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1. Introduction

The game theory literature reluctantly accepted the idea that players will some-
times use the outcome of a random device in order to determine their action. Aumann
(1987, page 15) writes that “Practically speaking, the idea that serious people would
base important decisions on the flip of a coin is difficult to accept”. But since in
many games pure-strategy Nash equilibrium fails to exist, mixed strategies are still
an inevitable part of the theory.

Recall that the reason for the need to randomize in equilibrium is to prevent
the possibility that other players can gain by deviating. In other words, players
use mixed strategies in order to ‘hide’ their action from other players and not in
order to improve their own utility. Thus, the assumption that players can perfectly
observe the strategies of their opponents underlies the necessity of randomization.
The contribution of the current paper is to show that when this assumption is relaxed
in a natural way the need to randomize in equilibrium is sometimes eliminated. This
intuition is best summarized in Pearce’s (1984, page 1034) paper on rationalizabilty:

“The need for players to randomize in many Nash equilibria has long
been considered somewhat puzzling. The incentive for randomization
seems to be the need to “evade” one’s opponents. But in the present
context, opponents are not always able to figure out a player’s strate-
gic choice; such a player can hide without randomizing, camouflaged
by the uncertainty of the other players.”

If players only partially observe their opponents’ strategies then one should define
what one means by equilibrium. The notion of equilibrium we employ here is in the
spirit of Fudenberg and Levine’s (1993A) Self-Confirming Equilibrium (SCE). That
is, equilibrium is viewed here as a steady state of a recurring interaction with no
strategic links among the repetitions. Perhaps the context which makes this solution
concept most plausible is the one in which a fixed game is being played repeatedly
but by different players in different periods1. In this context, a steady state is a
strategy tuple such that (i) every player’s strategy is a best response to some belief
about his opponents’ strategies and (ii) the belief of every player is not contradicted
by the information he obtains.

Unlike Fudenberg and Levine (1993A) our interest here is in normal form games.
Every player has an exogenously given information structure which maps action
profiles into signals. Since typically several action profiles induce the same signal,
each player will face uncertainty as to the actual profile that is being played. A
consistent conjecture for a player is any probability distribution over opponent’s
action profiles which induce the same signal as the one observed by this player. A

1This idea is the subject of Fudenberg and Levine’s (1993B) paper where players leave the pop-
ulation after a finite number of rounds.
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(pure) SCE with respect to a given information structure is any action profile in
which the action of every player is a best response to some consistent conjecture.

We differentiate between two versions of the consistency requirement. A conjecture
is strongly consistent if each action profile in its support induce the same signal
as the one that the player actually observed. This is the standard notion in the
literature. A weaker version of consistency, which we introduce here, only requires
that the expected signal2 according to the conjecture coincides with the observed
signal. In accordance, an action profile is Strong SCE (SSCE) if player’s actions are
best responses to strongly consistent conjectures and Weak SCE (WSCE) if player’s
actions are best responses to weakly consistent conjectures.

Of course, we are not the first to use imperfect monitoring of other players actions
as a way to achieve pure equilibrium3. The main difference between previous works
and the current one is that we restrict attention to particular information structures
and classes of games. Specifically, our results are limited to two kinds of information
structures: In the first the signal to every player is his own payoff, while in the second
the information available to every player is the distribution of his opponents among
the various actions. The implications for the existence of pure SCE of each of these
information structures are considered in several well-known classes of games.

The next section illustrates the main ideas of this paper by means of several
examples. The general model is described in Section 3. Section 4 deals with the case
where each player’s information is his own payoff while in Section 5 the information
consists of the number of players that chose each action. A discussion of related
literature is deferred to Section 6. We conclude in Section 7 with some remarks.

2. Motivating examples

2.1. Rock-Paper-Scissors. The following zero-sum game is well known as Rock-
Paper-Scissors.

R

P

S

R P S

0∗

1

−1

−1

0

1

1

−1

0

Entries in the matrix are the payoffs paid by the column player (player 2) to the
row player (player 1). The only Nash equilibrium is the strategy pair in which every
player plays each strategy with equal probability of 1

3 . In particular, there is no pure
equilibrium in this game.

2This notion of consistency is suitable only in the case where the set of signals has a linear
structure so that expectations can be calculated (see Section 3).

3As can be seen in the above quotation, this idea goes back at least to Pearce (1984).
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In contrast to the Nash paradigm, assume that both players have only partial
information about the strategy of their opponent. Specifically, assume that every
player’s signal is the payoff he obtains when playing his chosen action.

Now, consider the case where the action profile (R, R) is being played (the cell
marked with an asterisk). Player 1’s exclusive information is that when he plays R

he gets a payoff of 0. Any conjecture of player 1 about the strategy of player 2 of
the form (1 − 2α, α, α), 0 ≤ α ≤ 1

2 is consistent with 1’s signal in the weak sense
that when 1 plays R and 2 plays such a strategy the average payoff to 1 is 0. In
particular, it is possible that player 1’s conjecture is that α = 1

3 which means that
player 2 is playing his equilibrium strategy. A best response for player 1 in this case
is playing R.

