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Abstract

In the context of a Black-Scholes economy and with a no-arbitrage argument,
we derive arbitrarily accurate lower and upper bounds for the value of European
options on a stock paying a discrete dividend. Setting the option price error
below the smallest monetary unity, both bounds coincide, and we obtain the
exact value of the option.

1 Introduction

In the seminal paper of Black and Scholes (1973), the problem of valuing a European
option was solved in closed form. Among other things, their result assumes that the
stochastic process associated to the underlying asset is a geometric Brownian motion,
not allowing for the payment of discrete dividends. Yet the majority of stocks on
which options trade do pay dividends.

Merton (1973) was the first to relax the no-dividend assumption, allowing for a
deterministic dividend yield. In this case, he showed that European options can be
priced in the context of a Black-Scholes economy, with either a continuous dividend
yield or a discrete dividend proportional to the stock price. However, when the
dividend process is discrete and does not depend on the stock level, the simplicity of
the Black-Scholes model breaks down.

Let St denote the value of the underlying asset at time t, and let T be the maturity
time of the option. When the risky asset pays a dividend D at time τ < T , a jump
of size D in the value process happens at that point in time. The stock price process
is discontinuous at t = τ and is no more a geometric Brownian motion in the time
interval [0, T ].

The standard approximation procedure for valuing European options written on
such a risky asset, first informally suggested by Black (1975), considers a Black-Scholes
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formula, where the initial price of the underlying stock S0 is replaced by its actual
value less the present value (PV ) of the dividends (Div),

S0 → S∗
0 = S0 − PV (Div)

This adjustment is made to evaluate the option at any point in time before τ . After the
payment of dividends, there is no need for further adjustments. In this approximation,
the input in the Black-Scholes formula is the value of the (continuous) stochastic
process,

S∗
t =

{
St − De−r(τ−t), t < τ
St, t ≥ τ

where r is the risk-free rate.
For t < τ , the discontinuous stock price process St can thus be seen as the sum

of two components (St = S∗
t + De−r(τ−t)). One riskless component, De−r(τ−t),

corresponding to the known dividends during the life of the option, and a continuous
risky component S∗

t . At any given time before τ , the riskless component is the present
value of the dividend discounted at the present at the risk-free rate. For any time
after τ until the time the option matures, the dividend will have been paid and the
riskless component will no longer exist. We thus have ST = S∗

T and, as pointed out
by Roll (1977), the usual Black-Scholes formula is correct to evaluate the option only
if S∗

t follows a geometric Brownian motion. In that case, we would use in the Black-
Scholes formula S∗

0 for the initial value, together with the volatility of the process S∗
t ,

followed by the risky component of the underlying asset.
If we assume that S∗

t follows a geometric Brownian motion, a simple application of
Itô Lemma shows that the original stock price process St does not follow a geometric
Brownian motion in the time interval [0, τ [. On the other hand, under the Black-
Scholes assumption that St follows a geometric Brownian motion in [0, τ [, the risky
component S∗

t follows a continuous process that is not a geometric Brownian motion
in [0, τ [. Therefore, the standard procedure described above must be seen as an
approximation to the true value of such calls under the Black-Scholes assumption. As
argued by Bos and Vandermark (2002), this assumption is typically underlying the
intuition of traders, but the approximation is sometimes bad. In fact, as noticed in
the early papers about option pricing (Cox and Ross, 1976; Merton, 1976a; Merton,
1976b), the correct specification of the stochastic process followed by the value of the
underlying stock is of prime importance in option valuation.

The deficiency of this standard procedure is reported in Beneder and Vorst (2001).
Using Monte Carlo simulation methods, these authors calculate the values of call op-
tions under the Black-Scholes assumption, and compare them with the values obtained
with the approach just described. Reported errors are up to 9.4%. They also find
that the standard procedure above usually undervalues the options. For these rea-
sons, Beneder and Vorst (2001) propose a different approximation, trying to improve
the standard procedure by adjusting the volatility of the underlying asset. This ap-
proach consists in modifying the variance of the returns by a weighted average of an
adjusted and an unadjusted variance, where the weighting depends on the time τ of
the dividend payment. Performing much better than the former approximation, this
method still does not allow the control of the errors committed for the given param-
eters of the economy. Analogously, Frishling (2002) warns on the mispricing risk due
to the use of an incorrect underlying stochastic process. This discussion is followed
by a series of recent papers suggesting different approximations that better match
numerical results (Bos and Vandermark, 2002; Bos et al, 2003). More recently, Haug
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et al (2003) discuss this problem. However, as these authors claim, “[i]n the case of
European options, the above techniques are ad hoc, but the job gets done (in most
cases) when the corrections are properly carried out”.

