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Abstract We present an overview of research on a certain model of influence
in a social network. Each agent has to make an acceptance/rejection decision,
and he has an inclination to choose either the yes-action or the no-action.
The agents are embedded in a social network which models influence between
them. Due to the influence, a decision of an agent may differ from his prelim-
inary inclination. Such a transformation between the agents’ inclinations and
their decisions are represented by an influence function. Follower functions
encode the players who constantly follow the opinion of a given unanimous
coalition. We examine properties of the influence and follower functions and
study the relation between them. The model of influence is also compared to
the framework of command games in which a simple game is built for each
agent. We study the relation between command games and influence func-
tions. We also define influence indices and determine the relations between
these indices and some well-known power indices. Furthermore, we enlarge
the set of possible yes/no actions to multi-choice games and investigate the
analogous tools related to influence in the multi-choice model.
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2 Michel Grabisch and Agnieszka Rusinowska

1 Introduction

1.1 Aim of the paper

The existence of influence between agents in collective decision-making sit-
uations, in which individual agents are to choose among a number of al-
ternatives, may have a considerable impact on the collective decision, and
consequently, on the performance of the collective body. Investigating ap-
propriate tools to measure influence is of importance in every organization,
at the individual, group and macro levels. The capacity to influence others
seems to be as old as the world, since already the biblical story of Adam and
Eva can be modeled in terms of influence, and the consequences of this ‘first’
influence are experienced constantly in the world. Since influence is present
practically everywhere, in all kinds of structures where, e.g., personal, social,
economic, and political decisions are to be made, it is not surprising that
different approaches to the influence issues can be and have been applied.
For a short overview of theoretical and empirical studies of political influence
and power in groups presented in the political economic literature, we refer,
e.g., to van Winden (2004, [39]).

The aim of the present paper is to deliver an overview of the key investi-
gations of our research on influence. The model presented in this paper is a
game theoretical model and contributes to the literature of cooperative game
theory and network theory on interactions and influence between agents.
Since there are many worthwhile research on this framework, delivering an
overview of research conducted on the influence model is of importance. It
helps to realize what has been done on this subject and to which direction it
is good to navigate. In the following subsection, we give a short overview of
both cooperative and noncooperative approaches to influence, with a partic-
ular focus on our own research on this topic.

1.2 Overview of research on influence

Already more than fifty years ago, Isbell (1958, [24]) introduced the concept
of influence relation to qualitatively compare the a priori influence of voters
in a simple game. In a voting game, where players vote either ‘yes’ or ‘no’,
voter k is said to be at least as influential as voter j, if whenever j can
transform a losing coalition into a majority by joining it, voter k can achieve
the same ceteris paribus. This influence relation is extended in Tchantcho
et al. (2008, [38]) to voting games with abstention. Grabisch and Roubens
(1999, [13]) analyze the concept of interaction among agents. Players in a
coalition are said to exhibit a positive (negative) interaction when the worth
of the coalition is greater (smaller) than the sum of the individual worths.
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Different approaches to influence based on social networks and simple games 3

The cooperative game theoretical approach to interaction is also used in
Hu and Shapley (2003a, 2003b, [22, 23]), where the authors apply the com-
mand structure of Shapley (Shapley 1994, [36]) to model players’ interaction
relations by simple games. For each player, boss sets and approval sets are in-
troduced, and based on these sets, a simple game called the command game

for a player is built. Given a set of command games, the command func-

tion is defined, which assigns to each coalition the set of all players that are
‘commandable’ by that coalition.

A different approach, related to noncooperative game theory, is applied
in Koller and Milch (2003, [25]), where the so called multi-agent influence
diagrams are introduced. These diagrams are a graphical representation for
noncooperative games, and represent decision problems involving multiple
agents.

One of the concepts naturally related to influence is the concept of lead-
ership. DeMarzo (1992, [8]) examines the set of outcomes sustainable by a
leader with the power to make suggestions which are important even if players
can communicate and form coalitions. Van den Brink et al. (2009, [5]) define
the satisfaction and power scores for opinion leaders - followers structures
and examine common properties of these scores.

As mentioned in Hojman and Szeidl (2006, [20]), individual decisions and
strategic interaction are both embedded in a social network. Social networks
are therefore particularly useful in analyzing influence. In Lopez-Pintado
(2008, [28]), where the author stresses the fact that decisions of individuals
are often influenced by the decisions of other individuals, a network of inter-
acting agents whose actions are determined by the actions of their neighbors
is studied.

The point of departure for our research on influence is a framework origi-
nally introduced in Hoede and Bakker (1982, [19]). The model concerns influ-
ence in a social network in which agents are to make an acceptance/rejection
decision on a certain proposal. Each agent has an inclination to say either
‘yes’ or ‘no’ on the proposal, but agents may influence the decisions of others,
and consequently the agents’ decisions may differ from their preliminary incli-
nations. Such a transformation from the inclinations to the decisions is repre-
sented by an influence function. In Hoede and Bakker (1982, [19]) the concept
of decisional power (called later in some related papers the Hoede-Bakker in-
dex) is introduced. Some properties of this index are studied in Rusinowska
and de Swart (2007, [34]), where the authors examine if the Hoede-Bakker
index satisfies some postulates for power indices, like the monotonicity postu-
late, the donation postulate, and the bloc postulate (see e.g., Felsenthal and
Machover 1998, [10]), and if the Hoede-Bakker index displays some voting
power paradoxes, like the redistribution paradox (Fischer and Schotter 1978,
[12]; see also Schotter 1981, [35]), the paradox of new members (Brams 1975,
[3]; Brams and Affuso 1976, [4]), and the paradox of large size (Brams 1975,
[3]). Following a probabilistic approach to power indices (see e.g., Laruelle
and Valenciano 2005, [27]), Rusinowska and de Swart (2006, [33]) investigate
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4 Michel Grabisch and Agnieszka Rusinowska

a generalization of the Hoede-Bakker index that coincides with the Penrose
measure (Penrose 1946, [29]; see also Banzhaf 1965, [1]), and some modifi-
cations of this index that coincide with other well known power indices, like
the Rae index (Rae 1969, [30]), the Coleman indices (Coleman 1971, 1986,
[6, 7]), and the König-Bräuninger index (König and Bräuninger 1998, [26]).
Analogous modifications of the Hoede-Bakker index to the Shapley-Shubik
index (Shapley and Shubik 1954, [37]) and the Holler-Packel index (Holler and
Packel 1983, [21]) are presented in Rusinowska (2009, [32]). In Rusinowska
(2008, [31]) the not-preference based version of the Hoede-Bakker index is
investigated.

