
MPRA
Munich Personal RePEc Archive

Martingales, Detrending Data, and the
Efficient Market Hypothesis

McCauley, Joseph L.; Bassler, Kevin E. and Gunaratne,

Gemunu H.

University of Houston, NUI Galway

February 2007

Online at http://mpra.ub.uni-muenchen.de/2256/

MPRA Paper No. 2256, posted 07. November 2007 / 02:21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6803783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/2256/


Martingales, Detrending Data, and the Efficient 
Market Hypothesis  

 
Joseph L. McCauley+, Kevin E. Bassler++, and Gemunu H. 

Gunaratne+++  
 

Physics Department 
University of Houston 

Houston, Tx. 77204-5005 
jmccauley@uh.edu 

 
+Senior Fellow 

COBERA 
Department of Economics 

J.E.Cairnes Graduate School of Business and Public Policy 
NUI Galway, Ireland 

 
++Texas Center for Superconductivity 

University of Houston 
Houston, Texas 77204-5005 

 
+++Institute of Fundamental Studies 

Kandy, Sri Lanka 
 
 

Key Words: Martingales, Markov processes, detrending, 
memory, stationary and nonstationary increments, 

correlations, efficient market hypothesis. 
 

 
Abstract 

 
We discuss martingales, detrending data, and the efficient 
market hypothesis for stochastic processes x(t) with arbitrary 
diffusion coefficients D(x,t). Beginning with x-independent 
drift coefficients R(t) we show that Martingale stochastic 



processes generate uncorrelated, generally nonstationary 
increments. Generally, a test for a martingale is therefore a 
test for uncorrelated increments. A detrended process with 
an x- dependent drift coefficient is generally not a 
martingale, and so we extend our analysis to include the 
class of (x,t)-dependent drift coefficients of interest in 
finance. We explain why martingales look Markovian at the 
level of both simple averages and 2-point correlations. And 
while a Markovian market has no memory to exploit and 
presumably cannot be beaten systematically, it has never 
been shown that martingale memory cannot be exploited in 
3-point or higher correlations to beat the market. We 
generalize our Markov scaling solutions presented earlier, 
and also generalize the martingale formulation of the 
efficient market hypothesis (EMH) to include (x,t)-
dependent drift in log returns. We also use the analysis of 
this paper to correct a misstatement of the ‘fair game’ 
condition in terms of serial correlations in Fama’s paper on 
the EMH. We end with a discussion of Levy’s 
characterization of Brownian motion and prove that an 
arbitrary martingale is topologically inequivalent to a 
Wiener process. 
 
 
1. Introduction 
 
Recently [1] we focused on the condition for long time 
correlations like and including fractional Brownian motion 
(fBm), which is stationarity of the increments in a stochastic 
process x(t) with variance nonlinear in the time. There, we 
derived the 2-point and 1-point densities including the 
transition density for fBm. We will point out below that 
there are nonMarkov systems where the pair correlations 
canot be distinguished from those of a Makov process, but 
time series with stationary increments (like fBm) exhibit long 
time memory that can be seen at the level of pair 



correlations: fBm cannot be mistaken for a Markov process 
at the 2-point level. We correspondingly emphasized that 
neither 1-point averages nor Hurst exponents can be used to 
identify the presence or absence of history-dependence in a 
time series, or to identify the underlying stochastic process 
(see [2] for the conclusion that an equation of motion for a 1-
point density cannot be used to decide if a process is 
Markovian or not). In the same paper, we pointed out that 
the opposite class, systems with no memory at all (Markov 
processes) and with x-independent drift coefficients generate 
uncorrelated, typically nonstationary increments. The 
conclusions in [1] about Markov processes are more general 
than we realized at the time. Here, we generalize that work 
by focusing on martingales.  
 
 In applications to finance, by “x” we always mean 
x(t)=ln(p(t)/pc) where p(t) is a price at time t and pc is a 
reference price, the consensus price or ‘value’ [3]. The 
consensus price pc is simply the price that determines the 
peak of the 1-point returns density f1(x,t). The reason why 
log increments x(t;T)=lnp(t+T)/p(t) and price differences 
Δp=p(t+T)-p(t) generally cannot be taken as ‘good’ variables 
describing a stochastic process (neither theoretically nor in 
data analysis) is explained below in part 4.  It is impossible 
for a martingale, excepting the special case of a variance 
linear in the time t, to develop either stochastic dynamics or 
probability theory based on increments x(t;T) or Δp, because 
if the increments are nonstationary, as they generally are, 
then the starting time t matters and consequently histograms 
derived empirically from time series assuming that the 
starting time doesn’t matter exhibit ‘significant artifacts’ like 
fat tails and spurious Hurst exponents [3,4]. In contrast, in a 
system with long time autocorrelations (like fBm), the 
stationary increment x(t;T)=x(t+T)-x(t)=x(T), ‘in 
distribution’, is a perfectly good variable. But real markets 
[4], rule out such long time autocorrelations. Stated briefly, if 



increments are nonstationary then the 1-point density that 
describes the increments is not independent of t (see part 5 
below). 
 
Next, we define the required underlying ideas. 
 
 
2. Conditional expectations with memory 
 
Imagine a collection of time series generated by an unknown 
stochastic process that we would like to discover via data 
analysis. Simple averages require only a 1-point density 
f1(x,t), e.g., <xn(t)>=∫xnf1(x,t)dx. No dynamical process can be 
identified by specifying merely either the 1-point density or 
a scaling exponent [1]. Both conditioned and unconditioned 
two-point correlations, e.g. <x(t)x(t+T)>=∫dydxyx 
f2(y,t+T;x,t), require a two point density f2(y,t+T;x,t) for their 
description and provide us with limited information about 
the class of dynamics under consideration.  
 
Consider a collection of time series representing repeated 
runs of a single stochastic process x(t). Empirically, we can 
only strobe the system finitely many times, so measurements 
of x(t) take the form of {x(tk)}, k=1,…,n where n is the 
number of measurements/observations made in one run. 
Many repeated runs are required in order to get histograms 
reflecting the statistics of the process. If we can extract good 
enough histograms from the collection of time series (if there 
are many runs, and if each run contains enough points), then 
we can then try to extract the hierarchy of probability 
densities f1(x,t), f2(x2,t2;x1,t1), …, fk(xk,tk;…,x1,t1) where k<<n 
(where f1 implicitly reflects a specific choice of initial 
condition in data analysis). To get adequate histograms for fn 
one would then need a much longer time series. If the 
memory in the process is discrete in size, then the minimum 
n number of densities that one needs in the hierarchy 



depends on the length N of the memory sequence in the 
system (for a Markov process, N=2). In what follows 
fn(xn,tn;…;x1,t1) denotes the probability density for the 
sequence (xn,…,x1) at observation times (tn,…,t1), where we 
generally take t1<…<tn.  
 
