Metadata, citation and similar papers at core.ac.uk

MPRA

Munich Personal RePEc Archive

Space, growth and technology: an
integrated dynamic approach

Gomes, Orlando
Escola Superior de Comunicagao Social - Instituto
Politécnico de Lisboa

March 2006

Online at http://mpra.ub.uni-muenchen.de/2846/
MPRA Paper No. 2846, posted 07. November 2007 / 02:46


https://core.ac.uk/display/6803908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/2846/

Space, Growth and Technology:

an Integrated Dynamic Approach

Orlando Gomes

Escola Superior de Comunicac¢éo Social [Institutlitémico de Lisboa]
and Unidade de Investigacdo em Desenvolvimento Esapial [UNIDE/ISCTE].

- March, 2006 -

Abstract

Economic phenomena are interrelated. From a gr@etkpective, time analysis
concerning the choices of present and future copiam and the choices between the
allocation of scientific resources should be corainvith a space analysis regarding the
dissemination of economic activity through geogrephlocations. This paper intends to
present such an integrated approach under a siemi®genous growth model. The
determinants of growth are, on one hand, the dewsabout how to allocate technological
resources and, on the other hand, the strength witlth productive activities can
agglomerate in order to generate increasing rettonscale. We find that the long run
steady state does not have to be a state of unehbleggeography — consumption and
production conditions and technological progressamty determine long term growth but
also the long term tendency for the economy to galgcally concentrate or disperse.
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1. Introduction

Technological and location issues play a criticdé ron the growth process. The
model presented in this text develops an endogergrosith setup where the
determinants of long run growth are technology #mel rate at which production
activities concentrate or disperse over geograpbjace.

Technology has always represented, in growth eapilams, a fundamental source
for economic prosperity. The pioneer work by Sol¢g®d956) and Swan (1956)
highlighted the importance of technology — althowytogenous, technology appeared
as the rescuing growth factor in the presence afedsing capital returns. Later,
endogenous growth models have attributed to teolyyoa crucial role, with authors
like Romer (1990), Grossman and Helpman (1991),ié&wmland Howitt (1992, 1998)
and Jones (1995, 2003), among many others, poimingendogenous mechanisms
through which technology generation is possible prmmotes economic growth. A
point in common of these studies concerns the fabwity of considering innovation an
economic activity, where scarce resources are grag@ldout where a special kind of
output is produced.

The way in which we understand the mechanics dinelogy generation is of
primary importance for the understanding of thewdho phenomenon. Jaffe and
Trajtenberg (2002) state thdAt the heart of this phenomenon lies a complex,
multifaceted process of continuous, widespread #&mdreaching innovation and
technical change. Yet ‘knowledge’, ‘innovation’,daftechnical change’ are elusive
notions, difficult to conceptualize and even harder measure in a consistent,
systematic way. Thus, while economists from Adaith3m have amply recognized
their crucial role in shaping the process of ecormogrowth, our ability to study these
phenomena has been rather limite@igage 1).

Our interpretation of endogenous technology intetadbe simple yet original.
Relying on a brief analysis of growth determinaboysNelson and Phelps (1966), we
develop a dynamic model where basic science anbledpggchnology conflict; to get
more knowledge immediately available to the promucprocess, research resources
must be reallocated from basic research activiBesting it simple, in an economy with
limited scientific resources, the choice betweerseaech, on one hand, and
development, on the other, is not unconstrainetneseepresentative agent has to
choose between faster and more efficient applicaifcavailable knowledge to generate

physical goods and allocating resources to amghié/innovation possibilities frontier.



Space, Growth and Technology: an Integrated Dyn@pfroach 3

The intertemporal problem faced by the economit¢esysconcerning the allocation of
technological resources culminates in a steadg sthere an optimal positive, constant
and finite technology growth rate is compatiblehagin optimal constant percentage of
theoretical knowledge being oriented to appliedsudéne technology framework and
some of the presented results relating it, werefirst phase derived in Gomes (2004).

The technology analysis serves the purpose of expipthe evolution of an
efficiency index that reflects physical inputs puotivity for a given aggregate
production function. In our growth analysis, theimeoncern is with long term results,
and thus aggregate consumption and capital vasadnle assumed for a competitive
environment.

This paper also combines space and time analydide\tie growth analysis must
be essentially an intertemporal one, location corecare easily introduced in such a
framework. In this way, one can evaluate how thenemics of agglomeration
influence the economics of growth. As with the teabgy analysis, the introduction of
geographical concerns is simple and straightforviiridrelatively different from other
studies of the kind. The simplicity is related e tassumption that location of economic
activities has to do only with the conflict betwercreasing returns and transaction
costs. The first are clearly a centripetal or agwgoation force; the second will be a
centrifugal force under the assumption that will ipeposed that consumers are
dispersed across geographical space.

