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Abstract: This paper introduces the idea that the variances or correlations in financial

returns may all change conditionally and slowly over time. A multi-step local dynamic

conditional correlation model is proposed for simultaneously modelling these components. In

particular, the local and conditional correlations are jointly estimated by multivariate kernel

regression. A multivariate k-NN method with variable bandwidths is developed to solve the

curse of dimension problem. Asymptotic properties of the estimators are discussed in detail.

Practical performance of the model is illustrated by applications to foreign exchange rates.

JEL Classification Codes: C32, G0, G1

Key Words: Local and conditional correlations, multivariate nonparametric ARCH, mul-

tivariate kernel regression, multivariate k-NN method.

1 Introduction

Financial econometrics becomes an active new discipline of economics (Engle, 2001) with one

of its main focuses on the development of new tools for estimating and forecasting dynamic

variances and correlations of financial assets. In the seminal paper Engle (1982) the ARCH

(autoregressive conditional heteroskedasticity) model is introduced for modelling conditional

variances, which is then generalized by Bollerslev (1986) to the GARCH (generalized ARCH)

model. See Bollerslev et al. (1992) for an earlier survey on these models. For modelling

dynamic correlations some multivariate GARCH (MGARCH) models with complex param-

eter specification, e.g. the vec-model (Bollerslev et al., 1988) and the BEKK (Engle and

Kroner, 1995) are first introduced. A simple MGARCH, called the constant conditional cor-

relation (CCC) model, was introduced by Bollerslev (1990), where the conditional variances

are modelled by separate univariate GARCH models under constant correlation assumption.
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Recent research on these topics focuses on developing approaches with dynamic correla-

tions and simple parameter specification so that the models are applicable to many assets.

The well known proposal is the dynamic conditional correlation (DCC) model introduced

by Engle (2002) (see also Engle and Sheppard, 2001). A similar approach is proposed by

Tse and Tsui (2002). The DCC model is generalized by Cappiello et al. (2003) and Hafner

and Franses (2003) to allow for richer correlation dynamics. Pelletier (2006) extended the

CCC model to a regime-switching conditional correlation model, where the correlation ma-

trix is constant within a regime but different across regimes. Silvennoinen and Teräsvirta

(2005) extended this idea to a smooth-transition conditional correlation model by allowing

for smooth change in the conditional correlations between two extreme states according to

some transition function. Most recently, Hafner et al. (2005) introduced a semiparametric

generalization of the CCC model, where conditional correlations are estimated by a univari-

ate kernel regression. For more information on the development of MGARCH models we

refer the reader to the recent review of Bauwens et al. (2005) and references therein.

In this paper cases with simultaneous smooth local changes and conditional dynamics

in variances and correlations are considered are considered. A local dynamic conditional

correlation (LDCC) model is introduced for all of these components, where mooth change in

the mean of financial returns is also allowed. The variances are decomposed into a conditional

and a local (unconditional) parts. The correlation structures are jointly modelled by a

multivariate nonparametric ARCH-type approach with the observation time and some other

variables based on past observations as regressors. The order of such a model does not depend

on the number of assets. The LDCC model is hence applicable to cases with a large number of

assets. The proposal is motivated by the observation that financial market conditions often

change slowly which in turn causes slowly changing components in asset returns. Proper

estimation of these quantities will improve the estimation of further parametric models and

then improve the forecasting of future trends, variances and correlations. Modelling of

conditional and local variances in univariate financial returns is studied by Feng (2004)

under a semiparametric GARCH model. Most recently, Feng and Yu (2005) and Herzel et

al. (2006) investigated the slowly changing variances and correlations in financial returns

under a multivariate random walk model and a VAR(1) model respectively. To our knowledge

multivariate models with both conditional and slowly changing unconditional correlations is

not yet studied in the literature.

A multi-step semiparametric procedure is proposed for estimating the LDCC model. The

local means and variance are estimated first using standard nonparametric regression ap-

2



proaches. Conditional variances are then estimated from the standardised observations using

separate univariate GARCH models. A multivariate kernel regression is proposed for jointly

estimating the local and conditional correlations. This idea can also be applied to time series

smoothing involving common exogenous variables. A k-NN (k-nearest-neighbours) method is

developed to solve the curse of dimension problem in multivariate nonparametric regression,

which allows for automatic adaptation of the bandwidth to the design density. Asymptotic

properties of the proposed estimators are discussed in detail. The use of causal smoothing

technique is also investigated briefly. Practical performance of the proposal is illustrated by

applications to several foreign exchange rate series. The idea to estimate and remove the

slowly changing variances applies to any MGARCH model. Semiparametric generalizations

of the CCC and DCC models are given as examples.

The paper is organized as follows. The model is defined in the next section. Section 3

describes the step-wise semiparametric estimation procedure. Asymptotic properties of the

proposed estimators of the local and conditional correlations are investigated in Section 4.

In Section 5 the model is applied to data examples. Final remarks in Section 6 concludes

the paper. Some auxiliary results and proofs of theorems are given in the appendix.

2 The models

In this section we first define the semiparametric LDCC model. Related semiparametric

extensions of the CCC and DCC models are then described.

2.1 The main approach

Let Xt, t = 1, 2, ..., n, be a vector return series of d financial assets, which are assumed to

follow the nonparametric conditional heteroskedastic model

Xt = µ(τt) + r∗t , (1)

where τt = t/n denotes the re-scaled time, µ(·) is the nonparametric local mean vector and

r∗t |Ft−1 ∼ N(0, Σt), (2)

where Ft−1 denotes the information set generated by past observations and the location, and

Σt is the total covariance matrix. It is proposed to decompose Σt as follows.

Σt = DL
t DC

t RtD
C
t DL

t , (3)
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where DL
t = diag(σi(τt)), DC

t = diag(
√

hit) and Rt = (ρijt), i, j = 1, ..., d, where σ2
i (·) are

the local variances, hit are the conditional variances and ρijt are the dynamic correlations

which may depend on both the location and past observations. Furthermore, it is assume

that E(DC
t ) = Id with Id denoting the identity matrix, so that (3) is uniquely defined. Let

Dt = DL
t DC

t = diag(σi(τt)
√

hit) which is the total standard deviation matrix. The total

covariance matrix is decomposed into a conditional and an unconditional components. The

latter depends on the middle-term market conditions and often changes smoothly. The

process defined by (1) to (3) is non-stationary. Following Dahlhaus (1997) it can be shown

that such a process is jointly locally stationary under suitable conditions.