As noticed in our first paper on influence (Grabisch and Rusinowska 2009b,
[16]), the Hoede-Bakker index does not give a full description of the influ-
ence, in the sense that it hides the actual role of the influence function. This
observation has initiated our larger project on the model of influence in a
social network, with the aim to investigate measures of influence and other
tools to deal with this phenomenon. In Grabisch and Rusinowska (2009b,
[16]), the concept of a weighted influence index of a coalition on an indi-
vidual is defined. We consider different influence functions, like the majority
function, the guru function, the identity function, the reversal function, the
mass psychology function, and study their properties. In particular, the set of
followers, the kernel of an influence function, and a purely influential function
are analyzed.

As mentioned above, another framework which models players’ interac-
tions is the framework of command games introduced by Hu and Shapley
(2003a, 2003b, [22, 23]). In Grabisch and Rusinowska (2009a, [15]), we study
the relation between this framework and the influence model and show that
the model of influence is more general than the command games. In par-
ticular, we define several influence functions which capture the command
structure. Moreover, we propose a more general definition of the influence in-
dex and show that under some assumptions several well-known power indices
coincide with some expressions of the weighted influence indices.

In Grabisch and Rusinowska (2008, [14]), we study the exact relation be-
tween two central concepts of the influence model: the influence function
and the follower function. We deliver sufficient and necessary conditions for
a function to be a follower function, and describe the structure of the set
of all influence functions that lead to a given follower function. Moreover,
we investigate the exact relations between the key concepts of the command
games and of the influence model. A sufficient and necessary condition for
the equivalence between an influence function and a command game is de-
livered. We also find sufficient and necessary conditions for a function to be
a command function, and describe the minimal sets generating a command
game.

In Grabisch and Rusinowska (2009d, [18]), the yes/no model is extended
to the influence model in which each agent has a totally ordered set of pos-
sible actions. The generalized influence indices and other tools related to
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Different approaches to influence based on social networks and simple games 5

the multi-choice model are investigated and the results are compared to the
ones obtained in the yes/no model of influence. In Grabisch and Rusinowska
(2009c, [17]), we consider another generalized model of influence in which
each player has a continuum of actions.

1.3 Structure of the paper

In the remaining parts of the paper, we present a formal description of our
investigations on the selected influence issues. Section 2 concerns the yes/no
model of influence. We describe the model and recapitulate some results
on the key concepts of the influence model. In Section 3 the framework of
command games and some of the relations between this framework and the
yes/no influence model are presented. In Section 4 we mention the generalized
model of influence in which agents have a totally ordered set of possible
actions. Section 5 gives some reflections on the problem of identifying the
model of influence in a practical situation. Section 6 is devoted to concluding
remarks on our future research on the influence issues.

2 The model of influence in a social network

2.1 Description of the model and weighted influence

indices

We consider a social network with a set of agents (players, actors, voters)
denoted by N := {1, 2, ..., n} who are to make a certain acceptance-rejection
decision on a specific proposal. Each agent has an inclination either to say
‘yes’ (denoted by +1) or ‘no’ (denoted by −1). By the inclination of an agent
we mean an action that the agent would choose being completely ‘on his own’,
that is, without any interaction with other agents and not being influenced by
others. Let i = (i1, i2, ..., in) denote an inclination vector and I := {−1,+1}n

be the set of all inclination vectors. For convenience, (1, 1, . . . , 1) ∈ I and
(−1,−1, . . . ,−1) ∈ I are denoted by 1N and −1N , respectively, and also for
mixed cases like (−1N\S , 1S).

Agents in such a social network may influence each other, and due to the
influences, the final decision of an agent may be different from his original
inclination. Formally, each inclination vector i ∈ I is transformed into a
decision vector Bi = ((Bi)1, (Bi)2, ..., (Bi)n), where B : I → I, i 7→ Bi is the
influence function. The set of all influence functions will be denoted by B.

What do we mean by influence and how is it modeled in our framework?
In our most general statement, we say that an agent is influenced if the
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6 Michel Grabisch and Agnieszka Rusinowska

decision of the agent is different from his (original) inclination. In Grabisch
and Rusinowska (2009b, [16]) we distinguish between a direct influence and
an opposite influence. The direct influence of a unanimous coalition on an
agent, that is, a coalition of players with the same inclination, means that the
agent’s inclination is different from the inclination of that coalition, but his
decision coincides with the inclination of the coalition. Under the opposite
influence of a coalition on an agent, the inclination of the agent coincides
with the inclination of the coalition, but his decision is different from the
inclination of the coalition. In the case of direct influence, which is the most
common, the agent changes his opinion because he may be convinced by the
arguments of the influencing coalition, or for some political, hierarchical or
more personal reason, he feels obliged to follow that coalition. On the other
hand, the opposite influence is a kind of reactive behavior. The agent, again
for some political or personal reason, systematically decides for the opposite
opinion of the influencing coalition. In the present paper, we consider for
simplicity only the notion of the direct influence, and hence, in all following
definitions we will omit the word ‘direct’.

Let us introduce several notations for convenience. Cardinality of sets
S, T, . . . will be denoted by the corresponding lower case s, t, . . .. We omit
braces for sets, e.g., {k,m}, N \ {j}, S ∪{j} will be written km, N \ j, S ∪ j,
etc. For any S ⊆ N , |S| ≥ 2, we introduce the set IS of all inclination vectors
under which all members of S have the same inclination

IS := {i ∈ I | ∀k, j ∈ S [ik = ij ]} (1)

and Ik := I, for any k ∈ N . By iS we denote the value ik for some k ∈ S,
i ∈ IS . Let for each S ⊆ N and j ∈ N \ S, IS→j denote the set of all
inclination vectors of potential influence of S on j, that is,

IS→j := {i ∈ IS | ij = −iS} (2)

and additionally, for each B ∈ B, let I∗S→j(B) denote the set of all inclination
vectors of observed influence of S on j under B ∈ B, that is,

I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}. (3)

In Grabisch and Rusinowska (2009b, [16]), we introduce the weighted influ-

ence indices, whose main idea is to give a relative importance to the different
inclination vectors. For each S ⊆ N , j ∈ N \ S and i ∈ IS , we introduce

a weight αS→j
i ∈ [0, 1] of influence of coalition S on j ∈ N \ S under the

inclination vector i ∈ IS . There is no normalization on the weights, but we
assume that for each S ⊆ N and j ∈ N \ S, there exists i ∈ IS→j such that

αS→j
i > 0. Moreover, we impose the symmetry assumption that αS→j

i de-
pends solely on the number of agents having the same inclination as S under
i ∈ IS .
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Different approaches to influence based on social networks and simple games 7

Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted influence index of
coalition S on player j is defined as

dα(B,S → j) :=

∑
i∈I∗

S→j
(B) α

S→j
i

∑
i∈IS→j

αS→j
i

∈ [0, 1]. (4)

It is the (weighted) proportion of situations of observed influence among
all situations of potential influence. Two particular ways of weighting lead
to the possibility influence index d(B,S → j), under which any possibility of
influence is taken into account, and the certainty influence index d(B,S → j),
where we take into account only the situations in which all agents outside
S ∪ j have the inclination different from the inclination of S. We have for
each S ⊆ N , j ∈ N \ S and B ∈ B

d(B,S → j) = dα(B,S → j), where αS→j
i = 1 for each i ∈ IS

and
d(B,S → j) = dα(B,S → j), where for each i ∈ IS

αS→j
i =

{
1, if ∀p /∈ S ∪ j, ip = −iS

0, otherwise.