The new economic geography literature, which idilyigndebted to the work of
Krugman (1991), Krugman and Venables (1995), Verwmah]1996, 2001), Fuijita,
Krugman and Venables (1999) and Quah (2002), anmoawgy others, insists on the
basic but essential tension between agglomerattwoe$ and inertial factors that
contradict such forces. Thus, we will genericabiyl ancreasing returns’ to all possible
forces that generate the spatial agglomeratioradyztion activities, and designate by
“transaction costs” all the forces yielding thepgission of production activities like the
existence of immobile inputs, the pecuniary costsnmwbility or the congestion
economies that reverse the tendency for agglonoerati

The relation between technology and economic ggbgraas been highlighted in
the past few years through the notion of ‘deatldistance’. Authors like Cairncross
(2001) argue that technological progress may intpt the distance is no longer
important for economic activity, what allows forethonclusion that there is no need for
activities to agglomerate; the evidence does ngpau this kind of reasoning — the new
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economy, strongly linked to technological developtegis an economy of clusters,
where the most geographically concentrated tasktharones relating R&D.

Fujita and Thisse (2002) address some of these mames; they claim that
“Intuitively, it should be clear that the spatiabefiguration of economic activities is the
outcome of a process involving two opposing typderoes, that is, agglomeration (or
centripetal) forces and dispersion (or centrifugdiprces. The observed spatial
configuration of economic activities is then theuk of a complicated balance of forces
that push and pull consumers and firm@age 5).

These authors also address the new technologeéllée increasing availability
of high-speed transportation infrastructure and flast-growing development of new
informational technologies might suggest that ocoreemies are entering an age that
will culminate in the ‘death of distance’. If smchtional difference would gradually
fade because agglomeration forces would be vargshifpage 4), but they are clearly
aware thattechnological progress brings about new typesrofavative activities that
benefit most from being agglomerated and, thereftaed to arise in developed areas.
Consequently, the wealth or poverty of nations setenbe more and more related to
the development of prosperous and competitivearsistf specific industries.(page 4),
and thus space does matter to economic activity mate precisely to the growth
process.

The way in which we have chosen to integrate irstngareturns to scale in our
production possibilities is different from convenmtal analysis. Rather than assuming a
monopolistic competition (Dixit-Stiglitz) frameworlas in the standard core-periphery
models by Baldwin (1999), Ottaviano (2001), Forslid Ottaviano (2003) and Pfluger
(2004), increasing returns appear as an index (lilee technology index) on an
aggregate production function — the more firmsamecentrated in space, the higher is
the value of this scale index, what implies a higheome generation value for a same
combination of inputs. This way of introducing ieesing returns allows for the
consideration of an economic space that has vytuafinite locations and infinite
agglomeration possibilities and degrees. Furthegmbee long run steady state does not
have to be one in which space stops to changelity utiaximization may imply an
everlasting rate of agglomeration or an everlastatg of dispersion, at least as long as
preferences or the shape of the production comdittio not change.

Theoretical studies in the location-growth field, Martin and Ottaviano (1999),
Baldwin and Forslid (2000) and Baldwin, Martin a@ttaviano (2001), tend to make

use of factor mobility, and in particular of skdldabor related to the R&D sector
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mobility to establish a link between the two issuéke goal is to understand how
mobility in space can change growth patterns. Qwayais is different — choosing to
work with an aggregate setup we are intereste@iogiving how an exogenously given
effect of geographical location over increasingumes implies the choice of location
dynamics and growth dynamics that best combine dntributing to an optimal
intertemporal utility result.

Technology and geography appear as well in theatilee linked together as
fundamental elements for explaining economic phesran besides growth. An
explanation of international trade, under a RiGandinodel of comparative advantages,
where technological enhancements and agglomertiioas shape the pattern of trade,
is offered in Eaton and Kortum (2002).

The paper is organized as follows. Sections 2 armpfe3ent our intertemporal
optimization framework; section 2 is concerned wWitbation and capital accumulation
and section 3 characterizes the technological iathaw framework. Section 4 solves
the technology problem and section 5 integratedeablenology dynamics in the space-
growth setup; a steady-state analysis is then meddeng the evaluation of growth rate
dynamics. Section 6 concludes.

