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Abstract

To give sufficient conditions for Nash Equilibrium existence in a continuous game

is a central problem in Game Theory. In this paper, we present two games in which we

show how the continuity and quasi-concavity hypotheses are unconnected one to each

other. Then, we relax the quasiconcavity assumption by exploiting the multiconnected

convexity’s concept (Mechaiekh & Others, 1998) in spaces without any linear struc-

ture. These results will be applied to two non-zero-sum games lacking the classical

assumptions and more recent improvements (Ziad, 1997), (Abalo & Kostreva, 2004).

As a minor result, some counterexamples about relationship between some continuity

conditions due to Lignola (1997), Reny (1999) and Simon (1995) for Nash equilibria

existence are obtained.

Keywords: Nash Equilibria Existence; Fixed Point Theorem; Generalized Con-

vexity; 2 Person Game; 3 Person Game; Symmetric Game; Generalized Continuity.
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1 Introduction

In mathematical economics, showing existence of an equilibrium is the main problem of in-

vestigating various kinds of economic models and, till now, a number of equilibrium existence

results in general economic models have been investigated by several authors.

The quasiconcavity assumption is central one in the existence of Nash equilibria. Some

attempts to relax this hypothesis can be found in works due to Park [15] (Acyclic uplevels);

Abalo & Kostreva [1]; Nishimura & Friedman [14] (Monotonic Best Reply’s Mapping); Baye

& Oth. [3] (Diagonally Transfer Quasi Concavity); Ricceri [18] (Connected uplevels).

We introduce some useful notations and definitions. Let Xi be a nonempty subset of

an Hausdorff topological space for all i ∈ I = {1, . . . n}; and X :=
∏n

i=1Xi the joint

strategy space; 2X the set of all subset included in X; and F (X) ⊂ 2X the set of all

finite subsets included in X. We shall say x = (x1, x2, . . . , xn) ∈ X a multistrategy. We

denote by X−i :=
∏

j∈I\{i}Xj and ui : X −→ R the ith player’s utility function that

evaluates the ith player’s gain ui(x) by each multistrategy x. A decision rule for the ith

player is a correspondence Ci from X−i to Xi which associates the multistrategies x−i ∈ X−i,

determined by other players, with a strategy subset Ci(x−i) ⊂ Xi. The classical concept of

equilibrium for a game (Xi, ui) and for its generalization (Xi, ui, Ci) with constraints, is given

in seminal papers [11],[12] and [5]. Moreover, let BRi : X−i −→ Xi

BRi(x−i) = arg max
x−i∈Xi

ui(xi, x−i)

be the Best Reply multifunction for the player i. For any subset A ⊆ X, we denote by Ā the

closure of A in X and, respectively, by
◦
A the interior of A in X. Let

cot∈A [P1, P2, . . . , Pn] =
n−1∑
j=1

cot∈[ j−1
n−1

, j
n−1 ]∩A[Pj, Pj+1] =

n−1∑
j=1

{[
(n− 1)

(
j

n− 1
− t
)]

Pj + [(1− j) + (n− 1)t)] Pj+1

}
χ[ j−1

n−1
, j
n−1 ]∩A(t)
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be a subset in [0, 1] for every A ⊆ [0, 1], Pi ∈ R2 with χA the characteristic function of A.

Given a function f of one variable, we denote its first derivative by ḟ . Let lim sup and lim inf

be the superior limit and the infimum limit of real valued functions but, also, the outer limit

and the inner limit of real multivalued functions according to the Painvelevé-Kuratowsky

convergence’s meaning.

A game G is Better-Reply Secure, in [16][pp.1033], if whenever (x∗, u∗) is in the closure

of the graph of its vector payoff function and x∗ is not an equilibrium and other players

deviate slightly from x∗−i, some player i can secure a payoff strictly above u∗i at x∗. This hy-

pothesis generalized the Complementary Discontinuities (Reciprocally Upper Semicontinuity)

assumption introduced by Simon in [19]; and the Payoff Security assumption introduced by

Reny in [17]. In particular, payoff security, in [16][pp. 1032], requires that for every stra-

tegy x ∈ X, each player has a strategy x̄i ∈ Xi that, virtually, guarantees the payoff he

receives at x even if the others deviate slightly from x. In mathematical words, for every

strategy x ∈ X and ε > 0, there exists x̄i ∈ Xi such that ui(x̄i, x
′
−i) > ui(x) − ε for all

x
′
−i in a neighborhood of x−i and for all i = 1, . . . , n. Reciprocal upper semicontinuity, in

[16][pp. 1034], requires that some player’s payoff jumps up whenever some other player’s

payoff jumps down. In mathematical words, if whenever (x, u) is in the closure of the graph

of its vector payoff function and ui(x) ≤ ui for every player i, then ui(x) = ui for some

player i. Moreover, the function φ : (x, y) ∈ X × X →
∑n

i=1 ui(xi, y−i) is the equilibrium

bifunction for the game G. Such a function φ is diagonal transfer continuous on A ⊆ X in

y ∈ Z ⊆ X, in [3][Definition 1], if, by assuming that for every point (x, y) ∈ A × Z such

that φ(x, y) > φ(y, y), there exists x̄ ∈ A and U ⊂ Z a neighborhood of y in Z such that

φ(x̄, y
′
) > φ(y

′
, y
′
) for all y

′ ∈ U . We shall simply say that φ is diagonal transfer continuous

in y when A = X and Z = X.

The paper is organized as follows: In Section 2, two examples, in which the failure of

equilibrium is due to lack of quasiconcavity in spite of some discontinuities, are presented; in

Section 3, two New Results relaxing the aforesaid assumption in the setting of constrained

and not constrained games, are presented; in Section 4, two applications to non zero-sum

games are introduced; in Appendix we show some missing proofs in the paper.
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Now, some further notations used in Appendix are introduced. Given x, x0, x1 ∈ R, we

denote by x→ (x0 6= x1)+(−) the convergence of x towards x0 from the right hand side (from

the left hand side) by assuming that x0 6= x1; by cox0,x1 the convex hull generated by x0, x1.

Besides, given a subset A ⊂
∏m

s=1 As, we denote by Prj(A) the projection of A on the subset

Aj. Let Bδ(x) the ball of radius δ centered at x ∈ Rm; I[0,1] the identity function on [0, 1].

For not making heavier notations, we can identify x2(mx), defined at page 15, with x2(m)

as the point having m as coordinate in the subset co 4
5
,1. Finally, References are also referred

to the Appendix.

2 How much are the Quasi Concavity Hypothesis and

the Continuity one unconnected?

In this section, the question that we propose is the following: How much is decisive the quasi

concavity assumption for Nash Equilibrium existence? We show two simple but meaningful

discontinuous games without a pure Nash equilibrium in which the continuity conditions

established by Reny in [16][pp.1033], hold, but the quasi concavity assumption fails.

2.1 A 3-person symmetric game

Let G1 = ([0, 1]3, ui, uj, uk) a symmetric game and (xi, xj, xk) ∈ [0, 1]3 as their strategies.

Suppose that xj and xk are fixed and xj ≤ xk. The payoff for the player i is defined in the

following way:
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1. Case 1 [xj < xk].

ui(xi, xj, xk) =



xi + xj
2

0 ≤ xi < xj 6= 0

xj + xk
4

xi = xj

xk − xj
2

xj < xi < xk

1

2
− xk + xj

4
xi = xk

1− xi + xk
2

1 6= xk < xi ≤ 1

2. Case 2 [xj = xk].

ui(xi, xj, xj) =



xi + xj
2

0 ≤ xi < xj 6= 0

1

3
xi = xj = xk

1− xi + xk
2

1 6= xj < xi ≤ 1

.

The same rules hold if xj ≥ xk. The main result in [5] doesn’t hold since the ith player’s payoff

is not continuous on X. The main existence result in [13] and [4][Theorem 2], [14][Theorem 1]

don’t hold since the ith player’s payoff is not continuous at variable x−i ∈ X−i and G1 is a

symmetric game. Moreover, by fixing (x̄i, x̄i, x̄k) ∈ [0, 1]3 with x̄k < 3 x̄j, we obtain

sup
xi∈[0,1]

lim inf
(xj ,xk)→(x̄j ,x̄k)

ui(xi, xj, xk) = sup
xi≤min{x̄k−2x̄i,1}

{
x̄k − x̄i

2
,
x̄i + xi

2

}
=

x̄k − x̄i
2

<
x̄k + x̄i

4
= ui(x̄i, x̄i, x̄k).