Consequently, we can write

d(B,S → j) =
|I∗S→j(B)|

|IS→j |
∈ [0, 1] (5)

d(B,S → j) =
|{i ∈ I∗S→j(B) | ∀p /∈ S [ip = −iS ]}|

2
∈ {0,

1

2
, 1}. (6)

The possibility influence index gives therefore the fraction of potential in-
fluence situations that happen to be situations of observed influence indeed.
The certainty influence index measures also such a fraction, except that it
focuses only on situations in which the coalition in question is the only one
which (directly) influences the agent.

2.2 Follower functions and influence functions

The key concept of the influence framework is the concept of follower of a
given coalition, that is, an agent who always follows the inclination of that
coalition when all members of the coalition have the same inclination. The
follower function of B ∈ B is a mapping FB : 2N → 2N defined as

FB(S) := {k ∈ N | ∀i ∈ IS , (Bi)k = iS}, ∀S ⊆ N,S 6= ∅ (7)
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8 Michel Grabisch and Agnieszka Rusinowska

and FB(∅) := ∅. We say that FB(S) is the set of followers of S under B. The
set of all follower functions is denoted by F . In Grabisch and Rusinowska
(2009b, [16]), it is shown that

dα(B,S → j) = 1, ∀j ∈ FB(S) \ S.

Another important concept of the influence model is the concept of ker-

nel of an influence function, which is the set of ‘truly’ influential coalitions.
Assume FB is not identically the empty set. The kernel of B is defined as

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S′ ⊂ S ⇒ FB(S′) = ∅}. (8)

As defined before, in order to model influences between players, that is, to
represent a transformation between agents’ inclinations and their decisions,
an influence function is used. We like to recapitulate definitions and some
basic properties of some of the influence functions defined in Grabisch and
Rusinowska (2009b, [16]) that model different types of influence. Four func-
tions will be mentioned: the identity function (which models the absence of
any influence), the reversal function (which depicts a systematic reversal of
inclination), the guru function (which describes following the guru by each
agent in every situation, assuming such a guru exists), and the majority func-
tion (under which if a majority of agents has the positive inclination, then
all agents choose the yes-option, otherwise all agents choose the no-action).
Let us recall definitions of these influence functions.

• The identity function Id ∈ B is defined by

Idi = i, ∀i ∈ I. (9)

• The reversal function −Id ∈ B is defined by

(−Id)i = −i, ∀i ∈ I. (10)

• Let k̃ ∈ N be a particular player called the guru.

The guru influence function Gur[k̃] ∈ B is defined by

(Gur[k̃]i)j = i
k̃
, ∀i ∈ I, ∀j ∈ N. (11)

• Let n ≥ t > ⌊n
2 ⌋, and for any i ∈ I we define i+ := {k ∈ N | ik = +1}.

The majority influence function Maj[t] ∈ B is defined by

Maj[t]i :=

{
1N , if |i+| ≥ t

−1N , if |i+| < t
, ∀i ∈ I. (12)
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Different approaches to influence based on social networks and simple games 9

In Grabisch and Rusinowska (2009b, [16]), we prove that the follower func-
tions of these influence functions, for each S ⊆ N , are equal to

FId(S) = S, F−Id(S) = ∅, F
Gur[k̃](S) =

{
N, if k̃ ∈ S

∅, if k̃ /∈ S,

FMaj[t](S) =

{
N, if s ≥ t

∅, if s < t

and the kernels of these influence functions are

K(Id) = {{k}, k ∈ N}, K(−Id) = ∅, K(Gur[k̃]) = {k̃},

K(Maj[t]) = {S ⊆ N | |S| = t}.

In Grabisch and Rusinowska (2008, [14]), we establish the exact relation
between the influence function and the follower function. In particular, we find
sufficient and necessary conditions for a function to be the follower function
of some influence function. Moreover, given a follower function, we find the
smallest and greatest influence functions that lead to this follower function.

First of all, note that while there is no restriction on an influence function
B : 2N → 2N , any follower function FB : 2N → 2N should satisfy some

conditions. The mapping Φ : B → (2N )(2
N ), defined by B 7→ Φ(B) := FB is

neither a surjection nor an injection (that is, several different B’s may have

the same follower function, and there are functions in (2N )(2
N ) which cannot

be the follower function of some influence function). We have Φ(B) = F . In
Grabisch and Rusinowska (2008, [14]), we prove that a function F : 2N → 2N

is a follower function of some B ∈ B (i.e., FB = F , or Φ(B) = F ) if and only
if it satisfies the following three conditions:

• F (∅) = ∅;
• F is an isotone function (S ⊆ S′ implies F (S) ⊆ F (S′));
• If S ∩ T = ∅, then F (S) ∩ F (T ) = ∅.

Moreover, the smallest and greatest influence functions belonging to Φ−1(F )
are respectively the influence functions BF and BF , defined by, for all i ∈ I
and all k ∈ N :

(BF i)k :=

{
+1, if k ∈ F (S+(i))

−1, otherwise
,

(BF i)k :=

{
−1, if k ∈ F (S−(i))

+1, otherwise
,

where S±(i) := {j ∈ N | ij = ±1}.

For instance, if F (S) = ∅ for all S ⊆ N , then B ≡ −1N and B ≡ 1N .
If F = Id, then Φ−1(Id) = {Id}.
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10 Michel Grabisch and Agnieszka Rusinowska

In Grabisch and Rusinowska (2008, [14]), we also find the (algebraic) struc-
ture of Φ−1(F ), i.e., the set of all influence functions that lead to the follower
function F and we indicate how to compute it. This structure happens to be
a distributive lattice.

2.3 Example

In order to illustrate the concepts introduced in the previous subsections,
let us consider a three-agent network, i.e., N = {1, 2, 3}, with the following
principles of the decision-making process:

(i) Agent 1 follows himself;
(ii) Agent 2 follows agent 1;
(iii) Agent 3 follows the majority (i.e., he decides according to the inclination

of at least two agents).