2. Geography, Capital Accumulation and Utility

The description of our model begins with the présgon of the production

possibilities. An aggregate production functiocassidered,
Y(t) = b(2). f[A®L), K (1), L(D)] (1)

In equation (1)Y(t) represents output in time momeént is a production function
with three inputs [technologw(t), physical capitalK(t), and laborL(t)], andb(z) is a
function that reflects the intensity of returnsstale. Functioffi is a usual neo-classical
production function, that exhibits constant retuimscale (the function is homogeneous
of degree one) and where the marginal returns @h eaput are positive but
diminishing; we assume also that the productionction is a labor-augmenting
production function where technical progress isrbtdneutral. Definingk(t)=K(t)/L(t)
as the stock of physical capital per unit of lafmrper capita), we may present function

(1) in intensive form:
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y(t) =b(2).f[At), k(t)] 2)

with y(t) defining output per capita.

As statedp(z) translates the eventual existence of increashgms to scale and,
thus, it will be connected with the geographicastibbution of economic activity
through the physical space. Varialdds a measure of production concentration in
space; we assume=0 if there is no concentration, that is if econonaictivity
distributes the most evenly possible through gguycal space and- +co means that
economic activity tends to be fully concentratedommly one location of the multiple
location sites that exist in the economy. With tdifinition of z, b(z) will be an

increasing concave function that obeysb{@)=1 and lim b(z) = B >1. Explaining

these limiting values is easy: when there is naceatration of economic activitg=0,

no increasing returns to scale can be enjoyedamigroduction is a mere result of the
combination of production inputs, while the hightbe value of the concentration
variable the higher will be the increasing retueffect, which allows to produce more
with the same amounts of capital and technologyilaha in the economy. The
imposition of a finite limit forb(z) simply means that even when production is fully
concentrated in one location, there will be a énilue of production, that nevertheless
is higher than any other output outcome generayeanly other formula of distribution
of the production process through space.

Hence, our first important assumption is that iasmeg returns contribute to a
higher efficiency of the production inputs, andragesing returns are the direct result of
concentrating economic activity.

Thus far, concentration has obvious advantagesallitws to capture scale
economies. Although we have liz) a centripetal force, centrifugal forces that push
the opposite direction must also be considereds $acond set of forces is associated
with transaction costs. Assuming that consumers wanéormly distributed in
geographical space, the distribution of the praglactctivity in space eliminates
transaction costs, that is, there is no need fonal trade to occur and thus settaw)
benefits the consumers. If there is some concémtraif economic activities, there is
the need for trade between locations. The traddesrthe value of the goods as in the
iceberg effect of Samuelson (1971). This erosiothi value of the goods implies a
reduction of the utility of consumption dictated twe higher costs in the acquisition of
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the good. Transaction costs act in this way asn#ritegal force that collides with the
centripetal force of scale economies.

We define the following utility function,
U (t) = g(2)ulc(t)] (3)

In expression (3)¢(t) corresponds to per capita consumption g(® is a location
function such thag’<0, g” >0, g(0)=1 and lim g(z) =G < 1! Thus, the thicker the

concentration of economic activity, the lower vii# the overall utility withdrawn from
consumption. The utility functioru(.) has the usual properties of continuity and
smoothness, being strictly increasing and concave.

Agglomeration and dispersion forces are simultaslgopresent in our model.
Functionsb(z) andg(z) imply an important trade-off in the economic gyst and this is

the first of three trade-offs that this paper dedth.

Trade-off number Jlincreasing returns to scale and transaction casiflict — if

production concentrates geographically in ordergiin with increasing returns,
consumers will be penalized through larger transgion costs; if, on the other hand,
production is dispersed in order to attenuate &etien costs, the consumer will loose

in terms of generated output available to consume.

Our second trade-off is the trivial relation in gtb models between present
consumption and future consumption, that is, thaderoff between producing
consumption goods and producing capital goods. fdtédion can be presented through
a conventional capital accumulation dynamic equatighat we write in per capita

values,

k(t) = b(2). f[A®), k()] - c(t) - (n+ J) k(t), k(0)=ko given. (4)

with k(t) =dK(t)/dt, n a positive and constant growth rate for labor gyation, and

&0 a capital depreciation rate. Our second tradésdffe one implicit in (4),

! Note that we have to guarantee also a0 to ensure that the utility is always positive.ttie
concentration of activities is such that transactosts lead to negative utility, trade will ndtéglace.
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Trade-off number 2 there is a conflict between consumption and eapit

accumulation. In deciding what to produce in eaofetmoment, the economy has to
ask how much it is ready to sacrifice in terms ofésent consumption in order to

guarantee the fulfilment of future consumption reeed

The economic structure that was set forth allowstede our first optimization
problem: this is an intertemporal optimal controblgem, where a representative
household maximizes consumption utility given tlesaurce constraint (4). This is a
growth problem, where location concerns are preseapital is a state variable, while
c(t) andz(t) are control variables — the representative aghabses not only the time
trajectory of consumption in order to maximize rteenporal utility, but also the degree

of concentration of economic activities in ordeattain the same goal.