Therefore, the conditions c) or d) in [9][Theorem 3.1] fails, notwithstanding
∑3

j=1 uj = cost

is upper semicontinuous. Now, the following two results are introduced.

Proposition 2.1. G1 has no Nash Equilibria in pure strategies.

Proof. See Appendix.

Proposition 2.2. G1 is payoff secure.

5



Proof. See Appendix.

By [16][Proposition 4.2], G1 is diagonally better reply secure since it is quasi symme-

tric (in particular, symmetric), diagonally payoff secure (in particular, payoff secure) and

each ui(x, x, x) =
1

3
= cost is upper semicontinuous. Besides, such a game would a-

dmit a Nash Equilibrium in pure strategy if the game was diagonally quasi concave by

[16][Proposition 4.1]; but, it is not true by Proposition 2.1. This implies that G1 is not

diagonally quasi concave (see [16][pp. 1010]). At the end, we state the following Proposition.

Proposition 2.3. G1 has a mixed symmetric Nash Equilibrium.

Proof. See Appendix.

Remark 2.1. Economic games like G1 were studied in [8][Proposition 1] and [6].

2.2 A two-person non symmetric game.

Let G2 = ([0, 1]2, u1, u2) be a game defined as follows:

u1(x1, x2) :=



(1− x2)x1 0 ≤ x1 ≤
x2

2

(x2 − 1)x1 + x2(1− x2)
x2

2
< x1 < x2

− b(x2)

1 + x2

x1
2 + b(x2)x1 −

b(x2)x2

1 + x2

1 6= x2 ≤ x1 ≤ 1

ε x1 = x2 = 1

(1)

where ε > 0 sufficiently small, b ∈ C1([0, 1[,R∗+) which satisfy the following conditions:

3− b
(

1

2

)
> 0 (2)

ḃ

[
(1− x2)2

1 + x2

]
+ b

[
(x2 − 1)(x2 + 3)

(1 + x2)2

]
< (>)0 ∀x2 < (>)

1

2
, x2 6= 1. (3)

Moreover, u2 is a strict concave function in the variable x2 and continuous on the subset

[0, 1]2. Besides, we claim that BR2 is a decreasing, surjective function.

Let M(x2) = maxx1∈[0,x2] u1(x1, x2) and N(x2) = maxx1∈[x2,1] u1(x1, x2). It’s easy to prove

that u1 is continuous respect to x1 at the point x1 = x2 for every x2 ∈ X2\{1}. By continuity

and Berge’s maximum Theorem, the condition (2) assures that there exists a x̄2 ∈]0, 1
2
[ such
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that M(x̄2) = N(x̄2); and the (3) one assures that the function N(x2) is strict decreasing for

all x2 ∈ [0, 1
2
] and strict increasing for all x2 ∈ [1

2
, 1[. Moreover, since limx2→1−M(x2) = 0,

there exists ¯̄x2 ∈]1
2
, 1[ such that M(¯̄x2) = N(¯̄x2) and M(x2) < N(x2) for all x2 ∈]¯̄x2, 1[.

Finally, we can claim these two following conditions on G2:

1 + x̄2

2
= max lim

y→x̄2

BR1(y) < BR−1
2 (x̄2) (4)

¯̄x2

2
= min lim

y→¯̄x2

BR1(y) < BR−1
2 (¯̄x2) < max lim

y→¯̄x2

BR1(y) =
1 + ¯̄x2

2
. (5)

We state the following Proposition.

Proposition 2.4. G2 has no Nash Equilibria in pure strategies.

Proof. We prove that the multifunction Z := BR1−BR−1
2 : [0, 1]→ [0, 1] has no zeros. This

implies that G2 has no Nash equilibrium point. It’s easy to note that Z is continuous and is

reduced to a singleton for every x2 6= x̄2, ¯̄x2. By remarking that
1

2
= BR1(0) < BR−1

2 (0) = 1

and that the condition (4) holds; since BR1 is strict increasing on the subset [0, x̄2[ and,

moreover, BR−1
2 is strict decreasing on [0, 1], we can state that Z 6= 0 on [0, x̄2]. Since BR1

is increasing on the subset ]x̄2, 1[ and BR−1
2 decreasing on [0, 1]; and by condition (5), we

can state that Z 6= 0 on [x̄2, 1]. Therefore, under the hypotheses (2),(3),(4) and (5), G2 has

no Nash equilibrium in pure strategies.

However, the payoffs are continuous on the unit square except for the point (1, 1) ∈ [0, 1]2.

From (3), we note that

ḃ

b
>

(x2 + 3)

(1 + x2) (1− x2)

and, by integrating from 1
2

to x2,

ln

[
b(x2)

b(1
2
)

]
> −2 ln (1− x2) + ln (1 + x2)− ln (6)

and, finally,

b(x2) >
1 + x2

6 (x2 − 1)2
b

(
1

2

)
∀x2 >

1

2
, x2 6= 1. (6)

In fact, by (6), we have

lim
x2→1−

u1(1, x2) = 0 < ε = u1(1, 1) <
b(1

2
)

24
≤ lim

x2→1−

(1− x2)2 b(x2)

4 (1 + x2)
= lim

x2→1−
u1

(
1 + x2

2
, x2

)
.

(7)
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However, in any case, the function u1(·, 1) is not lower semicontinuous at the point 1 by

the left-hand side of (7). Since u2 is continuous at the point (1, 1) and the right-hand side

of (7) holds, then
∑2

i=1 ui is not upper semicontinuous at the point (1, 1). Therefore, the

hypothesis [9][Theorem 3.1, b)] fails.

We introduce the following Proposition.

Proposition 2.5. G1 is better reply secure and reciprocally upper semicontinuous game but

not payoff secure one.

Proof. We can only focus our attention on the point (1, 1) ∈ [0, 1]. We prove that G1 is

better reply secure. In fact, by strict concavity, we have

u2(1, 0) = max
x2∈[0,1]

u2(1, x2) > u2(1, 1)

Fix ε > 0 such that u2(1, 0) − ε > u2(1, 1); and, by continuity respect to the opponent’s

variable, we have

|u2(x1, 0)− u2(1, 0)| < ε

and, trivially,

u2(x1, 0) = [u2(x1, 0)− u2(1, 0)] + u2(1, 0) ≥ u2(1, 0)− ε > u2(1, 1)

for all x1 ∈ U− a suitable left neighborhood of 1. We prove that G1 is reciprocally upper

semicontinuous game. Whenever u1 is lower semicontinuous at (1, 1) along suitable directions

toward (1, 1), u2 is continuous along all the sequences converging to (1, 1). We prove that

G1 is not payoff secure. It’s sufficient to observe that

lim inf
x2→1−

{x1 ∈ [0, 1] | u1(x1, x2) ≥ ε = u1(1, 1)} = ∅

holds.

Remark 2.2. G1 shows that payoff security and reciprocally upper semicontinuity assump-

tions jointed together are not necessary conditions for better reply security but, only, sufficient

ones according to [16][Proposition 3.2].

Therefore, Nash Equilibria inexistence is due to the quasiconcavity assumption’s failure,

as it’s shown in (1).
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3 Main Results on Nash Equilibria

In this section, we want to introduce results giving sufficient conditions for existence of Nash

Equilibria in pure strategy without constraints, by weakening the classical quasi concavity

hypothesis.

3.1 Nash Equilibria without Constraints

At first, we introduce this useful Lemma.

Lemma 3.1. Let G := (Xi, ui)i=1,...,n a game and φ(x, y) : X × X → R the equilibrium

bifunction for G. Suppose that φ is diagonally transfer continuous in y ∈ X . Assigned

H(x) := {y ∈ X : φ(x, y) > φ(y, y)} for all x ∈ X, then
⋃
x∈X

◦
H(x)=

⋃
x∈X H(x) holds.

Now, we present the fundamental definition of a multiconnected topological space due to

Llinares[10][Definition 1].

