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Abstract

This paper attempts to underline how the Diagonal Transfer Continuity hypothesis

(Baye, Tian and Zhou, 1993) and Better-Reply Security (Reny, 1999) are unconnected

between themselves as sufficient conditions for stating the existence of Nash equilibria.

Besides, various examples and counterexamples regarding Nash equilibria existence

Theorem (Baye, Tian and Zhou, 1993) and extensions of maximum existence results

for bifunctions established for a function of one variable (Baye and and Zhou,1995).

We present, also, a sufficient conditions for Diagonal Transfer Continuity. Moreover, an

example of quasi-concave game having multiple Nash equilibria, in which the aforesaid

hypotheses and other improvements (Lignola, 1997) fall, is presented.
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1 Introduction

In the Sections 2 and 3, we study the relationships between the Diagonal Transfer (Upper

Semi) Continuity introduced in [1], [2], and Better-Reply Security introduced in [5]. Both

of them represent the main attempts to relax the continuity hypothesis on Nash Equilibria

Theorems.

We introduce some notations and definitions. Let G = (Xi, ui)i=1,...n a maximum game

with Xi ⊂ Rhi the individual strategy space and X =
∏n

i=1Xi ⊂ Rh(=
∑n
i=1 hi) the whole

strategy space. Let U a neighborhood of a point x0 ∈ R, we denote by U− := {x ∈ U | x <

x0} and U+ := {x ∈ U | x > x0}. Let A ⊂ R, we denote by χA the characteristic function of

the subset A which assumes value 1 if x ∈ A or 0 if x 6∈ A. For sake of simplicity, we denote

by χ{l} = χl where l ∈ R; and let a, b ∈ R we denote J(a, b) =] min {a, b} ,max {a, b} [. Let

x ∈ X be a multistrategy, we denote x−i = (x1, . . . , xi−1, xi+1, . . . , xi+1) ∈ X−i =
∏

i∈I\{i}Xi.

Moreover, let be BRi : X−i −→ Xi

BRi(x−i) = arg max
x−i∈Xi

ui(xi, x−i)

the Best Reply multifunction for the the player i.

Moreover, the function φ : (x, y) ∈ X×X →
∑n

i=1 ui(xi, y−i) is the equilibrium bifunction

for the game G. Such a function φ is diagonal transfer continuous on A ⊆ X in y ∈ Z ⊆ X

if, by assuming that for every point (x, y) ∈ A× Z such that φ(x, y) > φ(y, y), there exists

x̄ ∈ A and U ⊂ Z a neighborhood of y in Z such that φ(x̄, y
′
) > φ(y

′
, y
′
) for all y

′ ∈ U . We

shall simply say that φ is diagonal transfer continuous in y when A = X and Z = X.

For the following definition, we claim that X ⊂ Rh and C ⊆ X are convex subsets. There-

fore, φ(x, y) is diagonal transfer quasi concave in x on A ⊆ X for any finite subset Xm =

{x1, . . . , xm} ⊂ A there exists a corresponding finite subset Y m = {y1, . . . , ym} ⊂ C such

that for any finite subset
{
yk

1
, yk

2
, . . . , yk

s
}

, 1 ≤ s ≤ m and any yk
0 ∈ co

{
yk

1
, yk

2
, . . . , yk

s
}

we have

min
1≤l≤s

φ(yk
l

, yk
0

) ≤ φ(yk
0

, yk
0

).

We will simply say φ diagonally transfer quasi concave in x when A = X and C = X.
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In terms of individual payoffs, we remark these definitions. For the following definition,

we claim that Xi ⊂ Rhi is a convex subset. A payoff ui is said to be uniformly transfer quasi

concave on X if, for any finite subset Xm = {x1, . . . , xm} ⊂ X there exists a corresponding

finite subset Y m
i = {y1

i , . . . , y
m
i } ⊂ C such that for any finite subset

{
yk

1

i , y
k2

i , . . . , y
ks

i

}
,

1 ≤ s ≤ m and any yk
0

i ∈ co
{
yk

1

i , y
k2

i , . . . , y
ks

i

}
we have

min
1≤l≤s

[
ui(x

kl

i , x
kl

−i)− ui(yk
0

i , x
kl

−i)
]
≤ 0.

A payoff ui is said to be uniformly quasi concave on X if yji = xji for all j = 1, . . .m and i =

1, . . . n. A payoff ui is said to be transfer upper semicontinuous in xi if, for every yi ∈ Xi and

x ∈ X, ui(xi, x−i) > ui(yi, x−i) implies that there exists a a point x̄ ∈ X and a neighborhood

U of yi such that ui(x̄) > ui(y
′
i, x̄−i) for all y

′
i ∈ U . A function f : X → R is said to be

transfer (weakly) upper continuous on X if for points x, y ∈ X, f(y) < f(x) implies that

there exists a point x
′ ∈ X and a neighborhood U of y such that f(z) ≤ (<)f(x

′
) for all U . A

game G is Better-Reply Secure if whenever (x∗, u∗) is in the closure of the graph of its vector

payoff function and x∗ is not an equilibrium and other players deviate slightly from x∗−i, some

player i can secure a payoff strictly above u∗i at x∗ [5][pp.1033]. His hypothesis generalized the

Complementary Discontinuities (Reciprocally Upper Semicontinuity) assumption introduced

by Simon in [7]; and the Payoff Security introduced by himself in [8]. In particular, payoff

security requires that for every strategy x ∈ X, each player has a strategy x̄i ∈ Xi that,

virtually, guarantees the payoff he receives at x even if the others deviate slightly from x

[5][pp. 1032]. In mathematical words, for every strategy x ∈ X and ε > 0, there exists

x̄i ∈ Xi such that ui(x̄i, y−i) > ui(x) − ε for all y−i in a neighborhood of x−i and for all

i = 1, . . . , n. Reciprocal upper semicontinuity requires that some players payoff jumps up

whenever some other players payoff jumps down [5][pp. 1034]. In mathematical words, if

whenever (x, u) is in the closure of the graph of its vector payoff function and ui(x) ≤ ui for

every player i, then ui(x) = ui for every player i.

