 < P ∗1 } and
n is the number of simulated-paths. The section (4.1) presents the Monte Carlo
algorithm for the PAEO simulation.
Finally, the American Exchange option (AEO) is valued using the Richardson
extrapolation process. If we denote with S the AEO’s price, the extrapolation
formula presented by Carr (1988,1995) is:

S ' s +
S2 − s

3
(40)

where s and S2 are the EEO and PAEO values, respectively. Instead, the
corrected version of the second order estrapolation presented by Armada et al.
(2007) gives:

S ' S2 +
S2 − s

3
(41)

4.1 Matlab Algorithm for the PAEO

function PAEO = MCAmerPseudo (V0,D0,dV,dD,m,T,sigV,sigD,rhoVD,n)
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%Statement of the counters:
SUM1=0;
SUM2=0;
%Statement of the variables:
sig=sqrt(sigV.^2+sigD.^2-2*rhoVD.*sigV.*sigD);
P0=V0/D0;
d=dV-dD;
%Discretization of timing parameters:
dT=T/m;
drifts=(-d-0.5*sig.*sig).*dT;
stds=sig.*sqrt(dT);
%Computation of simulations:
P=zeros(m+1,1);
for i = 1:n

P(1)=P0;
for j=1:m

P(j+1)=P(j)*exp(drifts+stds*randn(1,1));
end
d1=(log(P(m/2)*exp(-d*0.5*T))+(sig.^2)*0.5*0.5*T)/(sig*sqrt(0.5*T));
d2=(log(P(m/2)*exp(-d*0.5*T))-(sig.^2)*0.5*0.5*T)/(sig*sqrt(0.5*T));

%Exercise condition at time T/2 and computation of simulations:
if P(m/2)-1>=P(m/2)*exp(-dV*0.5*T)*normcdf(d1)-...

exp(-dD*0.5*T)*normcdf(d2)
SUM1=SUM1+max(P(m/2)-1,0);

else SUM2=SUM2 + max(P(m+1)-1,0);
end

end
%Computation of Pseudo American Exchange option:
PAEO=(D0/n)*(exp(-dD*T/2)*SUM1+exp(-dD*T)*SUM2)

5 Numerical Examples of Exchange Option Simu-
lations

In this section we report the results of numerical simulations of EEO, CEEO
and PAEO. To compute the simulations we have assumed that the number of
simulated-paths n is equal to 50 000 and the time-steps m = 500. The param-
eter values are σv = 0.93, σd = 0.30, ρvd = 0.20, δd = 0, δv = 0.15 and
T = 2 years. Furthermore, to compute the CEEO we assume that t1 = 1 year
and the exchange ratio q = 0.10.
The Table (1) summarizes the results of EEO simulations. In the first column
and in the second one are indicated the values of optioned asset V and delivery
asset D while the third column gives the EEO’s prices using Margrabe (1978)
and McDonald & Siegel (1985) formula. For each option we have reported four
results given by Monte Carlo’s simulation and we can observe that the simu-
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lated values are very close to true ones. The last column presents the Standard
Average Error (SAE) between the four simulated prices and the true value.
The SAE is:

SAE =
∑k

i=1
|True−Simi|

True

k
(42)

where k = 4 is the number of simulations effected. We can observe that the
error ranges from 0.39% up to 1.09.% Moreover, we denote by bold type the
simulations that are closer then others to true value.
The Table (2) shows the comparison between the CEEO’s prices given by Carr
(1988) and the simulated values. In this case, the SAE is included between
0.24% and 1.10% . Instead, the Table (3) summarizes the numerical results of
PAEO simulations. Comparing the true values given by Carr (1988,1995) and
the simulated ones, we can observe that the minimum SAE is 0.37% while the
maximum is 1.02% .
At last, the Table (4) shows the values of AEO given by Armada et al. (2007)
and the results by Monte Carlo’s simulation. Using the same simulated-paths of
ratio-asset P , we compute the simulated prices of EEO and PAEO that we allow
to obtain the AEO’s value using the two moments Richardson extrapolation as
shown in Armada et al. (2007). In this case, the minimum SAE is 0.41% while
the maximum one is 1.02% .