Definition 3.1. A topological space X is a multiconnected space if for any nonempty finite

subset A = {a0, a1, . . . , an} of X, there exists a family of elements {b0, b1, . . . , bn} in X and

a family of functions

PA
i : X × [0, 1]→ X i = 1, 2, . . . , n

such that

PA
i (x, 0) = x, PA

i (x, 1) = bi ∀x ∈ X (8)

and the following function

GA : [0, 1]n → X

given by

GA(t0, t1, . . . , tn−1) = PA
0 (. . . PA

n−1(PA
n (an, 1), tn−1), t0) (9)

is a continuous function. Henceforth, if X is endowed by such functions PA
i satisfying the

condition (8) and (9), we say, simply, that X has an mc-structure.

Now, we introduce the Main Definition and Main Theorem.
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Definition 3.2 (Main Definition I). Let X a multiconnected-topological space and Y a set.

We shall say φ : X × Y → R mc-concave on A ⊆ X in y ∈ Y if, and only if, ∀x1, x2 ∈ A

∃ ξx1,x2 : [0, 1]→ 2X with open inverse image and with nonempty multiconnected values, such

that ∀λ ∈ [0, 1], ∀x′ ∈ ξx1x2(λ)

φ(x
′
, y) ≥ λφ(x1, y) + (1− λ)φ(x2, y)

We shall say that φ is mc-concave in y ∈ Y when A = X.

Theorem 3.1 (Main Result I). Let G = (Xi, ui)i=1,...,n be an n-person game satisfying the

following:

i) X a compact mc-topological space;

ii) φ is diagonally transfer continuous in y ∈ X;

iii) Let

B := {y ∈ X | φ(x, y) is mc concave in y} 6= ∅;

and, denoted by

C := {y ∈ X | φ(y, y) ≥ φ(x, y) ∀x ∈ comc(A), ∀A ∈ F (X)} 1,

suppose that B ∩ C 6= ∅. Otherwise, if the previous intersection is empty, suppose that

B∩C 6= ∅; and φ is upper semicontinuous on C×C; and φ(x, ·) is lower semicontinuous

on C ∀x ∈ comc(A), ∀A ∈ F (X).

Then, G has a Nash equilibrium.

Proof. By absurd and by Theorem [2][Proposition 4;pp. 269], we have that for every x ∈ X

there exists y ∈ X such that φ(y, x) > φ(x, x). Then, we should have X =
⋃
x∈X H(x) and

H(x) 6= ∅ for all x ∈ X, where H(x) is defined at Lemma 3.1. But, by compactness of X, by

hypothesis ii) and by Lemma 3.1, we have that X =
⋃n
i=1

◦
H(xi) with x1, x2, . . . , xn ∈ X.

1comc(A) is the convex hull generated by A ⊆ X respect to mc structure on X.

10



By using a unit partition argument on
◦

H(xi), we built these continuous functions

0 ≤ αi ≤ 1 (10)

n∑
i=1

αi = 1 (11)

x 6∈
◦

H(xi): αi(x) = 0. (12)

By the hypothesis iii), ∃ ξx1,x2,...,xn := ξn : [0, 1]n −→ 2X 2 and ∃ y′ ∈ B ∩ C 6= ∅; or, if

B ∩ C = ∅, ∃ y′ ∈ B ∩ C 6= ∅ such that

φ(ξn(α1(x), α2(x), . . . , αn(x)), y
′
) ≥

α1(x)φ(x1, y
′
) + α2(x)φ(x2, y

′
) + . . . · · ·+ αn(x)φ(xn, y

′
). (13)

We define p : X −→ 2X

p(x) = ξn(α1(x), α2(x), . . . , αn(x)).

By αi’s continuity and by the regular property on ξn, the correspondence p is an open inverse

image one; and it assumes mc convex values. Therefore, by [10] [Theorem 1], there exists a

nonempty subset A ∈ F (X) and x ∈ X such that

x ∈ p(x) (14)

x ∈ comc(A ∩ p(x)) ⊂ comc(A). (15)

If y
′ ∈ B ∩ C 6= ∅, by the properties (10), (11) and (12) on αi, by the inequalities (13), (14)

and (15), we have

φ(y
′
, y
′
) ≥ φ(x, y

′
) ≥

n∑
i=1

αi(x)φ(xi, y
′
) >

n∑
i=1

αi(x)φ(y
′
, y
′
) = φ(y

′
, y
′
). (16)

But, this is an absurd. If y
′ ∈ B ∩ C 6= ∅, there exists a yn ∈ C converging to y

′
such that

φ(y
′
, y
′
) ≥ φ(yn, yn) ≥ φ(x̄, yn) ≥ φ(x̄, y

′
)

by the hypothesis iii). However, we can proceed as before. Since y
′ ∈ B, we can state the

same inequalities in (16) after the term φ(x̄, y
′
).

2It can be shown that the mc-concavity property holds for a finite number of points x1, x2, . . . , xn ∈ A.
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3.2 Nash Equilibria with Constraints

We introduce some generalizations of Main Definition in topological vector space involving

duality structures.

Definition 3.3 (Main Definition II). Let X be a locally convex topological vector space

with a multiconnection structure and X∗ its dual. A bifunction φ : X × X → R is named

mc-concave linear invariant in y ∈ X on A ⊆ X if and only if for each p ∈ X∗ the bifunction

φ(x, y)+p(x) is mc-concave in y ∈ X on A ⊆ X. We shall say, simply, that φ is mc-concave

linear invariant in y when A = X.

Definition 3.4. Let X be a locally convex topological vector space with a multiconnection

structure and X∗ be its dual; and G = (Xi, ui, Ci) a game with constraints. We define the

following subsets:

B∗ := {y ∈ X | φ(x, y) is mc-concave linear invariant in y};

C∗1 =

{
y ∈ X

∣∣∣∣∣ p(y) ≤ sup
z∈C(y)

p(z) ∀p ∈ X∗
}

;

C∗2 =

{
y ∈ X

∣∣∣∣∣ p(y) ≤ sup
x∈comc(A)

p(x) ∀p ∈ X∗, ∀A ∈ F (X)

}
.

Now, we state a result in the context of generalized quasi variational inequalities.

Theorem 3.2 (Main Result II). Let a game with constraints G = (Xi, ui, Ci) where Xi is a

compact convex subset of a real topological vector space E which has sufficiently many linear

continuous functionals. Suppose Ci : X−i → Xi an upper hemicontinuous with nonempty

closed and convex values. Suppose that the function φ : X × X → R is diagonally transfer

continuous in y ∈ X; and

A := {x ∈ X| sup
y∈C(x)

φ(y, x) ≤ φ(x, x)} (17)

is closed. Let C as in the hypothesis iii) in Theorem 3.1, suppose that

B∗ ∩ [(C ∩ C∗1) ∪ (A ∩ C∗2)] 6= ∅.
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Otherwise, if the previous intersection is empty, suppose that

B∗ ∩
[
(C ∩ C∗1) ∪ (A ∩ C∗2)

]
6= ∅

and φ is upper semicontinuous on C × C; and φ(x, ·) is lower semicontinuous on C, for all

x ∈ comc(A), for all A ∈ F (X). Then G has a Nash Equilibrium.

Proof. We define ψ(x, y) : X ×X → R as ψ(x, y) = φ(y, x)− φ(x, x). We’ll prove that

∃x∗ ∈ C(x∗) : sup
y∈C(x)

ψ(x∗, y) ≤ 0 (18)

By [2][Proposition 4;pp. 269], it’s sufficient for proving Nash Equilibrium existence. By

absurd, for each x ∈ X, either x 6∈ C(x) or there exists u ∈ C(x) such that ψ(x, u) > 0. In

the case x 6∈ C(x), note that E has sufficiently many continuous linear functionals and, by

Hahn Banach Theorem, there exists p ∈ E∗ such that p(x)− supz∈C(x) p(z) > 0. Let

Vp := {x ∈ X : p(x)− sup
z∈C(x)

p(z) > 0} 6= ∅.

As C is upper hemicontinuous, Vp is a neighborhood of x ∈ X. In the case that there

exists u ∈ C(x) such that ψ(x, u) > 0, then supy∈C(x) ψ(x, y) > 0. Let V0 := {x ∈ X |

supy∈C(x) ψ(x, y) > 0} 6= ∅. Then V0 is open by (17). It’s clear that X = V0

⋃
∪p∈E∗Vp. It’s

possible to extract an open finite refinement (V0, Vpi := Vi) with i ∈ I. Now, we assume

{α0, αi} with i ∈ I a family of continuous non negative real valued function on X such that

αi vanishes on X \ Vi(X \ V0) with i ∈ I. Now, we define

Π(x, y) = α0(y)ψ(y, x) +
∑
i∈I

αi(y)pi(y − x)

for each (x, y) ∈ X×X. Therefore, the funtion Π is diagonally transfer continuous in y ∈ X

since φ satisfies the same condition in y ∈ X and pi are continuous. Let be

BΠ := {y ∈ X | x ∈ X → Π(x, y) is mc concave in y}

and

CΠ := {y ∈ X | Π(y, y) ≥ Π(x, y) ∀x ∈ comc(A),∀A ∈ F (X)} .