In the Section 4, an example of quasi-concave game in which the Diagonal Transfer

Continuity’s and Better-Reply Security’s hypotheses and Lignola’s ones [6] [Th.3.1] fail,

notwithstanding such a game has a countable Nash equilibria set.
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2 Does Diagonal Transfer Continuity Hypothesis im-

ply Better-Reply Security one?

In this section, a diagonally transfer quasi concave game, in which the diagonal transfer

continuity hypothesis holds while better-reply security one fail, is introduced. At that aim,

we present the following Proposition.

Proposition 2.1. Let A ⊆ X be an open subset in X and φ : X × X −→ R. Let φ |A×A

be an upper semicontinuous function and φ |A (x, ·) be lower semicontinuous for all x ∈ A.

Then, φ is diagonally transfer continuous on X in y ∈ A.

Proof. Suppose that there exists a point (x, y) ∈ X × A such that

φ(x, y) > φ(y, y).

By lower semicontinuity, there exists a neighborhood U1,y ⊆ A of y in A such that

φ(y, y) ≥ φ(z, z) ∀ z ∈ U1,y

and, by upper semicontinuity, there exists a neighborhood U2,y ⊆ A of y in A such that

φ(x, z) ≥ φ(x, y) ∀ z ∈ U2,y

and, by gathering all the previous equations, we obtain

φ(x, z) ≥ φ(x, y) > φ(y, y) ≥ φ(z, z) ∀ z ∈ U1,y ∩ U2,y ⊆ A.

Now, let G1 = ([−1, 1], [−1, 1], u1, u2) whose payoffs are defined as follows:

u1(x1, x2) =


−x2

1 + 1 x1 6= 0

1 + ε+ χ]−ε,0[∪]0,+ε[(x2) f(x2) x1 = 0

u2(x1, x2) =


−x2

2 + 1 + χ[−1,0]∪[ε,1](x1) gε(x2) x2 6= 0

1− ε x2 = 0
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where g : [−1,+1] \ {0} → R+ is the following function

gε(x2) =


ε
√
x2

3 1 ≥ x2 > 0

0 −1 ≤ x2 < 0

and f :]− ε, ε[\{0} → R an even continuous function satisfying the following properties:

i) f ≥ −ε;

ii) ∃!x∗2 = arg maxx2>0{f(x2)− x2
2 + gε(x2)} = arg maxx2>0{−x2

2 + gε(x2)} =
9

16
ε2;

iii) f is positive on ]0, x∗2] and, locally, at the points x2 = +ε.
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Now, we construct the aggregate function for G1 and its diagonalized version:

φ(x1, x2, y1, y2) =



2− x2
1 − x2

2 x1 6= 0, x2 6= 0, y1 ∈]0, ε[

2− x2
1 − x2

2 + gε(x2) x1 6= 0, x2 6= 0, y1 6∈]0, ε[

2 + f(y2) x1 = 0, x2 = 0, y2 ∈]− ε, 0[∪]0, ε[

2 x1 = 0, x2 = 0, y2 6∈]− ε, 0[∪]0, ε[

2 + ε− x2
2 + f(y2) x1 = 0, x2 6= 0, y1 ∈]0, ε[, y2 ∈]− ε, 0[∪]0, ε[

2 + ε− x2
2 + gε(x2) + f(y2) x1 = 0, x2 6= 0, y1 6∈]0, ε[, y2 ∈]− ε, 0[∪]0, ε[

2 + ε− x2
2 x1 = 0, x2 6= 0, y1 ∈]0, ε[, y2 6∈]− ε, 0[∪]0, ε[

2 + ε− x2
2 + gε(x2) x1 = 0, x2 6= 0, y1 6∈]0, ε[, y2 6∈]− ε, 0[∪]0, ε[

2− ε− x2
1 x1 6= 0, x2 = 0

(1)

φ(y1, y2, y1, y2) =



2− y2
1 − y2

2 + gε(y2) −1 ≤ y1 < 0, ε ≤ y1 ≤ 1, y2 6= 0

2− y2
1 − y2

2 0 < y1 < ε, y2 6= 0

2 y1 = 0, y2 = 0

2 + ε− y2
2 + gε(y2) y1 = 0, |y2| ≥ ε

2− y2
2 + ε+ gε(y2) + f(y2) y1 = 0, y2 6= 0, |y2| < ε

2− ε− y2
1 y1 6= 0, y2 = 0

(2)

Now, we prove the following proposition.

