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Summary. A new multivariate random walk model with slowly changing pa-

rameters is introduced and investigated in detail. Nonparametric estimation of

local covariance matrix is proposed. The asymptotic distributions, including

asymptotic biases, variances and covariances of the proposed estimators are ob-

tained. The properties of the estimated value of a weighted sum of individual

nonparametric estimators are also studied in detail. The integrated effect of

the estimation errors from the estimation for the difference series to the inte-

grated processes is derived. Practical relevance of the model and estimation is

illustrated by application to several foreign exchange rates.

Keywords: Multivariate time series; slowly changing vector random walk; local
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1 Introduction

Random walk models, including Weiner processes or Brownian motion arise in many appli-

cations, particularly in financial time series, statistical physics, genetics, graphs, modelling

of turbulent dispersion within the atmosphere and to geographic distributions of animal; see

Kijima (2002), Weiss (1994), Neigel and Avise (1993) and Lovász (1993). In these applica-

tions often an analysis of the relationships between more than one variable simultaneously

is required. Vector (also called multiple or multivariate) random walk is the simplest mul-

tiple integrated process whose first differences form a vector white noise (see e.g. Harvey,
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1989). Such a model can be used for modelling financial difference or return series which

is also often used to built some more complex models. In Harvey et al. (1994) vector

random walk is used to model persistent movements in stochastic volatility models. Due to

slow change of economic or environmental situations however the means and variances, also

the covariances and correlations between the components of the innovation process may

all change slowly over time. In this paper a slowly changing vector random walk model is

hence introduced to model the slowly change multiple time series.

The paper is organized as follows. Section 1.1 reviews the existing literature on stochastic

time varying process. Section 1.2 presents a motivating example involving exchange rate.

The multivariate random walk model with slowly changing parameters is introduced in

Section 2. Nonparametric inference methods for time-varying covariance matrix are defined

in Section 3. Properties of the estimators are derived in Section 4, including asymptotic

mean square errors and optimal bandwidth. An optimal prediction of the future value of a

portfolio is developed in Section 5. Practical performance of the proposed methods through

an application to four daily foreign exchange rate is discussed in Section 6. Concluding

remarks are presented in Section 7 and the proofs can be found in Appendix.

1.1 A brief review of closely related research

Univariate locally stationary processes were first introduced and studied by Dahlhaus (1997,

2000). Nonparametric inference for the mean and variance functions in univariate stochastic

process has attracted much attention in statistics literature. We list few of a rich literature

using in this context. Kernel regression estimation with time series errors is studied e.g.

by Hart (1991) and Csögö and Milnikzug (1995). Beran and Ocker (1999) and Beran and

Feng (2002) discussed nonparametric trend estimation in integrated processes. Fan and

Yao (1998) proposed nonparametric estimation of conditional variance function following

the idea of the ARCH (autoregressive conditional heteroskedasticity, Engle, 1982) model.

Aı̈t-Sahalia (1996) studied nonparametric estimation of time-varying drift and diffusion

coefficients of a Brownian motion.

In contrast to univariate models, which model each component independently, multivari-

ate model takes account of the covariances and correlation between components. There is a
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vast literature on parametric multivariate GARCH (generalized ARCH) models for condi-

tional covariance matrix (see e.g. Bollerslev et al., 1988 and Engle, 2002) and on nonpara-

metric estimation of conditional covariance matrix (Härdle et al., 1998, 2003). However in

this paper we will focus on the estimation of covariance matrix in a slowly changing model.

The slowly change in the current model means some deterministic components which are

non-stochastic. The real examples in Section 1.2 clearly illustrate the phenomenon of slow

change. Actually, in the new model named SCVRW model the change in the means, vari-

ances, covariances and correlations is assumed to be deterministic not conditional. They

change smoothly over time and do not depend on the past information. This is what slow

change means. On the other hand conditional changes in such components are caused by

past observations. Conditional changes and local changes can not explained each other.

Despite a huge number of literature on the estimation of conditional covariance matrix,

little research on the estimation of local covariance matrix can be found in literature. Herzel

et al (2006) explores some ideas on volatility estimation under a non-stationary multivariate

return model, but assumes a constant drift term, lacks theoretical investigation and ignores

forecasting in depth. Wu and Pourahmadi (2003) discussed nonparametric estimation of

the covariance matrix of the observations of a univariate time series based on Cholesky

decomposition, where it is proposed to estimate the diagonal matrix with the variances as

its diagonal entries and the unit lower triangle matrix using local polynomial separately.

1.2 Motivation examples

The slow change economics phenomenon can be observed in finance such as the indices of

major stock markets and exchange rates. Figure 1 displays the scatter plots of four daily

foreign exchange rate series w.r.t. the US Dollar (USD). The data are those of the British

Pound (Pound), Japanese Yen (Yen), Euro and Canadian Dollar (CAD), from 4 January

1999 to 4 November 2005. Here the USD price per foreign currency is used. Figure 1

shows that there are clear non-constant drifts in these series which change slowly over time.

Figure 2 displays the difference series of the original data from which we can see that the

variances of the difference series change clearly over time. What cannot be discovered by

eye is that the correlation coefficients also change strongly during the observation period
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(see Figure 6 in Section 6). This can also be shown graphically by plotting two difference

series against each other piece by piece.

For this data and the content in finance, one is concerned

(a) how to model properly the slowly changing drifts, variance and correlation coefficients

of underlying stochastic process,

(b) what is the estimation of the mean and variance of a portfolio, and

(c) what is the effect of estimation errors in the short term forecasts.

Other slowly change multivariate time series include ice thickness series. It is widely

concerned that global warming results in quickly decreasing ice-thickness. However, the

ice thickness series are random walks (the sum of snow fall years after years). There is a

nonparametric trend in the differences of these data, because of the different strength of

press (or maybe also other reasons), the dependence between ice thickness in different years

(after removing the trend) is very weak. In all, different series of ice thickness may also be

able to be modelled using the SCVRW.

Global and hemispheric series of temperature anomalies can also be modelled by random

walks (Gorden, 1991). Similarly, statistical analysis for satellite-based global daily tropo-

spheric and stratospheric temperature anomaly and solar irradiance data sets shows that

the behavior of the series appears to be nonstationary with stationary daily increments

(Kärner, 2002). The model proposed in this paper provides a useful tool for modelling

global warming as slow change in the increments of those series.

2 The model

Let Yt be a k-dimensional stochastic process, and Y0 be the initial value of Yt. Let C be

a constant vector, and let Zt be the increment of Yt.