13



The function Π(·, y) is mc-concave in y ∈ BΠ since φ is mc-concave linear invariant in y ∈ B∗

and pi are continuous; and,

BΠ ∩ CΠ(∩CΠ) ⊇ B∗ ∩ [(C ∩ C∗1) ∪ (A ∩ C∗2)]
(
∩
[
(C ∩ C∗1) ∪ (A ∩ C∗2)

])
6= ∅

holds; then, the condition iii) in the Theorem 3.1 holds for BΠ, CΠ and Π. Therefore, there

exists x ∈ X such that

0 ≥ sup
y∈X

Π(y, x)− Π(x, x) = sup
y∈X

α0(x)ψ(x, y) +
∑
i∈I

αi(x)pi(x− y) (19)

On the other hand, since (αi)i∈I is a partition of unit, there exists at least one index i ∈ I

such that αi(x) > 0. We prove that the right hand side of inequality (19) is strictly positive.

If x ∈ V0 ∩ Vi for some i ∈ J ⊆ I, there exists y∗ ∈ C(x) such that ψ(x, y∗) > 0. Since

x ∈ Vi, we have

pi(x) > sup
z∈C(x)

pi(z) ≥ pi(y
∗).

It follows that αi(x)pi(x− y∗) > 0. Hence, we have that

α0(x)ψ(x, y∗) +
∑
i∈J

αi(x)pi(x− y∗) > 0.

If x ∈ V0

⋃
i=1,...,n V

C
i , we have α0(x)ψ(x, y∗) > 0. If x ∈ V C

0

⋂
Vi for some i ∈ J ⊆ I, there

exists a y∗ ∈ C(x) 6= ∅ such that
∑

i∈J αi(x)pi(x−y∗) > 0. However, the previous conditions

contradict (19). Therefore, the condition (18) holds.

4 Some examples in Game Theory

In this section, we want to give two examples of static games in which the classical quasi

concavity hypothesis fail but the assumptions stated in Theorem 3.1 hold. In the first

example, simultaneously, we give an example of multiconnection structure on a compact

subset.
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4.1 A not quasi-concave game

Let G3 := ([−1,+1], [0, 1], u1, u2) defined as follows

u1(x1, x2) =

 −x
2
1 + g(x2) if | x1 |< 1

1

4
otherwise

u2(x1, x2) = ln(1 + x2) sin(π x2 (1 + |x1|)x2

where g : [0, 1] −→ R is a lower semicontinuous function such that g ≥ 1

4
on

[
1

4
, 1

]
; g ≤ 1;

g(nmin) =
1

4
with nmin = BR2(1). Besides, we denote by

mmin = arg max
y1≥0

{
arg min

x2∈[0,1]
φ(0, x2, y1, y2) = {1}

}
and x2

∗(y1), x2
∗∗(y1) the absolute maximum and minimum points for the function

φ(0, ·, y1, y2) unchangingly respect to y2. We define the following multifunction D : [−1,+1]×

[0, 1]→ [−1,+1]× [0, 1] as follows:

D(x1, x2) :=



(0, x2) |x1| = 1, x2 <
4

5

(x1, x2) |x1| 6= 1, x2 <
4

5

(0, x2
∗(mx)) x2 ≥

4

5

where mx ∈ [0, 1] is the convex coordinate in the equality x2 = (1 −mx)
4

5
+ mx. Now, for

every z ∈ X we define the path that joins any arbitrary point x ∈ X with D(z) ∈ X by this

parametric function P z : X × [0, 1]→ X in the following three cases, as prescribed below:

1. |z1| = 1, z2 <
4

5

P z(x, t) =



(x1, x2) |x1| = 1, x2 <
4

5
, 1, t = 0

cot6=0[(0, x2), (0, z2)] |x1| = 1, x2 <
4

5
, t 6= 0

cot[(x1, x2), (0, z2)] |x1| 6= 1, x2 <
4

5

(x1, x2) x2 ≥
4

5
, t = 0

cot6=0[(0, x2
∗(mx)) , (0, z2)] x2 ≥

4

5
, t 6= 0
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2. |z1| 6= 1, z2 <
4

5

P z(x, t) =



(x1, x2) |x1| = 1, x2 <
4

5
, t = 0

cot6=0[(0, x2), (0, z2), (z1, z2)] |x1| = 1, x2 <
4

5
, t 6= 0

cot[(x1, x2), (0, z2), (z1, z2)] |x1| 6= 1, x2 <
4

5

(x1, x2) x2 ≥
4

5
, t = 0

cot6=0[(0, x2
∗(mx)), (0, z2), (z1, z2)] x2 ≥

4

5
, t 6= 0

3. z2 ≥
4

5

P z(x, t) =



(x1, x2) |x1| = 1, x2 <
4

5
, t = 0

cot6=0[(0, x2), (0, x2
∗(mz))] |x1| = 1, x2 <

4

5
, t 6= 0

cot[(x1, x2), (0, x2), (0, x2
∗(mz))] |x1| 6= 1, x2 <

4

5

(x1, x2) x2 ≥
4

5
, t = 0

cot6=0[(0, x2
∗(mx)), (0, x2

∗(mz))] x2 ≥
4

5
, t 6= 0

We present the following Propositions.

Proposition 4.1. The topological space X endowed with this family of functions (P z)z∈X

has a multiconnected structure. Moreover, the convex hull comc(A) = {0} ×
[
0, 4

5

]
for every

A ∈ F (X).

Proposition 4.2. The function φ(·, y) has multiconnected uplevels

Ak,y = {x ∈ X |φ(x, y) ≥ k}

for every

y ∈
{
z ∈ [−1, 1]× [0, 1]

∣∣∣∣ |z1| ≥ mmin, z2 ≥
1

4

}
.

Proof. See Appendix.
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Proposition 4.3. G3 has a Nash equilibrium in pure strategy.

Proof. See Appendix.

Remark 4.1. Note that BR1(nmin) = {−1, 0, 1} is not reduced to a singleton and is not

connected; therefore, [1][Theorem 2.1] and [18][Theorem 10] fail. Besides, note that u1 is

not continuous although the payoffs’ uplevels are acyclic subsets; therefore, [15][Theorem 7]

fails.

4.2 An oscillating problem

Let G4 :=
(

[0, π],
[
1,
π

2

]
, u1, u2

)
whose payoffs are defined as follows:

u1(x1, x2) = sin(x1 x2)

u2(x1, x2) = cos(x2 − x1).

Now, we construct the function φ(x, y) = sin(x1 y2
2) + cos(x1 − y1). The latter function

is diagonally transfer continuous in y since u1, u2 are continuous on the strategy space

X = [0, π]× [1, π/2]. For every y, z ∈ X, we put H :=

[
0,

π

y2
2

]
×
[
max

{
1, y1 −

π

2

}
,
π

2

]
; and

we define D : X → H ⊂ X and P z : X × [0, 1]→ X as follows:

D(x) =:=


x x ∈ H(
π

2y2
2

, y1

)
otherwise

P z(x, t) =



cot[x, z] x, z ∈ H

x z ∈ H, x 6∈ H, t = 0

cot6=0

[(
π

2y2
2

, y1

)
, z

]
z ∈ H, x 6∈ H, t 6= 0

x z 6∈ H, x ∈ H, t = 0

cot6=0

[
z,

(
π

2y2
2

, y1

)]
z 6∈ H, x ∈ H, t 6= 0

The topological space X endowed with this family of functions (P z)z∈X has a multicon-

nected structure for every y ∈ X. According to the notations in Theorem 3.1, it can be
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shown that φ is, at most, mc concave in the singleton B := {y} since φ(·, y) is strict concave

on H; and, by arbitrariety of y and by Theorem 3.1, B ∩C 6= ∅ if, and only if, the following

nonlinear optimization problem with constraints



max {sin(y1 y
2
2) + cos(y2 − y1)} = 2

0 ≤ y1 ≤ π

1 ≤ y2 ≤
π

2

(20)

has solutions. We impose that the gradient is equal to zero. The critical points are P0(0, 0),

P1(1
3
z,−2

3
z) and P2(z

′
, z
′
) where z and z

′
are, respectively, solutions of H0(z) = −9 sin(z) +

4 cos
(

4
27
z3
)
z2 = 0 and H1(z) = 2 z3 − π = 0. We note that H1(z) = 2z3 − π is increasing

and continuous on [1, π/2] and H (1) H
(
π
2

)
< 0. Then, after simple calculations, P2 ∈ X is

a solution of the system (20). In fact, the game achieves its Nash equilibrium at the point(
3
√

π
2
, 3
√

π
2

)
.