Proposition 2.2. The function φ(x, y) is diagonally transfer continuous in y.
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Proof. By properties i) and iii), the following inequalities

lim sup
y1→0

φ(y1, y2, y1, y2) ≤ φ(0, y2, 0, y2) ∀y2 ∈ [−1, 1] (3)

lim sup
y1→ε

φ(y1, y2, y1, y2) = φ(ε, y2, ε, y2) ∀y2 ∈ [−1, 1] (4)

lim
y2→±ε

φ(y1, y2, y1, y2) = φ(y1,±ε, y1,±ε) ∀y1 ∈ [−1, 1] \ {0} (5)

lim inf
y2→±ε

φ(x1, x2, y1, y2) ≥ φ(x1, x2, y1,±ε) ∀y1 ∈ [−1, 1] \ {0, ε} , ∀(x1, x2) ∈ X (6)

hold trivially. By Proposition 2.1 and (5), (6), φ is diagonally transfer continuous on X in

y ∈ [−1, 1] \ {0, ε} × [−1, 1] \ {0} 1. By assuming that for every point

(x1, x2, y1, y2) ∈ X × ({0} × [−1,+1] ∪ {ε} × [−1,+1] ∪ [−1,+1]× {0})

such that φ(x1, x2, y1, y2) > φ(y1, y2, y1, y2), 2 we can show that there exists a point (x̄1, x̄2) ∈

X and U ⊂ X a neighborhood of (y1, y2) such that φ(x̄1, x̄2, y
′
1, y

′
2) > φ(y

′
1, y

′
2, y

′
1, y

′
2) for all

(y
′
1, y

′
2) ∈ U . For sake of simplicity, we divide our analysis into four subcases:

Area 1. A1 = {y1 ∈ [−1,+1] | y1 = 0 } × {y2 ∈ [−1,+1] | y2 6= −ε, 0, x∗2, ε };

Area 2. A2 = {y1 ∈ [−1,+1] | y1 6= 0, ε } × {y2 ∈ [−1,+1] | y2 = 0 };

Area 3. A3 = {y1 ∈ [−1,+1] | y1 = ε } × [0, 1];

Area 4. A4 = {(0, ε), (0,−ε), (0, 0)}.

We put in Area 1.

We suppose that y2 ∈]− ε, 0[∪]0,+ε[\ {x∗2}. By i) and ii), there exists an open neighbor-

hood U1,0 ⊂]− ε, ε[ of 0, V2,y2 ⊂]− ε, 0[∪]0,+ε[\{x∗2} of y2, such that

φ(0, x∗2, y1
′
, y2

′
) = 2 + ε− x∗2

2 + gε(x
∗
2) + f(y2

′
) >

> 2 + ε χ0(y1
′
)− y2

′2 − y1
′2

+ gε(y2
′
) + χ0(y1

′
)f(y2

′
) = φ(y1

′
, y2

′
, y1

′
, y2

′
)

1This subset is open in X.
2Note that arg max(y1,y2)∈X φ(y1, y2, y1, y2) = (0, x∗2); and arg max(x1,x2)∈X φ(x1, x2, 0, x∗2) = (0, x∗2).

Therefore, the diagonal transfer continuity in (0, x∗2) ∈ X is satisfied. It needs to check it for the other

points belonging to the square [−1, 1]2.
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∀ (y
′

1, y
′

2) ∈ U−1,0 ∪ {0} × V2,y2 (7)

and, by i) and iii), such that

φ(0, x∗2, y
′

1, y
′

2) = 2 + ε− x∗2
2 + f(y

′

2) > 2− y′2
2

= lim
y
′
1→0+

φ(y
′

1, y
′

2, y
′

1, y
′

2)

∀ (y
′

1, y
′

2) ∈ U+
1,0 × V2,y2 . (8)

We suppose that |y2| > ε. By (3) and ε sufficiently small, there exists a suitable neigh-

borhood V2,y2 ⊂ {y2 | | y2 |> ε} of y2 such that

inf
y
′
1∈U1,0

φ(0, x2
∗, y

′

1, y
′

2) = 2 + ε− 81

256
ε4

2 + ε− ε2 +
2
√
ε5 > φ(0, y2

′
, 0, y

′

2) ≥ lim sup
y
′
1→0

φ(y
′

1, y
′

2, y
′

1, y
′

2) ∀ y′2 ∈ V2,y2
3 (9)

By (7), (8) and (9), φ is diagonally transfer continuous on X in (y1, y2) ∈ A1 ⊂ X.

We put in Area 2.

Since the property iii) holds and by choosing (x̄1, x̄2) = (0, 0), there exists a neighborhood

V2,0 ⊂]− ε, ε[ of 0 such that

φ(0, 0, y
′

1, y
′

2) = 2 + f(y
′

2) ≥ 2 = sup
y1∈[0,1]\{0,ε}

4 lim
y2→0

φ(y1, y2, y1, y2)

∀ (y
′

1, y
′

2) ∈ [0, 1] \ {0, ε} × V2,0 \ {0} (10)

and

inf
y1 6=0,ε

φ(0, 0, y1, 0) = 2 > 2− ε = sup
y1 6=0,ε

φ(y1, 0, y1, 0). (11)

By (10) and (11), φ is diagonally transfer continuous on X in (y1, y2) ∈ A2 ⊂ X.

We put in Area 3.

Since φ(·, ·, ·, ·) is lower semicontinuous at (ε, 0, ε, 0) and the properties (4) and (5) hold,

there exists U1,ε of ε in X and a suitable neighborhood V2,y2 of y2 such that

sup
x1 6=0, x2 6=0

φ(x1, x2, y
′

1, y
′

2) = 2 > 2− ε2 +
27

256
ε4 = max

y2∈[0,1]
lim sup
y1→ε

φ(y1, y2, y1, y2) ≥

≥ max
y2∈[0,1]

φ(ε, y2, ε, y2) ∀ (y
′

1, y
′

2) ∈ U1,ε× ∈ V2,y2 . (12)

3Note that ε2 − 81
64ε

4 − ε 5
2 > 0 for ε sufficiently small.