The development of these approximations enhance two important aspects. First,
they are not exact, and it is not possible to control the error with respect to the
correct value of the option. Second, there are numerical procedures to estimate the
value of these options, as for example, Monte-Carlo simulation methods. However,
this method is time consuming and provides a convergence of statistical nature.

The purpose of this paper is to derive a closed form for the exact value of Euro-
pean options on a stock paying a discrete dividend, in the context of a Black-Scholes
economy. We obtain an exact result and we need not to rely on ad hoc assumptions.

This paper is organized as follows. In Section 2, an integral representation for the
value of European options written on an asset paying a discrete dividend is obtained,
and the convexity properties of the solutions of the Black-Scholes equation are de-
rived. In section 3, we construct functional upper and lower bounds for the integral
representation of the value of an option. These bounds follow from a convexity prop-
erty of the solutions of the Black-Scholes equation. Theorem 3.4 is the main result
of this paper and gives the algorithmic procedure to determine the price of European
options on a stock paying a discrete dividend. In section 4, numerical examples are
analyzed and we discuss the advantages of the proposed method. In section 5, we
summarize the main conclusions of the paper.

2 Valuation of European options on a stock paying

a discrete dividend

In this section, following a standard procedure to derive the Black-Scholes formula
(Wilmott, 2000), we derive an integral representation for the value of a European
option written on an asset paying a known discrete dividend.

We consider a European call option with maturity time T and strike price K. This
call option is written on an underlying asset with value St, with stochastic differential
equation,

dSt = µStdt + σStdWt

where µ and σ are the drift and volatility of the underlying asset. The quantity Wt is a
continuous and normally distributed stochastic process with mean zero and variance
t. Under these conditions, the underlying asset with value St follows a geometric
Brownian motion. We also assume a risk-free asset with constant rate of return r.

In the context of the Black-Scholes economy, the value V of an option is dependent
of the time t and of the price of the underlying asset S. Under the absence of arbitrage
opportunities (Wilmott, 2000; Björk, 1998), it follows that V (S, t) obeys the Black-
Scholes equation,

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.1)

The Black-Scholes equation is a quasi-linear parabolic partial differential equation,
with S ≥ 0, and t ≥ 0. To determine the solutions of the Black-Scholes equation, we
introduce the new variables,

{
θ = T − t

x = log S +
(
r − σ2

2

)
(T − t)
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together with the new function ϕ(x, θ) = er(T−t)V (S, t). In the new coordinates (2.2),
the Black-Scholes equation (2.1) becomes the diffusion equation,

∂ϕ

∂θ
=

1
2
σ2∂2ϕ

∂x2
(2.2)

where x ∈ R and θ ≥ 0. If θ = 0, by (2.2), we have ϕ(x, 0) = V (S, T ), and
ϕ(x, T ) = erT V (S, 0). Therefore, by (2.2), the forward solution in the time θ of
the diffusion equation relates with the backward solution in the time t of the Black-
Scholes equation (2.1). The Black-Scholes problem for the price of a call option is to
determine the option value at time t = 0 whose value at maturity time T is,

V (S, T ) = max{0, S − K} (2.3)

Therefore, due to the change of coordinates (2.2), the call option solution of the
Black-Scholes equation (2.1) is equivalent to an initial value problem for the diffusion
equation.

Suppose now an initial data problem for the diffusion equation (2.2), ϕ(x, θ =
0) = f(x). Under these conditions, the general solution of (2.2) is (Folland, 1995),

ϕ (x, θ) =
1

σ
√

2πθ

∫ ∞

−∞
f(y)exp

[
−

(x − y)2

2σ2θ

]
dy (2.4)

and the solution of the Black-Scholes equation for a call option is,

V (S, 0) = e−rT ϕ (x, T ) =
e−rT

σ
√

2πT

∫ ∞

−∞
V (ey, T )exp

[
− (x − y)2

2σ2T

]
dy (2.5)

This integral can be easily calculated to obtain the usual Black-Scholes formula (Black
and Scholes, 1973; Wilmott, 2000).