Figure 1 shows a social network for this example. An arc from player j to
k means that j influences player k.

2 3

1

Fig. 1 Three-agent social network

The set of all inclination vectors is I = {−1,+1}3, |I| = 8. Table 1 presents
the influence function B for the example. Please note that B is a kind of a
mixture of the three influence functions mentioned in Section 2.2: agent 1
uses the identity function Id, agent 2 decides according to his guru k̃ = 1,
and agent 3 applies the majority function Maj[t] with t = 2.

i ∈ I (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) (1,−1,−1) (−1, 1,−1)

Bi (1, 1, 1) (1, 1, 1) (1, 1, 1) (−1,−1, 1) (1, 1,−1) (−1,−1,−1)

i ∈ I (−1,−1, 1) (−1,−1,−1)

Bi (−1,−1,−1) (−1,−1,−1)

Table 1 The influence function B

Table 2 shows the set of followers under B of each coalition. Obviously, the
conditions for a follower function recapitulated in Section 2.2 are satisfied by
FB .
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Different approaches to influence based on social networks and simple games 11

S ⊆ N ∅ 1 2 3 12 13 23 N

FB(S) ∅ 12 ∅ ∅ N N 3 N

Table 2 The sets of followers under B

From Table 2 we get the kernel of the influence function B

K(B) = {1, 23}

and using Table 1, we can calculate the influence indices. Note that for each
weighted influence index, we have

dα(B, 1 → 2) = dα(B, 13 → 2) = dα(B, 12 → 3) = 1

which illustrates the property of the weighted influence index mentioned in
Section 2.2, and moreover

dα(B, 2 → 1) = dα(B, 3 → 1) = dα(B, 23 → 1) = 0.

Table 3 presents the possibility and certainty influence indices(
d(B,S → j), d(B,S → j)

)
for each ∅ 6= S ⊂ N and j ∈ N \ S.

S → 1 2 3 12 13 23
j ↓

1 − (0, 0) (0, 0) − − (0, 0)

2 (1, 1) − ( 1

2
, 0) − (1, 1) −

3 ( 1

2
, 0) ( 1

2
, 0) − (1, 1) − −

Table 3 The possibility and certainty influence indices
(
d(B, S → j), d(B, S → j)

)

Note that in this example the certainty influence index is either 0 or 1, but
is never equal to 1

2 . This is related to the neutrality of the influence function
B defined in Table 1 which states that B(−i) = −Bi for each i ∈ I.

3 The command games

3.1 Command games and command functions

The framework of command games has been introduced in Hu and Shapley
(2003a, 2003b, [22, 23]), and later analyzed in Grabisch and Rusinowska
(2008, 2009a, [14, 15]). Let us recall the key concepts of this model. Let
N = {1, ..., n} be the set of players. For k ∈ N and S ⊆ N \ k:
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12 Michel Grabisch and Agnieszka Rusinowska

• S is a boss set for k if S determines the choice of k;
• S is an approval set for k if k can act with an approval of S.

For each k ∈ N , a simple game (N,Wk) is built, called the command game

for k, with the set of winning coalitions defined by

Wk := {S | S is a boss set for k}∪{S∪k | S is a boss or approval set for k}.
(13)

The boss and approval sets for k can be recovered by

Bossk = {S ⊆ N \ k | S ∈ Wk} = Wk ∩ 2N\k

Appk = {S ⊆ N \ k | S ∪ k ∈ Wk but S /∈ Wk}.

We have Bossk ∩ Appk = ∅. In particular, if Appk = 2N\k, then k is called a
free agent, since he needs no approval (∅ ∈ Appk) and nobody can boss him
(Bossk = ∅). If Appk = ∅, then k is called a cog.

Given a set of command games {(N,Wk), k ∈ N}, the command function

ω : 2N → 2N is defined as

ω(S) := {k ∈ N | S ∈ Wk}, ∀S ⊆ N. (14)

ω(S) is the set of all members that are ‘commandable’ by S.

As noticed in Grabisch and Rusinowska (2008, [14]), any set of command
games {(N,Wk), k ∈ N} can be viewed as a mapping Ω : N × 2N → {0, 1},
with

(k, S) 7→ Ω(k, S) =

{
1, if S ∈ Wk

0, otherwise
.

Recall that for any S ⊆ N , the principal filter of S is defined as ↑ S :=
{T ⊆ N | T ⊇ S}. A normal command game Ω is a set of simple games
{(N,Wk), k ∈ N} satisfying the two conditions:

• For each k ∈ N , there exists a minimal nonempty family of nonempty
subsets Sk

1 , . . . , S
k
lk

(called the generating family of Wk) such that

Wk =↑Sk
1 ∪ . . .∪ ↑Sk

lk
.

• For each k ∈ N , Sk
1 ∩ · · · ∩ Sk

lk
6= ∅.

The last condition is motivated by the following fact: if there exist two disjoint
boss sets for agent k, then there will be a conflict if the boss sets have a
different opinion. We denote by G the set of all normal command games.

There exists a bijection Ψ : 2N×2N

→ (2N )(2
N ) defined by

Ψ(Ω) = ω, with ω(S) := {k ∈ N | Ω(k, S) = 1}, ∀S ⊆ N

Ψ−1(ω) = Ω, with Ω(k, S) = 1 iff k ∈ ω(S). (15)

In Grabisch and Rusinowska (2008, [14]), we show the exact relation be-

tween command games and command functions. We prove that ω ∈ (2N )(2
N )
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Different approaches to influence based on social networks and simple games 13

corresponds to some normal command game, i.e., ω ∈ Ψ(G), if and only if
the following conditions are satisfied:

• ω(∅) = ∅, ω(N) = N ;
• ω is isotone;
• If S ∩ S′ = ∅, then ω(S) ∩ ω(S′) = ∅.

Note the similarity between the sufficient and necessary conditions for a func-
tion to be the command function of some command game, and those for
a function to be the follower function of some influence function. We can
conclude that comparing the command framework with the influence model
should be based on comparing command games with influence functions, and
will be closely related to the relation between command functions and fol-
lower functions.

3.2 Command games and influence functions

We investigate the relation between command games and influence functions.
In particular, we are interested in equivalence between command games and
influence functions. An influence function B and a command game Ω are said
to be equivalent if ω ≡ FB .

In Grabisch and Rusinowska (2008, [14]), we show that if B is an influence
function, then there exists a unique normal command game Ω equivalent to
B if and only if FB(N) = N . Moreover, if Ω is a normal command game,
then any influence function in Φ−1(ω) is equivalent to Ω.