The local variance σ2
i (·) can be easily estimated by nonparametric regression. Let rt =

(DL
t )−1r∗t be the standardized observations. Following the CCC and DCC, the conditional

variances can be modelled by univariate GARCH models,

hit = αi0 +

pi
∑

l=1

αilr
2
i(t−l) +

qi
∑

m=1

βimhi(t−m), (4)

where αi0 > 0, αil, βim ≥ 0 and
∑pi

l=1 αil +
∑qi

m=1 βim < 1. The orders pi and qi of the

GARCH models may different for different assets.

Now let ǫt = (DC
t )−1rt, where ǫt ∼ N(0, Rt). Unlike the diagonal variance matrix, it is not

easy to decompose Rt into a local and a conditional parts separately. We will propose to

estimate the local and conditional dynamics in Rt jointly in a nonparametric way. Consider

the conditional influence of p lagged observations. A nonparametric regression with ǫt−j ,

j = 1, ..., p, as regressors is not relevant in practice, because such a model cannot be applied

to a large number of assets. In this paper some univariate random variables yjt as functions

of ǫt−j , j = 1, ..., p, which summarize the effect of ǫt−jǫ
′
t−j on the correlation dynamics, will

be used as regressors, where p > 0 is the order of the model which does not depend on the

number of assets. This makes the model applicable to a multivariate time series with many

components. Let and yt = (y1t, ..., ypt)
′. In the LDCC model defined in the following the

local and conditional correlation matrix will be denoted by R(τt;yt) = (ρij(τt;yt)) instead

of by Rt. The proposed model is defined by

R(τt;yt) = g(τt;yt), (5)

where g(·) is a smooth function. A model defined by (1) through (5) will be called a

local dynamic conditional correlation (LDCC) model, which extends known models in the

literature in different ways. A LDCC(0) model is a semiparametric extension of the CCC
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model (see later). Another closely related model is the semiparametric dynamic correlation

model most recently proposed by Hafner et al. (2005), where R(·) is assumed to be a smooth

function of a univariate observable variable. If some exogenous variables, e.g. returns of some

other financial index are introduced into the LDCC model, we will obtain local extensions

of the model in Hafner et al. (2005). A nonparametric GARCH is proposed by Bühlmann

and McNeil (2002). It is worthwhile to introduce the latent variables R(τt−i; ·), i = 1, ..., q,

into (5) to extend the LDCC to a multivariate nonparametric GARCH-type model.

2.2 Combination with other models

The first part of the proposed model can be used to obtain semiparametric generalizations

of well known approaches in the literature. Extensions of the CCC and the DCC models

following this idea will be discussed here briefly. If it is assumed that the changes in the

correlations only depend on the location but not on the past observations, we will have

Rt = R(τt), which can be simply estimated from ǫt using nonparametric regression. Now,

we obtain a generalized CCC model with slowly changing variances and correlations which

is also a LDCC(0) model.

On the other hand, if it is assumed that the unconditional correlation matrix is constant,

i.e. Rt only depends on the past observations but not on the location, we will obtain another

simplified case. Now, Rt can be modelled by a parametric MGARCH model. For instance,

following the DCC model Rt can be modelled by

Rt = (diag(Qt))
−1/2 Qt (diag(Qt))

−1/2 ,

Qt =

(

1 −
L
∑

l=1

αl −
M
∑

m=1

βm

)

R̄ +
L
∑

l=1

αl(ǫt−lǫ
′

t−l) +
M
∑

m=1

βmQt−m, (6)

where αl, βm ≥ 0,
∑L

l=1 αl +
∑M

m=1 βm < 1 and R̄ is the constant correlation matrix of

ǫt. Equations (1) through (4) and (6) define a DCC model with slowly changing variances

which is however not a special case of the LDCC model. Such a model can be estimated by

combining the first stage of the algorithm proposed in the next section and the second stage

of that in Engle and Sheppard (2001). Moreover, if Rt is assumed to follow (2.4) in Pelletier

(2006) or (7) in Silvennoinen and Teräsvirta (2005) we will obtain corresponding extensions

of their proposals.
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3 The estimation

The LDCC model can be estimated using a step-wise procedure. The first stage of the

procedure consists of some common non- and semiparametric estimators which applies to

other MGARCH models. The second stage is a multivariate kernel regression for estimating

R(·).

3.1 Estimating the means and the variances

Let xt, t = 0, 1, ..., n, denote the observations and xit, i = 1, ..., d, the i-th element of xt. Let

Kµi
(u) be a kernel function and bµi

the bandwidth. Then µi(τ), the i-th element of µ(τ) can

be estimated by solving the local linear regression problem

(â0, â1)
′ = arg min

a0,a1

n
∑

t=1

(xit − a0 − a1(τt − τ)2Kµi

(

τt − τ

bµi

)

. (7)

We have µ̂i(τ) = â0. Now let µ̂(τt) = (µ̂1(τt), ..., µ̂d(τt))
′ and r̂∗t = xt − µ̂(τt) denote the

residuals. Denote by V (τ) = (σ2
1(τ), ..., σ2

d(τ))′ the vector of the local variances. Let KVi
(u)

be another kernel and bVi
another bandwidth. It is proposed to estimate the local variances

using a kernel estimator to ensure that σ̂i(τ) > 0 a.s. (almost sure). Related proposals may

be found e.g. in Fan and Yao (1998), Feng and Heiler (1998) and Härdle et al. (1998). We

define

σ̂2
i (τ) =

n
∑

t=1

KVi

(

τt−τ
bVi

)

(r̂∗it)
2

n
∑

t=1

KVi

(

τt−τ
bVi

)

(8)

and set V̂ (τ) = (σ̂2
1(τ), ..., σ̂2

d(τ))′. If R(·) only depends on the location, the local covariances

σij , say, can be analogously estimated from r̂∗it and r̂∗jt. Then ρij(τ) can be estimated by

ρ̂ij(τ) =
σ̂ij(τ)

σ̂i(τ)σ̂j (τ)
.