Similarly, player 2’s belief might be that player 1 is playing each of his 3 actions
with equal probabilities. A best response for player 2 in this case is to play R.
Therefore, in the action profile (R, R) every player is playing a best response to a
conjecture which is consistent with his information. Obviously, the same holds for
the action profiles (P, P ) and (S, S).

2.2. Location game. A unit measure of consumers is uniformly distributed in the
[0, 1] interval. Each of three sellers (the players of this game) should choose a location
from the set {a, b, c} (see picture). The payoff of a seller is equal to the measure of
the set of consumers to whom he is the closest one (sellers split equally the payoff
when located in the same place).

• • •
0 1

3
1
2

2
3

1
a b c

It is straightforward to verify that no pure equilibrium exists in this game. How-
ever, like in the previous example assume that every seller only knows his own payoff.
We claim that this partial information makes any action profile in which all three
sellers choose the same action a potentially steady state.

To see that this is indeed the case notice that there is a (completely mixed) Nash
equilibrium in which every player plays each of the three actions with probability 1

3 .
When this equilibrium profile is played the (expected) payoff to every player is 1

3 . In
particular this means that if one of the players (say player 1) chooses any pure action
while the other two players play the above equilibrium strategies then the payoff to
player 1 will also be 1

3 .
Now, if all three players choose the same action (say a) then the payoff to each

one of them is again 1
3 . Thus, when all three players are playing a player 1 might

conjecture that players 2 and 3 are actually playing their equilibrium strategies. Such
a conjecture is consistent in the sense that the actual payoff to player 1 (which is
the information he has) is equal to the expected payoff according to 1’s conjecture.
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If this is the belief of player 1 then he is indifferent between the three actions. In
particular a is a best response to his belief. The same is true for players 2 and 3 and
for actions b and c.

2.3. Majority rule game. A society of three players should choose between 2 al-
ternatives, a or b. Each of the 3 players can cast a vote for one of the alternatives or
not to cast a vote at all. The winning alternative is chosen according to a majority
rule. In case of a tie, the winner is decided by some predefined and commonly known
tie-braking rule. Players’ preferences are defined over the set of alternatives, so that
the utility of every player depends only on the identity of the winner.

Fix some arbitrary preferences for the three players4. Existence of pure equilibria
is not a question in this case since if all three players choose the same alternative then
no player can change his payoff by deviating. Moreover, every player has a weakly
dominant strategy which is to vote for his favorite alternative. However, there are
also action profiles which are not equilibria. This is the case when a certain player
is pivotal and can change the outcome so that his utility increases.

Assume, however, that players can only observe the winning alternative (or, equiv-
alently, their own payoffs). In this case, every action profile is potentially stable since
each player might think that the other two voted for the winner so that his ballot
cannot make any difference.

2.4. Hawaii versus Caribbeans. Consider the case where each of three neighbors
should choose whether to go to a vacation at Hawaii (H) or at the Caribbeans (C).
Players are indifferent between the two locations but each of them would like to avoid
his ‘right’ neighbor. That is, player 1 would like to avoid player 2, player 2 would like
to avoid player 3 and player 3 would like to avoid player 1. Specifically, the payoffs
to the players are given in the following matrices where 1 chooses row, 2 column and
3 matrix.

C

H

H C

1, 0, 1∗
0, 0, 0

0, 1, 1∗
1, 1, 0∗

C

H

H C

1, 1, 0∗
0, 1, 1∗

0, 0, 0

1, 0, 1∗

H C

Clearly, there is no pure equilibrium in this game. But what happens if players are
unable to observe the identity of their opponents in each of the locations? That is,
if we assume that each player’s information is only the distribution of players among
the two locations, what action profiles can be stable?

4For simplicity we assume that no player is indifferent between the two alternatives.
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The answer is that every action profile in which not all players are in the same
location (the cells marked with asterisks) is potentially stable. This is so since the
(unique) unfortunate player who couldn’t avoid his ‘right’ neighbor might be thinking
that he actually succeeded in doing so, and that he matched the choice of his ‘left’
neighbor. If this is his conjecture then he believes that he will only lose utility by
deviating.

3. The model

3.1. Games and information structures. A normal form game G is a tuple G =
(N, {Ai}i∈N , {ui}i∈N ). N = {1, 2, . . . , n} is the set of players. For each i ∈ N , Ai

is a finite non-empty set of pure strategies (actions) of player i. Let A = ×i∈NAi

be the set of action profiles. For every i ∈ N , ui : A → IR is the payoff function of
player i.