For a dividend distribution at some time τ ∈ (0, T ), the Black-Scholes formula is
no longer true, since, during the life time of the option, the value of the underlying
asset does not follow a geometric Brownian motion. However, if we take the time
intervals, I1 = [0, τ [ and I2 = [τ, T ], the value of the underlying asset follows a
geometric Brownian motion in each interval I1 and I2, and, at time t = τ , it has a
jump equal to the dividend D.

Before considering this case, we proceed with some properties of the solutions (2.4)
and (2.5) of the diffusion and of the Black-Scholes equations.

Definition 2.1. A real valued function f (x), with x ∈ R, is convex if, for every
x1, x2 ∈ R,

f

(
x1 + x2

2

)
≤

1
2

(f (x1) + f (x2))

A simple property of convex functions is that, if the real-valued functions f and
g are both convex, and g is increasing, then f(g(x)) is also convex.

Proposition 2.2. Let f(x) the initial data function of a well-posed diffusion equation
problem, and suppose that f(x) is non-negative and convex. Then, for fixed θ, the
solution ϕ(x, θ) of the diffusion equation is also convex. Moreover, if f(x) is an
increasing function, then, for fixed θ, ϕ(x, θ) is also increasing.
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Proof. Suppose that the solution (2.4) of the diffusion equation (2.2) is well defined
(Folland, 1995). By (2.4), with z = y − x, we have,

ϕ (x, θ) =
1

σ
√

2πθ

∫ ∞

−∞
f(z + x)exp

(
− z2

2σ2θ

)
dz

As, by hypothesis, f(x) is convex, then, for every z ∈ R,

f

[
(x1 + z) + (x2 + z)

2

]
= f

(
z +

x1 + x2

2

)
≤ 1

2
[f (z + x1) + f (z + x2)]

and, as f(x) is non-negative,

ϕ

(
x1 + x2

2
, s

)
=

1
σ
√

2πθ

∫ ∞

−∞
f

(
z +

x1 + x2

2

)
exp

(
− z2

2σ2θ

)
dz

≤ 1
2

[ϕ (x1, θ) + ϕ (x2, θ)]

and so ϕ(x, θ) is also convex. Assuming now that f(x) is increasing, we have that
f(x2) ≥ f(x1), whenever x2 > x1. Then, for every z ∈ R, we have, f(z + x2) ≥
(z + x1), and, by (2.4), the last assertion of the proposition follows. �

As (2.3) is a convex function in S, Proposition 2.2 implies that the backward
solution (2.5) of the Black-Scholes equation (2.1) is also a convex function.

Suppose now that a dividend on the underlying asset is distributed at time t = τ .
We denote this dividend by D. According to the classical solution of the Black-
Scholes equation (Wilmott, 2000), the price of the option just after the distribution
of dividends at time t = τ is,

V (S+, τ) = S+ N
(
d + σ

√
T − τ

)
− Ke−r(T−τ )N (d) (2.6)

where,

d =
ln S+ − lnK +

(
r − 1

2σ2
)
(T − τ )

σ
√

T − τ

and S+ denotes the value of the underlying asset just after the dividend distribution.
The function N (·) is the cumulative distribution function for the normal distribution
with mean zero and unit variance. By Proposition 2.2, the function V (S+, τ ) is
convex. Note that, the solution (2.6) is given by, V (S+, τ) = e−r(T−τ )φ(x, T − τ ),
and is directly calculated from (2.5) and (2.3).

The approach taken here to value an option is equivalent (see, among others,
Cox and Ross, 1976; Harrison and Krebs, 1979) to write this value at any point in
time as the expected discounted payoff of the option at maturity T, under the so-
called risk-neutral probability measure. Hence, knowing beforehand the amount to
be distributed as dividend, the value of the option is not supposed to jump at τ . In
other words, the payment of known dividends D at a known point in time τ does not
affect the expectations at time τ about the final payoff of the option at maturity T ,
and the value of the option is continuous at τ1 (Wilmott, 2000, pp. 129-131). Going

1According to Wilmott, 2000, the jump condition on the asset price is known a priori, implying
that there is no surprise in the fall of the stock price. Therefore, in order to avoid arbitrage oppor-
tunities, the value of the option should not change across the dividend date. This is a no-arbitrage
argument.
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backward in time, the value of the underlying asset jumps from S+ to S− = S+ + D,
where S− is the value of the underlying asset just before the dividend distribution.
As V (S+, τ ) = V (S−, τ ), by (2.6), the price of the option just before the distribution
of dividends at time t = τ is,