Conditional probability densities pk, or transition probability 
densities, can then be defined as [5,6]: 
 
   

! 

f2 (x1 ,t1 ;x1 , t1) = p2 (x2 ,t2 x1 , t1)f1(x1 ,t1),  (1) 
 
  

! 

f3(x3 ,t3 ;x2 , t2 ;x1 , t1) = p3(x3 ,t3 x2 , t2 ,x1 , t1)p2 (x2 ,t2 x1 , t1)f1(x1 ,t1)

, 
(2) 
 
and more generally as 
 
  

! 

fn(xn ,tn ;...;x1 , t1) = pn(xn ,tn xn"1 , tn"1 ;...x1 , t1)...p2 (x2 ,t2 x1 , t1)f1(x1 ,t1)

,  (3) 
 
where pn is the 2-point conditional probability density to 
find xn at time tn, given the last observed point (xn-1,tn-1) and 
the previous history (xn-2,tn-2;…;x1,t1). When memory is 
present in the system then one cannot use the simplest 2-
point transition density p2 to describe the complete time 
evolution of the dynamical system that generates x(t).  
 
In a Markov process the picture is much simpler. A Markov 
process [5,6] has no memory aside from the last observed 
point in the time series. In this case one loosely says that the 
system has no memory. There, we have 
 
  

! 

fn(xn ,tn ;...;x1 , t1) = p2 (xn ,tn xn"1 , tn"1)...p2 (x2 ,t2 x1 , t1)f1( x1 ,t1), 
(4) 
 



because all transition rates pn, n>2, are built up as products 
of p2, 
 
   

! 

pk (xk ,tk xk"1 , tk"1 ;...;x1 , t1) = p2 (xk ,tk xk"1 , tk"1), 
(5) 
 
for k=3,4, …. , and so p2 cannot depend on an initial state 
(x1,t1) or on any previous state other than the last observed 
point (xk-1,tk-1). Only in the absence of memory does the 2-
point density p2 describe the complete time evolution of the 
dynamical system. E.g., we can prove that for an arbitrary 
process with or without memory 
 
 
  

! 

pk"1(xk ,tk xk"2 , tk"2 ;...;x1 , t1) = dxk"1pk (xk ,tk xk"1 , tk"1 ;...;x1 , t1)# pk"1(xk"1 , tk"1 xk"2 , tk"2 ;...;x1 , t1) 
(6) 
 
and therefore that 
 
   

! 

p2 (x3 ,t3 x1 , t1) = dx2p3(x3 ,t3 x2 , t2 ;x1 , t1)" p2 (x2 ,t2 x1 , t1), 
(7) 
 
whereas the Chapman-Kolmogorov (CK) equation for a 
Markov process follows  with pn=p2 for n=2,3,…, from (6) so 
that 
 
   

! 

p2 (x3 ,t3 x1 , t1) = dx2p2 (x3 ,t3 x2 , t2 )" p2 (x2 ,t2 x1 , t1). (8) 
 
The Markov property is expressed by pn=p2 for all n≥3, the 
complete lack of memory excepting the last observed point. 
The CK Equation (8) is a necessary but not sufficient condition for 
a Markov process [7,8].  
 
A Markov process apparently defines a 1-parameter semi-
group U(t2,t1) of transformations [10], the semi-group 



property is easy to prove for time translationally invariant 
systems (meaning that p2(xn,tn:xn-1,tn-1)= p2(xn,tn-tn-1:xn-1,0)), but 
time translational invariance is not a property of FX data [4] 
and will not be asumed here.  In any case, the group 
combination law is given by the CK eqn. (8), which easily 
can be used to prove associativity. Associativity expresses 
path independence of any sequence transformations. The 
identity element is defined by the equal times transition 
density 
 
     

! 

p2 (y,t x,t) = "(y#x).  (9) 
 
Processes with memory generally do obey the CK eqn. 
Instead, the class of path-dependent time evolutions is 
defined by the entire hierarchy eqns. (3,6), for n=2,3,4,… . 
That the transition density for fBm, e.g., obeys no CK eqn. is 
shown implicitly in Appendix B of [11], where the authors 
show that for general Gaussian processes one obtains the 
semi-group property iff. the Gaussian describes a Markov 
process. Without the CK eqn. one cannot derive a Fokker-
Planck pde for the transition density from a Kramers-Moyal 
expansion [5]. 
  
Memory-dependent processes in statistical physics have 
been discussed by Hänggi and Thomas [11]. They point our 
that 
 

  

! 

p2 (x3 ,t3 x2 , t2 ) =
dx1p3(x3 ,t3 x2 , t2 ;x1 , t1)p2 (x2 ,t2 x1 , t1)f1(x1 ,t1)dx1"

p2 (x2 ,t2 x1 , t1)f1(x1 ,t1)dx1"
 

(10) 
 
is a functionals of the initial state f1(x1,t1) in which the system 
was prepared at the initial time t1, unless the process is 
Markovian. In a nonMarkov system one can superficially 
hide this dependence on state preparation by choosing the 



initial condition to be f1(x1,t1)=δ(x1) (that initial condition is 
inherent in the standard definition of fBm with initial time 
t1=-∞ [1]). If, instead, we would or could choose   
f1(x1,t1)=δ(x1-x’o) at t1=0, e.g., then we obtain p2(x3,t3;x2,t2)= 
p3(x3,t3;x2,t2,xo’), introducing a dependence on xo’ in both the 
drift and diffusion coefficients. So in this case, what appears 
superficially as p2 is really a special case of p3.  The authors 
of [11] point out that the origin of memory in statistical 
physics is often a consequence of averaging over other, 
slowly changing, variables. We will return to this point in 
the section below on the efficient market hypothesis.  
 
Systems with memory may lack translational invariance in x 
and/or time t, but there are drift-free Markov systems that 
lack translational invariance in both x and t because of 
nonstationary increments arising from an (x,t) dependent 
diffusion coefficient [1]. Next, we exhibit a more general 
class of Markov systems that break both ‘space and time’ 
translational invariance than those with Hurst exponent 
scaling of the 1-point density f1(x,t) and the diffusion 
coefficient D(x,t) discussed earlier in ref. [1,9]. In general, 
scaling of the 1-point density f1 does not yield scaling of 
either fn or pn for n≥2 (see ref. [1,9] for examples, both 
nonMarkovian and Markovian). 
 
A class of Markov scaling solutions with scaling more 
general than Hurst exponent scaling [1,3,9], is given as 
follows: let  
 
    

! 

f1(x,t) = "1

#1
(t)F(u)  (11) 

 
with initial condition f1(x,0)=δ(x), where u=x/σ1(t), with 
variance 
 
  

  

! 

"
2 (t) = x2 (t) = "1

2
(t) x2 (1) . (12) 



 
 Then with the diffusion coefficient scaling as 
 
    

! 

D(x,t) = (d"1

2
/dt)D (u)  (13) 

 
where dσ1/dt>0 is required, f1(x,t) satisfies the Fokker-
Planck pde 
  

   
  

! 

"f1

"t
=

1

2

"
2 (Df1)

"x2
  (14) 

 
and yields the scale invariant part of the solution 
 

   
  

! 

F(u) =
C

D (u)
e
" udu/D (u)# .  (15) 

 
 
An example is given by Hurst exponent scaling σ1(t)=tH, 
0<H<1. A piecewise constant drift R(t) can be included in 
our result by replacing x by x-∫R(s)ds in u [1,9].  
 