The following notation will be used throughout the paper. If G is a game as above
and i ∈ N then A−i denotes the set of action profiles of players other than i, that is
A−i = ×j∈N\{i}Aj . A typical element of A−i will be denoted by a−i. We will often
write (ai; a−i) instead of a, where a is the action profile in which player i is playing
ai ∈ Ai and other players are playing according to a−i ∈ A−i. If X is a finite set
then ∆(X) is the set of probability measures over X. The set of mixed strategies of
player i is ∆(Ai). As usual, every ui is linearly extended to ∆(A). The extension
will also be denoted by ui.

To the standard description of a normal form game we now add a new ingredi-
ent. This is the information structure which determines the signal that every player
observes as a function of the chosen profile of actions. Formally,

Definition 1. Fix a game G.
(i) An information structure for player i is a pair Ii = (Si, si) where Si is a set
of signals and si : A → Si is an arbitrary signal function.
(ii) An information structure in G is a list of information structures I = {Ii}i∈N ,
one for every player in G.

In some cases it is possible to compare the informativeness of two information
structures in a game G. Intuitively, one information structure I is more informative
(in a weak sense) than another information structure I ′ if every player can deduce
from the signal he observes at I the signal that he would have seen had the structure
been I ′.

Definition 2. Let I = (Si, si)i∈N and I ′ = (S′i, s
′
i)i∈N be two information structures

in G. I is more informative than I ′ if s′i is si-measurable for every i ∈ N .
Equivalently, I is more informative than I ′ if the partition of A induced by si is finer
than the partition induced by s′i, for every i ∈ N .
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3.2. Weakly and strongly consistent conjectures. The information available
to player i about the actions profile is determined by the signal function si. Since
typically many action profiles generate the same signal, player i will face uncertainty
as to the actual profile being played. According to the standard paradigm, player i’s
preferences in this case can be described by his expected payoff, where the expectation
is taken with respect to a certain probability distribution representing i’s belief. We
will refer to this belief as i’s conjecture. Formally, a conjecture of player i is any
probability distribution µ−i ∈ ∆(A−i).

Notice that Definition 1 does not explicitly require that a player is able to deduce
his own action from the signal. Thus, a priori it may be that, while playing ai,
player i believes that he actually plays a′i (or a mixture of a′i and a′′i ). But since we
define a conjecture of i to be an element of ∆(A−i) (and not of ∆(A)) such awkward
beliefs are being ruled out. Thus, it is an inherent property of our model that every
player knows the action he chooses.

Definition 3. Let I be an information structure in a game G and let a ∈ A. A con-
jecture µ−i ∈ ∆(A−i) of player i is strongly consistent at a if si(a) = si(ai; a′−i)
for every a′−i in the support of µ−i.

The conjecture of i is strongly consistent at a iff it gives probability 1 to the set
of action profiles a′−i such that, when combined with ai, generate the same signal as
a. We will also use a weaker version of consistency. This weaker version can only
be defined if additional assumptions on the structure of the signals set Si are made.
Namely, each Si is assumed to be a subset of some linear space. This allows to
compute the expectation of si with respect to some probability measure on A. Weak
consistency is defined as follows.

Definition 4. Let I be an information structure in a game G where, for every i ∈ N ,
Si is a subset of some linear space. A conjecture µ−i ∈ ∆(A−i) of player i is weakly

consistent at a if
∫
A−i

si(ai; a′−i)dµ−i(a′−i) = si(a) for every i ∈ N .

Thus, weak consistency at a only requires that the expected signal according to
the conjecture µ−i is equal to the signal of i at a. Since A−i is finite the integral
in the above definition is nothing but a finite convex combination of elements in Si.
Notice that every strongly consistent conjecture of some player i at a is also weakly
consistent for i at a.

3.3. Equilibrium. We now define two versions of SCE. The difference between the
two versions is only in the meaning of the consistency requirement. Since this paper
only deals with pure SCE we do not define here SCE in mixed strategies. Whenever
we write SCE we mean pure SCE.

Definition 5. Let G be a game and I an information structure in G.
(i) A profile of actions a ∈ A is a Strong Self-Confirming Equilibrium (SSCE)
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if, for every i ∈ N , there is a strongly consistent conjecture µ−i ∈ ∆(A−i) such that
ui(ai; µ−i) ≥ ui(a′i; µ−i) for every a′i ∈ Ai.
(ii) A profile of actions a ∈ A is a Weak Self-Confirming Equilibrium (WSCE)

if, for every i ∈ N , there is a weakly consistent conjecture µ−i ∈ ∆(A−i) such that
ui(ai; µ−i) ≥ ui(a′i; µ−i) for every a′i ∈ Ai.

The following lemma lists several simple properties of SSCE and WSCE. Since
these properties are straightforward consequences of the definitions the proofs are
omitted.

Lemma 1. Fix a game G.

(1) Every SSCE in G is also a WSCE in G (with respect to the same information
structure).

(2) If I and I ′ are two information structures in G such that I is more infor-
mative than I ′ then every SSCE with respect to I is a SSCE with respect to
I ′.

(3) Every (pure) Nash equilibrium of G is a SSCE of G, no matter what is the
information structure.

