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Abstract

Estimating bidders’ risk aversion in auctions is a challeging problem because of

identification issues. This paper takes advantage of bidding data from two auction

designs to identify nonparametrically the bidders’ utility function within a private

value framework. In particular, ascending auction data allow us to recover the latent

distribution of private values, while first-price sealed-bid auction data allow us to

recover the bidders’ utility function. This leads to a nonparametric estimator. An

application to the US Forest Service timber auctions is proposed. Estimated utility

functions display concavity, which can be partly captured by constant relative risk

aversion.

Key words: Risk Aversion, Nonparametric Identification, Nonparametric and Semipara-

metric Estimation, Timber Auctions.



Estimating Risk Aversion

from Ascending and Sealed-Bid Auctions:

The Case of Timber Auction Data

J. Lu and I. Perrigne

1 Introduction

The concept of risk aversion is at the core of economic agents’ decisions under uncertainty.

Since the formalization of risk aversion by Pratt (1964), a rich theoretical literature has

developed models to explain how agents behave in such situations. In auctions, bidders

face many uncertainties related to the auction game while auctioned objects may rep-

resent an important value relative to their assets. The auction model and the optimal

mechanism design with risk averse bidders have been studied by Maskin and Riley (1984)

and Matthews (1987). In particular, first-price sealed-bid auctions dominate ascending

auctions within the private value paradigm, while the optimal auction design involves

some transfers among bidders. Within the private value paradigm, risk averse bidders

tend to shade less their private values relative to the risk neutral case leading to some

overbidding. This provides the intuition of the dominance of the first-price sealed-bid

mechanism over the ascending one as announcing his private value is still a dominant

strategy in the latter. More recently, Eso and White (2004) have introduced the concept

of precautionary bidding when bidders face uncertainties about the ex post realizations

of their values. In parallel to this theoretical literature, experimental data have suggested
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that bidders tend to bid above the Bayesian Nash equilibrium, which can be explained

by bidders’ risk aversion. Such an approach has been adopted by Cox, Smith and Walker

(1988) and Bajari and Hortacsu (2005) among others, while Goere, Holt and Palfrey

(2002) also found potential bidders’ risk aversion in a quantile response equilibrium.1 On

empirical grounds, few empirical studies have assessed bidders’ risk aversion. Athey and

Levin (2001) study bidding on species in timber auctions with ex post payments based

on actual harvested values. Their empirical analysis suggests that bidding behavior is

consistent with risk aversion as bidders tend to diversify risk across species. Potential

bidders’ risk aversion has also been found in timber auctions by Baldwin (1995) within a

reduced form approach and by Perrigne (2003) within a structural approach.

Previous experimental and empirical studies have adopted a parametric approach,

while specifying a known form of risk aversion for the bidders’ utility function such as

constant relative risk aversion (CRRA) or constant absolute risk aversion (CARA). This

also includes Campo, Guerre, Perrigne and Vuong (2006) relying on a semiparametric ap-

proach. Both families of utility functions provide simple functional forms, while a CRRA

specification encompasses the case of risk neutrality.2 As a matter of fact, little is known

on the shape of bidders’ utility function. The choice of a family of utility functions may

affect the estimated results and have misleading implications on bidders’ behavior. More-

over, there is no general agreement in the theoretical literature on which concept of risk

aversion is the most appropriate to explain observed phenomena such as overbidding in

auctions. See Gollier (2001) for a survey on risk aversion. A nonparametric approach

that leaves unspecified such a utility function will shed some lights on agents’ economic

behavior facing risk. A parametric specification of the utility function has been justified

1Relying on recent structural econometric methods, Bajari and Hortacsu (2005) estimate several

models to explain experimental data and find that risk aversion provides the best fit.
2In the case of auctions, the Bayesian Nash equilibrium strategy has a closed form solution for a

CRRA specification of the bidders’ utility function within the independent private value paradigm. This

is not the case for a CARA specification. This can explain the popularity of the CRRA utility function

in the auction literature.
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so far by the difficulties of identifying such a function in auction models. Campo, Guerre,

Perrigne and Vuong (2006) show that the auction model with risk averse bidders is iden-

tified semiparametrically within the private value paradigm. A parametric specification

of the utility function is a necessary identifying restriction in addition to a conditional

quantile restriction on the bidders’ private value distribution, which is left unspecified.

Campo (2005) obtains a semiparametric identification result of the auction model with

heterogeneous bidders, while maintening a parametric specification for the bidders’ util-

ity functions. More recently, Guerre, Perrigne and Vuong (2006) exploit some exclusion

restrictions such as an exogenous bidders’ participation leading to a latent distribution

of private values independent of the number of bidders to identify nonparametrically the

bidders’ utility function. They extend their results to an endogenous bidders’ partici-

pation with the availability of instruments that do not affect the bidders’ private value

distribution. Their identification result leads to the construction of an infinite series of

differences in quantiles. The resulting estimator can be quite burdensome to implement.

In this paper, we choose a fully nonparametric approach while exploiting additional

bidding data. This approach is intuitive and the resulting estimator is straightforward to

implement. The US Forest Service (USFS) uses both ascending and sealed-bid auctions to

sell its standing timber. To our knowledge, two other papers by Hansen (1985) and Athey,

Levin and Seira (2004) exploit the two auction design data for different purposes. The

former attempts to test the revenue equivalence theorem, while the latter studies the entry

and bidding patterns in both ascending and sealed-bid auctions with asymmetric bidders

to explain the choice of the auction mechanism. We show that the data from these two

auction designs can be used to identify nonparametrically the bidders’ utility function.

The intuition is as follows. Since the bidding strategy in ascending auctions is not affected

by risk aversion, the observed winning bids in ascending auctions identify the underlying

private value distribution using the distribution of order statistics as shown by Athey and

Haile (2002). Following Guerre, Perrigne and Vuong (2000), we use the monotonicity

of the bidding strategy relating the bid to the private value to rewrite the differential
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equation defining the equilibrium strategy as a function of the bid distribution and density.

The derived equation allows us to identify nonparametrically the utility function when the

private value distribution is known. We then derive a multistep nonparametric estimation

procedure. We can then assess whether the widely used CRRA or CARA specifications

adjust the recovered utility function while using a semiparametric model. On empirical

grounds, we need to pay special attention to the data. In particular, the same bidders

need to participate to both auctions. If not the case, we may face different underlying

private value distributions, which would invalidate our approach. Moreover, data show

that ascending auctions tend to be chosen over first-price sealed-bid auctions for parcels

with a large timber volume leading to some sample selection. The empirical results show

that the model is not rejected by the data. Estimated utility functions are increasing

and display some concavity. Though we cannot find a perfect adjustment, a CRRA

specification better captures the bidders’ behavior than a CARA specification.

The paper is organized as follows. A second section is devoted to the auction model, its

nonparametric identification and estimation. A third section introduces the bidding data

and addresses the issues raised previously, while a fourth section presents the empirical

results. A fifth section concludes.

2 Auction Models, Identification and Estimation

This section briefly presents the ascending and first-price sealed-bid auction models with

risk averse bidders within a private value framework. The identification of the model

structure is addressed using bidding data from these two auction designs. The bidders’

utility function is nonparametrically identified. This naturally leads to a nonparametric

estimator.
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2.1 The Ascending and First-Price Sealed-Bid Auctions

A single and indivisible object is sold through an auction to a number I of bidders.

We consider the private value paradigm where every bidder has a private value vi for

the auctioned object. The private values vi, i =, . . . , I are drawn independently from a

distribution F (·), which is known to all bidders. This distribution is defined on a compact

support [v, v] with a density f(·). We assume that every bidder is potentially risk averse

with a von Neuman Morgensten utility function U(·) satisfying U ′(·) > 0, U ′′(·) ≤ 0 and

U(0) = 0. The bidders are symmetric in the sense that they share the same private value

distribution F (·) and the same utility function U(·).3 Hereafter, bi denotes bidder’s i bid.

For simplicity, we consider an auction with a nonbinding reserve price. The ascending

auction model takes a rather simple form. Whatever the level and the shape of risk

aversion, it is a dominant strategy for each bidder to bid his private value vi, namely

bi = vi since he will pay the second-highest bid when he wins the auction. Thus risk

aversion does not affect bidding behavior.