Remark 4.2. The two players’ strategy spaces are not equal. Therefore, [21][Theorem 1]

fails. Moreover, if X2 = [5
4
, π/2] ⊂ [1, π/2], the problem (20) has no solutions.

18



5 Appendix

Proof of Proposition 2.1.

Proof. First of all, every opponents’ allocation (xi, xj) ∈ [0, 1]2 is represented in the Figure

1. In the first case (1), we have other four subcases described as follows:

Figure 1: The upper triangle in the square includes all the possible subcases A), B), C) and

D) according to which ui is described by (1). The diagonal line represents the allocations

according to which ui is described by (2). The lower triangle in the square represents the

symmetrical region obtained if xj < xk.
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A) If (xj, xk) ∈ A :=

{
(xj, xk) ∈ [0, 1]2

∣∣∣∣xj > xk
3
, xk <

xj
3

+
2

3

}
, we have

limxi→x−j
ui(xi, xj, xk) > ui(xj, xj, xk) > limxi→x+

j
ui(xi, xj, xk) =

limxi→x−k
ui(xi, xj, xk) < ui(xk, xj, xk) < limxi→x+

k
ui(xi, xj, xk)

(21)

Figure 2: Payoff in the subcase A) with xj = 0.5 and xk = 0.75.
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B) If (xj, xk) ∈ B :=

{
(xj, xk) ∈ [0, 1]2

∣∣∣∣xj > xk
3
, xk ≥

xj
3

+
2

3

}
, we have

limxi→x−j
ui(xi, xj, xk) > ui(xj, xj, xk) > limxi→x+

j
ui(xi, xj, xk) =

limxi→x−k
ui(xi, xj, xk) ≥ ui(xk, xj, xk) ≥ limxi→(xk 6=1)+ ui(xi, xj, xk) (22)

Figure 3: Payoff in the subcase B) with xj = 0.4 and xk = 0.9.

Figure 4: Payoff in the limit subcase B); if (xj xk) ∈ [0, 1]2 are on the borderline between

the regions A and B in the Figure 1.
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C) If (xj, xk) ∈ C :=

{
(xj, xk) ∈ [0, 1]2

∣∣∣∣xj ≤ xk
3
, xk <

xj
3

+
2

3

}
, we have

limxi→(xj 6=0)− ui(xi, xj, xk) ≤ ui(xj, xj, xk) ≤ limxi→x+
j
ui(xi, xj, xk) =

limxi→x−k
ui(xi, xj, xk) < ui(xk, xj, xk) < limxi→x+

k
ui(xi, xj, xk) (23)

Figure 5: Payoff in the subcase C) with xj = 0.2 and xk = 0.7.

Figure 6: Payoff in the limit subcase C); if (xj xk) ∈ [0, 1]2 are on the borderline between

the regions A and C in the Figure 1.
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D) If (xj, xk) ∈ D :=

{
(xj, xk) ∈ [0, 1]2

∣∣∣∣xj ≤ xk
3
, xk ≥

xj
3

+
2

3

}
, we have

limxi→(xj 6=0)− ui(xi, xj, xk) ≤ ui(xj, xj, xk) ≤ limxi→x+
j
ui(xi, xj, xk) =

limxi→x−k
ui(xi, xj, xk) ≥ ui(xk, xj, xk) ≥ limxi→(xk 6=1)+ ui(xi, xj, xk) (24)

Figure 7: Payoff in the subcase D) with xj = 0.1 and xk = 0.9.
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Figure 8: Payoff in the limit subcase D); if (xj xk) ∈ [0, 1]2 are on the borderline between

the regions B and D in the Figure 1.

Figure 9: Payoff in the limit subcase D); if (xj xk) ∈ [0, 1]2 are on the borderline between

the regions C and D in the Figure 1.
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Figure 10: Payoff in the limit subcase D); if (xj, xk) = (0.25, 0.75) is on the closure of the

four regions A), B), C) and D) in the Figure 1.
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We study the subcases A), B) and C) by assuming strictly the previous inequalities (21),

(22) and (23). In this case, ui(·, xj, xk) presents a real discontinuity at xi = xj and xi = xk.

In the case A), whenever ui(·, xj, xk) is lower semicontinuous for xi → x−j and xi → x+
k then

it’s upper semicontinuous for xi → x+
j and xi → x−k ; in the case B), whenever ui(·, xj, xk) is

lower semicontinuous for xi → x−j and xi → x−k , then it’s upper semicontinuous for xi → x+
j

and xi → (xk 6= 1)+; in the case C), whenever ui(·, xj, xk) is upper semicontinuous for

xi → (xj 6= 0)− and xi → x−k then it’s lower semicontinuous for xi → x+
j and xi → x+

k ; We

analyze the subcases in B) and C) by taking the inequalities in (22) and (23) as equalities. In

the limit subcase B), ui(·, xj, xk) is continuous at xi = xk, but it’s upper semicontinuous for

xi → x+
j and lower semicontinuous for xi → (xj 6= 0)−. In the limit subcase C), ui(·, xj, xk)

is continuous at xi = xj, but it’s upper semicontinuous for xi → x−j and lower semicontinuous

for xi → (xj 6= 0)−. Since ui(·, xj, xk) is strict increasing and strict decreasing, respectively,

on [0, xj[ and ]xk, 1] 3; and constant on ]xj, xk[, we have that

BRi(A ∪B ∪ C) = ∅ (25)

holds. We study the last subcase D). It’s trivial, as shown in (24), that

]xj, xk[⊂ BRi(D) ⊂ [xj, xk] (26)

Let (x̄i, x̄j, x̄k) ∈ [0, 1]3 be a strategy with (x̄j, x̄k) ∈ D. If x̄i ∈
◦

BRi(D) 4, there exists

a strictly increasing sequence xjn < x̄i and a strictly decreasing x̄i < xkn one, such that

xj1 = x̄j, xk1 = x̄k; and the sequences uj(x̄i, xjn , xkn), uk(x̄i, xjn , xkn) 5 are strict increasing.

By monotony, the sequences xjn and xkn converge to x̄i. Then, there exists ν ∈ N such that

(xjn , xkn) ∈ A for all n ≥ ν. Therefore, by (25), we have that

BRi

(
{(xjn , xkn)}n≥ν

)
⊂ BRi(A) = ∅. (27)

3In the case C), the first subset is empty if xj = 0; in the case B), the second subset is empty if xk = 1.

But, at least, one of them is never empty.
4This implies that x̄i 6= 0, 1.
5By simmetry, we observe that uj(x̄i, ·, xkn

) does not depend on xkn
in the subset ]0, x̄i[; and uk(x̄i, xjn

, ·)

does not depend on xjn
in the subset ]x̄k, 1[.
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If x̄i = x̄j
6, we have that xjn = x̄j for all n but x̄i < xkn is strict decreasing; and

uk(x̄i, xjn , xkn) is strict increasing. As before, the sequences (xjn , xkn) ∈ A for n sufficiently

large. We can conclude as before. If x̄i = x̄k
7 , the proof is the same by exchanging the role

of the sequence xjn by xkn . Therefore, by (25),(26) and (27), G1 has no pure Nash equilibria

in the case (1).

In the second case (2), the player i tends to move towards the same allocations chosen

by the other two players; since its payoff is, at least, increasing in its own variable if xi <

xj = xk or decreasing in its own variable if xi > xj = xk. However, its payoff is never upper

semicontinuous at xi = xj = xk.

Proof of Proposition 2.2.