The proposed slowly changing vector random walk (SCVRW) is defined by




Y0 = C,

Yt = Yt−1 + Zt for t = 1, 2, ..., n,

Zt = µ(xt) + Σ1/2(xt)Et,

(1)
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where

Yt =




Y1t

...

Ykt


 , Zt =




Z1t

...

Zkt


 , Et =




ǫ1t

...

ǫkt




are random vectors, xt = t/n is the re-scaled time,

µ(xt) =




µ1(xt)
...

µk(xt)


 and Σ(xt) =




σ2
1(xt) · · · σ1k(xt)
...

. . .
...

σk1(xt) · · · σ2
k(xt)


 (2)

are the vector of local mean functions and the matrix of local variances or cross-covariance

functions, respectively, and Σ1/2 denotes lower triangular Cholesky factorization of a semi-

positive definite matrix so that

Σ = Σ1/2
(
Σ1/2

)
′

.

For convenience we will also denote σ2
i (xt) by σii(xt), i = 1, ..., k. It is assumed that

σii(·) are strictly positive for all i and that ǫit given i are i.i.d. N(0, 1) random variables

for t = 1, 2, ..., n, and that ǫit given t are also mutually independent for i = 1, 2, ..., k.

Further smoothness conditions on the local mean and the local variances or cross-covariance

functions, i.e. µi and σij, i, j = 1, ..., k will be introduced later.

The difference series Zt of the slowly changing vector random walk Yt defined in the

above is non-jointly stationary, because each of its element is non-stationary. However, it

is easy to see that Zt is jointly locally stationary in the sense that, in a small interval of

x whose length tends to zero as n → ∞, the difference between Zt and another jointly

stationary process Z∗

t is negligible in probability.

Remark 1 When k = 1, Model (1) reduces to ∆Yt = µ(xt) + σ(xt)ǫt, which is the dis-

cretized form of model (1.1) discussed by Aı̈t-Sahalia (1996). This univariate model is also

a fixed design heteroscedastic regression model whose random design type was discussed by

Fan and Yao (1998).

Model (1) can be extended substantially e.g. by introducing a VARMA term into the

difference process Zt or by allowing for continuous time. This will however not be considered
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here, because the aim of the current paper is to obtain more detailed results under a basic

model.

3 The estimators

Let yt, t = 0, 1, ..., n denote the observations and zt = yt−yt−1, t = 1, ..., n. In the following

two kinds of estimators, called single and joint estimators, will be introduced, which can

be used for forecasting the trend and variance of a single financial series or of a portfolio,

respectively. First consider p-th order local polynomial estimation (Fan and Gijbels, 1996)

of the mean function in the i-th series. Let Ki(u) denote a weight, i.e. a positive kernel,

function and ai = (ai0, ..., aip)
′. Solve the locally weighted least square problem

â′

i(x) = arg min
ai

n∑

t=1

[zit − ai0 − ...aip(xt − x)p]2 Ki

(
xt − x

hi

)
, (3)

where hi is the bandwidth used for estimating µi. Then the resulting estimator of µi(x) is

given by µ̂i(x) = âi0(x), which is a linear estimator, i.e. a weighted sum of zit. The vector

estimator µ̂(x) = (µ̂1(x), ..., µ̂k(x))′ will be called a joint estimator of all mean functions, if

each of its element is estimated following (3) but using the same weight function K(u) and

the same bandwidth h.

Let rit = zit − µ̂i(xt), i = 1, ..., k, denote the residuals at time t calculated using either

the single estimators µ̂i(xt) or the joint estimator µ̂t. Let rt = (r1t, ..., rkt)
′ denote the

residual vector. Then the variance and cross-covariance functions can be estimated from

the residuals. Consider first the estimation of the variance function in the i-th series by a

Nadaraya-Watson kernel (i.e. a local constant). Let Wi(u) denote the weight function and

bi the bandwidth. We have

σ̂2
i (x) =

n∑
t=1

Wi

(
xt−x

bi

)
r2
it

n∑
t=1

Wi

(
xt−x

bi

) . (4)

This type of variance estimators is used, e.g. by Feng (2004). σ̂2
i defined in this way is

certainly non-negative.
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Note that we do not define single estimators for the cross-covariances functions, because

the estimation of Σ obtained as a matrix of separate variance and cross-covariance estima-

tors may not be semi-positive definite. Instead, it is proposed to estimate Σ in the following

joint way.

Σ̂(x) =

n∑
t=1

W
(

xt−x
b

)
rtr

′

t

n∑
t=1

W
(

xt−x
b

) . (5)

Σ̂(x) is simply a matrix kernel estimator of all σij(x), i, j = 1, ..., k, with the same kernel

function and the same bandwidth. Let Γ(x) =

(
ρij(x)

)
, where ρij(x) denotes the local

cross-correlation between ǫit and ǫjt. Then Γ(x) can be estimated as follows.

Γ̂(x) =
(
diag(Σ̂(x))

)
−1/2

Σ̂(x)
(
diag(Σ̂(x))

)
−1/2

. (6)

Proposition 1 Σ̂(x) defined in (5) is semi-positive definite at any point x ∈ [0, 1] and

hence Γ̂(x) defined in (6) is a correlation matrix.

Proof of Proposition 1 is omitted. Σ̂(x) is semi-positive definite, because it is a Gram

matrix. Indeed Σ̂(x) is a.s. (almost sure) positive definite, because rt are a.s. linear

independent of each other. Note that in practice we are mainly interested in estimating

Σ(x) at the current end of the time series, i.e. with x = 1. If a second order kernel is used,

kernel estimator has the so-called boundary effect, i.e. the bias in the interior is of a higher

order than that at the boundary point. To avoid this problem we only assume the existence

of the first derivatives and will focus on discussing the behaviour of Σ(x) at a boundary

point.

4 Main results

For the derivation of the asymptotic results the following assumptions are required.

Assumption A1. The weight function is assumed to be a symmetric density on [−1, 1].

Assumption A2. The local mean functions µi(·), i = 1, ..., k, are at least p + 1 times

continuously differentiable, and the local variance and cross-covariance functions σij(·),
i, j = 1, ..., k, are at least continuously differentiable.
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Assumption A3. The assumptions on the error structure as described in the context

around equations (1) and (2) hold.

Assumption A4. Let hg denote a generic bandwidth used. It is assumed that hg → 0

and nhg → ∞ as n → ∞.