The maximization problem i%aé() J'Om g(2).uc(t))e *™* dt subject to (47

3. Technology Choices

To model technology choices we consider a centaaner who has to decide how
to allocate resources to innovative activifiedgollowing Nelson and Phelps (1966), we
distinguish between two types of technology: a tbgcal level or a technology
possibilities frontier, which we designate bit), and a level of ready-to-use
technology, that corresponds to the technologyxmitesent in production functions (1)
and (2),A(t). Given the basic science and the applied scigmtexes, the representative
agent goal is the following: to achieve the highpsssible values for variables
r(t) =T()/T(t)-a() and¢(t) = A(t)/T(t). The first is the controllable part of the rate
of technological progress and the second a measgutiee gap between applied and
basic technology.

We assume that the science frontier is, in parttrotlable, that is, the
representative agent can choose an allocationsofurees that influences such frontier;
the factors that cannot be controlled in the waghtelogical progress happens are

included in exogenous varialdé).

2 We consider an infinite horizon problem, whereifa per capita utility is discounted at a rate>0.

% Of course, not all research is public resear@vextheless, the government has an important naeei
economy concerning how technological resourcesabioeated. It is by having this role in mind tha¢ w
develop the model in this section.
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Given the representative agent goal, we define lgactive functionv] ¢t), 7(t)]
with the following propertiesy is continuous, concave and smooth (infinitely many

times continuously differentiable), the functionalso homogeneous of degree one and

the intertemporal elasticities of substitution a;,e@ =@ and vr.@ =u,with 6 u
v v

0 (0,1). Objective function (5) obeys the statedperties.

vat), 7)) = ¢t) (1) 5)

Next, we have to find which are the constraintsvtoch the optimization of the
objective function is subject to. A first conditioelates to the time evolution of the
technology frontier; this comes just from rewritinge previous definition of the
controllable rate of growth,

T(t) =[a() +7®)|T(t),T(0) =T, given (6)

A second constraint establishes a link betweerchkasi applied science, and takes the

form,

At) = h()[T(t) - At)], h(.) > 0, A(0) = A, given (7)
Equation (7) translates the notion of a convergegmoeess: the lower the level of

technology ready to use relatively to the benchnhevrkl, the faster will grow the first.

The time evolution ofA(t) depends on the proposed gap and on a serieshef ot

variables which are included in the exogenous téeia(.).

Recovering the definition of(t #as the technology ratio, dynamic rules (6) and

(7) give place to our technology model state camsty
@t) = h()[1- @) -[a() + r®)]ext), @(0) = A, /T, (8)
The proposed technology setup has an implicit tinade-off,

Trade-off number 3Since technological resources are limited, thenmtmon of a

higher technological frontier is an objective thanflicts with the incentive for a higher
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rate of application of existing technology to protive uses. The society must choose:
to apply more knowledge directly to produce finabds, loosing in this way in terms of
technology growth rate or, on the other hand, daeuthe expansion of the technology
frontier neglecting in this way the adaptation wiséent knowledge to productive tasks.

The technology choices debate leads us to the dantertemporal maximization
problem, M({a}xj':o v[ga(t), r(t)],e—pm.t dt subject to (8).

Note that, in this second problem, we continuedisader an infinite horizon and
a discount rateo(T)>0, that does not have to be equal to the one inptbblem
concerning consumption utility. The present probléas only two endogenous
variables, the control variablgt) and the state variablg{t). These two variables
synthesize the economic concerns about technotogccelerate the pace of theoretical
innovation and to reduce the gap between what ssiple and what is effectively
available.

Sections 2 and 3 have developed two independemhalptontrol problems. The
first adds location concerns to a standard growttdeh and the second equates
technology options. The link between the two is tdhnology variablé\(t), which is
an input in the production of physical goods. le thext two sections, we study the
models’ dynamics. We begin by solving the technglpgoblem, finding steady state
values and discussing some features about tramaitidynamics. The results of the
technology model will allow then to find steadytstand dynamics properties of the
consumption-capital-location model; in particulave search for results about the
agglomeration level of economic activity that igioyal from the point of view of utility
maximization, given the optimal rate of technol@giprogress.