(4) If ai ∈ Ai is a strictly dominant action of player i then there is no WSCE
(and by the first item of this lemma no SSCE) in which player i plays ai.

4. Observable payoffs

In the current section we restrict attention to the case where the signal to each
player is (only) his own payoff5. Notice that in many economic situations this is the
information available to agents. To give just one example, a firm may know it’s own
profits without knowing the production levels of other firms in the market.

The formal definition of the information structure is as follows. Fix a game G.
For every i ∈ N , the set of signals for player i is Si = IR. The signal function for i

is defined by si(a) = ui(a). When this is the information available to each player we
will say that G is a game with observable payoffs.

Every Si has a natural linear structure so expectations of signal functions can be
easily calculated. Notice that a weakly consistent conjecture for i at a in this case is
any probability distribution µ−i ∈ ∆(A−i) with the property that ui(ai;µ−i) = ui(a).
Therefore, a WSCE is an action profile a such that, for every player i, ai is a best
response to some µ−i satisfying ui(ai; µ−i) = ui(a).

4.1. Zero-sum games. We start with a characterization of WSCE in two-person
zero-sum games. Thus, we assume that N = {1, 2} and u1(a1, a2) = −u2(a1, a2) for
every a1 ∈ A1 and a2 ∈ A2. The value of the game (for player 1) is denoted by6 v.

5Lehrer (1992) considers a similar situation but in the context of a repeated game.
6Thus, if each player plays a maxmin strategy then player 2 pays v to player 1.
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Proposition 1. The pair a = (a1, a2) is a WSCE of a zero-sum game G with
observable payoffs iff the following two conditions hold:
(i) u1(a) = v ; and
(ii) ai is a best response to a maxmin strategy of player −i, i = 1, 2.

Proof. Assume first that (i) and (ii) hold. For i = 1, 2 let µ−i be the maxmin strategy
of player −i implied by (ii). Since ai is a best response to the maxmin strategy µ−i

it must be that ui(ai, µ−i) = v. Thus, by (i), µ−i is a weakly consistent conjecture
of player i at a. It follows from (ii) that a is a WSCE.

Conversely, assume that a is a WSCE. Then there are strategies µ−i, i = 1, 2 such
that for i = 1, 2

ui(ai; µ−i) = ui(ai; a−i)(1)

ui(ai; µ−i) ≥ ui(a′i;µ−i) ∀a′i ∈ Ai(2)

Combining (1) and (2) above, and not forgetting that u1 = −u2 we get that for every
(a′1, a

′
2) ∈ A1 ×A2

u1(a′1, µ2) ≤ u1(a1, µ2) = u1(a1, a2) = u1(µ1, a2) ≤ u1(µ1, a
′
2)(3)

Since the inequality holds for every a′2 ∈ A2 it also holds for every mixed strategy
of player 2. In particular, one can replace a′2 with µ2. It follows that µ1 is a best
response of player 1 to µ2. Similarly, it is easy to see that µ2 is a best response
of player 2 to µ1. Thus, the pair of conjectures (µ1, µ2) is an equilibrium of G. In
particular, u1(µ1, µ2) = v and, for i = 1, 2, µi is a maxmin strategy for player i.
Therefore, (i) and (ii) are consequences of (3) and (2) respectively.

The Rock-Paper-Scissors example of Section 2 shows that there may be WSCE
which are not Nash equilibria of the game. Moreover, it is also possible that there
will be SSCE which are not Nash. For instance, consider the following zero-sum
game.

B

T

L R

0

0∗

1

−1

The numbers in the matrix are the payoffs to the row player (player 1). The action
pair (T,L) (the cell marked with an asterisk) is not an equilibrium of the game since
player 2’s best response to T is R. However, it is a SSCE. Indeed, player 1 is playing
a best response to the actual strategy of player 2, while player 2 is playing a best
response to the strongly consistent conjecture (at (T, L)) that the action of player 1
is B.
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4.2. Constant-sum symmetric games. The next class of games we consider is
that of n-players constant-sum symmetric games. Thus, in this subsection we assume
that all the players in the game have the same set of actions, denoted B. That is,
A = Bn.

A game G is constant-sum if there is c ∈ IR such that
∑

i∈N ui(a) = c for every
a ∈ A. To define symmetry we first introduce the following notation. If a ∈ A and
π : N → N is a permutation of the players then π(a) ∈ A is defined by π(a)i = aπ(i).
A game G is symmetric if ui(a) = uj(π(a)) for every i, j ∈ N (possibly i = j), every
a ∈ A and every permutation π satisfying π(j) = i.

Proposition 2. Every symmetric constant-sum game with observable payoffs has a
symmetric WSCE.

Proof. It is well known that every symmetric game has a symmetric equilibrium,
possibly in mixed strategies. Let µ ∈ ∆(B) be one such equilibrium (that is, µ is
a best response of every player to everybody else playing µ). Let b ∈ B be in the
support of µ, and denote b ∈ A the action profile in which all the players choose b.
We show that b is a WSCE.