Proof. We prove that the game is payoff secure. Fix (xi, xj, xk) ∈ [0, 1]3 and ε a strict

positive real number. We’ll prove that there exists a payoff secure strategy x̄i ∈ [0, 1] such

that ui(x̄i, x
′
j, x

′

k) ≥ ui(xi, xj, xk)− ε for small deviations (x
′
j, x

′

k) from the point (xj, xk). Let

F = {xj = xi} × {xk = xi}; and TC−(xi|xj ,xk) be the tangent cone at (xj, xk) along which

the function ui(xi, ·, ·) is lower semicontinuous at (xj, xk). In our case, for all xi ∈ [0, 1], the

function ui(xi, ·, ·) is continuous except for this closed subset

Exi := {xj = xi} × {xk > xi} ∪ {xj = xi} × {xk < xi} ∪ {xj < xi} × {xk = xi}∪

∪{xj > xi} × {xk = xi} ∪ F ⊂ [0, 1]2. (28)

Then, for all (xj, xk) ∈ [0, 1]2 \Exi there exists a neighborhood of the point (xj, xk) in [0, 1]2

such that

ui(xi, x
′

j, x
′

k) ≥ ui(xi, xj, xk) > ui(xi, xj, xk)− ε

∀(x′j, x
′

k) ∈ TC−(xi|xj ,xk) ∩ U = U.

It’s enough to choose x̄i := xi as payoff secure strategy for the ith-player 8. Let be (xi, xk) ∈
6If x̄j = 0, then x̄i = 0 6= 1.
7If x̄k = 1, then x̄i = 1 6= 0.
8In general, payoff security sssumption at (x̄i, x̄−i) ∈ X is much hard to be checked if the function

x−i ∈ X−i → ui(x̄i, x−i) is upper semicontinuous at x̄−i (see [16][Cor.3.4]).
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Exi such that xk < 3xi 6= 0 and a sequence xjn → x−i , we have

ui(xi, xjn , xk) =
xk − xjn

2

n→∞−→ xk − xi
2

<
xi + xk

4
= ui(xi, xi, xk).

But, the previous lack of lower semicontinuity can be overpassed. We focus our attention

on the case {xj = xi} × {xk > xi} ⊂ Exi . Suppose that (xj, xk) ∈ A ∪ B . By lower

semicontinuity of ui(·, xj, xk) at xj from the left side, there exists δ > 0 and x̄i > 0 with

0 < x̄i < xi and xi − x̄i < δ such that

ui(x̄i, xj, xk) > ui(xi, xj, xk). (29)

By continuity for the function ui(x̄i, ·, ·) onto {xj = xi} × {xk > xi} \ Ex̄i = {xj = xi} ×

{xk > xi}, there exists δ1 > 0 such that Bδ1(xj, xk) ∩ Ex̄i = ∅ and

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, xj, xk)− ε ∀ (x
′

j, x
′

k) ∈ Bδ1(xj, xk) ∩ [0, 1]2. (30)

By (29), (30) and by choosing x̄i as payoff secure strategy for the player i, we have the

thesis. Suppose that (xj, xk) ∈ C . By transfer lower semicontinuity (see [20][Definition 1])

of ui(·, xj, xk) at xj, there exists δ > 0 and x̄i with xk < x̄i < 1 and x̄i − xk < δ such that

ui(x̄i, xj, xk) > ui(xi, xj, xk). (31)

By continuity for the function ui(x̄i, ·, ·) at (xj, xk) 6∈ Ex̄i
9, there exists δ1 > 0 such that

Bδ1(xj, xk) ∩ Ex̄i = ∅ and

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, xj, xk)− ε ∀(x
′

j, x
′

k) ∈ Bδ1(xj, xk) ∩ [0, 1]2. (32)

By (31), (32) and by choosing x̄i as payoff secure strategy for the player i, we have the thesis.

Suppose that (xj, xk) ∈ D . By right upper semicontinuity for the function ui(·, xj, xk) at

xj, there exists x̄i > xj and x̄i < xk such that

ui(x̄i, xj, xk) ≥ ui(xi, xi, xk) (33)

and, by continuity for ui(x̄i, ·, ·) at (xj, xk) /∈ Ex̄i , there exists a neighborhood U of the point

(xj, xk) in [0, 1]2 such that U ∩ Ex̄i = ∅ and

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, xj, xk)− ε ∀(x
′

j, x
′

k) ∈ U. (34)

9The choise of x̄i depends on (xj , xk).
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Then, by (33) and (34), we have that

ui(x̄i, x
′

j, x
′

k) ≥ ui(xj, xj, xk)− ε ∀(x
′

j, x
′

k) ∈ U ∩ Ex̄i .

Now, we refer to the following subset {xj < xi} × {xk = xi} ⊂ Exi . The proof is similar

to the previous case. Suppose that (xj, xk) ∈ A ∪ C . In this case, there exists δ > 0 such

that

Aδ =
⋂

(x
′
j ,x
′
k)∈Bδ(xj ,xk)

{xk + δ ≤ x∗i < 1 | ui(x∗i , x
′

j, x
′

k) ≥ ui(xi, xj, xi)} 6= ∅

is closed in a subset included in [xk + δ, 1[. Then, we choose x̄i := maxAδ as payoff secure

strategy for the player i. Suppose that (xj, xk) ∈ B. In this case, there exists δ > 0 such

that

Aδ =
⋂

(x
′
j ,x
′
k)∈Bδ(xj ,xk)

{0 < x∗i ≤ xi − δ | ui(x∗i , x
′

j, x
′

k) ≥ ui(xi, xj, xi)} 6= ∅

is closed in a subset included in ]0, xi − δ]. Then, we choose x̄i := minAδ as payoff secure

strategy for the player i. Suppose that (xj, xk) ∈ D. By left semicontinuity for the function

ui(·, xj, xk) at xk, there exists x̄i < xk and x̄i > xj such that

ui(x̄i, xj, xk) ≥ ui(xi, xj, xi) (35)

and, by continuity for ui(x̄i, ·, ·) at the point (xj, xk), there exists a neighborhood U of the

point (xj, xk) such that U ∩ Ex̄i = ∅ and

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, xj, xk)− ε ∀(x
′

j, x
′

k) ∈ U. (36)

Then, by (35) and (36), we have that

ui(x̄i, x
′

j, x
′

k) > ui(xi, xj, xi)− ε ∀(x
′

j, x
′

k) ∈ U.

As regards the cases {xj = xi} × {xk < xi} and {xj > xi} × {xi = xk}, we fall in the

previous two cases since ui(xi, ·, ·) is symmetric 10. As regards to the last subset F in

(28), let U a neighborhood of (xj, xj) in [0, 1] and x̄j = inf Prxj(U ∩ {x∗j ≤ x∗k}), x̄k =

10i.e ui(xi, xj , xk) = ui(xi, xk, xj) holds for all xi, xj , xk.
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supPrxk(U ∩ {x∗j ≤ x∗k}) such that 1
3
< x̄j or 2

3
> x̄k holds. In the first case, by choosing x̄i

such that 2
3
− x̄j < x̄i < x̄j, we have

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, x̄j, x̄k)− ε =
x̄i + x̄j

2
− ε >

1

3
− ε = ui(xi, xi, xi)− ε ∀(x

′

j, x
′

k) ∈ U ∩ {x∗j ≤ x∗k}.

In the second case, by choosing x̄i such that 4
3
− x̄k > x̄i > x̄k, we have

ui(x̄i, x
′

j, x
′

k) > ui(x̄i, x̄j, x̄k)− ε = 1− x̄i + x̄j
2

− ε >

1

3
− ε = ui(xi, xi, xi)− ε ∀(x

′

j, x
′

k) ∈ U ∩ {x∗j ≤ x∗k}

By simmetry, we can obtain the same properties on U ∩ {x∗j ≥ x∗k}.

Proof of Proposition 2.3.

Proof. It’s easy to check that ui is bounded and continuous except for the following regular

subset

A∗∗i ⊂
{

(xi, xj, xk) ∈ [0, 1]3
∣∣xj = I[0,1](xi) ∨ xk = I[0,1](xi)

}
Moreover, ui is strictly weakly lower semicontinuous (see [16][Definition 6]) thanks to the

inequalities (21),(22), (23) and (24) and
∑n

i=1 ui = 1 is upper semicontinuous. In fact, all the

discontinuities values for ui at xi are included in the convex hull generated by the lim sup

and lim inf around the points xj and xk. By symmetrical evidence for the other indexes

s = j, k and by applying results in [4] [Theorem 5 pp.14; Lemma 7 pp.19], G1 has a mixed

symmetric Nash equilibrium.