In the case of a first-price sealed-bid auction, the outcome is different as bidders tend

to overbid relative to the risk neutral case. In a first-price sealed-bid auction, bidder

i maximizes his expected gain from the auction, namely U(vi − bi)Pr(bi ≥ bj, j 6= i),

where vi − bi expresses the monetary gain. Let s(·, U, F, I) be the strictly increasing

symmetric Bayesian Nash equilibrium strategy with s−1(·) denoting its inverse. Because

of independence, the probability of winning the auction is then equal to F I−1(s−1(·)).
Maximizing the expected gain for bidder i with respect to his bid bi and imposing bi = s(vi)

give the following differential equation

s′(vi) = (I − 1)
f(vi)

F (vi)
λ(vi − bi), (1)

3We can extend our model while incorporating a common wealth w ≥ 0. Considering individual

wealth wi will lead to an asymmetric game if the wis are exante known to all bidders or to a multisignal

game if the wis are private information. The first case would require additional data on bidders’ wealth,

while the second case would lead to a complex model beyond the scope of this paper.
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for vi ∈ [v, v], where λ(·) = U(·)/U ′(·).4 The function λ(·) is strictly increasing on its

compact support with a lower bound at zero since λ(0) = 0 following v = s(v). The

upper bound is noted v − b, which corresponds to the maximum value for the bidder’s

gain v − b = v − s(v). Note that if v − s(v) is increasing in v, this upper bound becomes

v − s(v). The above differential equation does not have a closed form solution for s(·)
under a general utility specification. When U(·) belongs to the CRRA utility family, an

analytical expression for s(·) can be derived. Hereafter, the pair [U, F ] is defined as the

structure of the game.

2.2 Nonparametric Identification of Bidders’ Utility Function

Before addressing the problem of identification, it is useful to define the observables.

We assume that two auction designs are used to sell similar objects and that bidders

participate to both auctions. We will later introduce a vector of characteristics to entertain

the case of different products. The L1 ascending auctions indexed by ` provide the winning

bids bw`, ` = 1, . . . , L1, while the L2 first-price sealed-bid auctions provide the sequence of

bids bi`, i = 1, . . . , I, ` = 1, . . . , L2. Following Athey and Haile (2002, Theorem 1), noting

that the observed winning bid in an ascending auction is the second highest private value,

the private value distribution can be identified using order statistics.5 For instance, when

I = 2, the observed winning bids bw`, ` = 1, . . . , L1 are the private values of the loosers.

When I = 3, the observed winning bids are the private values for the second-highest

bidders or the second-order statistics. Using the distribution of the nth order statistics,

the distribution of private values can be recovered using

F n,I(v) =
I!

(n − 1)!

∫ F (v)

0
tn−1(1 − t)I−ndt, (2)

4As usual, this differential equation is subject to a singularity problem at the lower bound. As shown

by Maskin and Riley (1984), the boundary condition is U(v − s(v)) = 0, i.e. s(v) = v since U(0) = 0.
5This result implicitly assumes that the number of bidders I is known, while only the winner’s bid is

observed. The USFS timber auction data provides information on the number of bidders.

6



with n = I − 1 since the highest bid is equal to the (I − 1)th order statistics. For

n = 1 and I = 2, this gives F 1,2(v) = 2F (v) − F 2(v), from which we can find a unique

solution for F (·) satisfying the properties of a cdf. More generally, we can use F I−1,I(v) =

IF (v)I−1 − (I − 1)F (v)I, from which we can recover uniquely F (v). Thus the ascending

auction data allow us to recover the latent distribution of private values. The ascending

auction data do not allow us, however, to recover any information on the bidders’ utility

function and a fortiori on their risk aversion. Note that, if we consider a more general

model with affiliated private values, the observation of the winning bid will not be sufficient

to recover the latent distribution of bidders’ private values as shown by Athey and Haile

(2002). Independence of private values is a key assumption here.

Using this information, we can now address the problem of identification of the function

U(·) using first-price sealed-bid auction data. Using a similar argument as in Guerre,

Perrigne and Vuong (2000), we use the distribution of equilibrium bids G(·) to reformulate

the differential equation (1). For every b ∈ [b, b] = [v, s(v)], we have G(b) = F (s−1(b)) =

F (v) with density g(b) = f(v)/s′(v), where v = s−1(b). After elementary algebra and

since λ(·) is strictly increasing, we obtain

vi` = ξ(bi`) = bi` + λ−1

(
1

I − 1

G(bi`)

g(bi`)

)
, (3)

i = 1, . . . , I, ` = 1, . . . , L2, where λ−1(·) denotes the inverse of λ(·) and ξ(·) is the inverse

equilibrium strategy. Since the private value distribution and the bid distribution are

known, the function λ(·) is identified. The next proposition shows that U(·) is nonpara-

metrically identified.

Proposition 1: Let I ≥ 2. Assuming F (·) is known, U(·) is nonparametrically identified.

Thus, any pair [U, F ] is identified when bidding data from ascending and first-price sealed-

bid designs are combined.

Proof: Let v(α) and b(α) be the α-quantiles of the distributions F (·) and G(·), respec-
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tively, with α ∈ [0, 1], namely v(α) = F−1(α) and b(α) = G−1(α). Using (3) gives

λ(F−1(α) − G−1(α)) =
1

I − 1

α

g(G−1(α))
.

Since I, F (·), G(·) and g(·) are known, λ(·) is nonparametrically identified on its support

[0, v − b]. In particular, at α = 0, F−1(0) = v = b = G−1(0), while v − b = maxα F−1(α)−
G−1(α). Moreover, the function U(·) can be identified up to scale since

U(x) = A exp
∫ x

v−b

1

λ(t)
dt,

for x ∈ [0, v − b], for any value A > 0. 2

Proposition 1 tells us that, since F (·) is identified from the ascending auction bid data,

the first-price sealed-bid data allow us to identify nonparametrically the utility function

U(·).6 Note that U(·) can be identified up to scale. Since the scale is irrelevant, we can

impose without loss of generality a normalization such as U(1) = 1.7 Note that our results

can be generalized to the case of an announced reserve price. In this case, only bidders

who have a private value above the reserve price p0 will bid. Thus, the number of potential

bidders I is unknown. Using an argument as in Guerre, Perrigne and Vuong (2000), I is

identified. Using an estimate for the number of bidders I, the ascending auction data will

allow us to recover the truncated distribution of private values. Equation (3) would need to

be adapted since the observed bids in the first-price sealed-bid auction are also distributed

following a truncated distribution. It can be easily shown that the argument of the inverse

of λ(·) in (3) becomes [1/(I − 1)] × {[G∗(bi)/g
∗(bi)] + F (p0)/[(1 − F (p0))g

∗(bi)]}, where

G∗(·) and g∗(·) denote the truncated bid distribution and density, respectively. Relying

on Guerre, Perrigne and Vuong (2000, Theorem 4), Proposition 1 extends.

Bidders’ asymmetry can be easily entertained. We assume that bidders’ identity is

known and that bidders’ asymmetry is known ex ante to all bidders. Asymmetry may

6There are some natural restrictions on the set of identifiable U(·) functions and F (·) distributions.

See Definitions 1 and 2 in Campo, Guerre, Perrigne and Vuong (2006).
7If we consider a model with a common wealth, λ(·) becomes [U(w + ·)−U(w)]/U ′(w + ·). We cannot

identify nonparametrically [U, F, w]. A parameterization of U(·) becomes necessary to identify the model.
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arise from different private value distributions and/or heterogeneity in preferences. While

considering asymmetry in private values, let vi denote the bidder’s i private value distrib-

uted as Fi(·) on [v, vi]. It is still a dominant strategy in an ascending auction to bid his

private value, i.e. bi = vi. Athey and Haile (2005) and Brendstrup and Paarsch (2006)

show that the distributions [F1, . . . , FI] are identified using the distributions of order sta-

tistics. Bidding in first-price sealed-bid auctions takes a more complex form leading to a

possibly inefficient allocation. In particular, following Campo, Perrigne and Vuong (2003)

and Flambard and Perrigne (2006), (3) becomes

vi` = bi` + λ−1

(
1

Hi(bi`)

)
, (4)

i = 1, . . . , I, ` = 1, . . . , L2, where Hi(·) =
∑

k 6=i gk(·)/Gk(·). Proposition 1 can be easily

extended using the vi(α) and bi(α) quantiles of the recovered private value distributions

Fi(·) and observed bid distributions Gi(·), respectively. Asymmetry in bidders’ preferences

can be entertained in a similar manner. The structure of the game becomes [U1, . . . , UI , F ].