V (S−, τ ) =
{

(S− − D)N (d̄ + σ
√

T − τ) − Ke−r(T−τ)N (d̄) if S− > D
0 if S− ≤ D

(2.7)

where,

d̄ =
ln(S− − D) − lnK +

(
r − 1

2σ2
)
(T − τ )

σ
√

T − τ
(2.8)

In Fig. 2.1, we plot V (S+ , τ), V (S−, τ ) and V (S, T ) as a function of S. The
functions V (S+ , τ), V (S−, τ ) and V (S, T ) are convex.

Figure 2.1: Option values V (S+, τ), V (S−, τ) and V (S, T ) as a function of the value S
of the underlying asset. Parameter values are: µ = 0.01, σ = 0.2, r = 0.03, K = 100,
D = 5, T = 1 and τ = 0.5.

To calculate the value of a call option as a function of the actual price (t = 0)
of the underlying asset, we must introduce the change of coordinates (2.2) into (2.7)
and integrate as in (2.5). By (2.5) and (2.7), it follows that the time-zero value of a
European option written on an asset paying dividend D at time t = τ is given by,

V (S, 0) = e−rτ ϕ (x, τ) =
e−rτ

σ
√

2πτ

∫ ∞

−∞
V [S−(y), τ ] exp

[
− (x− y)2

2σ2τ

]
dy (2.9)

which has no simple representation in terms of tabulated functions. By Proposition
2.2, V (S, 0) is also convex.

3 Accurate bounds for V (S, 0)

As it is difficult to determine a close form for the integral representation of the option’s
value (2.9) in terms of tabulated functions, to estimate the value V (S, 0), we use the
convexity property of V (S−, τ) and its asymptotic behavior as S− → ∞.

Lemma 3.1. If K > 0, then, in the limit S− → ∞, V (S−, τ) is asymptotic to the line
V = (S− − D) − Ke−r(T−τ), and V (S−, τ ) ≥ (S− − D) − Ke−r(T−τ).
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Proof. In the limit S− → ∞, d̄ → ∞, and N (d̄) → 1. Hence, by (2.7), V (S−, τ) is
asymptotic to the line V1 = (S− − D) − Ke−r(T−τ) . To prove the second part of the
lemma, first note that, if V1 = (S−−D)−Ke−r(T−τ) ≤ 0, then S− ≤ D+Ke−r(T−τ) .
As V (S−, τ ) is non-negative, if S− ≤ D + Ke−r(T−τ), then V (S−, τ) ≥ V1.

Suppose now that S− > D + Ke−r(T−τ). By hypothesis, we assume that there
exists some S− = S̄ such that, V (S̄, τ) = (S̄ −D)−Ke−r(T−τ) , and V (S̄, τ) > 0. By
(2.7) and (2.8), we then have,

Ke−r(T−τ) =
N

[
d̄(S̄) + σ

√
T − τ

]
− 1

N
[
d̄(S̄)

]
− 1

(S̄ − D)

As (S− − D) > Ke−r(T−τ), from the equality above, we obtain,

N
[
d̄(S̄) + σ

√
T − τ

]
− 1

N
[
d̄(S̄)

]
− 1

(S̄ − D) = Ke−r(T−τ) < (S− − D)

Hence,
N

[
d̄(S̄) + σ

√
T − τ

]
< N

[
d̄(S̄)

]

which contradicts the fact that N (·) is a monotonically increasing function of the argu-
ment. Therefore, the function V (S−, τ) and the line V1 = (S−−D)−Ke−r(T−τ) do not
intersect for finite S̄. As V (S−, τ) is a continuous function of S−, then V (S−, τ) ≥ V1

in all the range of S−, and the lemma is proved. �

To estimate the solution (2.9) of the Black-Scholes equation, we use Proposition 2.2
and Lemma 3.1 to construct integrable upper and lower bound functions of V (S−, τ ).
This constructions proceeds as follows.