6 Concluding Remarks

In this paper we have shown the power of Monte Carlo simulation for the esti-
mations of exchange options in which also the exercise price is stochastic. Using
the delivery asset D as numeraire we have reduced the bi-dimensionality of
valuing exchange options to one stochastic variable P . After that, our MAT-
LAB simulation procedures have given exchange option values that are very
similar to those reported in Margrabe (1978), McDonald & Siegel (1985), Carr
(1988,1995) and Armada et al. (2007). In fact, if we examine the numerical
simulation examples presented for each option, we can remark that the Stan-
dard Average Error (SAE) is in the range 0.24% − 1.10% . This result shows
the good approximation obtained with Monte Carlo simulation that validates
the methodology presented.
Finally, the Monte Carlo method used here can be very helpful to an increasing
literature that use the contingent claim approach to value real investment op-
portunities. Many times, a real investment valuation requires a complex set of
interacting exchange options making them more difficult or impossible to value
analitically. Therefore, a numerical approach can be very useful to reach this
objective.
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V0 D0 EEO (true) 1st MC Sim. 2nd MC Sim 3rd MC Sim. 4th MC Sim SAE

180 180 54.2158 54.2475 54.9142 54.4762 54.3627 0.0052

180 200 50.6472 50.0317 50.6944 50.7088 51.1733 0.0061

180 220 47.4670 47.7322 46.7522 48.2115 47.2700 0.0101

200 180 64.2474 64.9018 63.6167 63.7417 65.1252 0.0103

200 200 60.2397 58.9443 59.5512 60.0234 59.8030 0.0109

200 220 56.6506 56.0296 57.5219 55.8789 57.1896 0.0123

220 180 74.6816 74.5260 74.5612 75.0287 73.9450 0.0045

220 200 70.2502 70.9405 69.4675 69.9030 70.9966 0.0091

220 220 66.2638 66.3882 66.2263 66.3854 67.0260 0.0039

Table 1: Simulation Prices of European Exchange Option (EEO)
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V0 D0 CEEO (true) 1st MC Sim. 2nd MC Sim 3rd MC Sim. 4th MC Sim SAE

180 180 43.4257 43.3429 43.7377 43.0498 43.5326 0.0050

180 200 39.5055 39.9160 39.4733 39.1651 39.3772 0.0057

180 220 36.0654 36.3095 36.0160 36.3510 36.2202 0.0051

200 180 52.7139 52.9475 52.5557 51.8133 52.1714 0.0087

200 200 48.2508 48.6794 48.7689 49.1844 48.0151 0.0109

200 220 44.3050 44.8884 43.9257 44.7236 44.8644 0.0110

220 180 62.4989 62.6382 62.3685 62.3434 62.6766 0.0024

220 200 57.5128 57.7545 56.9350 57.6725 57.7031 0.0040

220 220 53.0759 52.5395 53.5500 52.8895 53.1271 0.0056

Table 2: Simulation Prices of Compound European Exchange Option (CEEO)
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V0 D0 PAEO (true) 1st MC Sim. 2nd MC Sim 3rd MC Sim. 4th MC Sim SAE

180 180 59.6336 59.7028 58.9575 59.2504 60.1984 0.0070

180 200 55.3457 54.6789 55.5961 55.0738 54.2569 0.0102

180 220 51.5639 51.7402 51.6076 50.8616 52.1739 0.0074

200 180 71.1254 71.4235 70.7895 70.8628 71.7302 0.0052

200 200 66.2596 65.9114 66.2981 66.1768 66.1609 0.0021

200 220 61.9446 62.1061 61.9604 62.0855 62.7222 0.0044

220 180 83.1511 82.5760 82.6444 83.8784 83.0990 0.0055

220 200 77.7234 78.1077 77.9315 77.3294 78.0138 0.0041

220 220 72.8856 72.8567 73.3973 73.0429 73.2667 0.0037

Table 3: Simulation Prices of Pseudo American Exchange Option (PAEO)
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V0 D0 AEO (true) 1st MC Sim. 2nd MC Sim 3rd MC Sim. 4th MC Sim SAE