4. Technology Dynamics
In this and in the next section, we present a $gira@positions relating to the

technology model and to the location-growth probléfhese propositions concern

steady state results and transitional dynamicsioel
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Proposition 1. In the long run, the state constrain(t)=h(.).1;(q:§t)—a(.)
6-u 12
intersects the indifference curvgt) =%.(9;’ujﬂ. AT)*+h()+a() 7 ;8}#
[’g LM +h()+ a(.)}ﬂ
in the unique steady state point

oLl emmh) g
2 T}'{u.p(T)+6.[h(.)+a(.)]’0—u'[p (T)+h(')+a(')]}'

Proof: The proposition reveals the existence of a unig@eady state point
concerning the optimal technology problem. The dtestate corresponds to the point
where the time derivative of the share variableatfizero:¢(t) = 0 In this point, the
state constraint is the one in the proposition ahdrefore, in the steady state, the
optimal control problem reduces to a static optatian problem, where the
maximization ofv is subject to the referred state constraint.

Solving the static long run maximization probleme get a second steady state

p(M+h()+al)  h()
p(T)+(6/ 1 ]h() +a()] att)

between the endogenous variables of the technataggel form a system from which

relation betweerr(t) and ¢t): 7(t) = . The two relations

we withdraw the two steady state values in the gstjon.
Replacing the variables in objective function (%) the computed steady state
values, one obtains the following expression for v:

w2 =) ()’ [pM) +h()+aQl
[ko(T) +6.0n() +a())]”

includes the steady state point is then givengty?.r(t)* =v . Réarranging, we get

Ve = g?. indifference curve that

~N

the indifference curve in the form given in the positiorm

Relatively to the steady state point note thatds ho obey to the condition
@0 (0]). For such, we just have to impose hereafter tequality 8> 1. Note also

that, given the state constraint, variabfg$) and T(t) have to grow in the long run

solution at exactly the same rate, which is
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17
6-u

a()+T =ﬁ[p”)+“(')]+ a(.) )

We proceed to the characterization of transitionlghamics through the

presentation of proposition 2.

Proposition 2. Given the condition0< <8< Jlthe technology choice model

exhibits saddle-path stability and the stable ttajy is negatively sloped,
1-6 h0) 7
1-p ¢

-

I(t) -7 =-C.(At) - @), with { =

and where A1<0 is the negative

IS

eigenvalue of the Jacobean matrix that is derivernfthe linearization of the

Hamiltonian system associated with the technologyadhic problem.

Proof: Using the tools of optimal control analysis, weeggnt a Hamiltonian

function, wherego(t) is a co-state variable associatedt),

Olg(t), 7(t), p)] =vg®), 7®)] + p®) {h() 1- ¢®)] - [a() + 7(©)] ¢()} (10)

The first order optimality conditions are

0, =0=v, = p(t).¢t) (11)
and
0, = p(T).p(t) - p(t) = p(t) = [o(T) +h(.) +a() + ()] p(t) - v, (12)

The transversality conditiortiim p(t).e ™ gt) =0 also applies. Rearranging (12),

given (11), one obtains the growth rate of the tatesvariable,

6-u

p)/ p(t) = o(T) +h(.) +a() - (1) (13)

From the previous conditions we derive the equatbmmotion of the controllable

innovation rate:
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_J6 . 1-8h) @ _pM)
r(t)—{ﬂ.r(t) T R ETLACKES) 1_ﬂ}r(t) (14)

Solving the systen{gb(t) r’(t)] E 0, we arrive to the same steady state result as in

proposition 1. The motion properties of the systenthe steady state vicinity are

analyzed through the linearization of the modethia steady state neighbourhood. The

linearized system Is: V(t)} {ga(t) ﬂ with
r(t) r(t)-7
) og)] [ 0,
J= g%g g;gg = ﬂwm gf . Matrix J has two eigenvalues, which are
oft) 01() ), [1-H 9" M
0ol {pm /p(T) 9,20 /p(T) |J} it

| |— o-p L T <0 the determinant of the Jacobean matrix. It iSgittéorward

Hld-p) @
to verify that A, <0 and A, >0 both real. Then, we confirm the saddle-path stgbil

result.

With a saddle-path stable equilibrium, the stablm ainderlying the system
dynamics is found through the computation of thgeevector associated to the
negative eigenvalue & This eigenvector i®=[1 -{]'. Given that the second line of
matrix J respects to the control variable the same is fouerector P. Hence, we can
identify the second element of veci®as being the slope of the stable #th

Note the economic interpretation of the accomplistessult: saddle path stability
implies that, once on the negatively sloped stédalectory, the variables evolve to the
steady state following opposite directions - arreasing growth rate for technology
implies a slower technology gap straightening aile-versa, as the system adjusts to
the long run locus.