Fix i ∈ N . Since G is a symmetric and constant-sum it follows that ui(b) = c
n .

Similarly, ui(µ) = c
n where µ is the strategy profile in which everyone plays µ. Denote

(b;µ−i
) the strategy profile in which player i plays b and any other player plays µ.

Since µ is an equilibrium with b in its support it must be that ui(b; µ−i
) = c

n . This
implies that µ−i

is a weakly consistent conjecture for player i at b and that b is a
best response to µ−i

.

Remark 1. The location game of subsection 2.2 is an example of a constant-sum
symmetric game. Obviously, the example can be significantly generalized while main-
taining these two properties. Specifically, the [0, 1] interval with the uniform measure
may be replaced by any subset of an Euclidean space endowed with an arbitrary mea-
sure. The possible locations for the players can be any (finite) set of points.

4.3. Social choice games. The games considered in this subsection arise when a
society should choose among several possible outcomes. The action that each player
chooses can be seen as the massage that this player sends to some mechanism. The
mechanism specify the chosen outcome for each profile of massages. The character-
istic property of these games is that the preferences of every player are defined on
the set of outcomes and not on the set of action profiles. In other words, the payoff
of every player depends on the action profile only through the prevailing outcome.

Formally, let O be a set of outcomes. We say that G is a social choice game
associated with O if there is a mechanism f : A → O such that the utility of every
player i ∈ N satisfies ui(a) = ui(a′) whenever f(a) = f(a′). If a mechanism f

satisfies this last property we say that f is sufficient for G.
10



Definition 6. Let G be a social choice game associated with outcomes set O and let
f be a sufficient mechanism for G. Player i ∈ N can prevent outcome o ∈ O if
for every a−i ∈ A−i there is ai ∈ Ai such that f(ai; a−i) 6= o.

Proposition 3. Let G be a social choice game with observable payoffs associated
with outcomes set O and let f be a sufficient mechanism for G. If o ∈ O is an
outcome which no player can prevent then every a ∈ f−1(o) is a SSCE.

Proof. By Lemma 1 (2) it is sufficient to prove the proposition when the signal
to every player is the outcome (since every player can deduce his payoff from the
outcome). Assume that a ∈ f−1(o) and that no player can prevent o. Fix i ∈ N .
Since i can’t prevent o there is a′−i ∈ A−i such that f(a′i; a

′
−i) = o for every a′i ∈ Ai.

In particular, f(ai; a′−i) = o which means that a′−i is a strongly consistent conjecture
for i at a. Moreover, ai is a best response to a′−i since player i cannot change his
payoff by deviating.

To illustrate the proposition consider the following example. There are 3 players
and 2 actions (c and d) for each player. The set of outcomes is O = {o, o′, o′′}. The
mechanism is given by the following matrices, where player 1 chooses row player 2
column and player 3 matrix.

d

c

c d

o∗
o∗

o∗
o′

d

c

c d

o′′

o∗

o′
o′′

c d

Recall that the utility of the players depend only on the outcome. Player 1’s
preferences satisfy u1(o′) > u1(o) > u1(o′′), player’s 2 preferences satisfy u2(o′) >

u2(o′′) > u2(o) and 3’s preferences satisfy u3(o′′) > u3(o) > u3(o′).
It is easy to check that no pure equilibrium exists in this game. However, if players

only observe their own payoff (which is equivalent to the case where players observe
only the outcome) then every profile that yields the outcome o (the cells marked with
asterisks) is a SSCE. Indeed, every pair of players can guarantee that o will be the
prevailing outcome. In other words, no player can prevent o. Proposition 3 implies
that any profile a ∈ f−1(o) is a SSCE.

An important family of social choice games is the class of ‘majority rule’ games. In
this class the action set of every player is equal to the outcome set7. The prevailing
outcome is the one that was chosen by the largest number of players. If there is
a tie the outcome is chosen according to some predefined and commonly known
tie-breaking rule. An immediate consequence of Proposition 3 is the following.

7It is possible to extend the set of actions by allowing the players not to vote at all.
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Corollary 1. If G is a social choice game with observable payoffs and with at least
3 players such that the outcome is chosen according to a majority rule then every
action profile is a SSCE.

5. Distributional information

In many cases the information available to agents is of anonymous nature. That
is, agents do not know the identity of the the players who chose each action but do
know the distribution of the players among the various actions. For instance, drivers
can hear on the radio the amount of traffic in each route but do not know the identity
of the drivers (and, therefore, the probability of an accident); And a client entering a
bank only sees the number of clients waiting in front of every clerk but do not know
the kind of service that each client requires.

Let B be a finite set of actions. In this section we consider games G such that8

Ai = B for every i ∈ N . Thus, A = Bn. For a ∈ A, we denote by dist(a) the
distribution of players among the actions in B. That is, dist(a) = (dist(a)b)b∈B

where dist(a)b = #{i ∈ N : ai = b} is the number of players who choose the
action b according to a. We say that G is a game with distributional information if
si(a) = dist(a) for every i ∈ N .