The Green function g(x,t;xo,to) of (14) for an arbitrary initial 
condition (xo,to)≠(0,0) does not scale [9], but then the 2-point 
transition density p2(x2,t2; x1,t1) for fBm does not scale either, 
reflecting as it does an arbitrary point in a time series 
(x1,t1)≠(xo,to)=(0,-∞). In all cases scaling, when it occurs, can 
only be seen in the special choice of conditional density 
f1(x,t)=p2(x,t;0,to) with to=0 for a Markov process, and to=-∞ 
for fBm. 
 
The same 1-point density f1(x,t) may describe nonMarkovian 
processes because a 1-point density taken alone, without the 
information provided by the transition densities, defines no 
specific stochastic process and may be generated by many 
different completely unrelated processses, including systems 



with long time increment autocorrelations like fBm [1]. We 
will show below that a 2-point density delineates fBM from a 
martingale, but that pair correlations cannot be used to 
distinguish an arbitrary martingale from a drift-free Markov 
process. 
 
Finally, note also that 
 

  

! 

fn"1(xn"1 , tn"1 ;...;x1 , t1) = dxnfn(xn ,tn ;...;x1 , t1)#

= dxnpn(xn ,tn xn"1 , tn"1 ;...;x1 , t1)# fn"1(xn"1 , tn"1 ;...;x1 , t1)
 (16) 

 
so that 
 
    

! 

dxnpn(xn ,tn xn"1 , tn"1 ;...;x1 , t1)# = 1. (17) 
 
 
3. Absence of trend and martingales  
 
By a trend, we mean that d<x(t)>/dt≠0, conversely, by lack 
of trend we mean that d<x(t)>/dt=0. If a stochastic process 
can be detrended, then d<x>/dt=0 is possible via a 
transformation of variables but one must generally specify 
which average is used to define <x>. If the drift coefficient 
R(x,t) depends on x, then detrending with respect to a 
specific average generally will not produce a detrended 
series if a different average is then used (e.g., one can choose 
different conditional averages, or an absolute average). To 
push this problem under the rug until the last section of the 
paper, we restrict in what follows to processes that can be 
detrended once and for all by a simple subtraction. I.e., we 
assume for the time being a trivial drift coefficient but allow 
for nontrivial diffusion coefficients. This case is of interest 
both theoretically and for FX data analysis. 
 



A trivial drift coefficient R(t) is a function of time alone. A 
nontrivial drift coefficient R(x,t) depends on x, on (x,t), or on 
(x,t) plus memory {x}, and is defined for Ito processes by 
 

 

! 

  

! 

R(x,t,{x}) "
1

T
dy

#$

$

% (y#x)pn(y,t +T;x,t,{x})  (18)  

 
as T vanishes, where {x} denotes the history dependence in 
pn, e.g. with y=xn and x=xn-1 (y,t+T,x,t;{x}) denotes          
(xn,tn;xn-1,tn-1,xn-2,tn-2,…,x1,t1) with y=xn and x=xn-1. If R(x,t)=0 
then  
 
  

  

! 

dy
"#

#

$ ypn(y,t +T;x,t,{x}) = x, (19) 
 
so that the conditional average over x at a later time is given 
by the last observed point in the time series, 
<x(t+T)>cond=x(t). This is the notion of a fair game: there is no 
systematic change in x on the average as t increases, 
d<x(t)>cond/dt=0. The process x(t) is generally nonstationary, 
and the condition (19) is called a local martingale [12]. The 
possibility of vanishing trend, d<x>/dt=0, implies a local 
martingale x(t), and vice-versa.   
 
This is essentially the content of the Martingale 
Representation Theorem [13], which states that an arbitrary 
martingale can be built up from a Wiener process B(t), the 
most fundamental martingale, via stochastic integration ala 
Ito, 
 
   

! 

x(t) = b(x(s),s;{x})dB(s)" .  (20) 
 
 
There is no drift term in (20), in the stochastic differential 
equation (sde) 
 



   

! 

dx(t) = b(x(t),t;{x})dB(t) (21) 
 
the diffusion coefficient, 
 

 
  

! 

D(x,t,{x}) "
1

T
dy(y#x)2 pn(y,t x,t #T,{x})$  (22) 

 
as T vanishes, is given by D=b2. In a Markov system the drift 
and diffusion coefficients depend on (x,t) alone, have no 
history dependence. Ito calculus based on martingales has 
been developed systematically by Durrett, including the 
derivation of Girsanov’s Theorem for arbitrary diffusion 
coefficients D(x,t) [12]. Many discussions of Girsanov’s 
Theorem [13,14] implicitly rule out the general case (19) 
where D(x,t) may depend on x as well as t. In this paper we 
do not appeal to Girsanov’s theorem because the emphasis is 
on application to data analysis, to detecting martingales in 
empirical data. A new and simplified proof of Girsanov’s 
theorem for variable diffusion coefficients will be presented 
elsewhere [15]. 
 
It’s quite easy to write down a diffusion coefficient with 
memory of the initial state. For a Markov process the scaling 
processes follow from assuming that 
 
  

  

! 

D(x,t) = t
2H"1

D (u),u = x /t
H

  (22b) 
 
and exhibit no history. If, however, we should instead write 
 
 

  

! 

D(x "xo ,t " to ) = t " to

2H"1
D (u),u = x "xo /t " to

H  (22c) 
 
then by (10) above this follows from (22) with n=3, where 
(xo,to) is the initial state in which the system was prepared. 
As we pointed out above, variable diffusion systems are not 
translation invariant, and neither is FX data [4]. To 



emphasize the point, (22c) generates a nonMarkovian 
martingale. 
 
 
There are stochastic processes that are inherently biased, and 
fBm provides an example. There, although the absolute 
average vanishes <x(t)>=∫<x>cf1(x,t)dx=0, the conditional 
average yields d<x>c/dt≠0 where the time dependence 
arises from long time correlations rather from a drift term: in 
fBm one obtains [1]  
 
 

  

! 

x(t)
cond

= dyyp2 (x,s x,t) = C(t,s)x"   (23) 
 
instead of the martingale condition (19). Here, 
d<x>c/dt=xdC/dt≠0 because the factor C(t,s)≠1 is 
proportional to the autocorrelation function <x(s)x(t)> where 
the stationarity of increments guaranteeing long time 
memory was built in [1]. Such processes cannot be 
‘detrended’ (R(x,t)=0 by construction in fBm [1,16]) because 
what appears locally to be a trend in a conditional average is 
simply the strongly correlated behavior of the entire time 
series.  
 
Note next that subtracting an average drift ∫<R>dt from a 
process x(t) defined by x-dependent drift term plus a 
Martingale, 
 

  

! 

x(t) = x(t "T)+ R(x(s),s;{x})ds + b(x(s),s;{x}dB(s)#
t"T

t

# , (24) 

 
does not produce a martingale. Here, if we replace x(t) by 
x(t)-∫<R>dt where the average drift term defined 
conditionally from some initial condition (x1,t1),  
 
   

! 

R = dxR(x,t)p2" (x,t x1 ,t1)  (25) 



 
depends on t alone we do not get drift free motion, and 
choosing absolute or other averages of R will not change 
this. In financial analysis, e.g., <R> may represent an average 
from the opening return x1 at opening time t1 up to some 
arbitrary intraday return x at time t. The subtraction yields 
 

  

! 

x(t) = x(t "T)+ R(x(s),s;{x})ds " R
t"T

t

# ds + b(x(s),s;{x}dB(s)#
t"T

t

#  

(26) 
 
and is not a martingale unless R is independent of x: we 
obtain <x(t)>c=x iff. x=xo. The general problem of an (x,t) 
dependent drift R(x,t) in financial applications will be 
discussed in the last section of this paper.  
 