4This superior value is not a maximum one.
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By (12), φ is diagonally transfer continuous on X in (y1, y2) ∈ A3 ⊂ X.

We put in Area 4.

We deal with the case regarding (0, ε) and (0,−ε). Since the property iii) holds, there

exists U1,0 a neighborhood of 0, V2,ε (−ε) a neighborhood of ε (−ε) in X; and x̄2 > 0 in a

suitable neighborhood of 0 such that

inf
(y1,y2)∈U1,0\{0}×V2,ε (−ε)

φ(0, x̄2, y1, y2) = 2+ε−x̄2
2 > 2−ε2+ε

5
2 = sup

y2∈V2,ε (−ε)

lim sup
y1→0

φ(y1, y2, y1, y2)

(13)

and, trivially,

φ(0, x̄2, 0, y
′

2) = 2 + ε

>0︷ ︸︸ ︷
−x̄2

2 + gε(x̄2) +χ{|y′2|<ε}f(y
′

2) > 2 + ε

<0︷ ︸︸ ︷
−y′2

2
+ gε(y

′

2) +χ{|y′2|<ε}f(y
′

2) =

= φ(0, y
′

2, 0, y
′

2) ∀ y′2 ∈ V2,ε (−ε). (14)

We deal with the case regarding (y1, y2) = (0, 0). Since the property (iii) holds, there exists

V2,0 ⊂]− ε, x∗2[⊂]− ε, ε[ an open neighborhood of 0 and x̄2 = supV2,0, such that

φ(0, x̄2, y
′

1, y
′

2) = 2 + ε− x̄2
2 + gε(x̄2)χ{y′1<0}(y

′

1) + f(y
′

2) > 2− y′1
2− y′2

2
+ gε(y

′

2)χ{y′1<0}(y
′

1) =

= φ(y
′

1, y
′

2, y
′

1, y
′

2) ∀(y′1, y
′

2) ∈ [−1, 1] \ {0} × V2,0 \ {0} (15)

and

φ(0, x̄2, 0, y
′

2) = 2 + ε− x̄2
2 + gε(x̄2) + f(y

′

2) >

> 2 + ε− y′2
2

+ gε(y
′

2) + f(y
′

2) = φ(0, y
′

2, 0, y
′

2) ∀y′2 ∈ V2,0 \ {0} (16)

and, finally,

inf
y
′
1∈[−1,1]

φ(0, x̄2, y
′

1, 0) = 2 + ε− x̄2
2 > 2 = sup

y
′
1∈[−1,1]

φ(y
′

1, 0, y
′

1, 0) (17)

By (13), (14), (15), (16) and (17), φ is diagonally transfer continuous on X in (y1, y2) ∈

A4 ⊂ X.

Remark 2.1. It can be noted that G1(ε)
ε→0+

−→ G0 in the punctual convergence of the payoffs.

This limit quasi concave game G0 satisfies the diagonal transfer continuity and better-reply

9



secure game properties. Therefore, a new question arises: What are the nonlinear pertur-

bation properties of these two fundamental hypotheses? What are their closure properties

respect to the punctual convergence or other kinds?

Proposition 2.3. G1 is a diagonally transfer quasi concave game.

Proof. By [1][Prop.1,1(e)], it’s sufficient to prove that, at least, one payoff is transfer upper

continuous in its own strategy [1][Def.4] and is uniformly transfer quasi concave [1][Def.3].

Now, let (x1
i, x2

i)i∈{1,...m} ⊂ [−1, 1]2 be a family of distinct elements and

x1
ī = min argx2

max
i∈{1,...m}

u1(x1
i, x2

i)

there exists (y1
i)i∈{1,...m} ⊂ [−1, 1] a family of elements choosen in the following subsets as

follows:

y2
i ∈

 J
(
0, x1

ī
)

x2
ī 6= 0

{0} x2
ī = 0

such that, for any finite subset {y1
i}i∈A and for any y1

0 ∈ co({y1
i}i∈A) and for A ⊆

{1, 2 . . . ,m},

min
i∈A

{
u1(x1

i, x2
i)− u2(y2

0, x2
i)
}
≤ 0. (18)

Suppose that x1
ī 6= 0. Since u1(·, x2

i) is strict increasing on [−1, 0[ and strict decreasing

on [0, 1[; and y1
0 ∈ J

(
0, x1

ī
)

we have

min
i∈A

{
u1(x1

i, x2
i)− u1(y1

0, x2
i)
}

= min
i∈A

u1(x1
i, x2

i)−max
i∈A

u1(y1
0, x2

i) ≤

≤ u1(x1
ī, x2

i)− 1 < 0 (19)

Suppose that x1
ī = 0, then y1

0 = 0. Therefore, the first term in the equation (19) is lesser

or equal than

u1(0, x2
i)− u1(0, x2

i) = 0 (20)

For sake of sufficient conditions, we introduce the following Proposition.