By means of V̂ we obtain the standardized residuals r̂it = r̂∗it/σ̂i(τt). r̂it have asymptotically

constant variance. Let θi = (αi0, αi1, ..., αipi
, βi1, ..., βiqi

)′. The unknown parameter vector θi

can be estimated from r̂it, t = 1, ..., n, using some standard software for fitting a univariate

GARCH model. Then we will obtain D̂C
t . Let r̂t = (r̂1t, ..., r̂dt)

′ and ǫ̂t = (D̂C
t )−1r̂t. Assuming

constant unconditional correlations, Rt can be now estimated from ǫ̂t following equations (7)

and (8) in Engle and Sheppard (2001). This will not be discussed here in detail.
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3.2 A multivariate k-NN kernel approach for R(·)

Now, consider the estimation of R(·) in a LDCC(p) model with p > 0. In this paper the

regressors yjt for j = 1, ..., p and t = p + 1, ..., n are defined by

yjt = 1I′ǫt−jǫ
′
t−j1I, (9)

where 1I is a vector of d ones. Note that yjt = (ǫ1(t−j) + ... + ǫd(t−j))
2 ≥ 0. It is well

known that even in one-dimensional nonparametric regression for financial data we will be

faced by the problem of data sparsity. In the current case this problem arises together

with the curse of dimension. Now, the use of fixed bandwidths is not suitable. To improve

the theoretical and practical performance of the proposed estimator and to ensure that the

computer program will run smoothly without any numerical problem, a local multivariate k-

NN method is developed. Consider the estimation of R(·) at τ and y = (y1, ..., yp)
′. Following

this algorithm the bandwidth b for yj, j = 1, ..., p, will adapt automatically to the design

density. Let t0 = [nτ ] and assume that t0 > p, where [x] denote the largest integer which is

smaller than x. Let k be a chosen integer such that k → ∞ and k/n → 0, as n → ∞. Let b0

be the half bandwidth for the re-scaled time such that b0 → 0, nb0 → ∞ and (nb0)
−1k → 0,

as n → ∞. Here b0 and k are two smoothing parameters chosen beforehand. Let k1 = [nb0]

and k0 = 2k1 + 1. k0 is the total number of observations involved. The bandwidth used for

yj is defined in the following way.

1. Let n1 = t0 − k1 and n2 = t0 + k1, if t0 ≥ k1 + p, or n1 = p + 1 and n2 = p + k0,

otherwise.

2. Let dt = [(yt − y)′(yt − y)]1/2 denote the Euclidean distance between yt and y.

3. Order dt starting with the smallest value and define the bandwidth b for yj, j = 1, ..., p,

to be the k-th ordered dt.

Following this algorithm always k observations will be selected from k0 observations around

t0, independently of p and the design density. The bandwidth b0 is chosen separately before-

hand, because τ is of a different scale than yj. To simplify the algorithm, kernel functions

for τ and yj are also chosen separately. Let K0(v) be a univariate kernel with support [−1, 1]

and u = (u1, ..., up)
′ a p-dimensional spherical kernel defined on the unit ball. Then the

finally used kernel is the product of K0(v) and K(u). The proposed estimator is defined by

R̂(τ ;y) =
(

diag
[

Q̂(τ ;y)
])−1/2

Q̂(τ ;y)
(

diag
[

Q̂(τ ;y)
])−1/2

(10)
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with the matrix-wise multivariate kernel estimator

Q̂(τ ;y) =

n2
∑

t=n1

K0

(

τt−τ
b0

)

K
(

y1t−y1

b
, ..., ypt−yp

b

)

ǫ̂tǫ̂
′
t

n2
∑

t=n1

K0

(

τt−τ
b0

)

K
(

y1t−y1

b
, ..., ypt−yp

b

)

(11)

=:
n2
∑

t=n1

wtǫ̂tǫ̂
′
t,

where n1 and n2 are defined before. The entries of R̂(·) will be denoted by ρ̂ij(·) and those

of Q̂(·) by q̂ij(·). The weights wt are determined by the kernels, b0, k as well as the past

observations ǫt−1, ..., ǫt−p, and are non-zero for the selected observations and zero otherwise.

The curse of dimension problem is solved and a LDCC model of higher order can be easily

fitted. In the above approach wt are the same for all entries of Q̂(·). This ensures that

Q̂(·) is a.s. positive semidefinite, because now it is a Gram matrix, and R̂(·) is hence a.s.

a correlation matrix. The derivation of the covariances between q̂ij(·) and q̂lm(·) is also

simplified due to the use of same weights for both.

Remark 1. In practice a causal smoother involving only past observations might be prefer-

able. Setting n1 = t − k0 and n2 = t − 1 for t > k0 + p in Step 1 of the k-NN algorithm

we will obtain a causal estimator of R(·) which will also be applied to the data examples in

Section 5.

4 Main results

Both Q̂(·) and R̂(·) are estimators of R(·) which have similar properties. However, R̂(·) is a

correlation matrix but Q̂(·) is usually not. In the following the asymptotic properties of Q̂(·)
will be first investigated. Properties of R̂(·) are then derived based on those of Q̂(·). Most

properties of µ̂(·), V̂ (·) as well as θ̂ are known in the literature. The effect of the errors in

these estimators on Q̂(·) will be discussed in the appendix. For the proof of the results the

following assumptions are required.

A1. i) The local mean and variance functions µi(·) and Vi(·), i = 1, ..., d, are at least twice

continuously differentiable. ii) The kernels Kµi
and KVi

for estimating µ and V are all

symmetric densities with support [−1, 1]. And iii) The estimators µ̂ and V̂ are obtained

following some consistent data-driven algorithms.
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A2. There exists a constant δ > 0 such that E(r4+δ
it ) < ∞ for each of the GARCH models

defined in (4).

A3. The estimation point (τ ;y) is a multivariate interior point with τ ∈ (0, 1) and yj > 0

for all j = 1, ..., p.

A4. Assume that ǫt ∼ N(0, R(τt;yt)) and ǫt and ǫs are independent for t 6= s.

A5. R(τ ;y) is positive definite, uniformly in τ and y, whose off-diagonal entries are at least

twice continuously differentiable with respect to τ ∈ [0, 1] and y on their support.