Again, in what follows we assume a trivial drift R(t) that  has 
been subtracted, so that by x(t) we really mean x(t)-∫R(t)dt.  
 
So we can, for our present purposes, divide stochastic 
processes into those that satisfy the martingale condition 
 
  

  

! 

x(t)
cond

= x(to ),  (27) 
 
where <..>cond denotes the conditional average (19), and 
those that do not. Those that do not satisfy (19) can be 
classified further into processes that consist of a nontrivial 
(i.e., (x,t)-dependent) drift plus a martingale (20), and those 
(including fBm) that are not defined by an underlying 
martingale.  
 
Summarizing the idea of a martingale, given any set of n 
points in a time series, {x(tk)}, k=1,…,n, where tn>tn-1>…>t2>t1 
and the hierarchy of transition densities pn, the idea of a 
Martingale is that the best systematic forecast of the future 
[17] is the conditional average <x(tk)>cond= x(tk-1). I.e., our 



expectation of the future is determined by the last observed 
point in the time series,  
 
  

  

! 

xn" pn(xn ,tn xn#1 , tn#1 ,...,x1 , t1)dxn = xn#1 ,  (28)   
 
all previous observations (xn-1,…,x1) don’t contribute. This 
feature makes a martingale as near as possible to a drift-free 
Markov process without eliminating the possibility of 
memory. The conditions that must be satisfied in order that 
a martingale follows are derived in the next section. The 
point here is that at the level of simple averages the history 
dependence cannot be detected. We will show in the next 
section that the history dependence also cannot appear in 
pair correlations, making any history in a martingale hard to 
detect empirically. We understand the condition for a local 
martingale (19) as the condition that bias-free motion occurs. 
 
The simplest, best known example of a martingale is a drift-
free Markov process, where there is no memory at all, i.e., 
where D depends on (x,t) alone completely independent of 
any and all history simply because (see eqn. (22) above) the 
transition density p2(y,s:x,t) depends on the one, single past 
state (x,t) alone, and on no other earlier states.  
 
Finally, the Ito sde (22) with or without drift included can be 
used to derive a Fokker-Planck pde for a stochastic process 
with memory. The Fokker-Planck pde is usually derived 
from the CK eqn. for a Markov process as an approximation, 
but this is not necessary. The derivation of the Fokker-Planck 
pde from the Ito sde, without assuming a C-K eqn. apriori, is 
provided in [18,19] goes through even if the drift and 
diffusion coefficients R and D are memory dependent. In 
that case one has a pde for a 2-point conditional probability 
pn depending on a history of n-2 earlier states. The 



derivation is given in the Appendix for the benefit of the 
reader. 
 
 
4. Stationary vs. nonstationary increments 
 
Let us preface this section with a comment: in contrast with 
what is assumed in the econophysics and finance literature, 
we know of only two stochastic processes with both finite 
variance and stationary increments: the Wiener process and 
fractional Brownian motion. Furthermore, we know of no 
finance data with stationary increments. Furthermore, 
stationary increments is a very different condition than 
either time or space translational invariance. Nonstationary 
increments are ubiquitous in both theory and data analysis. 
 
In this section we generalize an argument in [1] that 
assumed Markov processes with trivially removable drift 
R(t). In fact, that argument was based on no specifically 
Markovian assumption and applies quite generally to 
nonMarkovian martingales. In the analysis that follows, we 
assume a drift-free nonstationary process x(t) with the initial 
condition x(to)=0, so that the variance is given by 
σ2=<x2(t)>=∫x2f1(x,t). By the increments of the process we 
mean x(t;T) = x(t+T)-x(t) and x(t;-T)=x(t)-x(t-T).  
 
We state in advance that we assume that [-∞<x<∞}, that 
there are no boundary conditions that would lead to 
statistical equilibrium. All processes considered are 
nonstationary ones. 
 
Stationary increments are defined by 
 
    

! 

x(t + T) " x(t) = x(T),  (29) 
 



‘in distribution’, and by nonstationary increments [1,3,4,5] 
we mean that 
 
    

! 

x(t + T) " x(t) # x(T).  (30) 
 
in distribution. When (29) holds, then given the density of 
‘positions’ f1(x,t), we also know the density 
f1(x(T),T)=f1(x(t+T)-x(t),T) of increments independently of 
the starting time t. Whenever the increments are 
nonstationary then any analysis of the increments inherently 
requires the two-point density, f2(x(t+T),t+T;x(t),t). From the 
standpoint of theory there exists no 1-point density of 
increments f(x;T),T) depending on T alone, independent of t, 
and spurious 1-point histograms of increments are typically 
constructed empirically by assuming that the converse is 
possible [4]. Next, we place an important restriction on the 
class of stochastic processes under consideration. 
 
According to Mandelbrot, so-called ‘efficient market’ has no 
memory that can be easily exploited in trading [17]. 
Beginning with that idea we can assert the necessary but not 
sufficient condition, the absence of increment 
autocorrelations, 
 

  

! 

(x(t
1
) " x(t

1
" T

1
))(x(t

2
+ T

2
) " x(t

2
)) = 0, (31) 

   
 
when there is no time interval overlap, t1<t2 and T1, T2>0. 
This is a much weaker condition and far more interesting 
than asserting that the increments are statistically 
independent. We will see that this condition leaves the 
question of the dynamics of x(t) open, except to rule out 
processes with increment autocorrelations, specifically 
stationary increment processes like fBm [1,20], but also 
processes with correlated nonstationary increments like the 



time translationally invariant Gaussian transition densities 
described in [2].  
 
Consider a stochastic process x(t) where the increments (31) 
are uncorrelated. From this condition we easily obtain the 
autocorrelation function for positions (returns), sometimes 
called ‘serial autocorrelations’. If t>s then 
 

  

! 

x(t)x(s) = (x(t) " x(s))x(s) + x
2(s) = x

2(s) > 0,  (32) 
 
since with x(to)=0 x(s)-x(to)=x(s), so that <x(s)x(t)>=<x2(s)> is 
simply the variance in x. Given a history (x(t), 
….,x(s),…,x(0)), or (x(tn),…x(tk),…,x(t1)), (32) reflects a 
martingale property: 
 
 

  

! 

x(tn )x(tk ) = dxn...dx1xn" xkpn(xn ,tn xn ,tn ,...,xn ,tn ,...)pn#1(...)...pk+1(...)fk (...)