Bidding in ascending auctions is not affected, while the inverse equilibrium strategies

can be written as in (4) with λi(·) instead of λ(·). For every bidder i, the v(α) and

bi(α) quantiles can be used to identify λi(·).8 Asymmetry in both private values and

preferences can also be entertained despite its complexity. The structure of the game

becomes [U1, . . . , UI , F1, . . . , FI ]. Similar arguments can be used to extend Proposition 1.

2.3 Nonparametric Estimation

We now consider the case where auctioned objects are heterogeneous. Namely, each

auctioned object can be characterized by a d-dimensional vector Z` ∈ Z ⊂ IRd. We

assume that the analyst shares the same information as bidders, i.e. there is no un-

observed heterogeneity. The number of bidders may also differ across auctions and

8As noted in Campo, Guerre, Perrigne and Vuong (2006, Section 7.3), such a model leads to some

compatibility conditions under the form bi(α) + λ−1
i (1/Hi(bi(α))) = bj(α) + λ−1

j (1/Hj(bj(α))) for any

α ∈ [0, 1] and any pair of bidders (i, j), i 6= j.
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will be indexed by `, which gives I`. The observations in the ascending auctions are

{bw`, Z`, I`, ` = 1, . . . , L1}, while the observations in the first-price sealed-bid auctions

are {bi`, i = 1, . . . , I`, Z`, I`, ` = 1, . . . , L2}. While introducing this heterogeneity, we can

make some assumptions on the structure [U, F ] of the game. In particular, for every

`, the vi`, i = 1, . . . , I` are independently and identically distributed conditionally upon

(Z`, I`) as F (·|Z`, I`). Thus we do not exclude an endogenous number of bidders, which

may affect the distribution of bidders’ private values. The comparison of the estimated

conditional private value distributions for different values of the number of bidders allows

us in principle to test for the exogeneity of the number of bidders. Regarding the function

U(·), our identification result allows us to entertain a general case in which U(·) may be

considered as conditional on I`, though a natural assumption would be to restrict U(·) to

be independent of the number of bidders. The comparison of the estimated function U(·)
for different values of I can be used to test such a restriction.

The estimation procedure is in several steps. In a first step, the ascending auction

data are used to estimate nonparametrically the conditional distribution of private values.

In a second step, using the estimated conditional private value distribution, the first-price

sealed-bid data are used to estimate nonparametrically the function λ(·) from which the

function U(·) can be estimated. A third step may consist in using the estimated function

λ(·) to assess the adjustment with a parametric function of the form λ(·; θ) derived from

a CRRA or CARA model.

Since the identification result for the latent private value distribution relies on order

statistics, the first step of the estimation procedure needs to be conducted for every

possible value I. We denote by L1I and L2I the number of ascending and sealed-bid

auctions corresponding to the number of bidders I, respectively. In particular, F (v|z, I)

is defined as the solution of

F (I−1)(v|z, I) = IF I−1(v|z, I) − (I − 1)F I(v|z, I),

for any value (z, I), where F (I−1)(·|z, I) is the conditional distribution of the (I − 1)th
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order stastistic of observed winning bids. In particular, for I = 2, we have F (v|z, I) =

1 −
√

1 − F (1)(v|z, I). For I ≥ 3, there is no explicit solution to the above equation and

numerical algorithms need to be used to solve the equation. The distribution of the order

statistic F (I−1)(v|z, I) can be estimated using a standard nonparametric kernel estimator.

In particular,

F̂ (I−1)(v|z, I) =

1
L1Ihd

F

∑L1I
`=1 1I(bw` ≤ v)K

(
z−Z`

hF

)

1
L1Ihd

F

∑L1I
`=1 K

(
z−Z`

hF

) , (5)

for an arbitrary value (v, z, I), where K(·) is a kernel function and hF a vanishing band-

width. The kernel function can be chosen satisfying standard assumptions. In the follow-

ing section, we will consider a triweight kernel of the form K(u) = (35/32)(1−u2)31I(|u| ≤
1).9 The bandwidth needs particular attention. If we assume that F (·|·, ·) is R + 1 con-

tinuously differentiable, the bandwidth needs to be chosen with the following vanishing

rate, hF ∝ L
−1/(2R+d+2)
1I . Note that this bandwidth corresponds to the optimal uniform

consistency rate as defined by Stone (1982), i.e. L
(R+1)/(2R+d+2)
1I . Thus, the conditional

density f(·|·) can be estimated at the optimal rate L
R/(2R+d+1)
1I . We attain the optimal

consistency rate since we estimate the latent private value distribution directly from ob-

servables and not from recovered (estimated) private values as in Guerre, Perrigne and

Vuong (2000), where the consistency rate is lower. As discussed previously, comparing

the estimated distributions F̂ (·|·, ·) for different values of the number of bidders such as

I = 2, 3, 4, . . ., if data permit, would allow us in principle to test their equality across

I. If such distributions are equal, we could then consider that the number of bidders is

exogenous.

The second step makes use of the first-price sealed-bid auction data. The idea is to

9The triweight kernel is chosen for convenience. This kernel is of order 2, though Proposition 2 would

require to use a kernel of order 4 or above. Because a higher order kernel involves negative estimated

densities and the choice of the kernel function does not have much effect in practice, we have preferred to

use a standard kernel function. Moreover, the multivariate triweight kernel is the product of univariate

triweight kernels.
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recover the function λ(·) using (3). To do so, we need first to estimate the conditional

bid distribution and density. Since bids depend on the number of bidders through the

equilibrium strategy, it is expected that the bid distribution also depends on the number

of bidders. Thus, we consider the conditional distribution G(b|z, I) and density g(b|z, I)

for any arbitrary value (b, z, I). Using kernel estimators, we obtain

Ĝ(b|z, I) =

1
IL2Ihd

G

∑L2I
`=1

∑I
i=1 1I(bi` ≤ b)K

(
z−Z`

hG

)

1
L2Ihd

G

∑L2I
`=1 K

(
z−Z`

hG

) (6)

ĝ(b|z, I) =

1

IL2Ihd+1
g

∑L2I
`=1

∑I
i=1 K

(
b−bi`

hg

)
K
(

z−Z`

hg

)

1
L2Ihd

g

∑L2I
`=1 K

(
z−Z`

hg

) , (7)

where K(·) is a kernel function and hG and hg are two vanishing bandwidths. As usual,

special attention should be given to the bandwidths. As shown by Campo, Guerre,

Perrigne and Vuong (2006), the smoothness of the underlying distribution implies some

smoothness conditions on the bid distribution. We maintain the assumptions of Campo,

Guerre, Perrigne and Vuong (2006), namely F (·|·) and λ(·) are both R + 1 continuously

differentiable leading to a R + 1 continuously differentiable equilibrium strategy s(·).
Consequently, G(·|·) is R + 1 continuously differentiable and the model implies that g(·|·)
is also R+1 continuously differentiable.10 The bandwidths need to be chosen accordingly,

namely hG ∝ (IL2I)
−1/(2R+d+2) and hg ∝ (IL2I)

−1/(2R+d+3) leading to optimal consistency

rates for estimating G(·|·, I) and g(·|·, I), i.e. (IL2I)
(R+1)/(2R+d+2) and (IL2I)

(R+1)/(2R+d+3),

respectively.

To recover the function λ(·), we use the quantiles of the distributions F (·|·, I) and

G(·|·, I) and exploit the relationship G(bi`|Z`, I`) = F (vi`|Z`, I`). The idea is as follows. To

any observed bid bi`, i = 1, . . . , I`, ` = 1, . . . , L2, it corresponds an α-quantile b(α, Z`, I`)

such that b(α, Z`, I`) = bi` and G(b(α, Z`, I`)|Z`, I`) = α. From the private value distri-

bution, it corresponds an α-quantile v(α, Z`, I`). Since G(bi`|Z`, I`) = F (vi`|Z`, I`), the

10This can be easily shown using (3), which gives g(b|z, I) = G(b|z, I)/[(I − 1)λ(ξ(b) − b)]. Note that

the estimation is performed for every value of I since I takes discrete values.
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corresponding private value vi` is equal to this quantile, i.e. vi` = F−1(G(bi`|Z`, I`)|Z`, I`).