A6. The kernel K0 is a symmetric density defined on [−1, 1] with
∫

v2K0(v)dv = µ2(K0) > 0.

The spherical kernel K is a density defined on the unit ball such that
∫

uK(u)du = 0 and
∫

uiujK(u)du = δijµ2(K) with µ2(K) > 0.

A7. i) The bandwidth b0 is of higher order than n−1/5, denoted by b0 > O(n−1/5). ii) b0

satisfies b0 → 0, nbp+1
0 → ∞ as n → ∞. And iii) k is chosen by k = Cknbp+1

0 with Ck > 0.

A1 summarizes the common conditions on the estimators µ̂(·), V̂ (·) as well as θ̂ in the first

stage, which together with A7 i) ensures that the effect of the errors in these estimators are

asymptotically negligible and hence Q̂(·) and R̂(·) obtained from ǫ̂t or from the unobservable

ǫt have the same asymptotic properties. A2 is required for the asymptotic normality of V̂i(·)
and the resulting θ̂i. Necessary and sufficient conditions that guarantee this may be found

e.g. in Ling and McAleer (2002), and in Bollerslev (1986) for GARCH(1, 1) models. Note

that E(r4+δ
it ) < ∞ implies

∑pi

l=1 αil +
∑qi

m=1 βim < 1 as assumed before. A3 is introduced to

avoid the boundary effect in the time dimension which simplifies the proofs. In the appendix

it will be explained that there is indeed no boundary effect caused by the regressors yj. A4 is

not a necessary condition which can be replaced by suitable assumptions on the distribution

of ǫt (see Hafner et al., 2005). A5, A6 and A7 ii) are regularity conditions in multivariate

nonparametric regression. A5 also ensures that the off-diagonal elements of R(·) are strictly

between -1 and 1, uniformly in τ and y.

A7 ii) and iii) ensure that the bandwidth b for the regressors yj obtained by the k-NN

method is of the same order of magnitude as b0. This is given by the following lemma.

Lemma 1. Assume that y is observable with continuous density on its support and that

0 < f(x) < ∞ in a neighbourhood of y. Then under A7 ii) and iii) the bandwidth b obtained

by the k-NN method is given by

b
.
= C0b0 with C0 =

(

Ck

2

Γ(p/2 + 1)

πp/2f(y)

)1/p

. (12)
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Lemma 1 is given under common regularity conditions on the design density which provides

a basis for extending the main results in this paper to more general cases. The explicit

form of f(y) under A4 will be given in the appendix. A3 and A4 together ensure that the

conditions of Lemma 1 hold. It is clear that Lemma 1 remains to be true when y is estimated

consistently.

Now, let ξlmt = ǫltǫmt, l, m = 1, ..., d. Then we have ρlm(τt;yt) = E[ξlmt|y = yt]. Let

γ2
lm denote the conditional variance of ξlmt and γlm,rs the conditional covariance between

ξlmt and ξrst. Let R(K0) =
∫

K2
0(v)dv and R(K) =

∫

K2(u)du. Let ▽f(y) and ▽lm(y)

denote the two p × 1 vectors of the gradient of f(y) and ρlm(τ ;y) respectively w.r.t. y,

and let Hlm(τ ;y) denote the (p + 1) × (p + 1) Hessian matrix of ρlm(τ ;y). Finally, let

T = diag(µ2(K0)/µ2(K), C2
0 , ..., C

2
0), Clm = 1

2
tr{Hlm(τ ;y)T + 2C2

0 ▽f (y) ▽lm (y)′/f(y)}
and CV = 2 ∗ πp/2/Γ(p/2 + 1)R(K0)R(K). Note that Clm depends on τ and y. Then the

following holds.

Theorem 1. Under Assumptions A1 to A7 we have

i) Bias[q̂lm(τ ;y)]
.
= Clmµ2(K)b2

0, for l 6= m,

ii) Bias[q̂lm(τ ;y)] = O[b2
Vl

+ (nbVl
)−1] = o(b2

0), for l = m,

iii) var [q̂lm(τ ;y)]
.
= CV k−1γ2

lm and

iv) cov [q̂lm(τ ;y), q̂rs(τ ;y)]
.
= CV k−1γlm,rs.

The regressors τ and y have slightly different effects on the asymptotic results, because

the used bandwidths for them are different and that τt are equidistant. For fixed k the

asymptotic variances and covariances of the proposed estimators do not depend on the

design density. But the asymptotic biases depend on f(y) through the constant C0. If Ck

is fixed, the optimal b0, which minimizes the dominating part of the MSE (mean squared

error) of q̂lm(τt;y), is given by

bopt
0 = Coptn

− 1

p+5 with Copt =

(

(p + 1)CV γ2
lm

4C2
lmµ2

2(K)Ck

)
1

p+5

. (13)

The optimal order of the MSE is O(n− 4

p+5 ). Note that the use of a fixed Ck is only suboptimal.

The optimal choice of Ck so that the constant of the dominating part of the MSE is also

minimized and the data-driven selection of bopt
0 will be discussed elsewhere.

Similar results hold for ρ̂lm(·). In particular they are also asymptotically normal. Consider

the case with l 6= m, r 6= s and {l, m} 6= {r, s}. We have
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Theorem 2. Assume that b0 = Cbn
− 1

p+5 and that Cb, Ck > 0 are two positive constants.

Then under the other conditions of Theorem 1 we have

√
k

(

ρ̂lm(τ ;y) − ρlm(τ ;y)

ρ̂rs(τ ;y) − ρrs(τ ;y)

)

D−→ N

{

Cµ

(

Clm

Crs

)

, CV

(

γ2
lm γlm,rs

γlm,rs γ2
rs

)}

, (14)

where Cµ = µ2(K)C
1/2
k C

(p+5)/2
b is an unknown constant and CV is as defined before.

If a bandwidth b0 = o(n−1/(p+5)) is used then the bias in q̂lm(·) is asymptotically negligible.

Now Theorem 2 holds with Cµ being replaced by 0. Results in this case are useful for carrying

out confidence intervals of ρlm(·) (Hafner et al., 2005).

Remark 2. Similar asymptotic properties of the causal estimator described in Remark 1 can

be obtained by setting τ = 1. This will not be discussed here in detail.