= xk

2
" fk (xk ,tk ;...;x1 , t1)dxk ...dx1 = x2

" f1(x,t)dx = xk

2
(tk )

 (33) 
 
where 
 
    

! 

xmdxmpm(xm ,tm xm"1 , tm"1 ;...;x1 , t1) = xm"1# .  (34) 
 
Every martingale generates uncorrelated increments and 
conversely, and so for a Martingale <x(t)x(s)>=<x2(s)> if 
s<t.1 
 
In a martingale process, the history dependence cannot be 
detected at the level of 2-point correlations, memory effects 
can at best first appear at the level 3-point correlations 
                                         

1 Note that (32,33) hold for time translationally invariant martingales, where p2(x,t:y,s)=p2(x,t-s:y,0). One can easily 
check this for a drift-free Gaussian Markov process. I.e., time translational invariance does not imply that <x(t)x(s)> is 
a function of t-s alone. Time translational invariance of pn, n≥2, does not imply that a statistical equilibrium density 
f1(x) exists and is approached asymptotically by f1(x,t) [21]. I.e., a time translationally invariant martingale on [-∞,∞] 
cannot yield a stationary process, cannot lead to statistical equilibrium.  



requiring the study of a transition density p3. Here, we have 
not postulated a martingale, instead we’ve deduced that 
property from the lack of pair wise increment correlations. 
But this is only part of the story. What follows next is crucial 
for avoiding mistakes in data analysis [4]. 
 
 Combining 
 

  

! 

(x(t + T) " x(t))2
= + (x2(t + T) + x

2(t) "2 x(t + T)x(t)  
(35) 
 
with (34), we get 
 
 

  

! 

(x(t + T) " x(t))2
= x

2(t + T) " x
2(t)   (36) 

 
which depends on both t and T, excepting the case where 
<x2(t)> is linear in t. Uncorrelated increments are generally 
nonstationary. Therefore, martingales generate uncorrelated, 
typically nonstationary increments. So, at the level of pair 
correlations a martingale with memory cannot be 
distinguished empirically from a drift-free Markov process. 
To see the memory in a martingale one must study at the very least 
the 3-point correlations. The increments of a martingale may 
be stationary iff. the variance is linear in t (we restrict 
ourselves to the consideration of processes with finite 
variance). For H=1/2 the Ito integral eqn. for a scaling 
martingale x yields (see eqn. (26’) in [9]) 
 

  

! 

x(t +T)"x(t) = D(x(s + t)/s + t
1/2

0

T

# dB(s) 

 
where stationarity of increments of B(t) was used. So 
although the t-dependence disappears from the average (36) 
when H=1/2, we cannot prove that it disappears for all 
moments <(x(t+T)-x(t))n>. I.e., we cannot prove from Ito 



calculus alone that scaling martingales with H=1/2 have 
stationary increments, although simulations for the 
exponential process indicate stationary increments [4]. 
 
We’ve emphasized earlier [1] that stationary increments 
x(t,T)=x(t+T)-x(t)=x(T) with finite variance <x2(t)> < ∞ 
generate the long time increment autocorrelations 
characteristic of fBm [1,16,20], whereas stationary 
uncorrelated increments with infinite variance occur in Levy 
processes [22,23]. Stationary Gaussian processes with 
correlated nonstationary increments are constructed in [2]. 
 
A martingale x(t) has no drift, and conditioned on the return 
x(to) yields <x(t)>cond=x(to). That is, x(t) not only has no trend 
but the conditional average is in addition ‘stuck’ at the last 
observed point in a time series, 
 
   

! 

xnpn" (xn ,tn xn#1 , tn#1 ;...;x1 , t1)dxn = xn#1. (37) 
 
Since x(t) represents the return or ‘gain’, one further toss of 
the coin produces no expected gain.  
 
Summarizing, we’ve shown explicitly that fBm is not a 
martingale [1], while every Markov process with trivial drift 
R(t) can be transformed into a (local) Martingale via the 
substitution of x(t)-∫Rdt for x(t): Ito sdes with vanishing drift 
describe local martingales [12]. A martingale may have 
memory, and we’ve provided a model diffusion coefficient 
to illustrate the appearance of memory (any drift or 
diffusion coefficient depending on a state (x’,t’) other than 
the present state (x,t) exhibits memory, so diffusive models 
with memory are quite easy to construct). We’ve shown that 
uncorrelated increments are nonstationary unless the 
variance is linear in t. This means that looking for memory in 
two point correlations is useless: at that level of description a 
martingale with memory will look Markovian. To find the 



memory in a martingale one must study the transition 
densities pn and correlations for n≥3. This has not been 
discussed in the literature, so far as we know.  
 
As a preliminary step to discussing the EMH, consider a 
Martingale process x(t). The best forecast of any later return 
is the expected return  
 
    

! 

xkp2 (xk ,tk xk"1 , tk"1 ;...;x1 , t1)# dxk = xk"1, (38) 
 
so that no gain is expected in sequential time intervals, no 
matter how much you know about the past. I.e., if the same 
sequence (xn-1, …, x1) was observed at some other time in the 
past and a return xn>>xn-1 had then occured, we have no 
reason to expect that accident/fluctuation to be repeated. 
The best forecast of xn is still <xn>cond=xn-1. Since we can 
average over xk-1,…,x1, we can also predict/forecast that 
 
  

! 

xk = xkpk (xk ,tk xk"1 , tk"1 ;...;x1 , t1)# pk"1(xk"1 , tk"1 xk"2 , tk"2 ;...;x1 , t1)dxkdxk"1 = xk"1 = xk"2
 

(39) 
 
etc., and finally  
 
  

  

! 

... xk ... = x2p2 (x2 ,t2 x1 , t1)dx2" = x1. (40) 
 
 
Summarizing, the progression from statistical independence 
to Markov processes to Martingales can be understood as a 
systematic reduction in restrictions. For statistical 
independence, the n-point density factors, 
fn(xn,…,x1)=fn(xn)..f1(x1). A Markov process generalizes this by 
allowing fn to be determined by p2 and f1 alone, 
fn(xn,…,x1)=p2(xn;xn-1)…p2(x2;x1)f1(x1). Every drift-free Markov 
process is a martingale, <x(tn)>c =xn-1. The most general 
martingale keeps only the last condition and permits 



memory, pn≠p2 for n≥3. In this way we have a successive 
progression of complication in processes. All three classes of 
processes have in common that the increment 
autocorrelations vanish. But for statistical independence 
<x(s)x(t)>=0, whereas for martingales <x(s)x(t)>=<x2(s)> if 
s<t. Fractional Brownian motion and other systems with 
long time increment autocorrelations fall completely outside 
this hierarchy.   
 
Here’s a different summary. Wiener processes have 
statistically independent, stationary increments with 
variance linear in time. Consequently, a Wiener process has 
a time translationally invariant transition density. One can 
generalize the Wiener process in at least three different 
directions. Time translationally invariant processes include 
Mori-Zwanzig processes and the approch to statistical 
equilibrium, but these are not Ito processes (the noise is 
correlated). In Zwanzig-Mori processes, the increments are 
generally correlated and nonstationary. Processes with 
stationary correlated increments and variance nonlinear in 
the time yield the long time autocorrelations characteristic of 
fBm. These processes are neither of the Ito nor Zwanzig-
Mori type. A Wiener process is a martingale. One can 
generalize to nonWiener martingales (drift-free Ito 
processes), and from there to general Ito processes with drift. 
 
 
5. The Efficient Market Hypothesis 
 
We begin by sumarizing our viewpoint for the reader. Real 
finance markets are hard to beat, arbitrage posibilites are 
hard to find and, once found, tend to disappear fast. In our 
opinion the EMH is simply an attempt to mathematize the 
idea that the market is very hard to beat. If there is no useful 
information in market prices, then those prices can be 
counted as noise, the product of ‘noise trading’. A 



martingale formulation of the EMH embodies the idea that 
the market is hard to beat, is overwhelmingly noise, but 
leaves open the question of hard to find correlations that 
might be exploited for exceptional profit. 
 