With propositions 1 and 2 we have clarified howhtemlogy choices can be
equated in a scenario where resources may be aspubinote the expansion of the
technology frontier or, alternatively, to stimuldake productive use of already available

knowledge. We have found that optimal long run galtor the technology gap and for
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the technology growth rate can be quantified; weetaso verified that both technology
aggregates grow, in the steady state, at a saragwatt is a simple corollary of a
constant long run technology gap; and finally, abkt trajectory characterizes a
convergence process to the steady state wherecsgaging level of applied technology
(relatively to basic knowledge) can only be attdimfesimultaneously one observes a

decreasing rate of growth of technology generation.

5. Location and Growth Dynamics

The technology problem is linked to the space-ghosétup of section 2 through
the applied technology variabl&(t), which is an argument of the aggregate production
function. To derive steady state results and dyoamliations from the space-growth
maximization problem, we define for functioffa(t), k(t)], u[c(t)], b(z) andg(z) explicit

functional forms that obey the general propertiesaction 2. We write the following

functions,
fA®), k()] = At) 7 k(t)?, O<a <1 (15)
o 1 1-o0)lo

u[c(t)]-l_a{l—(c(t)j } 0<o<1 (16)
_1+b.B.z(t)

b(Z)_T.Z(t)’ b>0 (17)
_1+9.G.z(t)

9(2) = Trgz) | g>0 (18)

In equation (15),a represents the output-capital elasticity. In (Z@rametero
corresponds to the utility function elasticity ottertemporal substitution. In (17) and
(18), B and G were defined as the values fofz) and g(2) translating a maximum
agglomeration degree of economic activities [ndi&t what distinguishes (18) from
(17) is thatB>1 and G<1, although they are both positive values]. Theepttwo
parametersb andg, reveal the intensity of the impact of the acyivitgglomeration

level over increasing returns to scale and ovemnstetion costs, respectively. For a
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given finite z(t)>0, the higher the value df, the larger are scale economies, and the

higher the value agj, the larger will be the transaction costs [thedowill be the value

of g(2)].
With the assumed functions, proposition 3 can btedt

Proposition 3. In a location-growth model where technology chsiessume the

form characterized in section 3 and where the apsam that output and physical

capital grow at a same steady state rate holdsstdely state implies the following

growth rate relationy, = y. =1i.yb(z) +a(.)+ T, where variableg, )t and jy, are
-a

the steady state growth rates of capital per unialoor, per capita consumption, and

increasing returns, respectively.

Proof: In proposition 3 we make use of a common steaatg giroperty, which is
that capital grows at a same rate as outpirider this assumption, one is able to find a
capital / consumption long run growth rate thatresponds to the technology growth
rate plus a term that indicates that the higherdke at which activities agglomerate and
consequently the scale economies become strorgefaster capital and consumption
will grow. To prove this result, we have to consigeoduction function (2) under
functional form (15). Differentiating this functiom order to time, one obtains the

steady state growth rate relation in (19).
Yy = Vo +(1-a).y,+ay, (19)

with ), and ja respectively the growth rates of per capita ougnd technology in the
steady state. The second of these growth ratesag/k from the technology choices
problem, while the first is said in the proposititm coincide withy. Having these
points in consideration, a simple rearrangemen(18) leads to the long run result
concerning capital in the proposition.

To understand that the obtained rate is also tlwvthr rate of per capita
consumption, one has to differentiate in orderrteetequation (4). Sincg is a constant
value, the differentiation of the right hand side tbe equation must equal zero;

computing the requested expression,

4 See, for instance, the Caballé and Santos (198§e 1047) definition of steady state for a growth
model.
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Voo + A= @).(va = Vi )Ib(2).(ATK)™ = (¥, - y,)-(€ /1K) =0 (20)

Note, in (20), that the first term is zero, givdre tderived capital steady state

growth rate, and thus the only way for expressi&i) (o hold is to conclude tha= i,

such thatc/k is a constant valum

Our analytical framework points to the general iesu growth models (and
particularly in endogenous growth models) that ayjtpapital and consumption grow at
a same positive and constant rate in the long Tlws long run growth rate has two
components: technology growth, which was endogdpaletermined, and the growth
of spatial agglomeration. Note that if the economyunder a process of spatial
agglomeration, such that increasing returns in petdn grow positively j;>0), then
consumption and capital per capita will grow faskem the technology level; if spatial
dissemination prevails, the economy looses in teafngncreasing returns stimulus
(J»<0) what implies a per capita output / capital /stanption growth rate lower than
technology growth.