180 180 61.4396 61.8739 60.6656 62.1803 60.8769 0.0102

180 200 56.9118 56.9387 57.1939 56.4493 57.4565 0.0058

180 220 52.9296 52.6991 52.3327 53.4573 52.8554 0.0067

200 180 73.4181 73.1077 72.7118 73.6618 73.8786 0.0059

200 200 68.2662 67.8717 67.7270 67.9204 67.9483 0.0058

200 220 63.7092 63.1479 63.0386 63.4105 64.3292 0.0084

220 180 85.9743 86.9115 86.2913 86.4667 85.4575 0.0066

220 200 80.2144 79.9109 79.5847 80.1922 79.8635 0.0041

220 220 75.0928 75.2690 75.8604 75.7047 75.6117 0.0070

Table 4: Simulation Prices of American Exchange Option (AEO) given by Ar-
mada et al. (2007)
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A General Computations

A.1 Stochastic differential equation of asset P under the
risk-neutral probability Q

To determine dP = d

(
V

D

)
we apply ITO’s formula. Computing the deriva-

tives:

∂P

∂t
= 0;

∂P

∂V
=

1
D

;
∂P

∂D
= − V

D2
;

∂2P

∂D2
=

2V

D3
;

∂2P

∂V 2
= 0;

∂2P

∂V ∂D
= − 1

D2
;

we obtain:

dP =
∂P

∂t
dt +

∂P

∂V
dV +

∂P

∂D
dD +

1
2

[
∂2P

∂V 2
(dV )2 + 2

∂2P

∂V ∂D
dD dV +

∂2P

∂D2
(dD)2

]

=
1
D

[(r − δv)V dt + σvV dZ∗v ]− V

D2
[(r − δd)Ddt + σdD dZ∗d ]

+
1
2

[
−2 · 1

D2
((r − δd)Ddt + σdDdZ∗d) ((r − δv)V dt + σvV dZ∗v )

]

+
1
2

[
2V

D3
((r − δd)Ddt + σdDdZ∗d)2

]

= P (r − δv)dt + PσvdZ∗v − P (r − δd)dt− PσddZ
∗
d − P (σvσdρvd) + Pσ2

ddt

So, under the risk-neutral probability measure Q , we have that:

dP

P
= (−δ + σ2

d − σvσdρvd) dt + σvdZ∗v − σddZ
∗
d (43)

where δ = δv − δd . We can also compute the variance of
dP

P
:

V ar

(
dP

P

)
= [var(σvdZv) + var(−σddZd) + 2cov(−σdσvdZvdZd)]

= (σ2
v + σ2

d − 2σvσdρvd) dt
≡ σ2 dt
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A.2 Explicit value of P .

Let denote with Y = log P . If we apply ITO’s formula we have that:

∂f

∂t
= 0;

∂f

∂P
=

1
P

;
∂2f

∂P 2
= − 1

P 2
;

and therefore:

dY =
∂f

∂t
dt +

∂f

∂P
dP +

1
2

∂2f

∂P 2
(dP )2

=
1
P

[
P (−δ + σ2

d − σv σd ρvd) dt + Pσv dZ∗v − Pσd dZ∗d)
]

− 1
2P 2

(
P 2σ2

vdt + P 2σ2
ddt− 2P 2σvσdρvddt

)

=
(
−δ + σ2

d − σvσdρvd − σ2
v

2
− σ2

d

2
+ σvσdρvd

)
dt + σv dZ∗v − σd dZ∗d

=
(
−δ +

σ2
d

2
− σ2

v

2

)
dt + σv dZ∗v − σd dZ∗d

Integrating between [0, t] we obtain:
∫ t

0

dY =
∫ t

0

(
−δ +

σ2
d

2
− σ2

v

2

)
dt−

∫ t

0

σvdZ∗v −
∫ t

0

σddZ
∗
d

Hence:

Y (t)− Y (0) =
(
−δ +

σ2
d

2
− σ2

v

2

)
t + σvZ∗v (t)− σdZ

∗
d(t)

As Y (t) = log P (t) we have:

log
P (t)
P0

=
(
−δ +

σ2
d

2
− σ2

v

2

)
t + σvZ∗v (t)− σdZ

∗
d(t)

Therefore, the explicit value of P under the risk-neutral probability Q is:

P (t) = P0 exp
{(

−δ +
σ2

d

2
− σ2

v

2

)
t + σvZ∗v (t)− σdZ

∗
d(t)

}
(44)

A.3 Valuation of EEO under the risk-neutral probability

measure
∼
Q

In this section we determine the EEO value as the expectation of discounted

cash-flows under the risk-neutral probability measure
∼
Q . Developing the Eq.(24)
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we obtain that:

s(V,D, T ) = De−δdT E∼
Q
[max(PT − 1, 0)]

= De−δdT E∼
Q
[(PT − 1)1(PT−1)]

= De−δdT E∼
Q
[PT 1(PT≥1)]−De−δdT E∼

Q
[1(PT≥1)] (45)

Recalling that the evolution of P under the risk-neutral probability
∼
Q is:

P (t) = P exp
{(

−δ − σ2

2

)
t + σZp(t)

}
(46)

we can observe that:

E∼
Q
[1(PT≥1)] = [

∼
Q (PT ≥ 1) · 1+

∼
Q (PT < 1) · 0]

=
∼
Q

(
P exp

{(
−δ − σ2

2

)
T + σZp(T )

}
≥ 1

)

=
∼
Q

(
x ≥ log( 1

P ) + (δ + σ2

2 )T

σ
√

T

)

=
∼
Q

(
x ≤ − log( 1

P ) + (δ + σ2

2 )T

σ
√

T

)

=
∼
Q

(
x ≤ log P − (δ + σ2

2 )T

σ
√

T

)

= N(d2(P, T )) (47)

where:

• x ∼ N (0, 1) and Zp(T ) = x·√T is a Geometric Brownian motion under
∼
Q;

• N is the cumulative standard normal distribution;

• d2(P, T ) ≡ log P − (δ + σ2

2 )T

σ
√

T
.
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Now we can compute:

E∼
Q
[PT 1(PT≥1)] = E∼

Q

[
P exp

{(
−δ − σ2

2

)
T + σZp(t)

}
1(PT≥1)

]

=
∫ +∞

−d2(P,T )

P exp
{(

−δ − σ2

2

)
T + σ

√
T · x

}
f(x)dx

=
∫ +∞

−d2(P,T )

P exp
{(

−δ − σ2

2

)
T + σ

√
T · x

}
1√
2π

e−
x2
2 dx

= Pe−δT

∫ +∞

−d2(P,T )

1√
2π

e−
1
2 (σ2T−2σ

√
T+x2)dx

= Pe−δT

∫ +∞

−d2(P,T )

1√
2π

e−
1
2 (x−σ

√
T )

2

dx (48)

where −d2(P, T ) is the value that make PT ≥ 1 . If we make the sostitution
u = x− σ

√
T we have that:

E∼
Q
[PT 1(PT≥1)] = Pe−δT

∫ +∞

−d2(P,T )−σ
√

T

1√
2π

e−
u2
2 du

= Pe−δT

∫ d2(P,T )+σ
√

T

−∞

1√
2π

e−
u2
2 du

= Pe−δT N(d1(P, T )) (49)

where d1(P, T ) ≡ d2(P, T ) + σ
√

T =
log P + (−δ + σ2

2 )T

σ
√

T
.

Hence, recalling that δ = δv − δd and P =
V

D
, the value of EEO is:

s(V, D, T ) = De−δdT · Pe−δT N(d1(P, T ))−De−δdT ·N(d2(P, T ))

= V e−δvT N(d1(P, T ))−De−δdT ·N(d2(P, T )) (50)
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