A strict interpretation of the EMH is that there are no 
correlations, no patterns of any kind, that can be employed 
systematically to beat the average return <R> reflecting the 
market itself: if one wants a higher return, then one must 
take on more risk. A Markov market is unbeatable, it has no 
systematically repeated patterns, no memory to exploit. We 
will argue below that the stipulation should be added that in 
discussing the EMH we should consider only normal, liquid 
markets, meaning very liquid markets with small enough 
transactions that approximately reversible trading is possible 
on a time scale of seconds [3]. Otherwise, ‘Brownian’ market 
models do not apply. Liquidity, ‘the money bath’ created by 
the noise traders whose behavior is reflected in the diffusion 
coefficient [3], is somewhat qualitatively analogous to the 
idea of the heat bath in thermodynamics [24]: the second by 
second fluctuations in x(t) are created by the continual noise 
trading.  
 
Mandelbrot [17] proposed a less strict and very attractive 
definition of the EMH, one that directly reflects the fact that 
financial markets are hard to beat but leaves open the 
question whether the market can be beaten in principle at 
some high level of insight. He suggested that a martingale 
condition on returns realistically reflects the notion of the 
EMH. A martingale may contain memory, but that memory 
can’t be easily exploited to beat the market precisely because 
the expectation of a martingale process x(t) at any later time 
is simply the last observed return. In addition, as we’ve 
shown above, pair correlations in increments cannot be 
exploited to beat the market either. The idea that memory 
may arise (in commodities, e,g.) from other variables (like 



the weather) [17] correponds in statistical physics [11] to the 
appearance of memory as a consequence of averaging over 
other, more slowly changing, variables in the larger 
dynamical system.  
 
The martingale (as opposed to Markov) version of the EMH 
is also interesting because technical traders assume that 
certain price sequences give signals either to sell or buy. In 
principle, that is permitted in a martingale. A particular 
price sequence  (p(tn), ….,p(t1)), were it quasi-systematically 
to repeat, can be encoded as returns (xn,…,x1) so that a 
conditional probability density pn(xn;xn-1,…,x1) could be 
interpreted as a providing a risk measure to buy or sell.  By 
‘quasi-repetition’ of the sequence we mean that               
pn(xn;xn-1,…,x1) is significantly greater than a Markovian 
prediction. Typically, technical traders make the mistake of 
trying to interpret random price sequences quasi-
deterministically, which differs from our interpretation of 
‘technical trading’ based on conditional probabilities (see Lo 
et al [25] for a discussion of technical trading claims, but 
based on a non-martingale, non-empirically based model of 
prices). With only a conditional probability for ‘signaling’ a 
specific price sequence, an agent with a large debt to equity 
ratio can easily suffer the Gamblers’ Ruin. In any case, we 
can offer no advice about technical trading, because the 
existence of market memory has not been firmly established 
(the question is left open by the analysis of ref. [25]), liquid 
finance markets look pretty Markovian so far as we’ve been 
able to understand the data [4], but one can go 
systematically beyond the level of pair correlations to try to 
find memory. Apparently, this remains to be done, or at 
least to be published. 
 
If we return to the hypothetical models (22b,c), the case 
where xo≠0 implies a finite value pc≠0, so that (22c) describes 
a hypothetical market where there is persistence of memory 



of some previous valuation. Such memory could reflect 
heavy trading around a particular price and can, of course, 
be lost in the course of time. The writer remembers well the 
period of a few months ca. 1999 when CPQ sold for around 
$22, and was traded often in the range $18-$25 before 
crashing further. Whether that provides an example is 
purely speculation at this point. 
 
Fama [26] took Mandelbrot’s proposal seriously and tried to 
test finance data at the simplest level for a fair game 
condition. We continue our discussion by first correcting a 
mathematical mistake made by Fama (see the first two of 
three unnumbered equations at the bottom of pg. 391 in 
[26]), who wrongly concluded in his discussion of 
martingales as a fair game condition that <x(t+T)x(t)>=0. 
Here’s his argument, rewritten partly in our notation. Let 
x(t) denote a ‘fair game’. With the initial condition chosen as 
x(to)=0, then we have the unconditioned expectation 
<x(t)>=∫xdxf1(x,t)=0 (there is no drift). Then the so-called 
‘serial covariance’ is given by 
 
 

  

! 

x(t +T)x(t) = xdx < x(t +T) >cond(x) f1(x,t)" . (41) 
 
Fama states that this vanishes because <x(t+T)>cond=0. This is 
impossible: by a fair game we mean a Martingale, the 
conditional expectation is 
<x(t+T)>cond=∫ydyp2(y,t+T;x,t)=x=x(t)≠0, and so Fama should 
have concluded instead that <x(t+T)x(t)>=<x2(t)> as we 
showed in the last section. Vanishing of (41) would be true 
of statistically independent variables but is violated by a ‘fair 
game’. Can Fama’s argument be salvaged? Suppose that 
instead of x(t) we would try to use the increment 
x(t,T)=x(t+T)-x(t) as variable. Then <x(t,T)x(t)>=0 for a 
Martingale, as we showed in part 4. However, Fama’s 
argument still would not be generally correct because x(t,T) 
cannot be taken as a ‘fair game’ variable unless the variance 



is linear in t, and in financial markets the variance is not 
linear in t [3,4]. Fama’s mislabeling of time dependent 
averages (typical in economics and finance literature) as 
‘market equilibrium’ has been corrected elsewhere [24].  
 
In our discussion of the EMH we shall not follow the 
economists’ tradition and discuss three separate forms 
(weak, semi-strong, and strong [27]) of the EMH, where a 
hard to test or effectively nonfalsifiable distinction is made 
between three separate classes of traders. We specifically 
consider only normal liquid markets with trading times at 
multiples of 10 min. intevals so that a Martingale condition 
holds [4]. Normal market statistics overwhelmingly (with 
high probability, if not ‘with measure one’) reflect the noise 
traders [3], so we consider only normal liquid markets and 
ask whether noise traders produce signals that one might be 
able to trade on systematically. The question whether 
insiders, or exceptional traders like Buffett and Soros, can 
beat the market probably cannot be tested scientifically: even 
if we had statistics on such exceptional traders, those 
statistics would likely be too sparse to draw a firm 
conclusion (see [3,4] for a discussion of the difficulty of 
getting good enough statistics on the noise traders, who 
dominate a normal market). Furthrmore, it is not clear that 
they beat liquid markets, some degree of illiquidity seems to 
play a significant role there. Effectively, or with high 
probability, there is only one type trader under 
consideration  here, the noise trader. Noise traders provide 
the liquidity [28], their trading determines the form of the 
diffusion coefficient D(x,t;{x}) [3], where {x} reflects any 
memory present. The question that we emphasize is 
whether, given a Martingale created by the noise traders, a 
normal liquid market can still be beaten systematically.  
 