More long run steady state results are achiev&bitgposition 4 presents the long

run growth rate as depending only upon technolagwth.

Proposition 4. Under the same assumptions as in propositione3stibady state

20 -1

growth rate of the increasing returns functioryjs, = (m
- 0.

J.[a(.) +7], and the

per capita growth rate of the main economic vaegblcan be written as

o.(l-a)

yy:yk:y(::

Proof: This proposition states that the long term indrepseturns growth rate is
a function of technology growth, and therefore otitgapital and consumption, all in
per capita values, grow in the steady state ateathat depends solely on technological
progress and on two elasticity parameters.

To determine the above growth rates, one has teestlle optimal control
problem. Definingj(t) as a co-state variable relating to state varikft)ethe following

are optimality conditions,
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9(2)ct) ™7 =q(t) (21)
1757 1-0 b.(B-D e s

1—[@} " o0 ADTK() (22)

4t) = |+ 3 - ab(2).(AR) 1 k®)* |a(t) (23)

lim q(t).e M k(t)=0 (24)

Differentiating condition (22) in order to time amyaluating the result in the

steady state,

ALa (@ g0l — g-(l_G)' Yk
b.(B-1) (-a)y, +a),

(25)

We know that the right hand side of (25) is conisttus the left hand side has to be

also constant, what implies the veracity of the  dibon
(1—cr).yA+cr.yk—1_—a.yC =0. With this condition and knowing thag=y, one
o

arrives to the second equilibrium growth rate ire tphroposition. Replacing this
equilibrium growth rate in the growth rate expressiof proposition 3, it is
straightforward to obtain the first growth expressin proposition W

Steady state growth rates deserve some commentgapiéa output, per capita
capital and per capita consumption grow at a pasitate if the conditiow.(1+ a)<1 is
satisfied. For high values of elasticity parametgranda it is possible that the growth
rate of the increasing returns function becomesatiegy offsetting the effect of
technological progress. We also regard that agglatoa forces that allow for a
positive growth ratey, are present only for ¥o<1/(1+a). Otherwise, centrifugal
forces prevail £ declines), lowering in this way the effect of scatonomies. Note that
if o=%, we have a special case whegg=0 and = = )t=Ja. In this case, steady state
is characterized by a constanparameter. Such a situation allows for the contprta

of explicit equilibrium results for the ratios camsption-capital and technology-capital.
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Proposition 5. Assume a steady state in which the agglomerataabie is a

constant value (in this steady state there is maoletlecy for economic activities to
concentrate or to disperse, relatively to an optiagglomeration value). Under this
assumption, the following ratios are attained,

% %[2a()+2r+p] nel 95
A (g G) —a 7
= {b(B D [2a()+2r+p] N+l - 5}}

Proof: The assumption that is constant implies that=%2 and thatgz=6»=0.
Therefore, the differentiation of (21) yields, imetequilibrium, -24= )¢; given that the
growth rate of per capita consumption equals thewvtir rate of technology, in the

steady state, and that the growth rate of the ate-stariable is observable from (23), we
get the long run relation

b(2) (5} ot [2a()+ 27 +(0+0)) (26)
k a
From (4) it is true that
(AY"

Combining (26) with (27) one obtains the resuiltk in the proposition.

Note now that, fow=Y2, expression (25) reduces to

+n+o (27)

x|| ol

=2 9) (28)

Replacing the result foc/k in (28), the second steady state ratio in the@@siion is
attained

Some important features characterize the derivisasta
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i) Technology growth, impatience to consume, low pajon growth rate and
high capital depreciation rate are all factors thantribute to a high long term
consumption level relatively to the accumulatediteditevel. These results are common
to a great variety of growth modeéls;

il) The technology-capital ratio depends on the saaun®ifs as the consumption-
capital ratio plus the agglomeration parameters. TWiwonger the effect of
agglomeration over transaction costs (givengpythe higher is the ratio value; the
opposite for the effect of agglomeration over sealenomies (given bly).

To end our analysis, we make a remark about transitidynamics.

Proposition 6. Consider an unchangeable economic spacer(stant). Under this
assumption, the technology-growth model is a faoremhsional system, where saddle-
path stability holds. The stable trajectory is aelgion two space.