The smoothness conditions required in A2 adapt to the different definitions of the esti-

mators. Lower smoothness is required for σij(·) due to the use of kernel estimators. For

a goodness-of-fit criterion the MSE will be used. The normal assumption on ǫit is only

necessary, if interval prediction for future values is of interest. For the derivation of most

of the asymptotic results the existence of fourth moments of ǫit is enough. If automatic

bandwidth selection is considered, higher order of smoothness and the existence of E(ǫ8
it)

are required. A4 is a minimal requirement on the bandwidths in nonparametric regression.

Further restrictions on the bandwidths will be introduced later.

In local polynomial regression it is often assumed that p is odd so that the bias of the

estimator in the interior and at the boundary is of the same order. For the estimators of the

mean functions this restriction will be used. Let K∗

i (·) denote the equivalent kernel of the

local polynomial estimator of µ̂i (see e.g. Ruppert and Wand, 1994). Then K∗

i (·) is a (p+1)-

th order kernel. Denote by βi =
∫

up+1K∗

i (u)du and Ri =
∫

(K∗

i (u))2du. The following

theorem is given without proof, which summaries well known asymptotic properties of the

single estimator µ̂i (see e.g. Wand and Jones, 1995).

Theorem 1 Let x ∈ [0, 1]. Assume that p is odd and that the assumptions A1 to A4 hold.

Then we have

1. The bias of µ̂i(x) is E[µ̂i(x) − µi(x)] = βiµ
(p+1)
i (x)hp+1

i [1 + o(1)]/[(p + 1)!].

2. The variance of µ̂i(x) is var [µ̂i(x)] = (nhi)
−1Riσ

2
i (x)[1 + o(1)].

3. The dominant part of the MSE of µ̂i(x) is

MSE(µ̂i(x))
.
= β2

i (µ
(p+1)
i (x))2h

2(p+1)
i [(p + 1)!]−2 + (nhi)

−1Riσ
2
i (x). (7)

4. The right-hand side of (7) is minimizesd by the (asymptotically) optimal bandwidth

hopt
i =

(
Ti2

2(p + 1)Ti1

)1/(2p+3)

n−1/(2p+3), (8)
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provided that Ti1 6= 0 and Ti2 6= 0, where Ti1 = β2
i (µ

(p+1)
i (x))2[(p + 1)!]−2 and Ti2 =

Riσ
2
i (x).

Now consider the estimation of the mean in the returns of a given portfolio. Let S =

(S1, ..., Sk)′ denote the vector of shares in the portfolio with Si ≥ 0 and
∑

Si > 0. Then

the portfolio values and returns at time t are given by VP (xt) = S′Yt and ZP (xt) = S′Zt,

respectively. The unknown mean of ZP (xt) is S′
µ(x) which can be estimated by S′

µ̂(x).

Let K∗(·) denote the equivalent kernel of this estimator. Denote by β =
∫

up+1K∗(u)du

and R =
∫

(K∗(u))2du. The MSE of estimating S′
µ(x) is given by

MSES
µ̂

(x) = E

{
k∑

i=1

Si[µ̂i(x) − µi(x)]

}2

. (9)

The following theorem quantifies the properties of MSES
µ̂

using the joint estimator.

Theorem 2 Under the same conditions of Theorem 1 we have

1. Results in 1 to 3 of Theorem 1 hold for each element µ̂i(x) of µ̂(x) by replacing βi,

Ri and hi with β, R and h respectively.

2. The covariance between µ̂i(x) and µ̂j(x) is given by

cov (µ̂i(x), µ̂j(x)) = Rσij(nh)−1[1 + o(1)]. (10)

3. The MSES
µ̂

is dominated by

MSES
µ̂

.
= T S

1 h2(p+1) + T S
2 (nh)−1, (11)

where

T S
1 =

β2

[(p + 1)!]2

k∑

i=1

k∑

j=1

SiSjµ
(p+1)
i (x)µ

(p+1)
j (x) (12)

and

T S
2 = R

k∑

i=1

k∑

j=1

SiSjσij(x). (13)
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4. The optimal bandwidth which minimizes the asymptotic MSES
µ̂

is given by

hopt
S =

(
T S

2

2(p + 1)T S
1

)1/(2p+3)

n−1/(2p+3), (14)

provided that T S
1 6= 0 and T S

2 6= 0.

Let Σµ̂(x) and Γµ̂(x) denote the covariance respective correlation matrices of µ̂. Following

(10) we have

Σµ̂(x)
.
= R(nh)−1Σ(x) and Γµ̂(x)

.
= Γ(x), (15)

where Γ is the cross-correlation matrix defined before. The result in the second part of (15)

shows that µ̂ takes over the correlations of the original data.

Remark 2 In the special case with S1 = ... = Sk = S0 > 0, Parts 3 and 4 of Theorem

2 show the properties of an unweighted (or equally weighted) portfolio. While in another

extreme case with Si > 0 and Sj = 0 for all j 6= i, these results reduce to those given in

Theorem 1. Similar statements apply to the results in Theorem 4 below.

It is well known that the bias of the kernel estimators σ̂2
i and Σ̂ in the interior point

has different order from the boundary. In the following only asymptotic properties of these

estimators at x = n/n = 1 will be given, because we are mainly interested in the estimation

at the current endpoint. In this case the used weight function is W r
i (u) = 2Wi(u)1I[−1,0]. Let

αi =
∫ 0
−1 uW r

i (u)du and Vi =
∫ 0
−1(W

r
i (u))2du. To simplify the derivation of the asymptotic

properties we will introduce the following assumption on µ̂i and the bandwidths hi and bi.

A4′. Assume that µ̂i is a local linear estimator obtained with a bandwidth O(n−1/3) <

hi < O(n−1/6). The bandwidth bi satisfies O(n−2/3) < bi = o(1).

Condition A4′ ensures that the errors in µ̂i are negligible when discussing the asymptotic

properties of σ̂2
i and Σ̂ (see the proofs of the theorems given in the appendix), which implies

A4. Note that bi > O(n−2/3) means that bi should not be too small. This is a very weak

restriction. Results in Theorem 3 below show that the optimal order for bi is O(n−1/3).

The bounds for hi and bi in A4′ are chosen for convenience. Note however that they depend

on each other. The optimal order O(n−1/5) of hi lies in between the range given in the first
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part of A4′. If the stronger condition hi = O(n−1/5) is used, then the allowed range of bi

becomes larger. The requirements in A4′ also depend on the special case considered. For

instance weaker restrictions can be used, if µ̂i is a high order local polynomial estimator.