Proposition 2.4. The payoff u2 is transfer upper continuous in its own strategy but not

uniformly transfer quasi concave on X.
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Proof. The function u2(x1, ·) is upper semicontinuous on [−1, 1] \ {0} for all x1 ∈ [−1, 1];

and, then, it is transfer upper semicontinuous on [−1, 1] \ {0}. By choosing (x1, x2) ∈

[−1, 1]×]−
√
ε,
√
ε[ we have u2(x1, x2) > 1− ε = u2(x1, 0) for all x1. But, there exists a point

(x̄1, x̄2) = (0, x∗2) ∈ [−1, 0]×]0, ε[ and V2 ⊆]− ε, x∗2[ a neighborhood of 0 such that

u2(x̄1, x̄2) = −x∗2
2 + gε(x

∗
2) + 1 > sup

x
′
2∈V2

u2(0, x
′

2) ≥ u2(x̄1, x
′

2) ∀x′2 ∈ V2

Therefore, u2 is transfer upper continuous respect to its own variable. Now, let (x1
1, x2

1) ∈

]0, ε[2 and (x1
2, x2

2) = (0, x2
∗) such that x2

∗ > x2
1 a finite family of points in X. It’s easy

to remark that, necessarily, the transferred points y2
i suitable for satisfying the uniformly

transfer quasi concave on X have to satisfy

y2
1 ≤ x2

1, y2
2 = x2

∗

but, if we choose y2
0 ∈]x2

1, x2
∗[⊂ [y2

1, y2
2], we have

0 < u2(x1
1, x2

1)− u2(x1
1, y2

0)

0 < u2(0, x2
∗)− u2(0, y2

0)

since u2(x1
1, ·) is strict decreasing on ]0, ε[ and u2(0, ) is strict increasing on ]0, x2

∗[. Therefore

u2(·, ·) is not uniformly transfer quasi concave on X.

Now, we introduce the following Proposition.

Proposition 2.5. G1 is not a better-reply secure game.

Proof. We choose (0, x2) ∈ [−1, 1]×]0, x∗2[. For all neighborhood V2 ⊂]0,+ε[ of x2, the

following

max
x1∈[0,1]

u1(x1, x2
′
) = 1 + ε+ f(x

′

2) ≥ 1 + ε+ f(x2) = u1(0, x2) ∀x2
′ ∈ V2. (21)

holds. But, if x2
′

= x2 ∈ V2 the previous inequality is not strict. For all neighborhood

U1 ⊂]− ε,+ε[ of 0, the following

inf
x1∈U1

sup
x2
′∈[−1,1]

u2(x1, x2
′
) = min

{
1, 1 +

27

256
ε4
}

= 1 < 1− x2
2 + ε 2

√
x2

3 = u2(0, x2) (22)

holds. Therefore, by (21) and (22), G1 is not better-reply secure at (0, x2).

11



However, G1 has a Nash equilibrium at the point (0, x∗2) according to Theorem [1][Th.1].

Now, let us modify the f ’s values continuously in a neighborhood of the point x2 = ε; and, at

a second time, globally on the whole subset ]− ε,+ε[\{0} without preserving the conditions

(i), (ii) and (iii). For sake of simplicity, we denote, again, this new function by f .

Therefore, we assume that f (x∗2) = −ε. In that case, it can be shown, easily, that φ is

not diagonally transfer continuous in y but diagonally transfer quasi concave in x; and G1

has a Nash equilibrium. Therefore, the following schema

Diagonal transfer quasi concavity⇐⇒ Nash equilibrium existence.

implication established by [1][Th.1] ⇑ 6⇓ implication not valid for G1

Diagonal transfer continuity

holds. Moreover, we assume that f (x∗2) < −ε. In the last case, it can be shown, easily, that

φ is not diagonally transfer continuous in y but diagonally transfer quasi concave in x; and

G1 has no pure Nash equilibria. If diagonal transfer continuity hypothesis doesn’t hold, then

the following

Diagonal transfer quasi concavity 6⇒ Nash equilibria existence.

holds. It represents a counterexample on the Theorem [1][Th.1].

In the Theorem [2][Th.1], Tian & Oth. prove that if a function achieves its maximum

value then it is weakly transfer upper (semi)continuous [2][Def.2] 5 on a compact subset.

The same necessary condition for existence of maximum points doesn’t hold for diagonalized

bifunctions on compact subsets and the diagonalized version of transfer continuity condi-

tion. In fact, by choosing fε(x2) =
∣∣∣arctan

(x2

ε3

)∣∣∣ , the diagonalized bifunction in (1) has

a maximum point without preserving the diagonal transfer continuity. For understanding

that, it’s easy to observe that the function H(x2, ε) = −x2
2 + ε x

3/2
2 + fε(x2) has a maximum

point belonging to the subset ]0, ε[\ {x∗2} for ε sufficiently small. In fact, let the well defined

differentiable function C(ε) :=

{
x2 ∈]0, 1]

∣∣∣∣ ∂ H∂x2

(x2, ε) = 0

}
for ε sufficiently small 6 ; we

5If the function has a unique point of maximum, we can substitute weakly transfer upper (semi)continuous

by transfer upper (semi)continuous.
6Note that C(ε) =

{
x2 ∈]0, 1]

∣∣∣ (4x2
2ε6 + 4x2

6 − 3 ε7x2 − 3 εx2
5 − 2 ε3

)2 = 0
}
.

12



note that

lim
ε→0+

C(ε) = 0, lim
ε→0+

d x∗2
dε

(ε) = 0 <
4

5
∼= lim

ε→0+

dC

dε
(ε) < 1

However, fε does not satisfy the property ii). It can be shown, easily, that the last property

is necessary one for diagonal transfer continuity.

3 Does Better-Reply Security imply Diagonal Transfer

Continuity?

In this section, a quasi concave game, in which the better-reply security hypothesis holds

while diagonal transfer continuity one fails, is introduced.