Let us present command games equivalent to the four influence functions
recapitulated in Section 2.2. In Grabisch and Rusinowska (2009a, [15]), we
prove the following:

• The identity function Id ∈ B is equivalent to the set of command games
{(N,W Id

k ) | k ∈ N}, where

W Id
k = {S ⊆ N | k ∈ S}, ∀k ∈ N.

• There is no set of command games equivalent to the reversal function
−Id ∈ B.

• The guru function Gur[k̃] ∈ B is equivalent to the set of command games

{(N,WGur[k̃]

k ) | k ∈ N}, where

WGur[k̃]

k = {S ⊆ N | k̃ ∈ S}, ∀k ∈ N.

• The majority function Maj[t] ∈ B, where n ≥ t > ⌊n
2 ⌋, is equivalent to the

set of command games {(N,WMaj[t]

k ) | k ∈ N} with
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14 Michel Grabisch and Agnieszka Rusinowska

WMaj[t]

k = {S ⊆ N | s ≥ t}, ∀k ∈ N.

Note that the existence of a unique normal command game equivalent to

B ∈ {Id,Gur[k̃],Maj[t]} could be already concluded from Section 2.2, where it

is straightforward to see that FB(N) = N for B ∈ {Id,Gur[k̃],Maj[t]}. On the
other hand, we note that F−Id(N) = ∅.

3.3 Example continued

We turn to the example presented in Section 2.3, and model it in terms of
a command structure. Hence, we have a three-agent game N = {1, 2, 3}, in
which agent 1 follows himself, agent 2 follows agent 1, and agent 3 follows
the majority. The command game Ω for the example is defined as follows:

W1 = W2 = {1, 12, 13, 123}

W3 = {12, 13, 23, 123}.

Hence, we have

Boss1 = ∅, Boss2 = {1, 13}, Boss3 = {12}

App1 = {∅, 2, 3, 23}, App2 = ∅, App3 = {1, 2}.

Note that agent 1 is a free agent, and agent 2 is a cog.
The command function ω for this example is presented in Table 4.

S ⊆ N ∅ 1 2 3 12 13 23 N

ω(S) ∅ 12 ∅ ∅ N N 3 N

Table 4 The command function ω

Note that the influence function B defined in Section 2.3 and the command
game Ω of the present example are equivalent, because ω ≡ FB .

3.4 Power and influence indices

In Grabisch and Rusinowska (2009a, [15]), a more general version of the
weighted influence index is defined which can cover all imaginable types of
influence, in particular, the direct influence, the opposite influence, an influ-
ence of a coalition on its member, etc. First of all, it is assumed that only a
coalition with all members unanimous in inclinations may influence an agent.
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Different approaches to influence based on social networks and simple games 15

An influence of a coalition S on a player j takes place if (Bi)j = λ, where
λ ∈ {−ij , iS ,−iS ,+1,−1}. Hence, the set IS→j,λ(B) of all inclination vectors

of influence of S on j under B is defined as

IS→j,λ(B) := {i ∈ IS | (Bi)j = λ} (16)

and given B ∈ B, for each S ⊆ N , j ∈ N , the general weighted influence

index of coalition S on player j under B is defined as

ψα,λ(B,S → j) :=

∑
i∈IS→j,λ(B) α

S→j
i∑

i∈IS
αS→j

i

. (17)

In particular, the weighted (direct) influence index defined in the previous
section is recovered as

ψα,λ(B,S → j) = dα(B,S → j) if λ = −ij and αS→j
i = 0 for ij = iS .

For an arbitrary set of command games, we construct several equivalent
(command) influence functions. This shows that the model of influence is
broader than the framework of the command games. Moreover, we apply
several power indices to the command games and prove that these power
indices coincide with some expressions of the general weighted influence in-
dices under the command influence functions. One of the (command) influ-
ence function that we define is the influence function with abstention, re-
lated to an extended three-action model of influence recapitulated in Section
4.1. In this model, each agent has three options for his decision: ‘yes’ (de-
noted by +1), ‘no’ (denoted by −1), or ‘abstain’ (denoted by 0), that is,
B(I) ⊆ {−1, 0,+1}n.

Given a set of command games {(N,Wk) | k ∈ N}, the command influence

function Com is defined for each k ∈ N and i ∈ I by

(Comi)k :=





+1, if {j ∈ N | ij = +1} ∈ Wk

−1, if {j ∈ N | ij = −1} ∈ Wk

0, otherwise

. (18)

According to Com, for each agent k and each inclination vector, if all players
with the same inclination forms a winning coalition in his command game,
the agent k follows the inclination of this winning coalition. Otherwise, k
abstains.
We have shown that for each set of command games {(N,Wk) | k ∈ N}, the
command influence function Com is equivalent to this set of command games
(in the sense of Section 3.2).

We prove that if {(N,Wj) | j ∈ N} is a set of command games, and Com

is the command influence function defined in (18), then for each j, k ∈ N
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16 Michel Grabisch and Agnieszka Rusinowska

Shk(N,Wj) = ψα(Sh),λ=ik
(Com, k → j) − ψα(Sh),λ=−ik

(Com, k → j)

where Shk(N,Wj) is the Shapley-Shubik index of player k in the command
game for j, ψα(Sh),λ is the weighted influence index defined in (17), and for
each i ∈ I

α
(Sh)k→j

i =





1

n( n−1
|i|−1)

, if ik = +1

1

n( n−1
n−|i|−1)

, if ik = −1
(19)

and |i| := |{m ∈ N | im = +1}|. Moreover,

Bzk(N,Wj) = ψα(Bz),λ=ik
(Com, k → j) − ψα(Bz),λ=−ik

(Com, k → j)

where Bzk(N,Wj) is the Banzhaf index of player k in the command game
for j, ψα(Bz),λ is the weighted influence index defined in (17) with

α
(Bz)k→j

i = 1, ∀i ∈ I.

This means that both the Shapley-Shubik index and the Banzhaf index of
player k in the command game for j are equal to the difference between the
weighted influence index in which agent j is said to be influenced by k if he
follows k, and the weighted influence index in which the influence of k on j
means that agent j’s decision is opposite to the inclination of k. Both weighted
influence indices are measured under the command influence function Com.
The difference between the results on these power indices lies only in the
weights: while for the Shapley-Shubik index the weights are defined in (19),
the weights for the Banzhaf index are always equal to 1.

4 Enlarging the set of possible yes/no actions

4.1 The influence model with an ordered set of possible

actions

In Grabisch and Rusinowska (2009d, [18]), we extend the yes/no model of
influence to the framework in which each agent has a totally ordered set of
possible actions. We recapitulate in this section the main concepts and results
of this work. We investigate the generalized influence indices and other tools
related to the multi-choice model.