5.1. Large continuous games. The seminal work of Schmeidler (1973) demon-
strates that in large anonymous games one should expect pure equilibria to exist. In
Schmeidler’s model the set of players is approximated by a non-atomic measure space.
More recently, the results of Kalai (2004) imply that, with appropriate continuity
condition on the payoff functions, equilibria of finite anonymous games ‘self-purify’
as the number of players grows to infinity9.

In this subsection we use the results of Kalai to derive existence of approximate
SSCE in large continuous games with distributional information. The idea behind
this result is simple: On the one hand we drop the assumption of anonymous payoff
functions, thus considering a more general class of games. On the other hand, the
result we obtain is the existence of (approximate) SSCE and not of (approximate)
Nash equilibrium. The anonymous nature of the information available to the players
compensates for the lack of anonymity in the payoff functions.

For a given ε > 0, we define ε-SSCE similarly to the definition of ε-Nash equi-
librium. Namely, a profile of actions a ∈ A is an ε-SSCE (with respect to a given
information structure) if, for every i ∈ N , there is a strongly consistent conjecture
µ−i ∈ ∆(A−i) such that ui(ai; µ−i) ≥ ui(a′i;µ−i)− ε for every a′i ∈ Ai.

8Our results can easily be extended to the case where the actions available to a player are some
non-empty subset of B

9We do not wish to go into the exact meaning of this statement at the moment. It is only made
to point out that in large continuous and anonymous games pure approximate equilibria exist. For
details see Kalai (2004).
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Let Γ(B) be a family of normal form games such that Ai = B for every player
i ∈ N in every game G ∈ Γ(B). For the next definition we introduce the following
notation. If a−i and a′−i are two profiles of actions of players other than i ∈ N in
some normal form game G ∈ Γ(B) then d(a−i, a

′
−i) = #{j ∈ N \ {i} : aj 6= a′j} is

the number of players which play differently in a−i than in a′−i.

Definition 7. (i) The family Γ(B) is uniformly bounded if there is M > 0 such
that |ui| ≤ M for every i ∈ N and for every G ∈ Γ(B).
(ii) The family Γ(B) exhibits a diminishing effect of a single player if there
is M > 0 such that |ui(ai; a−i)− ui(ai; a′−i)| < M

|N | for every G ∈ Γ(B), every i ∈ N ,
every ai ∈ B and every a−i, a

′
−i satisfying d(a−i, a

′
−i) = 1.

Proposition 4. Let Γ(B) be a family of normal form games which is uniformly
bounded and exhibits a diminishing effect of a single player. Then for every ε > 0
there is n0 = n0(ε) such that in any game G ∈ Γ(B) with at least n0 players and
with distributional information there is an ε− SSCE.

Proof. The proof is divided into 3 steps.

Step 1: To any game G ∈ Γ(B) we associate another game G̃ = (N, {Ai}i∈N , {ũi}i∈N )
with the same sets of players and actions. For every i ∈ N , the payoff function ũi is
defined by

ũi(ai; a−i) = max{ui(ai; ā−i) : dist(ai; ā−i) = dist(ai; a−i), ā−i ∈ A−i}.(4)

Thus, the payoff to i when he plays ai and his opponents play a−i is the maximal
payoff he may get when he plays ai and the distribution of his opponents’ choices
induce the same distribution as a−i.

Define Γ̃(B) = {G̃ : G ∈ Γ(B)}. It is easy to check that if Γ(B) is uniformly
bounded and exhibits a diminishing effect of a single player then so is Γ̃(B).

Step 2: We claim that the family Γ̃(B) satisfies the conditions of semi-anonymity
and uniform equicontinuity of Kalai (2004, Definitions 2,3 in page 1637). Semi-
anonymity (full anonymity actually) is a straightforward consequence of the definition
of ũi. Uniform equicontinuity follows from the diminishing effect property when
combined with anonymity. Indeed, for a given ε > 0, let δ = ε

M |B| where M is the
constant in Definition 7 (ii). It should be shown that if a and a′ are two action
profiles satisfying ai = a′i and |dist(a)b − dist(a′)b| < δ|N | for every b ∈ B then
|ũi(a)− ũi(a′)| < ε.

Fix a player i and two action profiles a, a′ as above. By permuting the players other
than i one can find another action profile a′′ satisfying ai = a′′i , dist(a′′) = dist(a′)
and d(a−i, a

′′
−i) < δ|N ||B|. By anonymity, ũi(a′) = ũi(a′′). Repeated use of the

diminishing effect property gives |ũi(a)− ũi(a′′)| < M
|N | · δ|N ||B| = ε. it follows that

|ũi(a)− ũi(a′)| < ε as required.
13



Step 3: By Theorem 1 of Kalai (2004, see also subsection 3.2 in page 1642 there),
for every ε > 0 there is n0 = n0(ε) such that, if G̃ ∈ Γ̃(B) has at least n0 players,
then there is a pure ε-Nash equilibrium in G̃. Let a be a pure ε-Nash equilibrium in
G̃. To complete the proof, we will show that a is an ε-SSCE in G.