We can use the results of Bhattacharya and Gangopadhyay (1990) and Chaudhuri (1991)

to obtain the estimated quantiles b̂(α, Z`, I`) and v̂(α, Z`, I`). The estimated private value

is obtained as v̂i` = F̂−1(Ĝ(bi`|Z`, I`)|Z`, I`) using a kernel estimator for the bid distribu-

tion as defined in (6). It remains to estimate λ(·). Using (3), we obtain

1

I` − 1

G(bi`|Z`, I`)

g(bi`|Z`, I`)
= λ(vi` − bi`),

i = 1, . . . , I`, ` = 1, . . . , L2. To obtain an estimate for λ(·), we need to replace the unknown

distribution, density and value by their estimates, namely Ĝ(bi`|Z`, I`), ĝ(bi`|Z`, I`) and

v̂i` = F̂−1(Ĝ(bi`|Z`, I`)|Z`, I`). At a given I, this will give IL2I pairs (v̂i`−bi`, Ĝ(bi`|Z`, I`)/

((I` − 1)ĝ(bi`|Z`, I`)), which will trace out the function λ(·). The function λ(·) can then

be estimated by smoothing the scatter plot of these pairs. This procedure, which is very

intuitive, is relatively easy to implement. Given the above consistency rates for estimating

G(·|·), g(·|·) and F (·|·), λ(·) is estimated at the rate (IL2I)
(R+1)/(2R+d+3) assuming that

(L1I/L2I) → a, where 0 < a < ∞.

The previous estimated distributions and functions can be used to test the validity

of the model. Based on (3), a first prediction of the model is that the private value

must be larger than the corresponding bid since λ(·) is an increasing function defined on

[0, v − b] and λ(0) = 0. Such a prediction can be tested using the estimated conditional

distributions F̂ (·|z, I) and Ĝ(·|z, I). As a matter of fact, the bid distribution defined on

[v(z, I), s(v(z, I))] should stochastically dominate the private value distribution defined

on [v(z, I), v(z, I)]. If it is not the case, this may suggest that the observed bids in the

first-price sealed-bid auctions are the outcomes of another private value distribution than

the one recovered from the winning bids in ascending auctions. This may arise if the pool

of bidders is quite different across the two auction designs. Alternatively, we know from

the model that the function λ(·) is continuous and strictly increasing. This implies that,

for an arbitrary pair (z, I), a unique value G(b|z, I)/((I − 1)g(b|z, I)) should correspond

to the gain v − b. Several reasons can be invoked if such a mapping does not hold.
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As suggested before, it may arise from the fact that the observed bids in the first-price

sealed-bid auctions are not generated by the private value distribution estimated from the

winning bids in the ascending auctions because of a different pool of bidders. It may also

arise when the model under consideration is inappropriate to explain the bids. Such tests

do not pretend to test fully the validity of the model but they represent some steps in

that direction in the sense that rejection of such tests would clearly indicate a mismatch

of the model to explain the bidding data.

The scatter plot of the function λ̂(·) can also provide some useful information to test

the validity of the model. For instance, we should obtain an increasing function taking a

value of zero at zero.11 The comparison of the estimated λ(·) functions for different values

I would allow us to assess whether the utility function is independent of the number of

bidders. As mentioned previously, such an independence is a natural restriction. Since

we have adopted a fully nonparametric approach, such an information will be revealed by

the data.

A third step may consist in using the estimated function λ(·) to assess its adjustment

with a parametric function of the form λ(·; θ) derived from a CRRA or CARA model. If

we consider a CRRA model, U(x) = x1−c with c ≥ 0 measuring the constant relative risk

aversion giving λ(x; c) = x/(1 − c). In a CARA framework, U(x) = [1 − exp(−ax)]/[1 −
exp(−a)], with a > 0 measuring the constant absolute risk aversion giving λ(x; a) =

(1/a)[exp(ax) − 1]. The parameter θ cannot be estimated by a least square estimator

because of the correlation between v̂i` − bi` and the error term of the following model

1

I` − 1

Ĝ(bi`|Z`, I`)

ĝ(bi`|Z`, I`)
= λ̂(v̂i` − bi`; θ) + εi`,

i = 1, . . . , I`, ` = 1, . . . , L2. In particular, v̂i` depends on Ĝ(·|·, ·). We propose instead

an estimator in the spirit of a semiparametric Generalized Method of Moments (GMM)

11Note that the function λ(·) can take different shapes. For instance, for a CRRA specification, λ(·) is

strictly concave if 0 ≤ c < 1 and strictly convex if c > 1.
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estimator.12 In the general case, for any b ∈ (b, b] since G(b|z, I)/[(I − 1)g(b|z, I)] =

λ(v − b; θ), we have θ = Ψ(G(b|z, I)/((I − 1)g(b|z, I)), v − b).13 We then propose to

estimate θ as follows

θ̂ =
1

N

I∑̀

i=1

L2∑

`=1

Ψ

(
1

I` − 1

Ĝ(bi`|Z`, I`)

ĝ(bi`|Z`, I`)
, v̂i` − bi`

)
,

where N is the total number of bids when pooling the data. Let us consider the CRRA

case. A CRRA specification is of particular interest as it encompasses the case of risk

neutrality, i.e. c = 0 or θ = 1. Thus

θ̂ =
1

N

∑

i`

(I` − 1)(v̂i` − bi`)
ĝ(bi`|Z`, I`)

Ĝ(bi`|Z`, I`)
. (8)

We study the asymptotic properties of such an estimator. Let [(I`−1)(v̂i`−bi`)/Ĝ(bi`|Z`,

I`) = wi`, which is a random variable. Thus θ̂ = (1/N)
∑

i

∑
` wi` ĝ(bi`|Z`, I`). Since

v̂i` and Ĝ(·, ·, ·) converge faster than ĝ(·|·, ·), the consistency rate of θ̂ is given by the

one of ĝ(·|·, ·). To avoid the double sum, we index the observations by n giving θ̂ =

(1/N)
∑N

n=1 wnĝ(bn|Zn, In). The following proposition shows the asymptotic normality of

our estimator. Moreover, our semiparametric estimator is
√

N consistent.

Proposition 2: Under Assumption A1 (see appendix), we have

√
N(θ̂ − θ0)

d−→ N (0, Var0{[wn + E(wn|bn, Zn, In)]g0(bn|Zn, In)}) ,

where θ0 = E0[wng0(bn)].

The assumptions in A1 are quite standard. In particular, they require that R + 1 > d+ 1

and Nh∗2(d+1)
g → ∞ and Nh∗2(R+1)

g → 0 as N → ∞. Consequently, the bandwidth h∗
g

used in ĝ(·|·) in (8) should be smaller than the optimal bandwidth resulting in some

undersmoothing and in a consistency rate slower than N (R+1)/(2R+d+3) . The asymptotic

12See Powell (1994) for a survey on semiparametric estimation.
13The function λ(·; θ) needs to be monotonic in θ to allow for a unique solution, which is the case for

both CRRA and CARA specifications.
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normality of θ̂ and the derivation of its variance allow us to test for risk neutrality, i.e.

H0 : θ̂ = 1. The proof of Proposition 2 is given in the appendix. Proposition 2 can extend

to the case of a general specification of the utility function.

3 Timber Data

As is well known, the US Forest Service (USFS) is selling standing timber from publicly

owned forests through both first-price sealed-bid auctions and ascending auctions. Though

both auction designs can be found, the USFS is using more frequently ascending auctions

despite recommendations by the Congress in 1976 to adopt first-price sealed-bid auctions.

With the exception of Hansen (1985) and Athey, Levin and Seira (2004), the abundant

previous empirical literature on USFS timber auctions has used data from a single auction

design exclusively while addressing important economic issues. Adopting a private value

framework, Baldwin, Marshall and Richard (1997) study collusion in ascending auctions

while Haile (2001) analyzes the bidding behavior when bidders consider potential resale

opportunities after the auction. Athey and Levin (2001) study the practice of skewed

bidding when bidders bid on species and when payments are based on actual harvested

values. The data analysis conducted in Athey and Levin (2001) suggests that bidders are

risk averse as their bidding behavior seems consistent with a diversification of risk among

species. Potential bidders’ risk aversion has been also found by Baldwin (1995) using a

reduced form approach. Because our objective is to focus on the empirical assessment

of potential bidders’ risk aversion, issues such as collusion and resale markets among

others are left aside. Campo, Guerre, Perrigne and Vuong (2006) show the complexity

of estimating risk aversion when only first-price sealed-bid auction data are available.