Let us recapitulate a simplified version of this model. We consider a social
network with the set of agents denoted by N = {1, ..., n}. There is a totally
ordered (finite) set of possible actions denoted by A. A real number is as-
signed to each action in A, so that the ordering of these numbers reflect the
ordering of the actions (ordinal scale). Let A denote the set of these numbers.

ha
l-0

05
14

85
0,

 v
er

si
on

 1
 - 

3 
Se

p 
20

10



Different approaches to influence based on social networks and simple games 17

Assuming there are no two actions with the same rank, we have a bijection
between A and A, so that we can deal only with A. A particular example is
to allow abstention (see, e.g., Braham and Steffen 2002, [2], Felsenthal and
Machover 1997, 2001, [9, 11]), and to consider the yes/no-abstention model
of influence with A = {−1, 0,+1}, with 0 denoting the action ‘to abstain’.
The yes/no model of influence considered in the previous sections is obviously
covered by this generalized framework with A = {−1,+1}.

Each player has an inclination to choose one of the actions. Let i denote
an inclination vector and I = An be the set of all inclination vectors1. As in
the yes/no model, it is assumed that agents may influence each others, and
due to the influences, the final decision of a player may be different from his
original inclination. Let B : I → I, i 7→ Bi denote the influence function, and
Bi a decision vector. The set of all influence functions will be denoted by B.
We introduce for any ∅ 6= S ⊆ N

IS := {i ∈ I | ∀k, j ∈ S [ik = ij ]}, (20)

which is the set of inclination vectors under which all players in S have the
inclination to choose the same action.

We analyze positive influence which measures how much a coalition pulls
the agent’s decision closer to the inclination of the coalition. A player who
has an inclination different from the inclination of a given coalition is said
to be influenced by this coalition if his decision is closer to the inclination
of the coalition than his inclination was. A direct influence in the yes/no
model is therefore a particular case of positive influence. We also investigate
negative influence. For each inclination vector in which the members of a
given coalition have the same inclination, there is one (or two) action(s)
which is (are) the most extreme action(s). These actions lie farthest from
the inclination of the coalition. If the inclination of a player is different from
such actions, and his decision comes ‘closer’ to the extreme action, we say
that there is a negative influence of the coalition on the player. An opposite
influence in the yes/no model is a particular case of negative influence. In the
present paper we recapitulate only the positive influence. Let for each S ⊆ N
and j ∈ N \ S

IS→j := {i ∈ IS | ij 6= iS} (21)

denotes the set of all inclination vectors of potential positive influence of S on
j. Given coalition S ⊂ N , agent j ∈ N \ S, and inclination vector i ∈ IS→j ,
there is a certain distance |ij − iS | between ij and iS . Under the influence,
the decision (Bi)j of agent j may be different from his inclination, and we
can also measure the distance |(Bi)j − iS | between the decision of the agent
and the inclination of the coalition. For each S ⊆ N , j ∈ N \ S, and B ∈ B,
we define the set of all inclination vectors of influence of S on j under B as

1 We keep for the set of inclination vectors the same notation as in the yes/no model. This
should cause no confusion.
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18 Michel Grabisch and Agnieszka Rusinowska

I∗S→j(B) := {i ∈ IS→j | |(Bi)j − iS | < |ij − iS |}. (22)

For each S ⊆ N , j ∈ N \ S and i ∈ IS→j , we introduce a weight αS→j
i ∈

[0, 1] of influence of coalition S on j ∈ N \ S under the inclination vector

i ∈ IS→j . We assume that for each S ⊆ N and j ∈ N \S, there exists i ∈ IS→j

such that αS→j
i > 0.

Given B ∈ B, for each S ⊆ N , j ∈ N \S, the generalized weighted influence

index of coalition S on agent j is defined as

Dα(B,S → j) :=

∑
i∈I∗

S→j
(B) [|ij − iS | − |(Bi)j − iS |]α

S→j
i

∑
i∈IS→j

|ij − iS |α
S→j
i

∈ [0, 1]. (23)

We can recover the generalized possibility influence index of coalition S on

player j as

D(B,S → j) = Dα(B,S → j), where αS→j
i = 1 for each i ∈ IS→j

that is,

D(B,S → j) =

∑
i∈I∗

S→j
(B) [|ij − iS | − |(Bi)j − iS |]
∑

i∈IS→j
|ij − iS |

. (24)

A follower of a coalition in the generalized influence model is defined as
an agent whose decision is never farther from the inclination of the coalition
than his inclination was. An agent who always decides according to the incli-
nation of the coalition in question is called a perfect follower of that coalition.
Formally, the follower function of B ∈ B is a mapping FB : 2N → 2N defined
as

FB(S) := {j ∈ N | ∀i ∈ IS [[ij 6= iS ⇒ |(Bi)j − iS | < |ij − iS |]

∧ [ij = iS ⇒ (Bi)j = iS ]]}, (25)

where FB(∅) := ∅, and the perfect follower function F per
B : 2N → 2N is

defined as
F per

B (S) := {j ∈ N | ∀i ∈ IS [(Bi)j = iS ]}. (26)

Of course, each perfect follower is also a follower, i.e., for each B ∈ B and
S ⊆ N , F per

B (S) ⊆ FB(S).
It is important to note that all the above definitions coincide with the

ones of the yes/no model if we put A = {−1,+1}. We show that some of the
properties of the follower function in the yes/no model remain valid also in
the extended model of influence. In particular,

• FB is an isotone function;
• FB(S) ∩ FB(T ) = ∅ whenever S ∩ T = ∅;
• Dα(B,S → j) = 1 for each j ∈ F per

B (S) \ S.
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Different approaches to influence based on social networks and simple games 19

In the yes/no model, the last property is satisfied for the set of followers
FB(S), but in the multi-choice game it remains valid only for the set of
perfect followers F per

B (S).

Assume FB is not identically the empty set. The kernel of B is defined
similarly as in the yes/no model of influence, i.e.,

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S′ ⊂ S ⇒ FB(S′) = ∅}.

Next, we generalize several influence functions B ∈ B (defined in the
yes/no model) for the multi-choice framework. We investigate the properties
of these functions and compare them with the results on the analogous func-
tions in the yes/no model. Let us recapitulate the majority influence function

˜
Maj[t] defined in the extended model, which differs from the majority function
Maj[t] presented in Section 2.

Let n ≥ t > ⌊n
2 ⌋, and introduce for any i ∈ I and a ∈ A, the set

ia := {k ∈ N | ik = a}.