Fix a player i ∈ N . Since a is an ε-Nash equilibrium in G̃ it follows that
ũi(ai; a−i) ≥ ũi(a′i; a−i)−ε for every a′i ∈ B. Let ā−i be a maximizer of the righthand
side of (4). Since always ũi ≥ ui we get

ui(ai; ā−i) = ũi(ai; a−i) ≥ ũi(a′i; a−i)− ε = ũi(a′i; ā−i)− ε ≥ ui(a′i; ā−i)− ε.

Finally, since ā−i is a strongly consistent conjecture for i at a, it follows that a is an
ε-SSCE in G.

5.2. Congestion games. Congestion games were first introduced by Rosenthal
(1973). Here, however, we use a slightly different model than that of Rosenthal
which is a generalization of the model used by Milchtaich (1996). A game G will be
called congestion game if it has the following two properties10:
(i) The payoff to a player depends only on the action he chooses and on the set of
players who choose the same action as he did. That is, ui(a) = ui(a′) whenever
ai = a′i and {j ∈ N \ {i} : aj = ai} = {j ∈ N \ {i} : a′j = a′i}.
(ii) For every i ∈ N , every ai ∈ B and every a−i, a

′
−i, if {j ∈ N \ {i} : aj = ai} ⊆

{j ∈ N \{i} : a′j = ai} then ui(ai; a−i) ≥ ui(ai; a′−i). In words, the utility of player i

is decreasing (with respect to the inclusion relation) in the set of players that choose
the same action as him.

Notice that we impose no symmetry assumption on the players nor on the ac-
tions. It was shown in Milchtaich (1996, Section 8) that games satisfying (i) and (ii)
above need not have a pure Nash equilibrium11. Also, notice that the Hawaii ver-
sus Caribbeans game of subsection 2.4 is a congestion game with no pure equilibria.
However, when players only have distributional information SSCE do exist, as stated
in the following proposition.

Proposition 5. Every congestion game with distributional information has a SSCE.

Proof. Let G be a congestion game. Define the game G̃ (with the same sets of players
and actions as G) as in the proof of Proposition 4. That is,

ũi(ai; a−i) = max{ui(ai; ā−i) : dist(ai; ā−i) = dist(ai; a−i), ā−i ∈ A−i}.(5)

Claim 1. For every i ∈ N , every ai ∈ B and every a−i, a
′
−i ∈ A−i, if #{j ∈

N \ {i} : aj = ai} = #{j ∈ N \ {i} : a′j = ai} then ũi(ai; a−i) = ũi(ai; a′−i).

10Recall that the setup of this section is that all players have the same action set B.
11The class of ‘weighted congestion games’ considered by Milchtaich (1996, Section 8) is narrower

than the class of games considered here. Milchtaich shows that, even in this restricted class, pure
equilibrium may fail to exist. This is in contrast to the class of games considered by Rosenthal
(1973) in which every game has a pure equilibrim.
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That is, the payoff to every player only depends on the action he chooses and on the
number of players playing the same action.

Proof. Let ā−i satisfy dist(ai; ā−i) = dist(ai; a−i) and ũi(ai; a−i) = ui(ai; ā−i). That
is, ā−i is a maximizer of (5) above for (ai; a−i). Denote D = {j ∈ N \{i} : aj = ai},
E = {j ∈ N \ {i} : a′j = ai} and F = {j ∈ N \ {i} : āj = ai}. By assumption
|D| = |E| and by the choice of ā−i, |D| = |F |. It follows that there is ā′−i such that
dist(ai; ā′−i) = dist(ai; a′−i) and {j ∈ N \ {i} : ā′j = ai} = F . By property (i) of
congestion games and since always ui ≤ ũi we get

ũi(ai; a−i) = ui(ai; ā−i) = ui(ai; ā′−i) ≤ ũi(ai; ā′−i) = ũi(ai; a′−i)

Due to symmetry we have the other inequality. This completes the proof of the
claim.

Claim 2. For every i ∈ N , every ai ∈ B and every a−i, a
′
−i ∈ A−i, if #{j ∈

N \ {i} : aj = ai} ≥ #{j ∈ N \ {i} : a′j = ai} then ũi(ai; a−i) ≤ ũi(ai; a′−i).

Proof. Let ā−i, D, E, and F be as in the previous proof. This time we have |F | =
|D| ≥ |E|. Thus, there is ā′−i such that dist(ai; ā′−i) = dist(ai; a′−i) and {j ∈ N \
{i} : ā′j = ai} ⊆ F . By property (ii) of congestion games we obtain

ũi(ai; a−i) = ui(ai; ā−i) ≤ ui(ai; ā′−i) ≤ ũi(ai; ā′−i) = ũi(ai; a′−i),

which proves the claim.