The following results hold for the single estimator σ̂2
i defined in (4).

Theorem 3 Suppose Assumptions A1 to A3 and A4′ hold. Then

1. The bias of σ̂2
i (1) is given by

E[σ̂2
i (1) − σ2

i (1)] = αi(σ
2
i )

′(1)bi[1 + o(1)], (16)

where (σ2
i )

′(1) denotes the first derivative of σ2
i (x) at x = 1.

2. The variance of σ̂2
i (1) is given by

var [σ̂2
i (1)] = (nbi)

−1Viγ
2
ii(1)[1 + o(1)], (17)

where γ2
ii(1) = var [(Zi(1)−µi(1))

2] = σ4
i (1)var (ǫ2

in) which equals to 2σ4
i (1) for normal

ǫit.

3. The MSE of σ̂2
i (1) is dominated by

MSEσ̂2

i

(1)
.
= Di1h

2
i + Di2(nbi)

−1, (18)

where Di1 = α2
i [(σ

2
i )

′(1)]2 and Di2 = Viγ
2
ii(1).

4. The optimal bandwidth which minimises the right-hand side of (18) is given by

bopt
i =

(
Di2

2Di1

)1/3

n−1/3, (19)

provided that Di1 6= 0 and Di2 6= 0.

Remark 3 At an interior point x ∈ (bi, 1−bi) the bias of a kernel estimator is of the order

O(b2
i ) and the order of variance stays unchanged. Now, we have MSE

.
= O(b4

i )+O[(nh)−1]

and bopt
i = O(n−1/5).
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Remark 4 Asymptotic results for the left endpoint x = 0 are the same as given in Theorem

3. In practice the so called one-side kernel estimators, i.e. estimators defined using only

observations on the left hand side, may be of interest. In this case any point is treated as a

right endpoint. For one-side kernel estimators results in Theorem 3 hold for all x ∈ (bi, 1].

Consider now the estimation of var [ZP (xt)] = var [S′Zt]. First we have

var [ZP (xt)] = S′Σ(xt)S, ˆvar [ZP (xt)] = S′Σ̂(xt)S

and the total estimated error in ˆvar [ZP (xt)] is

ˆvar [ZP (xt)] − var [ZP (xt)] = S′

[
Σ̂(xt) − Σ(xt)

]
S. (20)

Define the k × k random matrix

Ξ(x) = [Z(x) − µ(x)]T[Z(x) − µ(x)] =: (ξij
t ), (21)

i, j = 1, ..., k.

Note that E(Ξ(x)) = Σ(x). Define (ǫ̃1t, ..., ǫ̃kt)
′ = Ẽt = Γ1/2(xt)Et, where ǫ̃it ∼ N(0, 1)

with E(ǫ̃itǫ̃jt) = ρij(xt), i, j = 1, .., k. The covariance matrix of Ξ(x) is given by

ΥΞ(x) := E {[Ξ − Σ(x)] ⊗ [Ξ − Σ(x)]} =: (γij,lm) (22)

for i, j, l,m = 1, ..., k, where ⊗ denotes the Kronecker product, and

γij, lm(xt) = cov (ξij
t , ξlm

t )

= σi(xt)σj(xt)σl(xt)σm(xt)cov (ǫ̃itǫ̃jt, ǫ̃ltǫ̃mt) (23)

for i, j, l,m = 1, ..., k. The MSE of ˆvar [ZP (xt)], denoted by MSES
V (xt), is given by

MSES
V (xt) = E

{
S′

[
Σ̂(xt) − Σ(xt)

]
S
}2

=

k∑

i=1

k∑

j=1

k∑

l=1

k∑

m=1

SiSjSlSmE {[σ̂ij(xt) − σij(xt)][σ̂lm(xt) − σlm(xt)]} .(24)

Finally, let α =
∫ 0
−1 uW r(u)du and V =

∫ 0
−1(W

r(u))2du, where W r(u) = 2W (u)1I[−1,0].

Then the asymptotic biases, variances and covariances of σ̂ij(1) and the formula of MSES
V (1)

(all at x = 1) are given in the following theorem.
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Theorem 4 Under the same conditions of Theorem 3 we have

1. The bias of σ̂ij(1) is given by

E[σ̂ij(1) − σij(1)] = ασ′

ij(1)b[1 + o(1)]. (25)

2. The covariance between σ̂ij(1) and σ̂lm(1) is given by

cov (σ̂ij(1), σ̂lm(1)) = V γij,lm(nb)−1[1 + o(1)]. (26)

3. MSES
V (1) is dominated by

MSES
V (1)

.
= DS

1 b2 + DS
2 (nb)−1, (27)

where

DS
1 = α2

k∑

i=1

k∑

j=1

k∑

l=1

k∑

m=1

SiSjSlSmσ′

ij(1)σ
′

lm(1) (28)

and

DS
2 = V

k∑

i=1

k∑

j=1

k∑

l=1

k∑

m=1

SiSjSlSmγij, lm(1). (29)

4. The optimal bandwidth which minimizes the dominant part of MSES
V (1) is given by

bopt
S =

(
DS

2

2DS
1

)1/3

n−1/3, (30)

provided that DS
1 6= 0 and DS

2 6= 0.

Now let ΓΞ(x) denote the standardized correlation matrix of Ξ(x), and Υ ˆΣ
(x) and Γ ˆΣ

(x)

denote the corresponding matrices of the joint estimator Σ̂(x). Following (26) we have

Υ ˆΣ
(1)

.
= V (nb)−1ΥΞ(1) and Γ ˆΣ

(1)
.
= ΓΞ(1). (31)

We see Σ̂ takes over the correlations between the components of Ξ.

Remark 5 Using Taylor expansion it can be shown that the bias and variance of ρ̂ij(x),

i 6= j, are of the same orders as those of σ̂ij(x).

Remark 6 Assume that the innovations are normal or satisfy the moment condition men-

tioned before. Assume further that the proposed estimators are obtained using bandwidths

of corresponding optimal orders, then it is easy to show that they are all asymptotically

normally distributed.