One can test for martingales and for violations of the EMH at 
increasing levels of correlation. At the level n=1, the level of 



simple averages, the ability to detrend data implies a 
Martingale. At the level n=2, vanishing increment 
autocorrelations [4] implies a martingale. Both conditions 
are consistent with Markov processes and with the EMH. A 
positive test for a martingale with memory at the level n≥3 
would eliminate Markov processes, and perhaps would 
violate the EMH as well. So far a we’re aware, this case has 
not yet been proposed or discussed in the literature. If such 
correlations exist and would be traded on, then a finance 
theorist would argue that they would be arbitra=ged away, 
changing the market statistics in the process. If true, then 
this would make the market even more effectively 
Markovian. 
 
A Markov market cannot be systematically beaten, it has no 
memory of any kind to exploit. Volatility clustering [17] and 
so-called ‘long term dependence’ [29] appear in Markov 
models [30], are therefore not necessarily memory effects. In 
the folklore of finance it’s believed that some traders are able 
to make money from volatility clustering, which is a 
Markovian effect with a nontrivial variable diffusion 
coeffient D(x,t), e.g. D(x,t)=t2H-1(1+abs(x)/tH) [30], so one 
would like to see the formulation of a trading strategy based 
on volatility clustering to check the basis for that claim.  
 
Testing the market for a nonMarkovian martingale is 
nontrivial and apparently has not been done: tests at the 
level of pair correlations leave open the question of higher 
order correlations that may be exploited in trading. Whether 
the hypothesis of a martingale as EMH will stand the test of 
higher orders correlations exhibiting memory remains to be 
seen. In the long run, one may be required to identify a very 
liquid ‘efficient market’ as Markovian.   
 
Finally, martingales typically generate nonstationary 
increments. This means that it is generally impossible to use 



the increment x(t,T) (or the price difference p(t+T)-p(t)) as a 
variable in the description of the underlying dynamics. The 
use of a returns or price increment as variable in data 
analysis generates spurious Hurst exponents  [4,31] and 
spurious fat tails whenever the time series have 
nonstationary increments [3,4]. The reason that an increment 
cannot serve as a ‘good’ coordinate is that it depends on the 
staring time t: let z=x(t;T). Then 
 
   

! 

f(z,t, t +T) = f2" (y,t +T;x,t)#(z$ y + x)dxdy  (42) 
 
is not independent of t, although attempts to construct this 
quantity as histograms in data analysis via ‘sliding 
windows’ implicitly presume t-independence [4,31]. If the 
increments are stationary then z=y-x=x(T) and we obtain a 
well defined density f(z,T). When the increments are 
nonstationary then f depends on t and (42) can be seen a 
failed attempt to coarsegrain.  Correspondingly, there exists 
no Langevin eqn. for nonstationary increments. A Langevin 
eqn. for the increments can be obtained when the variance is 
linear in t, so that the increments are both stationary and 
uncorrelated; the increment is then independent of t and 
serves as a ‘good’ coordinate. But in the general case of 
stationary increments with finite variance, unless the 
variance is linear in t there are long time correlations that 
destroy the fair game/martingale property. Nearly all 
existing data analyses are based on a method of building 
histograms called ‘sliding windows’ [4]. Sliding a window 
from one value of t to another to read off x(T) from 
x(t,T)=x(t+T)-x(t)=x(T) inherently assumes that the 
increments x(t,T) are stationary (see [31] for the original 
discussion of the importance of nonstationary increments in 
FX data analysis).  
 
 
 



6. Martingales as EMH for nontrivial drift coefficients 
 
In our analysis [4] of Euro-Dollar 1999-2004 FX data, the 
average drift is a small constant that can be ignored. We 
can’t rule out that that result may be era dependent. What 
would happen if an x-dependent drift were important? E.g., 
in martingale option pricing an x-dependent drift         
R(x,t)=r-D(x,t)/2 is theoretically necessary [24,32], where r is 
the risk free interest rate (or more generally the cost of carry 
[23]). In reality option pricing via the exponential 
distribution has been sucessful with the neglect of that term 
[24,32].  
 
However, consider a market like the U.S. stock markets from 
1994-2000, where the average drift <R> should describe the 
bubble. If an x-dependent drift is a necessary consideration, 
then the condition for a Martingale as the EMH must be 
slightly modified. 
 
With an x-dependent drift R(x,t) the stochastic integral 
equation for the market consists of a drift term plus a 
martingale, 
 

  

! 

x(t +T) = x(t)+ R(x(s),s)ds + D(x(s),s)
t

t+T

"
t

t+T

" dB(s). (43) 
 
Whether or not R and/or D contain memory is at this stage 
unimportant. We can define an average drift 
 
   

! 

R = dxR(x,t)p2 (x,t xo ,to" ),  (44) 
 
reflecting e.g. an intraday average [4] conditioned on the 
daily initial conditions. If we can subtract the drift from x 
then the resulting process is not a martingale. The best we 
can obtain in this case is the restricted condition 
 



   

! 

ydyp2" (y,t xo ,to ) = xo   (45) 
 
where we can, e.g., take as initial condition the initial return 
at opening time to each day. However, the nice condition of 
uncorrelated increments is lost, 
 

  

! 

x(t,"T)x(t,T) = ds(R(x(s),s)" R ) dw(R(x(w), w)" R )
t

t+T

#
t"T

t

# $ 0 
(46) 
 
so we no longer have a clear and easy test on empirical 
returns data to rule out long time correlations.  
 
To remedy this state of afairs, we’re forced to use price as 
variable. Assume that R(x,t)=µ-D(x,t)/2, which reflects the 
assumption that the basic market equation of motion is  
 
    

! 

dp = µpdt + p2d(p,t)dB(t) (47) 
 
with d(p,t)=D(x,t) determined empirically, where µ is the 
expected ‘interest rate’ on the financial instrument under 
consideration. In ref. [25] a nonmartingale Bachelier-type 
model was assumed, p2d(p,t)=constant, and ‘patterns’ were 
assumed without proof to be encoded in a nonlinear drift 
coefficient. Next, using as returns variable y=x-µt, with  
S=pe-µt, we get a price martingale 
 
   

! 

dS = S2e(S,t)dB(t)  (48) 
 
where (by Ito calculus) e(S,t)=d(p,t)=D(x,t). The condition to 
be tested empirically to establish this model is therefore  
<S(t,t-T)S(t,T)>=0, where the increments S(t,T)=S(t+T)-S(t) 
will generally be nonstationary with <S(t+T)S(t)>=<S2(t)> if 
T>0. If there is a drift coefficient with memory, then this 
model cannot be established. In the case of (47) the memory 



must be reflected in the diffusion coefficient. This possibility 
has not been studied in the finance literature. Of course, to 
set the idea to work one must first get an accurate estimate 
for µ, a nontrivial task, empirically seen. 
 