Under a parametric specification of the bidders’ utility function and a conditional quantile

restriction that are both needed to identify bidders’ risk aversion, their empirical results

show significant risk aversion in USFS auctions.

We use data from the states covering the western half of the US, which includes regions
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1 to 6 as labelled by the USFS. A large part of forestry in these regions is publicly owned

and represents an important supply of timber in the country. We focus on the auctions

organized in 1979, during which 1,796 ascending auctions and 598 first-price sealed-bid

auctions were held.14 Our study focuses on the 1,411 ascending auctions and the 378

sealed-bid auctions in which at least two bidders participated.15 Note that this large

number of auctions is especially attractive when considering nonparametric estimators.

Since we consider a general specification for the utility function, we are interested in the

total bids for every tract, i.e. the average bid per unit of volume measured in thousand

board feet or mbf multiplied by the estimated volume across all the species composing

the tract. The USFS provides detailed information on the estimated volume of timber,

the number of acres of the parcel, the estimated appraisal value of the timber, the region

where the auction took place, the season during which the auction was held, the exact

location of the timber parcel, the term of the contract, the logging costs as well as other

costs such as road construction costs, the number of bidders who have submitted a bid

as well as their bids in dollars and their identity. An unusual characteristic of these

auctions is that the number of bidders is recorded for ascending auctions since firms

need to submit a qualifying bid prior to the auction. The appraisal value of timber is

computed by the USFS taking into account the heterogeneity of timber quality within

each parcel. This information is especially useful to the analyst as it provides a good

measure of heterogeneity across auctioned objects.

The USFS announces a reserve price at the beginning of the auction. It is well accepted

among economists that this reserve price does not act as a screening device as it is set

too low. Using the first-price sealed-bid auction data, we have computed the conditional

probability that a bid is in the neighborhood of the reserve price, results suggest that

the reserve price does not truncate the bid distribution.16 We can then consider that the

14For the purpose of comparison with the results obtained by Campo, Guerre, Perrigne and Vuong

(2006) using a semiparametric approach, we use the same year and regions as in that paper.
15A total of 175 auctions did not receive any bid, while 430 auctions received a single bid.
16Specifically, we have estimated nonparametrically the probability Pr(p0 ≤ b ≤ (1 + δ)p0|Z), where

17



reserve price is nonbinding as a reasonable approximation.17 Table 1 gives some basic

statistics on some key variables. The bids, winning bids and appraisal values are given in

dollars, while the volume is given in mbf.18

Table 1: Summary Statistics

Ascending Auctions Sealed-Bid Auctions

L = 1, 411 L = 378

Mean STD Mean STD

Winning Bids 1,309,876.48 1,939,234.25 211,638.75 520,461.78

Bids – – 202,563.66 494,178.42

Volume 4,998.23 5,507.21 1,624.76 3,152.53

Acres 1,129.08 4,749.46 1,348.64 3,590.59

Appraisal Value 419,845.50 556,259.29 76,864.92 226,561.62

Number of Bidders 5.35 2.87 3.72 1.81

We note some important differences in the tract characteristics between the ascend-

ing and sealed-bid auctions. The volume of timber is on average three times larger in

ascending auctions than in sealed-bid auctions though displaying less variability in as-

cending auctions than in sealed-bid auctions as measured by the coefficient of variation.

p0 is the reserve price, Z is the total appraisal value and δ an arbitrary value larger than 0. For an

average appraisal value, we find that this probability is equal to 1.4% for δ = 0.05 and 4.5% for δ = 0.10

suggesting that the truncation on the bid distribution due to the reserve price is minor. See also Haile

(2001) who provides several arguments in favor of nonbinding reserve prices.
17The relatively large number of auctions which did not receive any bid might suggest the opposite. A

further analysis of the number of participants shows that some exogenous characteristics explain bidders’

participation.
18The highest bid is recorded by the USFS for every bidder in ascending auctions. Since the format

used in ascending auctions is quite different from the theoretical model of ascending auctions, we consider

only the winning bid in the ascending auctions because only the winning bid can be considered as relevant

and can be approximated by the theoretical auction model. Such an assumption has been made in other

empirical studies involving ascending auction data.
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Consequently, the mean for the total appraisal value is quite different between the two

auction formats. This difference is not only due to a difference in volume of timber. When

computing the mean for the appraisal value per unit of volume, we find it equal to 89.34

in ascending auctions and to 57.23 in sealed-bid auctions suggesting that the quality of

timber is higher in tracts sold through ascending than sealed-bid auctions. This differ-

ence can also be explained by a larger density of timber per acre in parcels sold through

ascending auctions than in parcels sold through first-price sealed-bid auctions, 15.96 and

7.26, respectively. As a matter of fact, parcels are almost of the same size on average

between the two auctions. To summarize, the parcels sold through ascending auctions

involve on average a higher volume of timber, a better quality of timber and a higher

density of timber than parcels sold through first-price sealed-bid auctions for a similar

area. As expected, the winning bids reflect these differences.19 Ascending auctions tend

to attract on average more bidders than sealed-bid auctions, 5.35 and 3.72, respectively.

This suggests that the number of bidders is a function of the lot characteristics. It is in-

teresting to investigate further these two issues, namely the choice of the auction format

and the number of participants since both depend on lot characteristics.20

A simple probit model assessing the impact of some exogenous variables on the prob-

ability to choose an ascending auction over a sealed-bid auction confirms that the volume

plays an important role with a highly significant coefficient, while the coefficient for the

density of timber is also significant to a much less extent. The coefficient for the appraisal

value measured by unit of volume of timber is insignificant. The results also show that

some regions are more likely to adopt ascending auctions than sealed-bid auctions such as

regions 2, 3 and 6.21 Other variables such as the quarter dummies during which auctions

were held do not provide significant coefficients. The pseudo R2 is equal to 0.87, showing

19Table 1 reports only the main variables. Table 2 will further show that appraisal value, volume and

density explain more than 90% of the variability in the winning bids through a linear regression.
20Detailed results are available upon request to the authors.
21We do not observe any sealed-bid auction in Region 2.
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a respectable adjustment.

We also estimate a regression model to assess the factors explaining the number of

participants including the auctions with no bidder and one bidder. This gives a total of

1,796 ascending auctions and 598 sealed-bid auctions. We consider a wide range of vari-

ables such as the appraisal value per mbf, the total volume, the timber density, region and

season dummies as well as a dummy for ascending auction when data from both auction

formats are combined. We do not include the reserve price in this regression model since

it is highly correlated with the appraisal value with a coefficient of correlation equal to

0.92. For sealed-bid auctions, larger volume of timber, auctions organized in Region 6

and auctions during the spring season tend to attract more bidders. The pattern is some-

what different for ascending auctions. Larger volume of timber, larger density of timber,

auctions organized in Region 5 and auctions organized during the winter season tend to

attract a larger number of bidders. Note that the p-values for volume and timber density

are less than 0.005 for ascending auctions giving strongly significant coefficients. The R2

of such a regression is about 0.40 for ascending auctions and 0.20 for sealed-bid auctions

suggesting some unobserved heterogeneity. An interesting feature of this regression when

pooling all the data is that the dummy for the auction format is insignificant while con-

trolling for other exogenous factors. This suggests that there is a priori no self-selection of

bidders in the sense that the auction format does not affect the decision of a bidder to par-

ticipate. This issue is crucial to our problem since we use the ascending auction bidding

data to estimate the latent density of bidders’ private value. Because of the importance

of this issue, we have also used information on bidders’ identity given by the data. In

every region except Region 2 (see footnote 21), we have tracked independently over the

two auction samples twenty companies according to their high participation frequency.