13



5 Forecasting of future mean and standard deviation

We now discuss the forecasting of future mean and standard deviation at time n + T given

observations until time n. The most current estimation results, i.e. those with x = 1 will

be used. Under our model the optimal linear prediction for a single series at time n + T is

E(Yi(n+T )|Yin) = Yin +

T∑

t=1

µi(xn+t), (32)

which can be estimated by

Ŷi(n+T ) = Yin + T µ̂i(1). (33)

The optimal linear prediction for the value of a given portfolio S = (S1, ..., Sk)′ at time

n + T is

E(PS
n+T |Yn) = E(S′Yn+T |Yn) =

k∑

i=1

SiYin +
k∑

i=1

Si

T∑

t=1

µi(xn+t), (34)

which can be estimated by

P̂S
n+T =

k∑

i=1

SiYin + T
k∑

i=1

Siµ̂i(1). (35)

Clearly, the forecasts should be at least consistent. To this end we need the following

assumption on T .

A5. Let hg denote a generic bandwidth for estimating the mean functions. T satisfies

T 2h
2(p+1)
g → 0 and T 2(nhg)

−1 → 0 as n → ∞.

The following theorem describes the properties of Ŷi(n+T ) and P̂S
n+T .

Theorem 5 Suppose the assumptions of Theorem 2 and A5 hold. Then we have

1. Ŷi(n+T ) is consistent with E[Ŷi(n+T ) − E(Yi(n+T )|Yin)]2
.
= T 2MSE[µ̂i(1)], which is

minimized by µ̂i(1) with hopt
i (1).

2. P̂S
n+T is consistent with E[P̂S

n+T −E(PS
n+T |Yn)]2

.
= T 2MSES

µ̂
, which is minimized by

µ̂(1) with hopt
S (1).
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If a bandwidth of the optimal order O(n−1/(2p+3)) is used, then A5 becomes T = o(n(p+1)/(2p+3))

which is the biggest allowed order of the forecasting period.

The variance of the future value of a single series is

var [Yi(n+T )|Yin] =

T∑

t=1

σ2
i (xn+t) (36)

which can be estimated by

V̂ [Yi(n+T )|Yin] = T σ̂2
i (1). (37)

The variance of the future value of the portfolio at time n + T is

var (PS
n+T |Yn) = S′

[
T∑

t=1

Σ(xn+t)

]
S, (38)

which can be estimated by

v̂ar (PS
n+T ) = TS′Σ̂(1)S. (39)

Now we need the following assumption on T .

A5′. Let bg denote a generic bandwidth for estimating the variance-covariance functions.

T satisfies Tbg → 0 and T (nb2
g)

−1 → 0 as n → ∞.

Let SDT denote the standard deviation of Yi(n+T )|Yin with the estimate
√

T σ̂i(1) and SDS
T

the standard deviation of var (PS
n+T |Yn) with the estimate

√
T

√
S′Σ̂(1)S. The following

holds.

Theorem 6 Suppose the assumptions of Theorem 3 and A5′ hold. Then we have

1.
√

T σ̂i(1) is a consistent estimator of SDT with E
[√

T σ̂i(1) − SDT

]2
= O(T ·MSE[σ̂2

i (1)]),

which is minimized by that using bopt
i (1).

2.

√
TS′Σ̂(1)S is a consistent estimator of SDS

T with

E

[√
TS′Σ̂(1)S − SDS

T

]2

= O[T ·MSES
Σ̂

(1)], which is minimized by that using bopt
S (1).

If a bandwidth of the optimal order O[n−1/3] is used, then A5′ becomes T = o(n1/3) which

is the biggest allowed order of the forecasting period.
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Both theorems show that the optimal bandwidths for estimating the local mean and local

variance functions respectively are also optimal for carrying future forecasting following the

random walks. This also holds for calculating the forecasting intervals, if the innovation

distribution is normal. The above results show that forecasts of future values should be

carried out for a very short time period T . Otherwise the MSE of the forecasts would be

enlarged very strongly so that the forecasts are no longer consistent or only converge very

slowly.

6 Data examples

The four daily foreign exchange rate series w.r.t. the US Dollar (USD) outlined in Section

1.3 are chosen to illustrate the practice usefulness of the proposed model. There are 1723

observations in each exchange rate series.

In the following, the mean functions will be estimated by local linear and the variance-

covariance functions by local constant regression. Bandwidth-choice methods in this prob-

lem would make a particularly interesting topic to study. Cross-validation is an obvious

approach, and would require no additional work other than development of theory. How-

ever, it would be interesting to develop alternative approaches, based on plug-in methods,

since cross-validation often results in highly stochastic variations in the selected bandwidth.

Nevertheless, it seems to us that this aspect of the problem is well outside the scope of the

present paper.

To this end our experiments found that we can use bandwidth selection rules developed

under univariate cases. The bandwidth for the estimation of the mean of a single series can

be selected following the iterative plug-in algorithm proposed by Gasser et al. (1991). The

bandwidth for estimating the variance by a single series can be selected by adapting the

iterative plug-in algorithm in Feng (2004). Hence, the bandwidths used in this paper are

selected according to the information obtained by bandwidth selection for each univariate

series. The rule gives about h = 0.125 for estimating the means and b = 0.1 for estimating

the variances and covariances. Also the method of k-nearest-neighbours is used at the

boundary. This means that the number of observations used at each point is fixed which is
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the nearest integer to 2nh + 1 or 2nb + 1 in the two cases respectively. Through the paper

the Epanechnikov kernel is used as the weight function. The estimated local mean functions

are displayed in Figure 3 together with a horizontal line y = 0. Where negative values of

the estimated means correspond to weaker USD periods while positive estimate to strong

USD periods. We see at the current end the USD is stronger than all foreign currencies

except for the CAD, which reflects the current strong dollar policy of the US government.

Figure 4 shows the estimated local standard deviations. We can see that the variance

of a difference series also change clearly during this period. The biggest relative change

happens by the CAD, the the ratio between the smallest and biggest values is bigger than

2. The standardized difference series are shown in Figure 5, from which we can see that the

change in the variances is well fitted and removed. Now each single series looks stationary.

However they are still not jointly stationary, because the cross-correlation matrix changes

very strongly over this period. This is shown in Figure 6, where all of the correlation

coefficients show a clearly increasing pattern. This indicates that the dependence between

the main world economies becomes stronger and stronger in these years. Detailed analysis

shows that the dependence level between the two European currencies was still very high

at the beginning and becomes higher (about 0.8) at the end of the period. The other

correlation coefficients have been very slow at the beginning. Those between Pound and

CAD, and Euro and CAD are even slightly negative at that time. But they increase very

quickly during the observation period until about 0.5 at the current end. At this end the

cross-correlations between CAD and the other currencies seem to begin decreasing slightly

again, because all other currencies become weaker but the CAD is still stronger (cf Figures

1 and 3).