Let G2 = ([−1, 1], [−1, 1], u1, u2) defined as follows:

u1(x1, x2) =


−x2

1 + 1 x1 6= 0

1 + ε x1 = 0

u2(x1, x2) =



−x2
2 + 1 + x1 x1 6= 0

0 x1 = 0, x2 < 0

−x2 −
1

2
x1 = 0, x2 ≥ 0

13



with ε > 0; and the aggregate bifunction and its diagonalized verion are the following:

φ(x1, x2, y1, y2) =



−x2
1 − x2

2 + y1 + 2 x1 6= 0, y1 6= 0

−x2
1 + 1 x1 6= 0, y1 = 0, x2 < 0

−x2
1 +

1

2
− x2 x1 6= 0, y1 = 0, x2 ≥ 0

2 + ε− x2
2 + y1 x1 = 0, y1 6= 0

1 + ε x1 = 0, y1 = 0, x2 < 0

1

2
+ ε− x2 x1 = 0, y1 = 0, x2 ≥ 0

φ(y1, y2, y1, y2) =



−y2
1 − y2

2 + y1 + 2 y1 6= 0

1 + ε y1 = 0, y2 < 0

1

2
+ ε− y2 y1 = 0, y2 ≥ 0

Now, we present the following Proposition.

Proposition 3.1. G2 is better-reply secure but not diagonally transfer continuous.

Proof. The function u2(·, x2) is lower semicontinuous at the point 0 for all x2 ∈ X2, while

u1(x1, ·) is constant at 0 for all x1 ∈ X1. By [5][Cor. 3.4], G2 is a payoff secure game. The

vector payoffs field (u1, u2) has the subset {(0, x2) ∈ [−1, 1]2 |x2 ∈ [−1, 1]} as discontinuities

set. Our attention can be focused on the previous subset. We choose a point (0, x2) and a

sequence (x1n, x2n) ∈ [−1, 1]2 converging to (0, x2).

Suppose that x1n 6= 0 for n sufficiently large, we have that u2(x1n, x2n)
n→ 1 > u2(0, x2)

while u1(x1n, x2n)
n→ 1 < 1 + ε = u1(0, x2).

Suppose that x1n = 0 for n sufficiently large and x2 6= 0, we have that ui(x1n, x2n)

converging to ui(0, x2) for all i = 1, 2.

Suppose that x1n = 0 for n sufficiently large and x2 = 0, we have that u1(x1n, x2n)

converging to u1(0, 0) but lim supn u2(x1n, x2n) = 0 > −1
2

= u2(0, 0) = lim infn u2(x1n, x2n)
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7. Therefore, in all of three cases, at least one payoff ui is converging to a value greater or

equal than ui(0, x2) along the sequence (x1n, x2n). We can conclude that G2 is reciprocally

upper semicontinuous. By [5][Prop. 3.2], G2 is better-reply secure. Now, we prove that G2

is not diagonally transfer continuous at the point (0, 0). It’s easy to verify that

φ(0,−1

2
, 0, 0) = 1 + ε >

1

2
+ ε = φ(0, 0, 0, 0).

holds. Let U0 a neighborhood of (0, 0) and for all (y1, y2) ∈ U with y1 6= 0. Necessarily, by

continuity, there exists V2 a suitable neighborhood of 0 such that

φ(0, x2, y1, y2) = 2 + ε− x2
2 + y1 > −y2

1 − y2
2 + y1 + 2 = φ(y1, y2, y1, y2) ∀x2 ∈ V2

but, by considering all the points (0, y2) ∈ U0, we obtain

max
x2∈V2

φ(0, x2, 0, y2) = 1 + ε 6> 1 + ε = φ(0, y2, 0, y2) ∀ y2 ∈ Pr2(U0)−.

Moreover, G2 is a quasi concave game and has multiple Nash equilibria of this kind (0, x2)

with x2 < 0.

4 How much Does Generalized Continuity Assumption

Need ?

In this section, we want to introduce a game G3 about which the most recent continuity

assumptions, stated in [1], [5] and [6], fail and the quasi concavity assumption is preserved;

and, simultaneously, a countable Nash equilibria set exists. A new question arises: Are

there new kind of generalized continuity concepts which represent sufficient conditions for

Nash Equilibrium existence in the setting of quasi concave games? By a slight variation

on G3, we show a G∗3 which furnishes a counter example of the Theorem [5][Th.3.1]. Let

7Any sequence (x1n, x2n) converging to a point (0, x2) in a different way as prescribed before is such as

the sequence (u1, u2)(x1n, x2n) is not converging.
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c = tan (1); ε > 0 sufficiently small; x∗1 the unique solution of the eq. e
−
x

ε = x2 in ]0, 1[; and

x∗2 :=

√
tan x∗1
c

. We define payoffs on the set [0, 1]2 as follows:

u1(x1, x2) =



−ε x2 = 0, x ≥ x∗1

0 x2 = 0, x1 < x∗1

[1− x2 lnx2 − 2x2 + x1]+ x2 6= 1, x1 ≤ arctan(c x2
2)

1− x2 lnx2 − 2x2 + arctan(c x2
2)

arctan(c x2
2)− 1

(x1 − 1) x2 6= 0, 1, x1 > arctan(c x2
2)

0 x2 = 1, x1 6= 1

ε x2 = 1, x1 = 1

u2(x1, x2) =



(
e
−
x1

ε − x2
1

)
x2 + x2

1 x2 ≤ 1− x1, x1 ≤ x∗1

−

(
e
−
x1

ε − x2
1

)
(x2 + 2x1 − 2) + x2

1 1− x1 < x2, x1 ≤ x∗1

−
∣∣∣∣sin(x1 − x∗1

1− x1

)∣∣∣∣ (x2 −
1

2

)
+ x∗1

2 x∗1 < x1 6= 1

lim infx1→1− u2

∣∣
x∗1<x1 6=1 (x1, x2) x1 = 1, x2 ≤

1

2

lim supx1→1− u2

∣∣
x∗1<x1 6=1 (x1, x2) x1 = 1, x2 >

1

2

where x∗1 satisfies the following property

1

2 c

∫ x∗1

0

(tan y)−
1
2

√
c

+
tan y

c
+ 2 d y < 1. (23)

Now, we prove the following Proposition.