Proof of Proposition 4.2.

Proof. First of all, let φ(x, y) = u1(x1, y2) + u2(y1, x2) be the equilibrium bifunction

φ(x, y) =


−x2

1 + g(y2) + ln(1 + x2) sin(π x2 (1 + |y1|) x2 |x1| 6= 1

1/4 + ln(1 + x2) sin(π x2 (1 + |y1|) x2 otherwise.
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For sake of simplicity, we assume y1 > 0. Now, we consider the following properties:

x1 ∂x1φ(x1, x2, y1, y2) < 0 ∀x1 6= −1, 0,+1, ∀x2, y1, y2 (37)

∂x1φ(0, x2, y1, y2) = 0 ∀x2, y1, y2 (38)

φ(0, x2, y1, y2) ≥ φ(±1, x2, y1, y2) ∀y2 ≥
1

4
, ∀x2, y1 (39)

∂x2φ(0, 0, y1, y2) = 0 ∀y1, y2 (40)

g(y2) = φ(0, 0, y1, y2) > (=)φ(0, 1, y1, y2) ∀y1 6= 0, 1, ( y1 = 0, 1), ∀y2 (41)

φ(0, ·, y1, y2) is locally strictly increasing at the point x2 = 0 ∀y1, y2 (42)

φ(0, ·, y1, y2) is increasing on ]x∗∗2 (y1), 1[ ∀y1 ∈]mmin, 1],∀y2 (43)

x2
∗(y1), x2

∗∗(y1) are strict decreasing, respectively, on [0, 1]and[mmin, 1] (44)

y1 ∈]mmin, 1]→ φ(0, x2
∗(y1), y1, y2) is strict decreasing ∀y2 ∈ [0, 1] (45)

y1 ∈]mmin, 1]→ φ(0, x2
∗∗(y1), y1, y2) is strict increasing ∀y2 ∈ [0, 1] (46)

0 < max
y1∈[0,1]

x∗2(y1) <
4

5
≤ min

y1∈]0,1]
x∗∗2 (y1). (47)

From now onwards, let (y1, y2) ∈ [mmin, 1]× [1
4
, 1] be a fixed strategy. It’s easy to prove

that the equation

φ(0, x2, y1, y2) = c ∈]g(y2), φ(0, x∗2(y1), y1, y2)[

has two solutions. The first one belonging to the subset ]0, x∗2(y1)[ and the second one

belonging to the subset ]x∗2(y1), x̄(y1, y2)[; with x̄(y1, y2) ∈ [0, 4
5
[ the zeros of φ(0, x2, y1, y2) =

g(y2) for every y1 ∈ [mmin, 1]. At the same way, the following equation

φ(0, x2, y1, y2) = c ∈]φ(0, x∗∗2 (y1), y1, y2), φ(0, 1, y1, y2)]

has two solutions; the first belonging to the subset ]x̄(y1, y2), x∗∗2 (y1)[ and the second one

belonging to the subset ]x∗∗2 (y1), 1]. Besides, we denote by nsup = limn x2,n such that

limn g(x2,n) = supx2≥ 1
4
g(x2). We observe that

Ak,y − {|x1| = 1} =
{
x ∈ X

∣∣∣|x1| ≤
√
g(y2) + ln(1 + x2) sin (π x2 (1 + y1)) x2 − k

}
.

Clearly, if the quantity under the square root’s sign is strict negative, the previous subset is

empty. First of all, we can prove that Prx2(Ak,y) is an mc subset.
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i) If, by applying Ky Fan’s Min-Max [7][Theorem 1] and by (46),

inf
x1∈[−1,+1]

min
x2∈[0,+1]

min
y1≥mmin

min
y2≥ 1

4

φ(x1, x2, y1, y2) < k ≤

sup
x1∈[−1,+1]

min
x2∈[0,+1]

min
y1≥mmin

min
y2≥ 1

4

φ(x1, x2, y1, y2) =

min
x2∈[0,+1]

min
y1≥mmin

φ(0, x2, y1, nmin) = φ(0, 1,mmin, nmin)

and, by (46), trivially

k ≤ φ(0, 1,mmin, nmin) ≤ φ(0, x∗∗2 (y1), y1, nmin) ≤ φ(0, x2, y1, nmin) ≤

g(nmin) + ln(1 + x2) sin (π x2 (1 + y1)) x2 ∀x2 ∈ [0, 1], y1 ∈ [mmin, 1] (48)

Therefore, by the inequality (48), Prx2 (Ak,y) = [0, 1].

ii) By (45), if

φ(0, 1,mmin, nmin) < k < sup
x1∈[−1,+1]

max
x2∈[0,+1]

max
y1≥mmin

sup
y2≥ 1

4

φ(x1, x2, y1, y2) =

max
x2∈[0,+1]

max
y1≥mmin

φ(0, x2, y1, nsup) = φ(0, x2
∗(mmin),mmin, nsup)

we have other three subcases:

iia) Suppose k ∈ R such that

φ(0, 1,mmin, nmin) < k ≤ φ(0, x∗∗2 (y1), y1, y2).

In this case, Prx2(Ak,y) = [0, 1] is an mc subset.

iib) Suppose k ∈ R such that

φ(0, x2
∗∗(y1), y1, y2) < k ≤ φ(0, 1, y1, y2) (49)

We denote by

co 4
5
,1,k =

{
x2

∣∣∣∣x2(mx) = (1−mx)
4

5
+mx, φ(0, x2(mx), y1, y2) ≥ k, 0 ≤ mx ≤ 1

}
.

By inequality (49), we state that ∅ 6= co 4
5
,1,k 6= co 4

5
,1. Let m∗∗ := 5x∗∗2 (y1) − 4

be a positive number. By choosing x2 ∈ co 4
5
,1,k and x2 < x2

∗∗(y1), we can write
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x2 = x2(mx) with mx ∈ [0,m∗∗[. Suppose that y1 ≥ m∗∗. Since x2
∗ is decreasing

and continuous, we can imply

x2
∗(y1) ≤ x2

∗(m∗∗) ≤ x2
∗(0) < x2

∗∗(y1)

by (47); and, then

x2
∗(mx) ⊂ [x2

∗(y1), x2
∗∗(y1)[ ∀mx ∈ [0,m∗∗[.

Since φ(0, ·, y1, y2) is strict decreasing on the subset [x2
∗(y1), x2

∗∗(y1)], we have

φ(0, x∗2(mx), y1, y2) ≥ φ(0, x2
∗(0), y1, y2) = φ(0, 0.71, y1, y2) >

φ(0,
4

5
, y1, y2) ≥ φ(0, x2(mx), y1, y2) ≥ k ∀mx ∈ [0,m∗∗[. (50)

On the contrary, suppose that y1 < m∗∗. Let mx ∈]y1,m
∗∗[. It’s clear that

x2
∗(y1) > x2

∗(mx); but there exists x2s ∈]x2
∗(y1), x̄(y1, y2)[ such that

g(y2) < φ(0, x2
∗(mx), y1, y2) = φ(0, x2s, y1, y2) < φ(0, x∗2(y1), y1, y2).

Then, by remarking that x∗∗2 (y1) > x2s > x̄(y1, y2), we have

φ(0, x2
∗(mx), y1, y2) = φ(0, x2s, y1, y2) > φ(0, x̄(y1, y2), y1, y2) >

φ(0,
4

5
, y1, y2) ≥ φ(0, x2(mx), y1, y2) ≥ k ∀mx ∈]y1,m

∗∗[. (51)

Besides, as in the case y1 ≥ m∗∗, we have that

φ(0, x2
∗(mx), y1, y2) ≥ φ(0, x2(mx), y1, y2) ≥ k ∀mx ∈ [0, y1]. (52)

holds. Now, we choose x2 ∈ co 4
5
,1,k and x2 > x2

∗∗(y1). We can write x2 = x2(mx)

with mx ∈]m∗∗, 1]. We assume m∗∗ ≥ y1. We obtain

0 6= x2
∗(1) ≤ x2

∗(mx) ≤ x2
∗(y1).