5 Applications

In the following the practical performance of the model is shown by applications to the daily

foreign exchange rate series of the British Pound (Pound), Euro, Japanese Yen (Yen) and

Canadian Dollar (CAD) w.r.t. the US Dollar (USD) from 4 Jan 1999 to 30 December 2005.

The log-returns of these series are shown in Figure 1. The programmes are developed in

S-Plus, which can also be run under R. In all of the examples corresponding univariate and

spherical Epanechnikov kernels are used. The nonparametric trend in the returns are fitted

using the SEMIFAR (semiparametric fractional autoregressive) model (Beran and Feng,

2002), where the bandwidths are automatically selected and it is also shown that the returns

are about uncorrelated, one of the properties of a GARCH process. The local variances

are then estimated from the corresponding residual series using bandwidths selected by the

algorithm in Feng (2004). Table 1 lists the bandwidths for estimating the means and the

variances selected by these programmes. The estimated local means and local standard

deviations are omitted to save space.

GARCH models are then fitted from the standardized residuals using S+GARCH. GARCH(1,

1) models are selected following the BIC for Pound, Yen as well as CAD. The fitted GARCH

models for the Euro returns of lower orders have however negative coefficients, for which a

GARCH(2, 2) model is hence used. The estimated conditional variances for each series are:

ĥ1t = 0.0448 + 0.0402r̂2
1(t−1) + 0.9136ĥ1(t−1),
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Table 1. Selected bandwidths for µ̂i, σ̂i

Pound Euro Yen CAD

b̂µi
0.128 0.103 0.084 0.135

b̂Vi
0.144 0.120 0.105 0.132

ĥ2t = 0.0980 + 0.1000r̂2
2(t−1) + 0.0010r̂2

2(t−2) + 0.7999ĥ2(t−2) + 0.0101ĥ2(t−1),

ĥ3t = 0.0590 + 0.0139r̂2
3(t−1) + 0.9265ĥ3(t−1),

ĥ4t = 0.0360 + 0.0219r̂2
4(t−1) + 0.9415ĥ4(t−1).

The estimated total standard variations σ̂i(τt) ·
√

ĥit for the return series are shown in Figure

2.

Selection of the smoothing parameters and the order of the LDCC model is still an open

question. For a comparison, results using different parameter combinations will be given.

We will see that estimates using b0 and k within a large range have quite similar conditional

patterns. This means that the fitted results discover the nature of the true correlation

dynamics and the proposed model works well in practice. Note that for a LDCC(p) model

relatively large smoothing parameters should be used, because it is a (p + 1)-dimensional

nonparametric regression. Figure 3 displays the estimated local and conditional correlations

of a LDCC(4) model with b0 = 0.18 and k = 400, i.e. Q(·) is estimated by 400 observations

selected from a total of 36% of all observations around t. Figure 4 shows the estimation

results of a LDCC(6) model with the same smoothing parameters.

We see both the conditional and local changes are clear. The conditional effect changes

from one point to another. Information in the past observations may cause lower or higher

correlations comparing to the average level. Sometimes the conditional effect may cause

clear changes in the correlations in both directions. The largest conditional changes in

correlations are as high as about 0.2. The average level of the correlations depends on the

location, which changes clearly in some periods. This also depends on the two series involved.

For instance, the local change of the correlations between Pound and Euro is quite small,

because these two series are always highly correlated. An interesting phenomenon is that the

correlations between CAD and the other currencies were about zero at the beginning, but

increase to about 0.5 at the end of the observation period. Note that the conditional changes

estimated by a nonparametric model is non-smooth over time, because the changes of the
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regressors yj are non-smooth over time. This fact can be also found from the examples

in Hafner et al. (2005). By comparing Figures 3 and 4 we can find that the LDCC(6)

model seems to perform better than the LDCC(4). This observation provides evidence for

the need of the development of a GARCH-type LDCC model. To show the effect of the

smoothing parameters some further estimation results are given in Figure 5. These are

correlations between the Euro and the other currencies estimated using a LDCC(6) model

with smoothing parameters b0 = 0.16 and k = 300 (Figures 5(a) to (c)) and with b0 = 0.20

and k = 500 (Figures 5(d) to (f)), corresponding to those given in Figures 4(a), (d) and (e)

respectively. Comparing the estimates obtained using different smoothing parameters we can

see that they look quite similar to each other. In particular they show the same conditional

patterns. The variations of these estimates depend on the used smoothing parameters.

The causal smoother is also applied to these data. Figure 6 shows the estimation results

of a causal LDCC(6) with the same smoothing parameters as for Figure 4. Note that causal

and non-causal estimates are the same for t ≤ k0 + p. Comparing Figures 4 and 6 we can

find that, for large t, there are clear differences between the local and conditional patterns

obtained using causal and non-causal methods. The conditional changes are more clear by

the causal estimates. We can also see that there is a phase-difference between the periods

estimated by these two approaches where the local correlations increase quickly. The local

changes discovered by the causal estimates seem to be more practically relevant. The phase-

difference in the non-causal estimates is caused by future observations. It is worthwhile to

carry out further study on the causal smoother.

The proposed model is also applied to other financial data. In particular, applications to

some weekly UK equity index returns from 1 Jan 1965 to Nov 1999 (Brooks and Henry, 2002)

show that the local and conditional changes in the variances and the conditional changes in

the correlations are more clear in those data. But the local changes in the correlations are

not so clear.

6 Final remarks

In this paper simultaneous modelling of local and conditional changes in the variances and

correlations of financial returns is discussed. A semiparametric approach is introduced to

model all of these components. In particular the local and conditional correlations are jointly

estimated by a multivariate kernel regression. Asymptotic results and applications confirm
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the theoretical and practical performance of the proposal. So far as we know, this is the first

effort to define and to estimate local and conditional correlations jointly. There are still many

open questions in this context, e.g. the development of a suitable bandwidth selection rule,

the development of significance test as well as the the model selection. Finally, the extension

of the current model to a GARCH-type approach by including some latent variables is also

of great interest.
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Appendix: Auxiliary results and proofs of theorems

Let ξ̂lmt = ǫ̂ltǫ̂mt, l, m = 1, ..., d, denote estimates of ξlmt, where ξlmt are as defined in

Section 4. Let q̃lm(·) denote the same estimator as q̂lm(·), but obtained with ξ̂lmt being

replaced by ξlmt. To simplify the notations let bµ and bV denote some generic bandwidths

for estimating the mean and variance functions which are of suitable orders depending on

the cases under consideration.