The majority influence function
˜
Maj[t] ∈ B is defined by

(
˜
Maj[t]i

)

j

:=

{
a, if ∃a ∈ A [|ia| ≥ t]

ij , otherwise
, ∀i ∈ I, ∀j ∈ N. (27)

If a majority of players have an inclination a, then all agents decide for a,
and if not, then each agent decides according to his own inclination.

We prove that the follower function of this majority function, for each
S ⊆ N , is equal to

F
M̃aj[t]

(S) =





N, if s ≥ t

S, if n− t < s < t

∅, if s ≤ n− t,

and the kernel is K(
˜
Maj[t]) = {S ⊆ N | |S| = n − t + 1}. The results on the

set of followers and the kernel for the majority function in the multi-choice
model are different from the ones obtained for the yes/no model of influence,
which is rather not surprising, since the definitions of the majority influence
function in the two models differ from each other.
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20 Michel Grabisch and Agnieszka Rusinowska

4.2 Example continued

We turn again to the example presented in Section 2.3, i.e., N = {1, 2, 3},
but assume that the agents have a third option to choose, the abstention. We
have A = {−1, 0,+1}, and there are 27 possible inclination vectors, |I| = 27.

For all inclination vectors with inclinations ‘yes’ or ‘no’, the extended in-
fluence function B in the 3-action model coincides with the influence function
B presented in Section 2.3. We have still to define B when at least one agent
has the inclination to abstain. Roughly speaking, in this example we assume
the abstention to weaken the influence and independence of agent 1 and to in-
crease the independence of agents 2 and 3. For instance, if agent 1 is inclined
to abstain, and the remaining agents are unanimous, he will decide according
to their inclination. Agent 2 follows agent 1 except for the situations where
agent 1 is inclined to abstain, and agents 2 and 3 are unanimous. When there
is at least one ‘abstention’, agent 3 will follow himself, except the situations
when he is inclined to abstain, and the remaining agents are unanimous. In
this case agent 3 will decide according to their inclination. Table 5 shows the
influence function B.

i ∈ I Bi i ∈ I Bi i ∈ I Bi

(−1,−1,−1) (−1,−1,−1) (0, 0, 0) (0, 0, 0) (1, 1, 1) (1, 1, 1)

(−1,−1, 0) (−1,−1,−1) (0, 0,−1) (0, 0,−1) (1, 1,−1) (1, 1, 1)

(−1, 0,−1) (−1,−1,−1) (0,−1, 0) (0, 0, 0) (1,−1, 1) (1, 1, 1)

(0,−1,−1) (−1,−1,−1) (−1, 0, 0) (−1,−1, 0) (−1, 1, 1) (−1,−1, 1)

(−1,−1, 1) (−1,−1,−1) (0, 0, 1) (0, 0, 1) (1, 1, 0) (1, 1, 1)

(−1, 1,−1) (−1,−1,−1) (0, 1, 0) (0, 0, 0) (1, 0, 1) (1, 1, 1)

(1,−1,−1) (1, 1,−1) (1, 0, 0) (1, 1, 0) (0, 1, 1) (1, 1, 1)

(−1, 0, 1) (−1,−1, 1) (0,−1, 1) (0, 0, 1) (1,−1, 0) (1, 1, 0)

(−1, 1, 0) (−1,−1, 0) (0, 1,−1) (0, 0,−1) (1, 0,−1) (1, 1,−1)

Table 5 The influence function B

Table 6 presents the generalized possibility influence indices. Note that, for
instance, the cases B(0,−1, 1) = (0, 0, 1) and B(0, 1,−1) = (0, 0, 1) count for
the influence of agent 3 on agent 2, since the distance between the inclinations
of agents 2 and 3 was 2, and the distance between the decision of agent 2 and
the inclination of agent 3 becomes 1.

Indeed, when comparing Tables 3 and 6, we can see that in the 3-action
model the influence indices of agent 1 on agents 2 and 3, and the influence
index of coalition {1, 2} on agent 3 decreased, while the influence of coalition
{1, 3} on agent 2 is still equal to 1. The influence of coalition {2, 3} on agent
1 increased.

Finally, we calculate the sets of followers under B of each coalition. They
are presented in Table 7.
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Different approaches to influence based on social networks and simple games 21

S → 1 2 3 12 13 23

j ↓

1 − 1

9

1

9
− − 1

3

2 8

9
− 4

9
− 1 −

3 2

9

2

9
− 2

3
− −

Table 6 The generalized possibility influence indices D(B, S → j)

S ⊆ N ∅ 1 2 3 12 13 23 N

FB(S) ∅ ∅ ∅ ∅ 12 N 3 N

Table 7 The sets of followers under B

One can see from comparing Tables 2 and 7 that agent 1 as well as coalition
{1, 2} lost (some of) their followers when allowing the abstention. Moreover,
the kernel of the influence function B contains all two-agent coalitions, that
is,

K(B) = {12, 13, 23}.

From the comparison of K(B) in the yes/no model and in the three-action
model, we can see that when extending the model to the three-action frame-
work, coalition {2, 3} remains the ‘truly’ influential coalition, while agent 1 is
not ‘truly’ influential on his own anymore, but he needs one of the remaining
agents to belong to the kernel.

Our conclusions on influence indices, followers, and kernels, are obviously
valid only for this example, when we specifically ‘weaken’ the position of agent
1 by allowing the abstention. However, we like to stress the fact that for an
arbitrary example one can apply the same approach and draw conclusions
on the impact of enlarging the set of possible actions on agents’ influence
position.

4.3 The influence model with a continuum of actions

In Grabisch and Rusinowska (2009c, [17]), we consider another generalized
model of influence in which each player has a continuum of actions. The set of
actions is assumed to be a real interval [a, b]. Each player has an inclination

to choose one of the actions, i.e., by the inclination of a player we mean the
particular action from [a, b] the player wants to choose. For the continuum
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22 Michel Grabisch and Agnieszka Rusinowska

case, we have defined and studied, in particular, the influence index of a coali-
tion on a player, several influence functions, the set of followers and perfect
followers, and the kernel of an influence function. The main difference be-
tween the two generalized models of influence lies naturally in the definitions
of the influence indices. While in the previous model (i.e., the model with a
totally ordered set of actions), the influence index has been defined by the
sums of some expressions over the particular sets, in the continuum case the
sums are replaced by integrals. These integrals are calculated over particular
sets of inclination vectors which are of a smaller dimension than the set of
n-inclination vectors. We show the equivalence between the influence index
of a coalition on a player and the corresponding influence index in which the
coalition in question is treated as one player. For a more detailed analysis of
this model we refer to Grabisch and Rusinowska (2009c, [17]).