Proposition 4.1. G3 is neither better-reply secure nor diagonally transfer continuous game.

Proof. It’s easy to prove that G3 is not better-reply secure at the not equilibrium point
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(1, 1, ε, 0) ∈ Graph(u1, u2). We note that

lim
x2→1−

max
x1∈[0,1]

u1(x1, x2) = 0. (24)

By permanence on sign’s Theorem, we can choose U2 a right suitable neighborhood of 1

such that maxx1∈[0,1] u1(x1, x2) < ε = u1(1, 1) for all x2 ∈ U2 \ {1}; besides, for all right

neighborhood U1 of 1 there exists x̄1 ∈ U1 such that

max
x2∈[0,1]

lim sup
x1→1−

u2(x1, x2) = max
x2∈[0,1]

u2(x̄1, x2) = max
x2∈[0, 1

2
]
u2(x̄1, x2) = 0 6> 0 = u2(1, 1) (25)

We prove that the condition (c) in [6][Th.3.1] fails. In fact, we have

sup
x1∈[0,1]

lim inf
x2→1−

u1(x1, x2) = sup
x1∈[0,1]

{
lim

x2→1−
[1− x2 lnx2 − 2x2 + x1]+,

lim
x2→1−

1− x2 lnx2 − 2x2 + arctan(c x2
2)

arctan(c x2
2)− 1

lim
x1→1−

x1 − 1

}
=

= max

{
sup

x1∈[0,1]

[x1 − 1]+,
1

2

2 c− 3− 3 c2

c
lim

x1→1−
(x1 − 1)

}
= 0 6≥ ε = u1(1, 1)

Now, it will be proved that the game is not diagonally transfer continuous at the point

(1, 1) ∈ [0, 1]2. It’s remarkable that

φ(1, 1, 1, 1) = u1(1, 1) + u2(1, 1) = ε+ x∗1
2 <

<
1

2
+ x∗1

2 = u1(
1

2
, 1) + u2(1, 0) = φ(

1

2
, 0, 1, 1). (26)

holds. Moreover, let be a function g ∈ C1([0, 1], [0, 1]) such that

g(1) = 1, 0 <
c

1 + c2
≤ ġ−(1) <

2c

1 + c2
. (27)

By computing this limit, we have

lim
x2→1−

u1(g(x2), x2) = lim
x2→1−

1− x2 lnx2 − 2x2 + arctan(c x2
2)

arctan(c x2
2)− 1

(g(x2)− 1) =

= lim
x2→1−

[
g(x2)− 1

arctan(c x2
2)− 1

+
(−x2 lnx2 − 2x2 + 2) (g(x2)− 1)

arctan(c x2
2)− 1

]
= lim

x2→1−

ġ(x2) (1 + c2 x4
2)

c x2

+

+ lim
x2→1−

(− lnx2 − 3) (g (x2)− 1) + (−x2 lnx2 − 2x2 + 2) ġ(x2)

2 (1 + c2x4
2)−1 c x2

=
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= ġ−(1)
(1 + c2)

c
. (28)

By Implicit Function’s Theorem and by properties (24) and (27), there exists a neighborhood

U of 1 in [0, 1] and g−1 : U → U a local inverse function such that

max
(x̄1,x̄2)∈[0,1]2

φ(x̄1, x̄2, g(x2), x2)− φ(g(x2), x2, g(x2), x2) =

= max
x̄1∈[0,1]

u1(x̄1, g
−1(x1))− u1(x1, g

−1(x1)) + max
x̄2∈[0,1]

u2(g(x2), x̄2)− u2(g(x2), x2) ≤

≤
[

max
x̄1∈[0,1]

u1(x̄1, g
−1(x1))− u1(x1, g

−1(x1))

]
+

[
u2(g(x2), 0)− inf

x2∈∈U\{1}
u2(g(x2), x2)

]
<

< −ġ(1−)
1 + c2

c
+ 2 ε+ 1 < 0 ∀x1, x2 ∈ U \ {1}. (29)

By the properties (26) and (29), we conclude the proof.

Now, we introduce the following two Proposition.

Proposition 4.2. G3 has infinite Nash Equilibria.

Proof. In fact, there exists a sequence

x∗1,n =

(
x∗1 + 2 π n

1 + 2 π n

)
n∈N+

⊂ [x∗1, 1[⊂]0, 1[

converging to 1, such that arg maxx2∈[0,1] u2(x∗1,n, x2) = [0, 1];but, by surjectivity of Best

Reply function associated to u1, there exists a sequence

x∗2,n =

(√
tan x∗1,n

c

)
n∈N+

⊂]0, 1[

converging to 1, such that x∗1,n = arg maxx1∈[0,1] u1(x1, x
∗
2,n). We prove that that the previous

sequence includes all the Nash equilibria for G3. In fact, if x2 = 0, then

0 6∈ BR2 (BR1(0)) = BR2 ([0, x∗1[) =]1− x∗1, 1];

if x2 6= x∗2,n and arctan(c x2
2) ≥ x∗1, then

x2 6∈ BR2 (BR1(x2)) = BR2

(
{arctan(c x2

2)}
)

= {0} ;
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if x2 6= 0 and arctan(c x2
2) < x∗1, by property (23), we can imply

x∗2 − 1 + arctan (c x∗2) =

∫ √
tan x∗1
c

0

1 + c2 s4 + 2 c s

1 + c2s4
d s − 1 =

=
1

2 c

∫ x∗1

0

(tan y)−
1
2

√
c

+
tan y

c
+ 2 d y − 1 < 0

and, then

x2 6∈ BR2 (BR1(x2)) = BR2

(
{arctan(c x2

2)}
)

=
{

1− arctan(c x2
2)
}
.