We have then compared for every region these two lists, each containing the identity of

twenty firms. We find an important intersection in the sense that very few of these firms

participate exclusively to ascending or sealed-bid auctions. Consequently, we can consider

as a reasonable approximation that, despite ascending auctions tend to attract more bid-
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ders than sealed-bid auctions, the set of bidders is similar across the two auction formats

and that bidders’ decision participation seems to be independent of the auction format

but rather influenced by the tract (observed and unobserved) characteristics.22

Table 2: Winning Bids

Ascending Auctions Sealed-Bid Auctions

Coeff. t-value Coeff. t-value

Constant 1.5862 18.06 2.0132 12.97

Appraisal Value 0.5283 39.24 0.4291 19.57

Volume 1.0824 119.50 1.0664 65.97

Density 0.0056 0.53 0.0087 0.63

# Bidders 0.4651 16.27 0.4712 8.67

R2 0.9406 0.9311

While considering auctions with more than 2 bidders, Table 2 provides the results of

the regression of the logarithm of the total winning bids on the logarithm of the appraisal

value per mbf, the logarithm of the total volume, the logarithm of the density and the

logarithm of the number of bidders.23 The estimated coefficients can be interpreted as

elasticities. They do not vary much across the two auction formats except for the appraisal

value, namely an 1% increase in the appraisal value increases the winning bid by 0.53%

in ascending auctions and by 0.43% only in sealed-bid auctions everything else being

equal. The elasticity with respect to density is insignificant in both auctions. Winning

bids are quite sensitive to a variation in competition.24 A Chow test weakly rejects the

equality of the slope coefficients. The fact that the winning bids are roughly explained

22We focus on the twenty most important players in these auctions for every region based on their

participation frequency. Some of these firms also participate to auctions in other regions in proximity.

On the other hand, the data show a large number of firms participating to a single auction.
23We do not include in this regression season and region dummies as they do not provide significant

coefficients.
24This result is confirmed when computing for sealed-bid auctions the ratio of the difference between

the winning bid and the second highest bid by the winning bid. This ratio is on average equal to 0.16 and
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by the same variables with similar coefficient magnitudes across the two auction designs

suggests that the set of participants is not different. On the other hand, the constant

differs significantly across the two regressions. As discussed previously, the number of

participants could capture some unobserved heterogeneity across tracts. The relatively

large R2 in Table 2 suggests that the heterogeneity across auctioned tracts is quite well

captured with the appraisal value, the volume and the number of bidders. The estimation

in the following section is performed while conditioning on the appraisal value, the volume

and the number of participants.

Table 3: Sample Selection on Winning Sealed-Bids

Sealed-Bid Auctions

Coeff. t-value

Constant 2.2570 11.34

Appraisal Value 0.3819 12.18

Volume 1.0167 30.69

Density -0.0232 -0.98

# Bidders 0.4394 7.56

Sample Selection 0.6157 1.75

The summary statistics in Table 1 suggest some sample selection as parcels with

a larger volume of timber are sold through ascending auctions. We perform a sample

selection correction following Heckman selection model in two steps. In a first step, we

estimate a probit with the dependent variable equal to one for sealed-bid auctions. We

find that parcels with larger volume, density and appraisal value are less likely to be

sold through sealed-bid auctions. The regression of the logarithm of the winning bids for

sealed-bid auctions with sample selection are given in Table 3. The coefficient for sample

sharply decreases when the number of bidders increases. As a matter of fact, auction theory predicts that

bids increase in the number of bidders within the independent private value paradigm. Such a result still

holds with risk aversion. With affiliated private values, bids may decrease with the number of bidders.

See Pinkse and Tan (2005). Thus our results would favor the independence of private values.
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selection is significant at 10% only with a p-value equal to 0.08. Special attention should

be given to the conditional variables in the estimation.

It is interesting to make the parallel with the results obtained by Athey, Levin and

Seira (2004) who use ascending and sealed-bid sales in two forests in Northern region

and in California over 1982-1990. Their empirical analysis of the data shows that the

ascending auction format is more likely to be chosen for larger volumes as in our data set.

However, the number of participants across the two auctions does not vary as much as in

our data set. They collected additional data on the participating firms, on whether they

are loggers or mills, mills having manufacturing capacity and consequently considered as

large bidders. When taking into account this asymmetry across firms, mills are more

likely to participate to ascending auctions while loggers are more likely to participate to

sealed-bid auctions. Their paper exploits this bidders’ heterogeneity to model endogenous

bidders’ participation and to rationalize the fact that sealed bidding favors small bidders

or loggers in both entry and allocation, while generating more revenue. We did not collect

such data on bidders though our identification result could allow for bidders’ heterogeneity.

We find in our data set, which encompasses more regions over a single year, that in every

region the most active firms are participating to both auctions.

4 Estimation Results

The first step of our estimator consists in estimating the conditional distribution of private

values F (·|·, I). We need first to discuss the choice of the vector of characteristics Z. The

results in Table 2 clearly show that the volume and to a lesser extent the appraisal

value explain an important proportion of the variability of the winning bids in ascending

auctions. Thus we consider a two-dimension vector of exogenous variables Z with total

volume and appraisal value per unit of volume. We perform the nonparametric estimation

of F (·|·, ·) for a given size of bidders I as we do not restrict ourselves to exogenous bidders’

participation. The data provide 241 auctions with 2 bidders, 231 auctions with 3 bidders,

23



189 auctions with 4 bidders, 178 auctions with 5 bidders, 141 auctions with 6 bidders

and so on. The sealed-bid auction data do not provide, however, such large numbers

of auctions, namely 107 auctions with 2 bidders, 108 auctions with 3 bidders, 58 and 54

auctions with 3 and 4 bidders, respectively. Given the small number of sealed-bid auctions

with 3 and 4 bidders, we consider auctions with 2 and 3 bidders.

Because of the use of nonparametric methods, the estimation results for conditional

distributions are mainly presented through graphs. The two-dimension vector of charac-

teristics makes difficult any graphical representation of distributions and densities. Thus

we need to choose some values for Z to represent the conditional bid and private value

distributions. Moroever, the range of values for volume is quite different for ascending and

sealed-bid auctions with a mean almost three times larger for ascending auctions than for

sealed-bid auctions, while the appraisal value is on average about 50% more for ascending

than for sealed-bid auctions. Thus we need to check whether we have enough observations

for ascending auctions in the range of values for sealed-bid auctions. For this purpose, we

present the scatter plots of volume versus appraisal value for both auction data for I = 2

and I = 3 in Figures 1 and 2, respectively. Note that Figures 1 and 2 do not contain all

the observations to facilitate the interpretation of such figures. We observe an important

concentration of observations for volumes between 100 and 1,000 and for appraisal values

between 10 and 150. When considering the full sample, the median for appraisal value for

sealed-bid auctions is equal to 43.65, while the median value for volume is equal to 490

indicating an important skewness for the latter (see also Table 1). Figures 1 and 2 show

that despite displaying on average larger volume and appraisal values, ascending auction

data provide a significant number of observations in the range of values discussed previ-

ously. Another difficulty arises from the large dispersion and the large range of values

for the volume in ascending auctions relative to sealed-bid auctions. Thus, we need to

reduce the range of values for volume on which we estimate the conditional private value

distribution. We propose to consider the 90% percentile of the volume for sealed-bid

auctions as the cut-off point for ascending auctions. These quantiles are equal to 1,860
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and 3,086 for I = 2 and I = 3, respectively. This leads us to exclude 99 and 74 ascending

auctions from the estimation of the conditional private value distribution for I = 2 and

I = 3, respectively. By doing so, we obtain estimates for the conditional distributions

while solving for the problem of different ranges of values for the conditioning variables.

We estimate nonparametrically the distributions F (·|z, I = 2) and F (·|z, I = 3) with

z = (z1, z2) = (490.00, 43.65) corresponding to the median values for volume and appraisal

values for sealed-bid auctions. These estimates are displayed on Figure 3. Using the

distributions of order statisics, we can also estimate the density. In particular, for I = 2

f 1,2(v|z, 2) = 2f(v|z, 2)(1 − F (v|z, 2)). We can estimate nonparametrically f 1,2(v|z, N)

using a kernel estimator as in (7). Thus f̂(·|z, 2) = f̂ 1,2(·|z, 2)/[2(1 − F̂ (·|z, 2))], where

F̂ (·|z, 2) denotes the estimated distribution obtained in the first step of our estimation

procedure, f̂ 1,2(·|z, 2) denotes the nonparametric estimate of f 1,2(·|z, I). Similarly for

I = 3. Figure 4 displays both conditional densities with the conditional density for I = 2

more peaked than for I = 3. We have performed the estimation at other conditioning

values for volume and appraisal values and still obtained different conditional densities

of private values. Thus these results suggest that the distribution of private values differ

across the number of bidders. As discussed previosuly, the number of bidders may capture

some unobserved heterogeneity.