The effect of the errors in µ̂i on σ̂2
i is discussed in Feng and Yu (2005). For the LDCC

model this effect is of the same orders of magnitude. Discussion on the effect of the errors

in σ̂2
i on θ̂i may be found in Feng (2004). Their results will be adapted to the current case.

We now introduce the following variant of Assumption A1 iii).

A1 iii)′. bµ and bV satisfy O(n−1/3) < bµ < O(n−1/6) and O(n−1/3) < bV = o(1).

Here ‘<’ or ‘>’ are applied to the orders. Condition A3′ is sufficient but not necessary.

Lemma A.1. Consider 0 < τ < 1. Under the conditions A1 i) and ii), and A1 iii)′ the

error in µ̂(τ) does not affect the asymptotic properties of V̂ (τ).

This means that V̂ (τ) obtained from the residuals r̂∗t has the same asymptotic properties as

that obtained from the unobservable r∗t .

A sketched proof of Lemma A.1. Results for τ = 1 are discussed in detail in the proof

of Theorem 3 of Feng and Yu (2005). In our case the corresponding results are

1. The additional bias in σ̂2
i (τ) caused by the error in µ̂i(τ) is of the order O[b4

µ+(nbµ)
−1].

2. The additional variance in σ̂2
i (τ) caused by the error in µ̂i(τ) is negligible, if bµ >

O(n−1/2).

For more details we refer the reader to the corresponding proofs given there. Note that there

are some differences between the above results and those given there, because now 0 < τ < 1

is considered. The bias of σ̂2
i (·) under the assumption that µi(·) were known is of the order

O(b2
V ). Under A1 iii)′ we have O[b4

µ + (nbµ)−1] = o(b2
V ). Hence, the asymptotic bias of σ̂2

i (·)
will not be affected by the error in µ̂i(·). Furthermore, the asymptotic variance of σ̂2

i (·) will

also not be affected by the error in µ̂i(·), because bµ > O(n−1/2). ⋄

If µ̂i is estimated data-drivenly as assumed in A1 iii), we have bµi
= O(n−1/5). Now A1

iii)′ is fulfilled and the error in µ̂i on σ̂2
i is asymptotically negligible. The effect of the error

in σ̂2
i on θ̂i is shown by the following lemma which follows from Theorem 3 in Feng (2004).
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Lemma A.2. Under the same conditions of Lemma A.1 θ̂i is root-n consistent and asymp-

totically normal as in the parametric case except for a bias term of the order O[b2
V +(nbV )−1].

The following lemma quantifies the difference between q̃lm(·) and q̂lm(·) caused by the error

in σ̂2
i (·) and that in θ̂i. Note that the latter is resulted by the former.

Lemma A.3. Under the assumptions of Theorem 1 we have

i) E[q̂lm(τ ;y) − ρlm(τ ;y)] = E(q̃lm(τ ;y) − ρlm(τ ;y)) + O[b2
V + (nbV )−1],

ii) var [q̂lm(τ ;y)] = var (q̃lm(τ ;y))[1 + o(1)] + O[(nbV )−1] and

iii) cov [q̂lm(τ ;y), q̂rs(τ ;y)] = cov [q̃lm(τ ;y), q̃rs(τ ;y)][1 + o(1)] + O[(nbV )−1].

The additional errors caused by the error in σ̂2
i (·) and that in θ̂i are asymptotically negligible.

Proof of Lemma A.3. Observe that

ξ̂lmi = ǫ̂liǫ̂mi
.
=

σl(τi)σm(τi)
√

hli

√
hmi

σ̂l(τi)σ̂m(τi)
√

ĥli

√

ĥmi

ξlmi.

We have

ξ̂lmi − ξlmi
.
=

σl(τi)σm(τi)
√

hli

√
hmi − σ̂l(τi)σ̂m(τi)

√

ĥli

√

ĥmi

σ̂l(τi)σ̂m(τi)
√

ĥli

√

ĥmi

ξlmi

= Op

[

σl(τi)σm(τi)
√

hli

√

hmi − σ̂l(τi)σ̂m(τi)

√

ĥli

√

ĥmi

]

ξlmi

=
[

O(b2
V ) + Op(nbV )−1

]

ξlmi, (A.1)

where the first step is because of σ̂l(τi)σ̂m(τi)
√

ĥli

√

ĥmi = Op(1) and the last equation is

obtained by means of Taylor expansion.

Although ξlmi are iid random variables, ξ̂lmi correlate to each other. From (A.1) we have

ξ̂lmi =
[

1 + O(b2
V ) + Op(nbV )−1

]

ξlmi.

Straightforward analysis shows that, for i 6= j,

cor [ξ̂lmi, ξ̂lmj] = O[(nbV )−1].

i) The difference in the biases of q̂lm(·) and q̃lm(·) caused by that between ξ̂lmi and ξlmi is of

the same order of magnitude as E[ξ̂lmi − ξlmi], provided that E[ξlmi|y = yi] = ρlm(τi;yi) 6= 0

for some i such that
∑

i wi = O(1), where wi are the weights used in q̂lm(·). Conditioning

on past observations, we have
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E[ξ̂lmi − ξlmi] = E
{[

O(b2
V ) + Op(nbV )−1

]

ξlmi

}

=
[

O(b2
V ) + Op(nbV )−1

]

ρlm(τi;yi). (A.2)

ii) Observe that
∑n

i=1

∑

j 6=i wiwj
.
= 1. We have

var [q̂lm(τ ;y)] =
n
∑

i=1

n
∑

j=1

wiwjcov [ξ̂lmi, ξ̂lmi]

=

n
∑

i=1

w2
i var [ξ̂lmi] +

n
∑

i=1

∑

j 6=i

wiwj cov [ξ̂lmi, ξ̂lmj]

= var [q̃lm(τ ;y)][1 + o(1)] + O[(nbV )−1]. (A.3)

iii) From the calculation of cov [q̃lm(·), q̃rs(·)] given later we can see that the proof of the

result in this part is similar to that in ii). Lemma A.3 is proved. 3

Remark A.1. If our aim is to test the hypothesis H0 : Rt ≡ Id, then the b2
V term in the

additional bias of q̂lm(·) caused by the errors in σ̂2
i will vanish.