5 Levels of knowledge and the identification problem

Let us come back for simplicity to the yes/no model. So far we have taken for
granted that the function B is known, so that influence indices, the follower
function, kernels, command games, etc., can be computed. In practice this is
too strong an assumption, since the knowledge of B requires the observation
of n2n values, which are 0 or 1. Specifically, supposing that the inclination
vector i is known (there are 2n different such vectors), we observe the final
decision of each agent (n values).

Let us first try to establish a kind of hierarchy of knowledge. At the top
level of this hierarchy lies the influence function B. Its complete definition
requires n2n binary values, and these values are free, i.e., we actually have
n2n degrees of freedom. Knowing B permits to compute all quantities defined
in this paper. At the second level lie follower functions. They also require n2n

binary values to be defined, but due to properties that characterize follower
functions (see Section 2.2), there are less than n2n degrees of freedom. In fact,
this point is completely elucidated since we know all possible influence func-
tions that give rise to a given follower function: they are given by the function
Φ−1 (see Section 2.2). Now, due to the equivalence between command func-
tions of command games and follower functions (up to the condition that
F (N) = N), and moreover between command functions and boss sets and
approval sets (see Section 3.1), we can say that the knowledge of boss sets
and approval sets lies on the same second level as follower functions.

On the next third level we presumably find indices of influence, although
their exact position with respect to follower functions is not known, nor is
known their exact relation with influence functions (similarly as in the case
of follower functions, one would like to know the set of influence functions
giving rise to a given set of values for the influence indices). The number of
different values for the influence indices is equal to the number of S → j, for
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S ⊆ N , S 6= ∅, N , and j 6∈ S. This gives

∑

S⊆NS 6=∅,N

(n− s) = (2n − 2)n−
n−1∑

s=1

s

(
n

s

)
< n2n.

Therefore, the knowledge of the indices does not permit to recover B.
On the fourth level we find influence graphs (social networks), as the one

given to explain the example in Section 2.3. An influence graph is only a
qualitative description of influence among agents, and does not specify what
happens in case of conflict (i.e., when two arrows arrive on the same agent),
nor it permits to distinguish between the influences when the inclination of
influencing agents is ‘yes’ or ‘no’. The kernel is another type of qualitative
information, but which does not seem comparable to influence graphs. The
kernel identifies the minimal influencing coalitions, but does not tell whom
they influence.

Let us assume that in some experimental situation, observing the behavior
of agents, the ultimate knowledge we would like to get is the influence function
B. However, we can only know it partly, hence what can we do in order to
have the most complete possible knowledge on it? We give some thoughts on
this problem below.

A first general remark is that we are concerned here with the vast area
of machine learning (and therefore optimization, interpolation), and also hy-
pothesis testing and the theory of estimation. We use the generic term of
identification for obtaining the complete definition of some function or quan-
tity, as for example the influence function. In any problem of identification,
it is important to define what should be done in case of lack of knowledge.
In our context, the answer for this is fairly obvious: if there is no observation
of influence, by invoking the principle of insufficient reason, just say there is
no influence, and therefore B = Id. This defines the general philosophy one
should take: use the available knowledge of any kind to construct B, and for
the regions where B is not known, just put B = Id. The same holds for any
kind of notions so far introduced: in case of absence of observation/knowledge,
the follower function is identical to the empty set, all influence indices are 0,
etc.

What can we observe in an experimental situation? The direct observation
of inclinations and decisions of agents defines B on a small part of its domain.
However, a priori information can be used to complete the model, for instance:

(i) It is likely (or well known, often observed, etc.) that coalition S strongly
influences agents j, k, . . .;

(ii) We suppose that the underlying model is of the majority type, or of the
guru type where agent j plays the rôle of the guru, or of the mass psychol-
ogy type, etc.

In the first case, we use the mathematical properties underlying our con-
cepts to find the set of functions B compatible with the information we have
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on the followers, degrees, and so on (inverse function problem, completely
solved for the case of follower functions). In the second case, the procedure
is quite different since this is typically a problem of hypothesis testing and
estimation, and therefore the appropriate statistical tools should be used.
For example: “Is player k a guru?” is a hypothesis, and an appropriate test
should be defined for this. Now, “Is the model of the majority type?” is both
a hypothesis testing (yes or no) and an estimation problem, since the thresh-
old t has to be measured. For each hypothesis, there should exist a minimal
subset I0 ⊆ I of all inclination vectors, so that, if observing decisions for this
set I0, the test can be done with a given probability of success/failure. The
estimation problem proceeds similarly. Note that the same methodology can
be applied to derive a model on lower levels of knowledge, that is, for the
follower function (equivalently, the boss and approval sets), the degrees, the
influence graph and so on. It should be possible to test for example: “Is S a
boss set for agent k?” and so on.

In summary, the problem of identification of an influence model in a prac-
tical situation is a difficult one, and should initiate a new area of research.

6 Future research on influence

As one can conclude from this short overview, the influence issues create
very complex problems that can be recognized in everyday life situations.
Consequently, there are still many open questions that should be answered
and many possibilities to continue the project on influence. We would like
to finish the paper by mentioning some of our future research plans on these
issues.

- The influence framework that we have studied so far is the one-step model,
where a decision of an agent may be influenced by opinions of other play-
ers, but no possibility of iterating influence is assumed. In reality, the
mutual influence does not stop necessarily after one step, as modeled by
the influence framework studied by us so far, but may iterate. We intend
to introduce dynamic aspects in the model, to study the behavior of the
series of (different) influence functions, and to look for the convergence
conditions for such series.

- We have compared our approach to influence based on social networks
with the cooperative game theoretic approach based on command games.
We are also going to compare the dynamic model of influence with the
command games. In the framework of command games, an authority dis-
tribution over an organization was defined, and the power transition matrix
of the organization was created. A Markov chain was used to describe the
organization’s long-run authority. In our future investigations, we could
introduce the authority distribution based on the influence indices.
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- In order to measure influence between agents in a social network, we de-
fined, in particular, the influence indices. However, we did not focus either
on properties of these indices nor on their axiomatization. Consequently, in
our future research on the influence topics, an axiomatic characterization
of the influence indices should be provided.

- In our work on influence, we paid a lot of attention to the concept of in-
fluence function. In particular, we determined the exact relation between
influence functions and follower functions. While we defined several influ-
ence functions and studied their properties, only deterministic functions
were considered. Hence, it would be interesting to assume that the influ-
ence function is a probabilistic function. Such an assumption will model
the reality in a more adequate way than restricting the analysis to deter-
ministic functions.

- Our research on influence conducted so far was only theoretical. In order
to get a deeper insight into the process of influence between agents, we
would like to conduct some experiments on this issue, and to address the
difficult problem of identification of the model, as presented in Section 5.
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