Let us choose a fixed number S− = S∗ > D, and divide the interval [D, S∗] into
M ≥ 1 smaller subintervals. The length of the subintervals is ∆S = (S∗ − D)/M ,
and their extreme points are denoted by,

Si = D + i ∆S, i = 0, . . . , M

As the function V (S−, τ ) is convex, in each subinterval, the function V (S−, τ ) is
bounded from above by the chord that connects the points (Si, V (Si, τ)) and (Si+1, V (Si+1, τ)).
We define the constants,

αi =
M

S∗ − D
[V (Si, τ) − V (Si−1, τ)] , i = 1, . . . , M

where by (2.7), V (S0, τ ) = 0. Therefore, in each interval [Si−1, Si], the function
V (S−, τ) is bounded from above by the function fi(S−) = αi(S−−Si−1)+V (Si−1, τ ).

Let us define the characteristic function of a set I as, χI(x) = 1, if x ∈ I, and
χI(x) = 0, otherwise. Then, the function V (S−, τ) in the interval [D, S∗] is ap-
proached from above by the piecewise linear function,

V +
1 (S−, τ) =

M∑

i=1

[αi(S− − Si−1) + V (Si−1, τ)] χ[Si−1,Si ](S−) (3.1)

To extend the bound of V (S−, τ) to S− > S∗, we introduce the function,

V +
2 (S−, τ ) = [(S− − S∗) + V (S∗, τ )]χ[S∗,∞)(S−) (3.2)
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By Proposition 2.2 and Lemma 3.1, for S− ≥ S∗, V +
2 (S−, τ ) is the chord connect-

ing the point (S∗, V (S∗, τ )) to the point at infinity. Therefore, we have proved the
following:

Lemma 3.2. The function V (S−, τ ) has the upper bound,

V (S−, τ ) ≤ V +
1 (S−, τ ) + V +

2 (S−, τ ), if S− > D

where V +
1 and V +

2 are given by (3.1) and (3.2), respectively, and the function (V +
1 +

V +
2 ) is piecewise linear and non-negative. If S− ≤ D, V (S−, τ ) = 0.

The construction of a lower bound for (2.7) follows the same line of reasoning.
In each subinterval [Si−1, Si] ⊂ [D, S∗], we can construct a linear function that

bounds from below the function V (S−, τ ). Due to the convexity of V (S−, τ ), we
construct the lower bound through the derivative of V (S−, τ ) at the middle point of
each interval [Si−1, Si]. We then have,

V −
1 (S−, τ) =

M∑

i=1

[
V ′

(
Si+ 1

2
, τ

) (
S− − Si+ 1

2

)
+ V

(
Si+ 1

2
, τ

)]
χ[Si−1,Si ](S−) (3.3)

where,

V ′ (S−, τ ) =
e−

1
2 (d+σ

√
T−τ)2

σ
√

2π
√

T − τ
− K e−r(T−τ ) e−

1
2 d

2

σ
√

2π
√

T − τ (S− − D)
+ N

(
d + σ

√
T − τ

)

and d is given by (2.8).
To extend the lower bound of V (S−, τ ) to S− > S∗, we use Lemma 3.1 to introduce

the function,

V −
2 (S−, τ) =

[
(S− − D) − Ke−r(T−τ)

]
χ[S∗,∞)(S−) (3.4)

By Lemma 3.1, V −
2 (S−, τ) bounds from below V (S−, τ ). Therefore, we have:

Lemma 3.3. The function V (S−, τ ) has the lower bound,

V (S−, τ ) ≥ V −
1 (S−, τ ) + V −

2 (S−, τ ), if S− > D

where V −
1 and V −

2 are given by (3.3) and (3.4), respectively, and the function (V −
1 +

V −
2 ) is piecewise linear and non-negative. If S− ≤ D, V (S−, τ ) = 0.

Finally, we can state our main result:

Theorem 3.4. We consider the Black-Scholes equation (2.1) together with the ter-
minal condition (2.3). We assume that K > 0 and a dividend D > 0 is payed at
the time τ with 0 < τ < T . Let S = S∗ > D be a fixed constant and let M ≥ 1 be
an integer. Then, the solution of the Black-Scholes equation with terminal condition
(2.3) has the following upper and lower bounds:

V (S, 0) ≤ V +
S∗,M(S, 0) =

M∑

i=1

{
αiAiS + e−rτ [V (Si−1, τ ) − αiSi−1] Bi

}

+ SN (d∗) + e−rτ [V (S∗, τ ) − S∗]N (d∗ − σ
√

τ )
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and

V (S, 0) ≥ V −
S∗,M (S, 0) = S

M∑

i=1

V ′
(
Si+ 1

2
, τ

)
Ai

+ e−r τ
M∑

i=1

[
V

(
Si+ 1

2
, τ

)
−V ′

(
Si+ 1

2
, τ

)
Si+ 1

2

]
Bi

+ SN (d∗) − e−rτ
(
D + Ke−r(T−τ )

)
N

(
d∗ − σ

√
τ
)

where,

Si = D +
S∗ − D

M
i

di =
log S − log Si + (r + 1

2σ2)τ
σ
√

τ

d =
log(S − D) − logK + (r + 1

2σ2)(T − τ )
σ
√

T − τ

d∗ =
log S − log S∗ + (r + 1

2σ2)τ
σ
√

τ

V (S, τ ) = (S − D)N (d) − Ke−r(T−τ)N (d− σ
√

T − τ)

V ′ (S, τ ) = N (d) +
e−

1
2 d2

σ
√

2π(T − τ )
− K e−r(T−τ) e−

1
2 (d−σ

√
T−τ)2

σ
√

2π(T − τ ) (S − D)

αi =
M

S∗ − D
[V (Si, τ) − V (Si−1, τ )]

Ai = N (di−1) − N (di)
Bi = N (di−1 − σ

√
τ ) − N (di − σ

√
τ )

and N (·) is the cumulative distribution function for the normal distribution with mean
zero and unit variance.

Proof. By Lemmata (3.2) and (3.3),

V −
1 (S−, τ) + V −

2 (S−, τ) ≤ V (S−, τ) ≤ V +
1 (S−, τ ) + V +

2 (S−, τ), if S− > D

Multiplying this inequality by the factors as in the integral (2.9), and integrating, we
obtain the estimates of the theorem. �

Note that, for S∗ > D fixed, limM→∞ V −
S∗,M (S, 0) 6= limM→∞V +

S∗,M (S, 0). How-
ever, if S∗ is large enough, both limits can be made arbitrarily close. Technically, this
is due to the way the exponential term in (2.5) contributes to the integral.

4 Calculating the price of a call option on a stock

paying a discrete dividend

Theorem 3.4 is the necessary tool to determine the price of a call option when the
underlying asset pays a discrete known dividend before maturity time T . In fact,
Theorem 3.4 asserts that we can always find upper and a lower bound functions for
V (S, 0), and the bounding functions approach each other as we increase M and S∗.
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Figure 4.1: Bounds V +
S∗,M (S, 0) and V −

S∗,M (S, 0) for V (S, 0), calculated from Theorem
3.4, for several values of S∗ and M . In a) we have chosen S∗ = D+Ke−r(T−τ) = 103.5.
In b), S∗ = 2(D + Ke−r(T−τ)) = 207.0. Parameter values are: µ = 0.01, σ = 0.2,
r = 0.03, K = 100, D = 5, T = 1 and τ = 0.5.
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Table 1: Bounds V +
S∗,M (S, 0) and V −

S∗,M (S, 0) for V (S, 0), calculated from Theorem
3.4, for several values of S∗ and M , and S = 110. The exact value V (S, 0) has
been obtained by the numerical integration of (2.9). The interval error ε is given by
(2.9). Parameter values are the same as in Fig. 4.1, and we have chosen S∗ = D +
Ke−r(T−τ) = 103.5, S∗ = 1.5(D+Ke−r(T−τ)) = 155.3 and S∗ = 2(D+Ke−r(T−τ)) =
207.0.

S S∗ M V −
S∗,M (S, 0) V (S, 0) V +

S∗,M (S, 0) ε

110 103.5 10 11.24 12.87 15.41 4.166
110 103.5 50 11.61 12.87 15.35 3.739
110 103.5 400 11.63 12.87 15.35 3.721

110 155.3 10 11.39 12.87 13.20 1.807
110 155.3 50 12.79 12.87 12.88 0.096
110 155.3 200 12.87 12.87 12.87 0.006
110 155.3 400 12.87 12.87 12.87 0.002

110 207.0 10 10.64 12.87 13.45 2.813
110 207.0 50 12.72 12.87 12.89 0.170
110 207.0 200 12.86 12.87 12.87 0.011
110 207.0 400 12.87 12.87 12.87 0.003

To determine the price of the option, we first choose fixed values for the approxi-
mation parameters S∗ and M . If V +

S∗,M(S, 0) and V −
S∗,M (S, 0) differ too much within

some fixed precision, we then increase S∗ and M .