Proof of Lemma 1. Note that b → 0 as n → ∞. Under the assumptions of Lemma

1 there exists a p-ball around y with radius b for large n and the density on this ball is

approximately 0 < f(y) < ∞. Following the k-NN method the bandwidth b is selected so

that the probability for y within this p-ball is approximately k/k0. Note that k0
.
= 2nb0.

Under A7 iii) we have k = Cknbp+1
0 . This leads to

πp/2bp

Γ(p/2 + 1)
f(y)

.
=

k

k0

.
=

Cknbp+1
0

2nb0
(A.4)

and

b
.
= C0b0 with C0 =

(

Ck

2

Γ(p/2 + 1)

πp/2f(y)

)1/p

as given in (12). Lemma 1 is proved. 3

Lemma A.4. Under the assumptions of Theorem 1 the design density f(y) of y satisfies

the assumptions of Lemma 1.

Proof of Lemma A.4. For simplicity let y = yt be an observation point. Assume first

that ǫt are observable. Define S2
jt = 1I′Rt1I, j = 1, ..., p, where 1I is a vector of ones as

defined before. S2
jt is the variance of the normal random variable

p
∑

j=1

ǫi(t−j). Following the
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construction of yjt we have yjt = S2
jtZ

2
jt, where Zjt ∼ N(0, 1). Under the assumptions of

Theorem 1 Zjt, j = 1, ..., p, are independent of each other. Therefore yt is a vector of

independent non-standardized χ2
1 random variables with the joint density given by

f(yt) =
(√

2Γ(1/2)
)−p

p
∏

j=1

y
−1/2
jt exp{−yjtS

−2
jt /2}S−3

jt . (A.5)

If yt is an interior point, we have 0 < f(y) < ∞ in a neighbourhood of yt. Furthermore, it

is easy to see that the above approximation holds, if yt are calculated from some consistent

estimates ǫ̂t of ǫt. The consistency of ǫ̂t is ensured by the conditions of Theorem 1. 3

Remark A.2. The regressors yjt are squared values of some normal random variables.

There is no boundary effect at a point with yj = 0 for some j. This can be seen from

the form of f(y) given in (A.5). If yj = 0 for some j, we only have observations with

yjt ≥ yj. But the marginal density for yj tends to infinite in a power rate y
−1/2
jt for yjt near

the origin. Choosing bj = O(b2
0), the resulting bias will be till of the order O(b2

0).

Proof of Theorem 1. Define ηlmt = ξlmt − ρlm(τt;yt). Then we have

E[ηlmt|yt] = 0 and var [ηlmt|yt] = γ2
lm.

Under the assumptions ηlmt and ηlms are conditionally independent for t 6= s. The fact

that ρlm(·) can be estimated from ξlmt using kernel method is based on the following special

conditional nonparametric regression model

ξlmt|yt = ρlm(τt;yt) + ηlmt. (A.6)

Consider first the case with l 6= m. Model (A.6) ensures that q̂lm(·) has the same asymp-

totic properties as in multivariate kernel regression. Let U =
∫

(v;u)(v;u)′K0(τ)K(u)dvdu.

Under A6 we have U = diag(µ2(K0), µ2(K), ..., µ2(K)). Let H = diag(b0, b, ..., b) denote the

bandwidth matrix. We have HH′U = µ2(K)T, where T is as defined in Theorem 1. Let

h(τ ;y) denote the joint density of τ and y. Note that h′
τ (τ ;y) ≡ 0 and h(τ ;y) ≡ f(y),

because τt are equidistant. Following Lemma A.3 and well known results in multivariate

kernel regression we have:

Bias[q̂lm(τ ;y)]
.
= Bias[q̃lm(τ ;y)]

.
= tr

{

1

2
Hlm(τ ;y)HH′U +

▽h(τ ;y) ▽′
lm (τ ;y)HH′U

h(τ ;y)

}

.
=

1

2
µ2(K)b2

0tr

{

Hlm(τ ;y)T + 2C2
0

▽f(y) ▽′
lm (y)

f(y)

}

, (A.7)
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which is Clmµ2(K)b2
0 as defined in Theorem 1, where the second term in the brackets is not

shared by the local linear approach (see Ruppert and Wand, 1994).

For l = m, we have ρll(·) ≡ 1. Now q̃ll(·) is unbiased and we have

E[q̂ll(τ ;y) − ρll(τ ;y)] = O[b2
V + (nbV )−1]

= o(b2
0), (A.8)

which is caused by the error in the estimated variances.

For any l and m the variance of q̂lm(·) is of the same order. In the current case the

asymptotic variance of q̂lm(·) is the same as for a local linear estimator. By adapting the

result in (2.4) of Ruppert and Wand (1994) we have

var [q̂lm(τ ;y)]
.
= var [q̃lm(τ ;y)]

.
=

1

nb0bp
R(K0)R(K)

γ2
lm

h(τ ;y)
, (A.9)

where h(τ ;y) ≡ f(y). Observe that

b0b
p = Cp

0b
p+1
0

=
Ck

2

Γ(p/2 + 1)

πp/2f(y)

= kn−1C−1
V R(K0)R(K)f−1(y),

where CV is as defined in Theorem 1. Insert this into (A.9) we have

var [q̂lm(τ ;y)]
.
= CV k−1γ2

lm. (A.10)

Now consider the covariance between q̂lm(·) and q̂rs(·) for any {l, m} 6= {r, s}. Note that

these two estimators are obtained using the same kernel weights. This results in a close

relationship between cov [q̂lm(·), q̂rs(·)] and var [q̂lm(·)] (or var [q̂rs(·)]). Observe that ξlmi is

independent of ξ̂lmj for i 6= j. Following Lemma A.3 we have,

cov [q̂lm(τ ;y), q̂rs(τ ;y)]
.
= cov [q̃lm(τ ;y), q̃rs(τ ;y)]

.
=

n
∑

i=1

n
∑

j=1

wiwjcov [ξlmi, ξrsj]

.
=

n
∑

i=1

w2
i cov [ξlmi, ξrsj]

=

n
∑

i=1

w2
i γlm,rs (A.11)

= var [q̃lm(τ ;y)]γlm,rs/γ
2
lm

.
= CV k−1γlm,rs. 3
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Proof of (13). Note that k = Cknbp+1
0 . The dominating part of the MSE of q̂lm(·) is

MSE
.
= C−1

k CV γ2
lm

(

nbp+1
0

)−1
+ C2

lmµ2
2(K)b4

0

and

MSE′
b0

.
= −(p + 1)C−1

k CV γ2
lm

(

nbp+2
0

)−1
+ 4C2

lmµ2
2(K)b3

0.