 
7. Levy’s definition of Brownian motion, a cautionary note 
 
Levy’s characterization of “Brownian motion” (meaning the 
Wiener process) is stated in various equivalent ways in the 
literature (pg. 46 in Friedman [10], pg. 75 Durrett [12], pg. 
204 in Steele [14], and pg. 111 in Durrett [34]) We can 
identify the careless reading of  that theorem as the source of 
the false expectation expressed in much of the finance 
literature that an arbitrary martingale is equivalent by a 
change of time variable to a Wiener process (see pg. 204-5 in 
Steele [14] for that mistake, but see also pg. 75 in [12] for the 
same claim). Levy’s definition can be stated as follows [10]: 
with the assumptions that Y(t) and Y2(t)-t are both 
martingales, then Y(t) is a Wiener process within a change of 
time variable. Here’s the most general construction of a 
martingale from Ito calculus: let x(t) be any Ito process 
dx=R(x,t)dt+√D(x,t)dB(t). A local martingale Y(t)=G(x,t) can 
be constructed by setting the drift term equal to zero in Ito’s 
lemma (requiring that G(X,t) satisfies Kolmogorov’s 
backward time pde subject to initial and boundary 
conditions) and is generated by the sde  
 

  
  

! 

dY =
"G

"x
D(x,t)dB.  (48) 

 
Durrett [12] shows how to construct and do Ito calculus with 
martingales, a generalization of the standard case where Ito 
differentials and stochastic integration are developed for 
Wiener processes [10,12,13,14]. For a martingale Y, the easy 
to prove integration by parts formula becomes [12] 



 
    

! 

Y(t)"Y(to ) = (dY)2
# + 2 YdY# ,   (49) 

 
where (dY)2=E(x,t)dt with E(x,t)=G’2(x,t)D(x,t), showing that 
Y2(t)-∫(dY)2 is a martingale. This reduces to the Wiener 
martingale Y2(t)-t iff. G’(x,t)√D(x,t) =1.  E.g., for the drift-free 
exponential process [9] with H=1/2 and x(0)=0, <x2(t)>=2t, 
showing that <x2(t)>-2t is a martingale, and therefore 
<x2(t)>-t is not.  
 
Durrett [12] emphasizes continuity of paths in his discussion 
of Levy’s theorem. Scaling Markov processes [9] processes 
are generated by a drift-free sde with by D(x,t)= 

  

! 

t
2H-1D(u) 

where u= 
  

! 

x / 
  

! 

t
H, and satisfy the required conditions [21] for 

uniqueness and continuity of paths x(t) if the diffusion is not 
stronger than quadratic, D(u)= 1+un with n≤2, and if t>0. 
The restriction to t>0 would seem problematic, but we’ve 
shown by direct construction [9] that Green functions 
g(x,t:y,s), g(x,t:y,t)= δ(x-y), exist for those processes at least 
for y=0, s=0, independent of n, so long as the indefinite 
integral ∫udu/D(u) is finite. The exponential process is 
generated by D(u)=1+u. 
 
To complete the proof, we can show that the integrability 
requirements for the transformation of an arbitrary 
martingale X(t), dX=√D(X,t)dB(t), to a Wiener process B(t) 
are not satisfied. Assume a transformation Y(t)=G(X,t) such 
that dY=µ(t)dt+σ(t)dB, i.e., Y is to be a time change on a 
Wiener process with drift, where σ(t)≠1 defines a time 
change on the Wiener process. From Ito’s lemma we obtain 
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"X
D(X,t) = #(t)

"G

"t
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D(X,t)

2

"
2G

"X2
= µ(t)
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and therefore 
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The integrability condition 
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2
G
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"

2
G
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then yields 
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$D/$t
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#
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4

$
2D
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8D
] = 0. (53) 

 
With D(X,t) specified in advance, this equation produces a factor 
σ(t) independendent of X iff. D(X,t) is independent of X. In that 
case  
 
    

! 

"(t) = C D(t)   (54) 
 
yields merely a time change on standard Brownian motion 
B(t) (meaning the Wiener process). Steele (pg. 205 in [14]) 
explicitly and apparently unknowingly restricts himself to 
this case, and the discusion of Girsanov’s theorem in 
references [13,14] is also restricted to this case by virtue of 
the assumption that adding a drift term R to a Wiener 



process yields another Wiener process (that is possible iff. 
the drift coefficient R is independent of x!). As Durrett [12] 
shows while using notation that is misleading for a physicist 
(“<X>”is not an average of X but rather means 
∫(dX)2=∫E(X,t)dt, e.g.), the correct statement of the Girsanov 
theorem is that removing an arbitrary drift term A via the 
Cameron-Martin-Girsanov transformation from a martingale 
X(t) plus the drift A, X(t)+A, yields another martingale M(t), 
and we see clearly that, in general, is neither of these 
martingales a Wiener process. “Intrinsic time” of the sort 
assumed by Durrett and Steele is discussed explicitly for the 
case where the diffusion coeficient D(t) depends on t alone 
by McKean (pg. 29 in [34]). The idea of ‘intrinsic time’, a 
special time variable where H=1/2 so that increments are 
stationary, is constructed locally by Gallucio et al in an 
empirical analysis [31], where we know that the diffusion 
coefficient depends on both x and t [4].  
 
If we ask which time translationally invariant diffusions, 
dX=√D(X)dB, map to a Wiener process, then (53) yields 
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"D
#

2D

#X2
+

(#D/#X)2

2
= cD   (55) 

 
with c a constant. This pde has at least one solution, 
D(X)=aX2 with a>0 a constant and c=0. We obtain the 
transformation Y=lnX mapping the lognormal process X(t) 
to the Wiener process Y(t) =-(a/2)t+√aB(t). So Wiener 
processes with different time scales map to wiener processes, 
and the lognormal process maps to a wiener process. Aside 
from those special cases, the pot is empty. 
 
Sumarizing, we’ve shown that arbitrary martingales are 
topologically inequivalent to Wiener processes: there is no global 
transformation Y=G(X,t) of an arbitrary martingale X to a 
Wiener process. This is analogous to nonintegrability in 



deterministic nonlinear dynamics, where chaotic and 
complex motions are topologically inequivalent to globally 
integrable ones. Locally, every Ito process reduces to a 
Wiener process with drift, and this is analogous to local 
integrability in dynamical systems theory where all 
deterministic motions satisfying a Lifshitz condition can be 
mapped locally to translations at constant speed on a lower 
dimensional manifold [34,35]. Assuming in the literature 
that arbitrary martingales are equivalent to Wiener processes 
trivializes martingales, and also leads to mistakes in 
calculations of first passage times, or ‘hitting times’: having 
provided us with the correct general formalism for stochastic 
calculus based on martingales, Durrett   (eqn. (1.5) on pg. 212 
of [36]) wrongly assumes with no explanation that Levy’s 
theorem guarantees that an arbitrary martingale is merely a 
time transformation on a Wiener process.  
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Appendix 
 
Beginning with the sde (21) but with drift included, 
 
  

! 

dx = R(x,t;{x,t})dt + D(x,t;{x,t})dB,   (A1) 
 
where {x,t} denotes a history of a finite nr. k of states 
(xk,tk;….,x1,t1), consider the time evolution of any dynamical 
variable A(x) that does not depend explicitly on t (e.g., 
A(x)=x2). The sde for A is given by Ito’s lemma [21,24] 
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With 
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s
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we form the conditional average 
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where n=k+2.  Then 
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Using <dA>/dt=d<A>t/dt and integrating by parts while 
ignoring the boundary terms1, we obtain 
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so that for an arbitrary dynamical variable A(x) we get the 
Fokker-Planck pde (Kolmogorov’s second eqn.) 
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for the 2-point transition density depending on a finite 
history. See Friedman [10] for a rigorous derivation of 
Kolmogorov’s first and second equations and the Chapman-
Kolmogorov eqn. from Ito’s lemma, and see also McCauley 
[19] for the explanation why finite memory is not excluded 
in that derivation. 
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