Results obtained following the proposed model are very useful for risk management and

portfolio optimisation. This will be explained briefly in the following. The estimated means,

variances, covariances and correlation coefficients at the current end (with x = 1) for each

currency (standardised for a 100 USD unit to keep them comparable) are shown in Table

1, where the diagonal elements in the second part are the estimated variances, those in

the upper triangular part are the estimated covariances while the estimated correlation

coefficients are listed in the lower triangular part. Following the mean, the Yen is the
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Table 1. µ̂i(1), σ̂ij(1) and ρ̂ij(1) (italic) (for 100 USD).

σ̂ij(1) (j ≥ i), ρ̂ij(1) (j < i)

Names µ̂i(1) Pound Yen Euro CAD

Pound -0.0598 0.3000 0.2254 0.2574 0.1302

Yen -0.1087 0.629 0.3722 0.2326 0.1311

Euro -0.0831 0.796 0.618 0.3485 0.1542

CAD 0.0203 0.467 0.423 0.534 0.2670

weakest and the Euro the second weakest currencies. Following the variance (risk) the

Euro is the weakest and the Yen the second weakest currencies. Following both criteria the

CAD is the strongest and the Pound the second strongest currencies. This information is

very useful for decision making, for instance to calculate an optimal portfolio.

7 Concluding remarks

We see that this article provides a good practical model and estimation methods for slowly

changing drifts, variance and correlation coefficients of underlying stochastic process. It is

the first multivariate model in the literature for studying slow change stochastic process;

it develops effect estimation methods and asymptotic theory; and it assesses the effect of

errors in the short term forecasts. Also, any increase in the number of component of the

model does not increase the number of unknown parameters, nor the estimation burden,

hence the model and fitting method are suitable for jointly modelling any number of assets

in practice.

Some important open questions are still there and left for further study. These questions

include extension of the model to allow for autocorrelations, development of significant tests

and the need of robust estimation under asymmetric distribution and possibly outliers in

the data.
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Appendix: Proofs of results

Proof of Theorem 2. 1) The results are just special cases of those given in Theorem 1.

2) Note that µ̂i(x) and µ̂j(x) are two linear estimators with the same weights generated

by the local polynomial approach. Let wt denote the weights. We have

µ̂i(x) =
n∑

t=1

wtzit and µ̂j(x) =
n∑

t=1

wtzjt.

Note that, for t1 6= t2, zit1 are independent of zit2 and zjt2 . Hence

cov (µ̂i(x), µ̂j(x)) = cov

(
n∑

t=1

wtzjt,

n∑

t=1

wtzjt

)

=
n∑

t=1

cov (wtzjt, wtzjt)

=

n∑

t=1

w2
t cov (zjt, zjt)

=
n∑

t=1

w2
t σij(xt). (A.1)

Under the conditions of Theorem 2 we have wt = 0 for |x − xt| > h and

σij(xt) = σij(x)[1 + O(h)] = σij(x)[1 + o(1)]

for |x − xt| ≤ h. Following known results in nonparametric regression it is easy to show

that
∑

w2
t = (nh)−1R[1+o(1)] (see e.g. Wand and Jones, 1995 and Fan and Gijbels, 1996).

Hence,

cov (µ̂i(x), µ̂j(x)) =

n∑

t=1

w2
t σij(xt)
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= σij(x)[1 + o(1)]

n∑

t=1

w2
t

= (nh)−1Rσij(x)[1 + o(1)]. (A.2)

3) Results in this part can be shown by straightforward calculations. In the following we

will give an indirect proof to show more details. Denote by BS
µ̂

(x) and V S
µ̂

(x) respectively

the bias and variance of the estimated portfolio returns. Then it is easy to show that

MSES
µ̂

(x) = [BS
µ̂

(x)]2 + V S
µ̂

(x). (A.3)

Following results in part 1) we have

BS
µ̂

(x) = E

{
k∑

i=1

Siµ̂i(x)

}
−

k∑

i=1

Siµi(x)

= E

{
k∑

i=1

Si[µ̂i(x) − µi(x)]

}

=

{
k∑

i=1

Siµ
(p+1)(x)

}
βhp+1

(p + 1)!
[1 + o(1)]. (A.4)

Furthermore, following (A.2) we have

V S
µ̂

(x) = var

{
k∑

i=1

Siµ̂i(x)

}

=

k∑

i=1

k∑

j=1

SiSjcov (µ̂i(x), µ̂j(x))

=





k∑

j=1

SiSjσij





R

nh
[1 + o(1)]. (A.5)

Equation (11) is proved by inserting those in (A.4) and (A.5) into (A.3).

4) Now, note that both T S
1 and T S

2 are both non-negative. The dominated part of

MSES
µ̂

(x) given in (11) is concave in h, provided that T S
1 and T S

2 are both non-zero, which

is minimized by hopt
S given in (14). ⋄

Proof of Theorem 3. Let wit denote the weights for σ̂2
i (1) and witk, k = 1, ..., n, those

for µ̂i(xt). Then wit = O[(nbi)
−1] for 1−xt ≤ bi and otherwise zero, and witk = O[(nhi)

−1]
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for |xk − xt| ≤ hi and zero otherwise. Let ξit = zit − µi(xt). We have ξit = σi(xt)ǫ̃it and

ξij
t = ξitξjt = σi(xt)ǫ̃itσj(xt)ǫ̃jt, where ξij

t and ǫ̃it are as defined in the context of Theorem

4. Define ηit = ǫ̃2
it − 1. Then, for given i, ηit are zero mean i.i.d. errors such that

ξ2
it = σ2

i (xt) + σ2
i (xt)ηit, (A.6)

which represents a special nonparametric regression model with independent errors and

scale change, where the scale function turns to be the same as the trend function. A key

point here is that ξit are unobservable. In the following we will show first Theorem 3 holds,

if µi(xt) is known, i.e. if ξit are observable. Define

σ̃2
i (1) =

n∑

t=1

witξ
2
it, (A.7)

which is a kernel estimator of σ2
i (1) but obtained under the assumption that ξit are observ-

able, i.e. µi(xt) are known. The asymptotic bias and variance of σ̃2
i (1) can be obtained

by adapting well known results in nonparametric regression with a scale function. See e.g.

Fan and Gijbels (1995), Efromovich (1999) and Feng (2004). However, for a kernel estima-

tor at the endpoint, the weights are non-symmetric and the first order term in the Taylor

expansion of σ2
i (x) can hence not be cancelled. Denote the bias of σ̃2

i (1) by B[σ̃2
i (1)]. We

have

B[σ̃2
i (1)] =

n∑

t=1

witE[ξ2
it] − σ2

i (1)

= αi(σ
2
i )

′(1)bi[1 + o(1)] (A.8)

as given in 1) of Theorem 3.