Claim 3. The game G̃ has a pure Nash equilibrium.

Proof. This follows from the two previous claims and from Theorem 2 in Milchtaich
(1996).

To complete the proof of the proposition it is sufficient to show that every pure
Nash equilibrium in G̃ is a SSCE in G. This can be done by repeating the argument
in step 3 of the proof of Proposition 4 with ε = 0.

6. Related literature

The notion of Self-Confirming Equilibrium originates in a paper of Fudenberg and
Levine (1993A). Their solution concept is appropriate only for extensive form games
since they assume that players observe the actions of their opponents (only) on the
equilibrium path. In another paper, Fudenberg and Levine (1993B) show that SCE
correspond to steady states of a particular learning process. SCE and learning in
games with incomplete information are studied by Dekel et al. (2004).

A similar solution concept which is suitable for normal form games is Battigalli
and Guaitoli’s (1988) Conjectural Equilibrium (CE). In fact, SSCE which we used in
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this work is the same as CE12. Rubinstein and Wolinsky (1994) defined and analyzed
the notion of Rationalizable Conjectural Equilibrium (RCE) which is a refinement of
CE. In RCE players take into account the signal functions of the other players and the
fact that all the participants are rational, which further restrict the set of consistent
conjectures. Thus, RCE takes an intermediate position between Nash equilibrium
and Rationalizability (Bernheim, 1984 and Pearce, 1984). The same idea is used by
Dekel et al. (1999) to refine SCE. Subjective Equilibrium of Kalai and Lehrer (1993)
is in the same spirit but in the context of a repeated game.

There were several attempts to break away from the idea that agents spin roulettes
before making decisions. Notably, Harsanyi (1973) shows that adding small random
perturbations to the payoff functions eliminates the need to randomize in the result-
ing incomplete information game. Aumann (1987) suggests that a mixed strategy
should be seen as a ‘plan of action’ which specify the (pure) action to be taken after
each possible private signal. In this way no player explicitly randomizes, and a mixed
strategy of a certain player reflects the uncertainty of other players about his choice.
A discussion of these two approaches can be found in Rubinstein (1991).

More recently, several papers refine SCE by requiring that players will play a best
response to a particular consistent conjecture. In Lehrer’s (2007) Partially Specified
Equilibrium each player maximizes his payoff against the worst possible consistent
conjecture. Jehiel (2005) introduced the notion of Analogy-Based Expectation Equi-
librium in which players’ information is the average strategy of their opponents in
groups of nodes of a game tree. Each player’s conjecture is that the strategy in each
node is the same as the average strategy of the group containing this node.

7. Final remarks

7.1. Independent conjectures. A conjecture for player i is any element of ∆(A−i),
not necessarily a product measure. That is, a player is allowed to believe that
his opponents are using a correlated strategy. Restricting players to independent
conjectures will sometimes shrink the set of SCE13. As a consequence, it is possible
that no pure SCE will survive. However, all the results of this paper will not be
affected by such restriction since the conjectures we use in the proofs are always
independent.

7.2. WSCE and stochastic signals. One may argue that if a certain game is
played repeatedly and some of the players are using mixed strategies then what a
player will know is the distribution of signals and not just the expected signal. If

12We preferred the notion of self-confirming equilibrium over conjectural equilibrium since the
former is much more known and frequently used in the literature. Also, we feel that the name
‘self-confirming’ catches the essence of this solution concept.

13In Azrieli (2007) it is essential that players think that their opponents play independently of
each other.
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this is the case then some weakly consistent conjectures (as defined in this paper)
are no longer consistent with that player’s information. For instance, in the Rock-
Paper-Scissors example of subsection 2.1 the conjecture of player 1 that player 2 is
playing (1

3 , 1
3 , 1

3) is not consistent at (R, R) since it induces different distribution on
1’s signals than what the actual strategy of player 2 induces.

A possible way out of this difficulty14 is to assume that the signals themselves are
stochastic and depend non-deterministically on the action profile. To illustrate this
idea consider the observable payoffs case. The numbers in the payoff matrices can
be thought of as the expected payoff to each player in every action profile. So in
the Rock-Paper-Scissors example, when the action profile (R, R) is played, player 1’s
payoff is drawn from a certain distribution whose expectation is 0. If one assumes
that the (random) payoff to player 1 in this case is 1 or -1 with equal probabilities
then player 1 will not be able to distinguish between the true strategy of player 2
and player 2 playing (1

3 , 1
3 , 1

3).

7.3. Other signal functions and other classes of games. Our results are re-
stricted to two kinds of information structures and to several classes of non-cooperative
games. It will be interesting to identify more classes of games which admit pure SSCE
or WSCE with respect to these information structures or with respect to other natu-
ral information structures. It may also be of interest to study the case of asymmetric
information, where different players have different kinds of information structures.
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