The next step consists in estimating nonparametrically the bid distribution G(·|z, I)

using (6). Figures 5 and 6 display the conditional distributions of private values and bids

for I = 2 and I = 3, respectively. An interesting feature of these figures is that they

allow us to test a first prediction of the model. In particular, since v > b on (0, s(v)],

the bid distribution should stochastically dominate the private value distribution. We

observe such a stochastic dominance in both figures. The Kolmogorov test statistic leads

to reject the equality of distributions for I = 2 and I = 3.25 As discussed previously, this

test represents a first step toward the validity of the model. From the estimated distrib-

ution Ĝ(·|·, ·), we can estimate for every observation bi` (for auctions with two and three

25A similar exercise has been conducted at different values of z leading to the same conclusion.
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bidders) the corresponding α-quantile such that b̂(α, Z`, I`) = bi`. From the estimated

distribution F̂ (·|·, ·), we can then estimate the corresponding α-quantile v̂(α, Z`, I`). This

value provides the estimated private value v̂i`. It remains to estimate the bid density

using (7). This gives ĝ(bi`|Z`, I`). This information will allow us to recover λ(·). To avoid

boundary effects due to the use of kernel estimators, we propose a simple trimming rule

as follows. We estimate λ(·) while using only observations bi` corresponding to the con-

ditional α-quantiles with α ∈ [0.05, 0.95]. Figures 7 and 8 display the scatter plot of the

pairs (v̂i` − bi`, Ĝ(bi`|Z`, I`)/[(I − 1)ĝ(bi`|Z`, I`)]) for I = 2 and I = 3, respectively. The

continuous line represents the smoothed function. These figures display as well the λ(·)
function obtained for the parameters for CRRA and CARA specifications of the utility

function using the estimator defined in (8). The (bold) dashed line represents the (CRRA)

CARA estimated model. These figures do not allow us to check whether λ(0) = 0 as we

cannot estimate properly this function close to the boundaries. We remark, however, that

the displayed scatter plots form a shape, which could reasonably go to zero at zero.

Using the estimated λ(·), we can recover the function U(·), whose shape is more

informative since its concavity would indicate bidders’ risk aversion. Figures 9 and 10

display such utility functions as well as the estimated CRRA and CARA utility functions

for I = 2 and I = 3, respectively. Because the scale is irrelevant, we have normalized the

utility function to be in the interval [0, 1]. The displayed utility functions are increasing

and concave indicating risk aversion. We obtain ĉ = 0.5928 for a CRRA specification

and â = 0.00004 for a CARA specification when I = 2. Figures 7 and 9 suggest that

the CRRA specification provides a better fit with a tendency to overestimate the utility

function. For I = 3, we obtain ĉ = 0.5994 for a CRRA specification and â = 0.000042

for a CARA specification. We note that the values for risk aversion parameters do not

vary much from the case I = 2. As for I = 2, a CRRA specification provides a better fit

while we observe the same tendency, i.e the CRRA specification tends to overestimate the

utility function. In particular, the estimated CRRA utility function is somewhat above

the nonparametrically estimated utility function, while the CARA utility function tends
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to give larger values of utility. This discrepancy tends, however, to reduce for larger

rent values. When comparing the estimated utility functions for I = 2 and I = 3, we

observe that they are almost identical. It is interesting to test for risk neutrality using the

estimation results for a CRRA specification. In particular, c = 0 or θ = 1 corresponds to

risk neutrality. Using Proposition 2, we can perform such a test. The t-values for testing

H0 : θ̂ = 1, which are equal to -11.86 for I = 2 and -7.71 for I = 3 clearly reject risk

neutrality in both cases.

We have performed the estimation of the private value distribution using the results of

Campo, Guerre, Perrigne and Vuong (2006) under a CRRA specification and a linear up-

per bound for the private value ditribution. In particular, the private values are recovered

from v̂i` = bi` +[(θĜ(bi`|Z`, I`))/((I−1)ĝ(bi`|Z`, I`))], with θ = 0.6813. We have then esti-

mated the conditional distribution of private values for z = (z1, z2) = (490.00, 43.65). We

have performed the same exercise with θ = 1 (risk neutrality). Figures 11 and 12 display

such conditional private value distributions as well as F̂ (·|z, I) obtained from ascending

auctions for I = 2 and I = 3, respectively.26 The difference between our estimated private

value distribution with the one obtained with θ = 1 can be explained by the presence

of risk aversion as tested above. The difference with the private value distribution from

Campo, Guerre, Perrigne and Vuong (2006) can be explained by various factors. Campo,

Guerre, Perrigne and Vuong (2006) tend to underestimate risk aversion relative to our

results. This may due to a misspecification issue on the upper bound of F (·) in this paper.

Their results are been obtained while (i) conditioning on the total appraisal value (instead

of the volume and the appraisal value per mbf in our case), (ii) pooling the data across

the different number of bidders, and (iii) excluding 79 auctions because of some outliers

causing problems in the estimation of the upper boundary of the bid distribution. It is,

26In Figures 11 and 12, the upper distribution has been estimated from ascending auction data. The

middle distribution has been estimated from sealed-bid bid auction data and the CRRA risk aversion

estimate in Campo, Guerre, Perrigne and Vuong (2006). The lower distribution has been estimated from

sealed-bid auction data, while imposing risk neutrality.
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however, possible that, despite our efforts to check for this issue, the ascending auction

data do not provide an exact representation of the bidders’ private value distribution in

sealed-bid auctions.

5 Conclusion

The paper shows how to identify nonparametrically the bidders’ utility function when

bidding data from both ascending and first-price sealed-bid auction formats are available

to the analyst. The utility function, which is at the core of decisions under uncertainty

has not been estimated nonparametrically so far on data. As a matter of fact, little is

known in practice on how agents evaluate their gain when facing uncertainties. Relying

on bidding data from the timber sales at the US Forest Service, our empirical results

show that the recovered utility function is increasing while displaying some concavity. A

CRRA specification partly captures bidders’ risk aversion.

Our identifying strategy exploits data from two auction formats, which can be quite

restrictive as institutions use in general a single auction design. Guerre, Perrigne and

Vuong (2006) exploit some exclusion restrictions such as the independence of the private

value distribution upon the number of bidders to identify nonparametrically the utility

function. Their identification result requires the construction of a series of differences in

quantiles, which are serially correlated. This feature greatly complicates the asymptotic

properties of such an estimator though its implementation on data could be performed.

It would then be interesting to compare our results to those obtained using such a result.

Such empirical comparisons would allow us to assess the relevance of various restrictions

used to identify the bidders’ utility function.
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Appendix

The appendix provides Assumptions A1 under which Proposition 2 holds as well as

the proof of Proposition 2. The assumptions and the proof follow the assumptions and

proofs of Vuong (2003) regarding the average density and Powell, Stock and Stocker

(1989, Theorem 3.2) regarding average derivatives. To simplify the proof, we omit the

conditioning on (Z, I). We can easily extend Assumption A1 and the proof of Proposition

2 to include a vector (Z, I) of exogenous variables.

Assumptions A1:Let (W, B) ∈ IR2 distributed with a joint density φ(·, ·). Suppose that

(i) For R + 1 ≥ 2, the density φ0(·, ·) is R + 1 continuously differentiable on IR2. The

conditional density φ0(B|W ) has uniformly bounded derivatives, i.e. ||φ(s)
0 || < M < ∞

for 0 ≤ s ≤ R + 1. Moreover, E0[W
2] and E[W ] are finite.

(ii) The function K(·) is an (R+1)th order kernel on IR, i.e
∫

K(u)du = 1,
∫

K(u)usdu =

0 for 1 ≤ s < R + 1 and
∫
|K(u)||u|R+1du is finite. Moreover, ||K(·)|| and

∫
K2(u)du are

finite.

(iii) Nh4 → ∞ and Nh2(R+1) → 0 when N → ∞.

Proof: The proof is based on U-statistics. We have

θ̂ =
1

N2

N∑

n=1

WnKh(0) +
1

N2

N∑

n=1

∑

ñ=1,ñ 6=n

NWnKh(Bn − Bñ) ≡ RN +
N(N − 1)

N2

UN ,

where Kh(u) = (1/h)K(u/h). Because Kh(0) = (1/h)K(0), it gives

RN =
1

N2

N∑

n=1

Wn
1

h
K(0) = Op

(
1

Nh

)
= o

(
1√
N

)
,

because
√

Nh → ∞ and by A1-(iii). The term UN can be written as a U-statistic, namely

UN =
1

N(N − 1)

N∑

n=1

N∑

ñ=1,ñ6=n

WnKh(Bn − Bñ)

=
1

N(N − 1)

N−1∑

n=1

N∑

ñ=n+1

[WnKh(Bn − Bñ) + WñKh(Bñ − Bn)]
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=




N

2




−1
N−1∑

n=1

N∑

ñ=n+1

pN(Yn, Yñ),

where Yn = (Wn, Bn) and Yñ = (Wñ, Bñ). Let ÛN be the projection of UN of {Y1, . . . , YN}
(see Serfling (1980))

ÛN ≡ θN +
2

N

N∑

n=1

(rN(Yn) − θN),

where rN(Yn) = E0[pN (Yn, Yñ)|Yn] and θN = E0[rN(Yn)] = E0[pN(Yn, Yñ)] for ñ 6= n.