The variance of σ̃2
i (1) is given by

var [σ̃2
i (1)] =

n∑

t=1

w2
itvar (ηit) =

n∑

t=1

w2
itvar (ξ2

it)

.
= γ2

ii(1)

n∑

t=1

w2
it = (nbi)

−1Viγ
2
ii(1)[1 + o(1)] (A.9)

as given in 2) of Theorem 3, because
∑n

t=1 w2
it

.
= (nbi)

−1Vi.

Results in 3 and 4 of Theorem 3 follow directly from those in the first two parts.
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We now show that the changes of the asymptotic bias and variance of σ̂2
i (1) caused by

the error in µ̂i(xt) are both negligible under A4′. Note that rit = zit − µ̂i(xt) and

r2
it = z2

it − 2zitµ̂i(xt) + µ̂2
i (xt)

= ξ2
it + 2ξit∆it + ∆2

it, (A.10)

where ∆it = µi(xt) − µ̂i(xt) is the estimation error in µ̂i(xt), for which we have

∆it = O(h2
i ) + Op[(nhi)

−1/2]. (A.11)

Following (A.10) we have

E[σ̂2
i (1) − σ2

i (1)] = B[σ̃2
i (1)] +

n∑

t=1

wit[2E(ξit∆it) + E(∆2
it)]. (A.12)

Furthermore,

E(ξit∆it) = E

[
ξit

(
n∑

k=1

witkzik − µi(xt)

)]

= E

[
ξit

(
n∑

k=1

witk[ξik + µi(xk)] − µi(xt)

)]

= wittσ
2
i (xt) = O[(nhi)

−1], (A.13)

since ξit are i.i.d. with E(ξit) = 0 and E(ξ2
it) = σ2

i (xt), and

E(∆2
it) = MSE[µ̂i(xt)]

= O[h4
i + (nhi)

−1]. (A.14)

Condition A4′ means that h4
i = o(n−2/3), (nhi)

−1 = o(n−2/3) and bi > O(n−2/3). This

ensures that O[h4
i + (nhi)

−1] = o(bi) = o{B[σ̃2
i (1)]}. Observe that

∑
wit = 1 we obtain

E[σ̂2
i (1) − σ2

i (1)] = B[σ̃2
i (1)] + O[h4

i + (nhi)
−1]

= B[σ̃2
i (1)][1 + o(1)]. (A.15)

Now we will analyze the effect of the error in µ̂i(xt) on var (σ̂i(1)). Note first that

var [r2
it] = var [ξ2

it][1 + o(1)] = var [z2
it][1 + o(1)]. (A.16)
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Although cov (z2
it1

, z2
it2

) = cov (ξ2
it1

, ξ2
it2

) = 0 for t1 6= t2, but cov (r2
it1

, r2
it2

) 6= 0. Following

the first equation in (A.10) we have

cov (r2
it1 , r

2
it2) = cov (z2

it1 − 2zit1 µ̂i(xt1) + µ̂2
i (xt1), z

2
it2 − 2zit2 µ̂i(xt2) + µ̂2

i (xt2))

= C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9,

where C1 = cov (z2
it1

, z2
it2

) = 0, C2 = −2cov (z2
it1

, zit2 µ̂i(xt2)), C3 = cov (z2
it1

, µ̂2
i (xt2)),

C4 = −2cov (zit1 µ̂i(xt1), z
2
it2), C5 = 4cov (zit1 µ̂i(xt1), zit2 µ̂i(xt2)),

C6 = −2cov (zit1 µ̂i(xt1), µ̂
2
i (xt2)), C7 = cov (µ̂2

i (xt1), z
2
it2),

C8 = −2cov (µ̂2
i (xt1), zit2 µ̂i(xt2)), C9 = cov (µ̂2

i (xt1), µ̂
2
i (xt2)).

It can be shown that C2 = C4 = C5 = 0. This will be shown for C2.

C2 = −2cov

(
z2
it1 , zit2

n∑

k=1

wit2kzik

)

= −2

n∑

k=1

wit2kcov (z2
it1 , zit2zik) = 0, (A.17)

because zit are i.i.d., t1 6= t2 and hence cov (z2
it1

, zit2zik) = 0, for all k. Hence,

cov (r2
it1 , r

2
it2) = C3 + C6 + C7 + C8 + C9. (A.18)

For C3 we have

C3 = cov

(
z2
it1 ,

n∑

k=1

n∑

l=1

wit2kwit2lzikzil

)

=

n∑

k=1

n∑

l=1

wit2kwit2lcov (z2
it1 , zikzil)

= w2
it2t1var (z2

it1) (A.19)

due to the term with k = l = t1, because all other covariances are equal to zero. Similar

calculations lead to

C6 = −2wit1t1w
2
it2t1var (z2

it1), C7 = w2
it1t2var (z2

it2),

C8 = −2w2
it1t2wit2t2var (z2

it2), C9 =

n∑

k=1

w2
it1kw

2
it2kvar (z2

ik).
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Observe the properties of the weights it is easy to see that C3 = O(C7) = O[(nhi)
−2],

C6 = O(C8) = O(C9) = O[(nhi)
−3] = o(C3). That is

cov (r2
it1 , r

2
it2)

.
= w2

it2t1var (z2
it1) + w2

it1t2var (z2
it2) = O[(nhi)

−2]. (A.20)

We see cov (r2
it1

, r2
it2

) = o(n−1), if hi > O(n−1/2), which is implied by A4′. Hence we have

var [σ̂2
i (1)] = var

[
n∑

t=1

witr
2
it

]

=

n∑

t=1

w2
itvar (r2

it) +

n∑

t1=1

n∑

t2=1

t2 6=t1

wit1wit2cov (r2
it1 , r

2
it2)

.
=

n∑

t=1

w2
itvar (r2

it)

.
=

n∑

t=1

w2
itvar (ξ2

it) = var [σ̃2
i (1)]. (A.21)

Theorem 3 is proved. ⋄

Proof of Theorem 4. Note that the biases are of the same order as in Theorem 3. And

the variances and convariances are of the same order as the variances in Theorem 3. The

estimation errors in µ̂i(xt) are also negligible under A4′. In the following proof the residuals

rit will hence be simply replaced by ξit.