Besides, it would seem that better-reply security assumption is not a necessary condition

for Nash equilibrium existence. For example, by changing, only, the u2’s value at the points

(x∗1,n, x2), as follows

u2(x∗1,n, x2) = lim inf
x1→1−

u2

∣∣
x∗1<x1 6=1 (x1, x2) ∀n ∈ N+, ∀x2 ∈ [0, 1] (30)

This new game is named G∗3.

Proposition 4.3. G∗3 is not better-reply secure, only, at the point (x∗1, x
∗
2)n∈N+ but quasi

concave game without Nash Equilibria.

Proof. For testing the better-reply security assumption, it needs to check it on all the dis-

continuity points for u1 or u2 on [0, 1]2.

First of all, G∗3 becomes better-reply secure at the point (1, 1). In the above case, the

condition (25) does not hold. Besides, G∗3 becomes better-reply secure at all discontinuous

points
{
x∗1,n
}
×
]

1
2
, 1
]
. 8 We observe that u2(·, x2) is lower semicontinuous but not continuous

at x∗1,n for all x2 ∈ ] 1
2
, 1 ]; and u2(x∗1,n, ·) is strict decreasing function. Let x2 ∈ ] 1

2
, 1 ] and

1
2
< x̄2 < x2, we obtain

u2(x∗1,n, x2) < u2(x∗1,n, x̄2) < lim inf
x1→x∗1,n

u2(x1, x̄2).

8Note that infn∈N∗+ limε→0 x
∗
2,n >

1
2 . Therefore, (x∗1,n, x

∗
2,n)n∈N∗+ ⊂ ] 1

2 , 1 ].
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G∗3 is better-reply secure at all discontinuous points
({
x∗1,n
}
× ] 0, 1

2
] \
{
x∗2,n
})

n∈N+
. Let be

x∗1,n, x2 ∈
]
0, 1

2

]
\ {x∗2,m} with m 6= n; and we choose x̄1 such that

maxu1(·, x2) > x̄1 > x∗1,n

if maxu1(·, x2) > x∗1,n; or

maxu1(·, x2) < x̄1 < x∗1,n

if maxu1(·, x2) < x∗1,n. Therefore, by observing that u1(x1, ·) is continuous on ] 0, 1
2

] for all

x1 ∈ [0, 1], we obtain

u1(x∗1,n, x2) < u1(x̄1, x2) = lim
x
′
2→x2

u2(x̄1, x
′

2) ∀n ∈ N+ (31)

G∗3 is better-reply secure at all discontinuous points [x∗1, 1]×{0} . Let x1 ≥ x∗1. Since u1(0, ·)

is continuous at 0, we obtain

−ε = u1(x1, 0) < 0 = u1(0, 0) = lim inf
x2→0

u1(0, x2). (32)

G∗3 is better-reply secure at all discontinuous points {1}×]0, 1[\
{

1
2

}
.

Since maxx1 ∈ [0, 1]u1(x1, x2) > 0 is continuous for all x2 ∈]0, 1], we obtain

inf
x
′
2∈U2

max
x1∈[0,1]

u1(x̄1, x
′

2) > 0 = u1(1, x2)

with x̄1 = BR1(x2). G∗3 is not better-reply secure at all discontinuous points (x∗1, x
∗
2) 9. In

fact, we can note that

u1(x∗1, x
∗
2) ≥ u1(x1, x

∗
2) ≥ lim sup

x2→x∗2
u1(x1, x2) ∀x1 ∈ [0, 1]. (33)

and

u2(x∗1, x
∗
2) ≥ 0 = max

x2

lim sup
x1→x∗1

u2(x1, x2) (34)

holds. In spite of G3, G∗3 has no Nash equilibria in pure strategy. It’s sufficient to check on

the points of the sequence (x∗1,n, x
∗
2,n). In fact, we have

x∗1,n 6∈ BR1

(
BR2(x∗1,n)

)
= BR1 (0) = [0, x∗1[.

since x∗1,n ≥ x∗1, ∀n ∈ N+.

9If limε→0 x
∗
2 = 0, then x∗2 ⊂ [0,

1
2

].
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Remark 4.1. The reader can note that G3 is not better-reply secure, only, at the point (1, 1),

while G∗3 is better-reply secure at the point (1, 1) but not at the points (x∗1, x
∗
2).

Remark 4.2. By following the same path for constructing G∗3, we can change the u1’s value

at the points (x∗1,n, x2,n). In fact, it’s trivial to make u1(·, x∗2,n) lower semicontinuous at the

points x∗1,n as follows

u1(x∗1, x
∗
2) = [1− x∗2 ln(x∗2)− 2x∗2 + x∗1 − εn]+

with εn > 0. But, this slight and more simple modification ruins the quasi concavity as-

sumption. In fact, the game has no Nash equilibrium in pure strategy.
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