Proof: With a constant, the model possesses two control varialiéy,and r(t),
and two state variableg(t) and ¢t). Variablesc(t) and k(t) are not constant in the
steady state, although they grow in the long rua aame rate. To study stability, we
need variables that assume constant equilibriumegalthus, we defing(t)=k(t)/T(t)

and ¢(t)=c(t)/k(t). To these variables, the following pair of equasi@f motion apply,

() = {b(z){%} —yt)-(n+o)-a()- T(t)}-¢(t) (29)
W(t) = {w(t) - (l-a.0)b(2) {%} —op+n+(l- a).J}l//(t) (30)

Note that equation (30) is the result of the ddferation of (21), having in mind (23).
In possession of equations (8), (14), (29) and,(30¢ steady state vicinity

linearized four dimensional system takes the form,

® See, for instance, Barro and Sala-i-Martin (1995)



Space, Growth and Technology: an Integrated Dyn@pfroach 20

. _ (3 i 0 1
At) o) - :
)y |__|(t)-T I me (Z_ _____
- = ) th == -7 -0 ¥ -
() sy -7 @ -¢ | mjﬁ ]
40) W) - £ 0 E.% v

—\1-a

and @ = (1—a).b(z).(2] = (1—a).(1—a.a).b(z).(£ 4
7 7) o

In matrix =, J corresponds to the Jacobean matrix of the techgglogpblem and
0 is (22) null matrix. Two of the eigenvalues & are the A, <0 and A, >0

eigenvalues found fod. The signs of the other two eigenvalues can bepcbea

through the evaluation of thex2) matrix in the right-low corner oE. Denote this

matrix by=,,. Then, DetE,)= —a.a.m.%ﬂ/' <0. Thus, beingl; and A4 the two other

eigenvalues of, we guarantee thag.A4<0, and in this way they have to have different
signs. Therefore, from matrix, four eigenvalues can be computed, being two ipesit
values and the other two negative. As the propmosisitates, the stable trajectory has

dimension two (the number of negative eigenvaMes)
6. Discussion

The proposed framework allows for an integratedreggh about the relation
between location, growth and technology. Our monely be understood as an
endogenous growth model where long run positivevtiras determined by endogenous
decisions about technology generation and by aroagggation / dispersion rate of
economic activities that is set optimally in ortlemaximize consumption utility.

In a first moment, one has observed that the anfiithe allocation of scientific
resources allows to determine a steady state optesalt where a particular share of
applied technology is consistent with a constarawgin rate for the technology
variables. This rate is dependent on the rate athwinture technological outcomes are
discounted to the present, on the relative weigitom basic and applied science, and
upon other factors that stimulate technology grotuth that are left exogenous in our

analysis, like human capital or the existence sdand institutional environment.
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The relevant result in the technology frameworkpiscisely the possibility to
encounter a constant positive long run rate fortédohnology index that is included in
the definition of the aggregate production functadrihe economy. It is this technology
index that constitutes the bridge between the togy framework and the growth
setup. For a given set of explicit functional forfas production, utility, transaction
costs and increasing returns, several equilibrietations are found. As it is usual in
growth models, the long run steady state is charaetd by a same growth rate for
output, capital accumulation and consumption. Tdte of per capita growth is the rate
of technological progress (determined endogenouglyy the rate at which scale
economies grow (or decline). Increasing or decnrgasicale economies are, in our
framework, simply the result of the dominance ohtdpetal forces or, rather, the
prevalence of centrifugal forces. These forceguin, are conditioned by the value of
elasticity parameters regarding utility and produttonditions.

Because the model points to a long term econongtoatgration that is directly
dependent on technology growth, in the end the @mogis per capita growth rate
depends solely on technological progress — thisuamply is nothing new relatively to
conventional growth models, but there is an impurtéifference: the economy’s per
capita growth rate can be higher or lower thanécbnology growth rate, depending on
the way firms choose to locate in space. An aggtatin process stimulates growth
above technological progress; otherwise, growthl Ww# lower than the rate of
technological progress. One might rush to the amich that since agglomeration
benefits the creation of wealth, economic actigitypuld concentrate the most in order
to take full advantage of increasing returns; kerind the other side of the coin:
although concentration allows for a higher outpenel, concentration implies also
transaction costs that produce lower utility. Tisishe reason why the optimal long run
rate of economic agglomeration is not necessariposgitive value. It can be indeed
positive, but it may be also negative or zero, depgy on parameter values.

In the specific case of absence of a tendency Heragglomeration degree to
change, the present setup points to a long rurtnebere per capita economic growth
corresponds to the technology growth rate. Furtbegmin such a case it is easy to
identify a saddle-path equilibrium that reflectse thechnology trade-off and the

consumption-capital accumulation trade-off.
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