By extending the ideas described at the beginning of the proof of Theorem 3 we can

obtain

ξij
t = σij(xt) + σi(xt)σj(xt)ζ

ij
t , (A.22)

where ζij
t = ǫ̃itǫ̃jt − ρij(xt) are i.i.d. zero mean random variables. This is again a special

nonparametric regression model with i.i.d. errors and a scale function, where the trend

is the corresponding covariance function. Of course (A.6) is a special case of (A.22) with

i = j.

1) As mentioned before, the bias of σ̂ij(1) is not affected by the scale function and is the

same as in common nonparametric regression. The proof of this part is hence omitted.

2) Now let wt denote the common weights for all estimators at x = 1, which are determined
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by W r(u) defined in Theorem 4 and the bandwidth b. We have

σ̂ij(1) =

n∑

t=1

wtξ
ij
t

and

cov (σ̂ij(1), σ̂lm(1)) =

n∑

t1=1

n∑

t2=1

wt1wt2cov (ξij
t1 , ξ

lm
t2 )

=

n∑

t=1

w2
t cov (ξij

t , ξlm
t )

= γij, lm

n∑

t=1

w2
t (A.23)

following the definition before, since cov (ξij
t1 , ξ

lm
t2 ) = 0 for t1 6= t2. Furthermore we have

cov (σ̂ij(1), σ̂lm(1)) = V γij, lm(nb)−1[1 + o(1)], (A.24)

because
∑n

t=1 w2
t = V (nb)−1[1+ o(1)], where V =

∫ 0
−1(W

r(u))2du as defined in Theorem 4.

3) Denote by B the bias. It is easy to show that, for given i, j, l,m,

E {[σ̂ij(1) − σij(1)][σ̂lm(1) − σlm(1)]} = B[σ̂ij(1)]B[σ̂lm(1)] + cov [σ̂ij(1), σ̂lm(1)].(A.25)

Using results in 1) we have

B[σ̂ij(1)]B[σ̂lm(1)] = α2σ′

ij(1)σ
′

lm(1)b2[1 + o(1)]. (A.26)

Insert these results and those in 2) into (24) we obtain the results in 3) of Theorem 4.

4) Results in this part follow from those in 3) directly.

Proof of Theorem 5. 1) Under the smoothness assumption on µi we have µi(xn+t) =

µi(1) + O(Tn−1) for any t ≤ T . Following (32) and (33) we have

E[Ŷi(n+T ) − E(Yi(n+T )|Yin)]2 = E[T µ̂i(1) −
T∑

t=1

µi(xn+t)]
2

= T 2E{[µ̂i(1) − µi(1)] + O(Tn−1)]}2. (A.27)

Note that µ̂i(1) − µi(1) = O(h
(p+1)
i ) + Op[(nhi)

−1/2]. The condition T 2(nhi)
−1 → 0 results

in T = o(nh
1/2
i ) and Tn−1 = o[n−1/2h

1/2
i ] = o[µ̂i(1) − µi(1)]. Hence,

E[Ŷi(n+T ) − E(Yi(n+T )|Yin)]2
.
= T 2E[µ̂i(1) − µi(1)]

2

= T 2MSE[µ̂i(1)]. (A.28)
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Furthermore, A5 ensures that T 2MSE[µ̂i(1)] → 0, i.e. Ŷi(n+T ) is consistent.

2) Similarly, under the conditions of Theorem 5 it can be shown that

E[P̂S
n+T − E(PS

n+T |Yn)]2
.
= T 2E

{
k∑

i=1

Si[µ̂i(1) − µi(1)]

}2

= T 2MSES
µ̂

, (A.29)

T 2MSES
µ̂

→ 0 under A5 and P̂S
n+T is consistent. ⋄

Proof of Theorem 6. 1) Note that σ̂i(1) =
√

σ̂2
i (1). Based on Taylor expension of

random variables it can be shown that

MSE[σ̂i(1)] = O(MSE[σ̂2
i (1)]). (A.30)

Analogously to the analysis in 1) of the proof of Theorem 5 we have σ2
i (xn+t) = σi(1) +

O(Tn−1) for any t ≤ T and

E[
√

T σ̂i(1) − SDT ]2 = E




√

T σ̂i(1) −

√√√√
[

T∑

t=1

σ2
i (xn+t)

]


2

.
= E

{√
T
[
σ̂i(1) − σi(1) + O(T 1/2n−1/2)

]}2

.
= T · E [σ̂i(1) − σi(1)]

2

= O(T · MSE[σ̂2
i (1)]). (A.31)

Condition A5′ ensures that T 1/2n−1/2 = o[σ̂i(1)−σi(1)], T ·MSE[σ̂2
i (1)] → 0 and

√
T σ̂i(1)

is a consistent estimator of SDT .

2) Similarly, it can be shown that

MSE

[√
S′Σ̂(1)S

]
.
= MSES

Σ̂
(1), (A.32)

E

[√
TS′Σ̂(1)S − SDS

T

]2
.
= T · MSE

[√
S′Σ̂(1)S

]

= T · MSES
Σ̂
(1). (A.33)

And T · MSES
Σ̂
(1) → 0 under A5′ so that

√
TS′Σ̂(1)S is consistent. ⋄
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Figure 1: The original data of the selected exchange rate series.
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Figure 2: The difference series of the series shown in Figure 1.

30



0 500 1000 1500

-0
.0

01
0

0.
0

0.
00

05

(a) Trend in differences of Pound/USD

Observation Time

0 500 1000 1500
-8

*1
0^

-6
-2

*1
0^

-6

(b) Trend in differences of Yen/USD

Observation Time

0 500 1000 1500

-0
.0

01
0

0.
0

0.
00

05

(c) Trend in differences of Euro/USD

Observation Time

0 500 1000 1500

-0
.0

00
1

0.
00

01
0.

00
03

(d) Trend in differences of CAD/USD

Observation Time

Figure 3: Estimated mean functions from the series in Figure 2 (with a horizontal line at

zero).
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Figure 4: Estimated standard deviations together with the global sample values.

32



0 500 1000 1500

-4
-2

0
2

(a) Standardised differences of Pound/USD

Observation Time

0 500 1000 1500
-4

-2
0

2
4

(b) Standardised differences of Yen/USD

Observation Time

0 500 1000 1500

-4
-2

0
2

(c) Standardised differences of Euro/USD

Observation Time

0 500 1000 1500

-2
0

2
4

(d) Standardised differences of CAD/USD

Observation Time

Figure 5: The standardised difference series.
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Figure 6: Estimated local correlation coefficients in all cases.
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