To analyze the convergence of the functional bounds V + and V − to the true price
of a call option, we take, as an example, the parameters: µ = 0.01 (drift), σ = 0.2
(volatility), r = 0.03 (interest rate), K = 100 (strike price), D = 5 (dividend), T = 1
(expiration time) and τ = 0.5 (time of dividend paying). In Fig. 4.1, we show
V +

S∗,M(S, 0) and V −
S∗,M(S, 0), for several values of S∗ and M , and calculated from

Theorem 3.4. Increasing M and S∗, the upper and lower bounds V +
S∗,M (S, 0) and

V −
S∗,M(S, 0) approach each other, increasing the accuracy to which the functionals

bounds approach the option price. To quantify this approximation to the value of the
option, we define the interval error as,

ε = |V +
S∗,M (S, 0) − V −

S∗,M (S, 0)| (4.1)

In Table 1, we compare the values of the upper and lower bounds V +
S∗,M (S, 0) and

V −
S∗,M(S, 0), calculated from Theorem 3.4, with the exact value of V (S, 0), obtained

by the numerical integration of (2.9). We show also the interval error ε associated
to both bounds. Assuming an interval error below the smallest unit of the monetary
currency, for example, ε < 10−2, we obtain the true value of the option. Therefore,
for a choice of S∗ and M such that ε < 10−2, the difference between V +

S∗,M(S, 0) and
V −

S∗,M(S, 0), is below the smallest unit of the monetary currency, and the rounded
values of V +

S∗,M(S, 0) and V −
S∗,M(S, 0) coincide. This rounded value is the option value

within the chosen monetary accuracy
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To analyze the global convergence behavior of V +
S∗,M (S, 0) and V −

S∗,M (S, 0), we
chose a fixed value of S, and we change the approximation parameters S∗ and M . In
Fig. 4.2, we show V +

S∗,M(S, 0) and V −
S∗,M(S, 0) as a function of S∗, for several values

of M . Increasing M , the upper and lower bounds of V (S, 0) become close in a region
of the S∗ axis. A choice of S∗ in this region, gives better bounds to the value of the
option, for lower values of M (Table 1 and Fig. 4.2).

For all the examples we have analyzed, a good compromise to determine the value
of the call option is to choose S∗ = 2(D + Ke−r(T−τ)). Then, increasing M , the
interval error decreases. Due to the fast computational convergence of the expressions
in Theorem 3.4, bounds with interval error below the smallest unit of the monetary
currency are straightforwardly obtained.

Figure 4.2: Bounds V +
S∗,M (S, 0) and V −

S∗,M (S, 0) as a function of S∗, for S = 110 and
several values of M . The parameter values are the same as in Fig. 4.1 and Table 1.

5 Concluding remarks

We have obtained an upper and a lower bound for the exact value of a call option on a
stock paying a known discrete dividend at a known future time. We have assumed the
context of a Black-Scholes economy, where, away from the dividend time paying, the
underlying asset price follows a geometric Brownian motion type stochastic process.
The upper and lower bounds both approach the exact value of the option when two
parameters are varied. In practical terms, one of these parameters (S∗) can be fixed to
the value, S∗ = 2

(
D + Ke−r(T−τ)

)
, where K is the strike, D is the dividend, τ is the

time of paying the discrete dividend, and T is the length of the contract. Increasing
the second parameter M , we obtain bounds for the option value with increasing
accuracy. If this accuracy is below the smallest unit of the monetary currency, both
bounds coincide, and we obtain the exact value of the option.

The technique used to construct these bounds relies on the convexity properties
of the option value at maturity, and on a property of the Black-Scholes and diffusion
equations that preserves the convexity of propagated initial conditions. Under this
framework, a similar methodology can be used to determine the value of a put option
on a stock paying a known discrete dividend at a known future time.
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From the numerical point of view, the technique developed here reduces to the
sum of a few Black-Scholes type terms, whereas numerical Monte Carlo methods rely
on the poor convergence properties determined by the classical central limit theorem.
In our numerical tests for the determination of the exact price of a call option, the
computing time of our technique (using the Mathematica programming language)
is several orders of magnitude faster than the computing time of finite diferences
integration algorithms and of Monte Carlo methods.
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