Set MSE′
b0

= 0 we obtain

bopt
0 =

(

(p + 1)CV γ2
lm

4C2
lmµ2

2(K)Ck

)
1

p+5

n− 1

p+5 ,

as given in (13). 3

The results in Theorem 2 are obtained based on the same results on q̂lm(·) and q̂rs(·) given

in the following lemma, where it is assumed that l 6= m, r 6= s and {l, m} 6= {r, s}.

Lemma A.5. Under the same conditions of Theorem 2 we have

√
k

(

q̂lm(τ ;y) − ρlm(τ ;y)

q̂rs(τ ;y) − ρrs(τ ;y)

)

D−→ N

{

Cµ

(

Clm

Crs

)

, CV

(

γ2
lm γlm,rs

γlm,rs γ2
rs.

)}

, (A.12)

where the constants are the same as defined in Theorem 2.

Proof of Lemma A.5. Following Theorem 1, the squared asymptotic bias and the

asymptotic variance of
√

kq̂lm(·) are both constants, if b0 = Cbn
− 1

p+5 is used. Following

Theorem iii) and iv), it is easy to see that the variances of
√

kq̂lm(·) and
√

kq̂rs(·), and the

covariance between them are those given in Theorem 2. Note that k = Cknbp+1
0 . Following

Theorem 1 i) we have

Bias[
√

kq̂lm(τ ;y)]
.
= Clmµ2(K)C

1/2
k C

(p+1)/2
b C2

b

= CµClm,

where Cµ = µ2(K)C
1/2
k C

(p+5)/2
b as defined in Theorem 2. Similarly, we have

Bias[
√

kq̂rs(τ ;y)]
.
= CµCrs.

Following Lemma A.3 we have

√
k{q̂lm(τ ;y) − ρlm(τ ;y)} =

√
k{q̃lm(τ ;y) − ρlm(τ ;y)}[1 + op(1)],

√
k{q̂rs(τ ;y) − ρrs(τ ;y)} =

√
k{q̃rs(τ ;y) − ρsr(τ ;y)}[1 + op(1)].
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We will prove the asymptotic normality with q̂lm(·) and q̂rs(·) being replaced by q̃lm(·) and

q̃rs(·) respectively. Note that ηlmt are normally distributed, and ηlmi and ηlmj are independent

for i 6= j. This together with the condition on the bandwidth ensures that
√

k{q̃lm(·)−ρlm(·)}
is asymptotically normal. Analogously,

√
k{q̃rs(·) − ρrs(·)} is also asymptotically normal.

Using the Cramér-Wold device, the joint asymptotic normality of
√

k{q̃lm(·)− ρlm(·)} and
√

k{q̃rs(·) − ρrs(·)} is proved, if we can show that, for any α1, α2 ∈ ℜ,

√
k{α1[q̃lm(τ ;y) − ρlm(τ ;y)] + α2[q̃rs(τ ;y) − ρrs(τ ;y)]} D−→ N(µ(α1, α2), V (α1, α2)),

where µ(α1, α2) = Cµ(α1Clm + α2Crs) and V (α1, α2) = CV (α2
1γ

2
lm + α2

2γ
2
rs + 2α1α2γlm,rs). In

the following we will explained briefly that this holds. Let

Z = α1q̃lm(τ ;y) + α2q̃rs(τ ;y)

= α1

n
∑

i=1

wiξlmi + α2

n
∑

i=1

wiξrsi

=

n
∑

i=1

wi[α1ξlmi + α2ξrsi]. (A.13)

We see that
√

kZ is asymptotically normal with the given bias and variance. This finishes

the proof of Lemma A.5. 3

Proof of Theorem 2. Straightforward calculations using Taylor lead to

r̂lm(τ ;y) − q̂lm(τ ;y) =
q̂lm(τ ;y)√

q̂llq̂mm

− q̂lm(τ ;y)

= T1 + T2, (A.14)

where T1 = O[b2
V + (nbV )−1/2] = o(k−1/2) is the bias term caused by those in q̂ll and q̂mm,

and T2 = q̂lm(·)Op(k
−1/2), where the Op(k

−1/2) term is a random variable with zero mean

caused by the stochastic part of q̂ll and q̂mm. It is clear that var (T2) = o(k−1). Using similar

idea as in the proof of Lemma A.3, it can be shown that E(T2) = O(k−1). In summary we

have
√

k{r̂lm(τ ;y) − ρlm(τ ;y)} =
√

k{r̂lm(τ ;y) − ρlm(τ ;y)}[1 + o(1)].

This holds of course for r̂rs(·), too. Analogously, it can be shown that the above approxi-

mation also holds for the difference between α1r̂lm(·) + α2r̂rs(·) and α1q̂lm(·) + α2q̂rs(·). The

results of Theorem 2 hence follow from those of Lemma A.5. 3
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Figure 1: Return series of the selected exchange rates between 4 Jan 1999 to 30 Dec 2005.
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Figure 2: Estimated total standard deviations σ̂i(τt)
√

ĥit for the four return series.
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(f) Local and conditional correlations between Yen and CAD

Figure 3: Local and conditional correlations estimated by a LDCC(4) model with b0 = 0.18

and k = 400.
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Figure 4: Local and conditional correlations estimated by a LDCC(6) model with b0 = 0.18

and k = 400.
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(a) Local and conditional correlations between Pound and Euro (p=6, b0=0.16, k=300)
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(f) Local and conditional correlations between Euro and CAD (p=6, b0=0.20, k=500)

Figure 5: Local and conditional correlations estimated by a LDCC(6) model with different

smoothing parameters.
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Figure 6: Local and conditional correlations estimated by a LDCC(6) model using causal

smoothing, where the smoothing parameters are the same as in Figure 4.
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