Since the function φ(0, ·, y1, y2) is increasing on the subset [0, x2
∗(y1)], we obtain,

by (41) and (43),

φ(0, x2
∗(mx), y1, y2) > φ(0, 0, y1, y2) = g(y2) ≥ φ(0, 1, y1, y2) =
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max
ms∈[m∗∗,1]

φ(0, x2(ms), y1, y2) ≥ φ(0, x2(mx), y1, y2) ≥ k (53)

On the contrary, we assume m∗∗ < y1. In this case, we prove that

φ(0, x2
∗(m), y1, y2) ≥ φ(0, x2(m), y1, y2) ∀m ∈]m∗∗, y1]. (54)

By absurd, we suppose that there exists m ∈]m∗∗, y1] such that

φ(0, x2
∗∗(y1), y1, y2) ≤ φ(0, x2

∗(m), y1, y2) < φ(0, x2(m), y1, y2) ≤ φ(0, 1, y1, y2).

Then, there exists m1 ∈]m∗∗,m[ such that

φ(0, x2
∗(m), y1, y2) = φ(0, x2(m1), y1, y2)

and, then

φ(0, x2
∗(m1), y1, y2) < φ(0, x2

∗(m), y1, y2) = φ(0, x2(m1), y1, y2)

and, again, by choosing m1 instead of m, there exists m2 ∈]m∗∗,m1[ such that

φ(0, x2
∗(m2), y1, y2) < φ(0, x2

∗(m1), y1, y2) = φ(0, x2(m2), y1, y2).

By keeping this way on, we can construct a sequence of points mk+1 ∈]m∗∗,mk[

such that

y1 ≥ m = m0 > m1 > . . .mk−1 > mk > mk+1
k→+∞−→ m∗∗

x2
∗(m∗∗) > x2

∗(mk+1) > x2
∗(mk) > x2

∗(mk−1) · · · > x2
∗(m1) > x2

∗(m0)

φ(0, x2
∗(mk+1), y1, y2) < φ(0, x2

∗(mk), y1, y2) = φ(0, x2(mk+1), y1, y2)

(55)

and, passing the above inequalities to the limit,

φ(0, x2(m∗∗), y1, y2) = lim
k→∞

φ(0, x2(mk), y1, y2) = lim
k→∞

φ(0, x2
∗(mk), y1, y2) =

φ(0, x2
∗(m∗∗), y1, y2) = lim

k→∞
φ(0, x2

∗(mk+1), y1, y2) ≤ φ(0, x2(m∗∗), y1, y2)

we have

φ(0, x2
∗(m∗∗), y1, y2) = φ(0, x2(m∗∗), y1, y2) = φ(0, x2

∗∗(y1), y1, y2).
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But, this implies that x2
∗(m∗∗) = x2

∗∗(y1) which contradicts (47). Then, the

equality (54) holds.

If m > y1, then x∗2(m) < x∗2(y1). Therefore, there exists x2m ∈]x2
∗(y1), x̄(y1, y2)[

such that

g(y2) < φ(0, x2
∗(m), y1, y2) = φ(0, x2m, y1, y2) < φ(0, x∗2(y1), y1, y2).

By absurd, we can construct such sequences as before by choosing as the initial

point m0 = m. At first step, if m > m1 > y1 then x∗2(m) < x∗2(m1) < x∗2(y1).

Therefore

φ(0, x2
∗(m1), y1, y2) > φ(0, x2

∗(m), y1, y2)

holds since φ(0, ·, y1, y2) is strictly increasing on [0, x∗2(y1)]. By (55), this is an

absurd. If m1 < y1, we can proceed as in the (54)’s proof. Finally,

φ(0, x2
∗(m), y1, y2) ≥ φ(0, x2(m), y1, y2) ∀m ∈]y1, 1]. (56)

holds.

Now, we can conclude co 4
5
,1,k is an mc subset, since the inequalities (50), (51),

(52), (53),(54) and (56) hold. We denote by

co0, 4
5
,k =

{
x2 ∈

[
0,

4

5

]
| φ(0, x2, y1, y2) ≥ k

}
The latter one is a convex subset included in [0, 4

5
[ since the function φ(0, ·, y1, y2)

is quasi concave on [0, 4
5
]. Then, it is an mc subset. By gathering these two mc

subsets, on the real line, we obtain that Prx2(Ak,y) = co0, 4
5
,k ∪ co 4

5
,1,k is an mc

subset thanks to the definition of mc-structure given at page 15.

iic) Suppose k ∈ R such that φ(0, 1, y1, y2) < k < φ(0, x2
∗(mmin),mmin, nsup). In this

case, co 4
5
,1,k ⊂

[
4
5
, x2
∗∗(y1)

[
. Then, we can proceed as in the case x2(mx) <

x2
∗∗(y1) in iib).

By (37), (39) and by the definition of multiconnection structure, Ak,y is an mc subset.

Proof of Proposition 4.3.
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Proof. First of all, we prove that the bifunction φ is diagonally transfer continuous in y.

In fact, the diagonalized bifunction φ(y, y) is upper semicontinuous on the strip regions

({±1} × [0, 1])2 since

lim
y1→±1

φ(y1, y2, y1, y2)− φ(1, y2, 1, y2) = g(y2)− 5

4
< 0

holds. Therefore, if y ∈ {z ∈ [−1, 1]× [0, 1] | |z1| = 1}, we have

lim sup
y′→y

φ(y
′
, y
′
) ≤ φ(y, y) < φ((1, x∗2(1)), y) = lim

y′→y
φ((0, x∗2(1)), y

′
).

If y ∈ {z ∈ [−1, 1]× [0, 1] | |z1| 6= 1 } \ {(0, x∗2(0))}, we have

0 < φ(y, y)− φ((0, x∗2(0)), y) = lim
y′→y

φ(y
′
, y
′
)− φ((0, x∗2(0)), y

′
).

Moreoveor, there exists no points x ∈ X such that

φ((x, (0, x∗2(0))) > φ((0, x∗2(0)), (0, x∗2(0)))

φ((x, (1, x∗2(1))) > φ((1, x∗2(1)), (1, x∗2(1))).

Let x, x
′
, y ∈ X. We introduce the following multifunction ξ : λ ∈ [0, 1]→ 2X

ξ(λ) =


◦︷ ︸︸ ︷

Ak,y \ {x ∈ X ||x1| = 1} Ak,y 6= {(0, x∗2(y1))}

{(0, x∗2(y1))} otherwise

where k = λφ(x, y) + (1 − λ)φ(x
′
, y) and the subsets Ak,y are the k-uplevels for φ(·, y).

By Proposition 4.2, ξ is a nonempty open inverse image multifunction with multiconnected

values for suitable y’s values. Besides, there exists a point P̄ ≡ (1, nmin) ∈ [mmin, 1]×
[

1
4
, 1
]

such that

φ(P̄ , P̄ ) = max
A∈F (X)

max
x∈comc(A)

φ(x, P̄ ) = max
x∈{0}×[0, 4

5
]
φ(x, P̄ ).

by using the property (37). Therefore, by Main Theorem 3.1, the thesis is given.

We introduce this simple lemma.

Lemma 5.1. Let f : [0, a]→ R+ be twice continuous differentiable on the interval [0, a[ and

continuous on [0, a]. Suppose that
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i) f
′
(0) = 0;

ii) f is strict increasing on ]0,min arg maxx∈[0,a] f(x)] 6= ∅;

iii) min arg maxx∈[0,a] f(x) 6= a.

Then

{(x2, x1) ∈ [0, a]×R+ | x2 ∈ [0, a],
√
f(x2) ≥ x1}

is not a convex subset.

Remark 5.1. In the case i) of the proof of Theorem 4.2, let a k such that

lim
x1→1

φ(x1, x
∗
2(y1), y1, y2) < k. (57)

for some (y1, y2)’s values 11. Then, we can define the family of functions

x2 ∈ [0, 1]→ φ(0, x2, y1, y2)− k ∈ [0, 1[.

Every function of this family satisfies ii) and iii) of Lemma 5.1 by (47) and (42); the

condition i) of the same Lemma by (40). Therefore, by a simple symmetric argument,

Ak,y \ {x ∈ X | |x1| = 1 } is not a convex subset. Moreover, in the case ii) of the proof

of Theorem 4.2, some Ak,y \ {x ∈ X | |x1| = 1 } are not connected subsets for suitable k’s

values.

11This subset is not empty. For example, (mmin, nmin) satisfies the inequality (57) since

φ(0, 1,mmin, nmin) > φ(1, x∗2(mmin),mmin, nmin) holds.
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