Step 1: We need to show that
√

N(UN − ÛN) = op(1). By Lemma 3.1 in Powell, Stock

and Stoker (1989), it suffices to show that E0[p
2
N(Yn, Yñ)] = o(N). Using the change of

variable u = (bñ − bn)/h, it gives

E0[p
2
N(Yn, Yñ)] =

1

4

∫ ∫ ∫ ∫
[wnKh(bn−bñ) + wñKh(bñ−bn)]2φ0(bn, wn)φ0(bñ, wñ)dbndwndbñdwñ

=
1

4

∫ ∫ ∫ ∫
1

h4

[
wnK

(
bn−bñ

h

)
+wñK

(
bñ−bn

h

)]2

φ0(bn, wn)φ0(bñ, wñ)dbndwndbñdwñ

=
1

4h2

∫ ∫ ∫ ∫
[wnK(−u)+wñK(u)]2φ0(bn, wn)φ0(bn+uh, wñ)dbndwndudwñ

≤ 1

2h2

∫ ∫ ∫ ∫
[w2

nK2(−u)+w2
ñK

2(u)]φ0(bn, wn)φ0(bn+uh, wñ)dbndwndudwñ,

because (a + b)2 ≤ 2(a2 + b2). Since φ0(bn + uh|wñ)φ0(wñ) = φ0(bn + uh, wñ), the last

term can be written as

1

2h2

∫ ∫ ∫ ∫
[w2

nK2(−u) + w2
ñK

2(u)]φ0(bn, wn)φ0(bn + uh|wñ)φ0(wñ)dbndwndudwñ.

Since φ(bn + uh|wñ) is bounded from infinity by (say) M and
∫

K2(−u)du =
∫

K2(u)du,

we need to show that K(u)[w2
n+w2

ñ]φ0(bn, wn)φ0(wñ) is integrable with respect to bn, u, wn

and wñ, i.e. the integral takes a finite value. We can easily perform the integration with

respect to bn, the term φ0(bn, wn) becomes φ0(wn). Moreover, ||K(·)|| < ∞ by A1-(ii).

Thus it remains
∫

w2
nφ0(wn)dwn+

∫
w2

ñφ0(wñ)dwñ. Consequently, the dominating function

is integrable. Using the Lebesgue Dominated Convergence Theorem, when h → 0, the

30



quatruple integal converges to
∫

K2(u)du
∫ ∫ ∫

[w2
n + w2

ñ]φ0(bn, wn)φ0(bn, wñ)dbndwndwñ <

∞. Thus E0[p
2
N(Yn, Yñ)] = (1/2h2)O(1) = o(N) since Nh2 → ∞ by A1-(iii).

Step 2: We need to show that
√

N(ÛN − θn)
d−→ N (0, Var0{[wn + E(wn|bn)]g0(bn)}).

Using the change of variable u = (bñ − Bn)/h, we have

rN(Yn) =
1

2h2

∫ ∫ [
WnK

(
Bn − bñ

h

)
+ wñK

(
bñ − Bn

h

)]
φ0(bñ, wñ)dbñdwñ

=
1

2

[∫ ∫
WnK(u)φ0(Bn − uh, wñ)dudwñ +

∫ ∫
wñK(u)φ0(Bn + uh, wñ)dudwñ

]

=
1

2
[Wn + E0(Wn|Bn)]

∫
φ0(Bn, wñ)dwñ + tN (Yn).

Note that
∫

φ0(Bn, wñ)dwñ = g0(Bn) and E0[(1/2)[Wn + E0(Wn|Bn)]g0(BN)] = θ0. The

term tN(Yn) is defined as

tN(Yn) =
1

2

(∫ ∫
K(u)[Wnφ0(Bn − uh, wñ) − Wnφ0(Bn, wñ)]dudwñ

+
∫ ∫

K(u)[wñφ0(Bn + uh, wñ) − E0(Wn|Bn)φ0(Bn, wñ)]dudwñ

)
.

Moreover, θN ≡ E0[rN (Yn)] = θ0 + E0[tN(Yn)]. The idea is to show that the variance of

tN(Yn) is equal to zero. By definition of
√

NÛN ,
√

N(ÛN −θN ) = (2/
√

N)
∑N

n=1[rN(Yn)−
θN ] and rN(Yn) = (1/2)[Wn + E0(Wn|Bn)]g0(Bn) + tN (Yn). This gives

√
N(ÛN − θN) =

2√
N

N∑

n=1

{
1

2
[Wn + E0[Wn|Bn]]g0(Bn) − θ0

}
+

2√
N

N∑

n=1

[tN(Yn) − E0[tN (Yn)]],

where the second term is denoted TN . We have Var0(TN ) = 4Var0[tN (Yn)] because

the Yns are i.i.d. Note that Var0(TN) = E(t2N ) − E2(tN). Since E2
0(tN) ≥ 0, we have

4Var0[tN(Yn)] ≤ 4E0[t
2
N (Yn)]. Using (a + b)2 ≤ 2(a2 + b2), we have

4E0[t
2
N(Yn)] ≤ 2E0

{∫ ∫
K(u)[Wnφ0(Bn − uh, wñ) − Wnφ0(Bn, wñ)]dudwñ

}2

+2E0

{∫ ∫
K(u)[wñφ0(Bn + uh, wñ) − E0(Wn|Bn)φ0(Bn, wñ)]dudwñ

}2

.

We study the first and second term of the dominating term. To do so, we con-

sider the (R + 1) Taylor expansions of φ0(Bn + uh, wñ) and φ0(Bn − uh, wñ) around
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BN . Note that the terms involving the derivatives of φ0(·, ·) with respect to its first

argument up to the Rth derivative disappear because of the kernel, which is of order

R + 1 by A1-(ii). We look at the argument of the first term. It remains the term
∫ ∫

K(u)Wnφ
(R+1)
0 (B∗

n, wñ)[(−uh)R+1/(R + 1)!]dudwñ where Bn − uh < B∗
n < Bn. Using

the Bayes rule, taking the absolute value and A1-(ii) imply that the argument of the

first term is dominated by (M/(R + 1)!)hR+1wn

∫
|K(u)||u|R+1du since

∫
φ0(wñ)dwñ =

1. By A1-(iii),
∫
|K(u)||u|R+1du is finite. Thus the first term is dominated by (say)

(M̃/(R + 1)!)h2(R+1)E0[W
2
n ]. By A1-(i), E0[W

2
n ] is finite. While taking the square, we

have a term, which is O(h2(R+1)). We look at the argument of the second term. Using

similar arguments, it remains (hR+1/(R+1)!)
∫ ∫

K(u)uR+1wñφ
(R+1)
0 (B∗∗

n |wñ)φ0(wñ)dudwñ

where Bn < B∗∗
n < Bn + uh. While taking the absolute value this term is dominated by

(hR+1/(R + 1)!)
∫ [∫

φ
(R+1)
0 (B∗∗

n |wñ)|K(u)||u|R+1du
]
wñφ0(wñ)dwñ. Since ||φ(R+1)

0 (B|w)||,
∫
|K(u)||u|R+1du and E[wn] are finite by A1 (i)-(ii), we have (hR+1/(R + 1)!)O(1). While

taking the square, it gives O(h2(R+1)). Thus we have shown that Var0[TN ] = 4Var0[tn(Yn)]

≤ O(h2(R+1)). By Chebyshev’s inequality, TN = op(1) as h → ∞. Therefore,

√
N(ÛN − θN) =

2√
N

N∑

n=1

{
1

2
[wn + E0(wn|Bn)]g0(BN) − θ0

}
+ op(1)

d−→ N (0, Var0{[wn + E0(wn|Bn)]g0(Bn)}) .

Step 3: We need to show that
√

N(θN − θ0) = o(1). Using the change of variable

u = (bñ − bn)/h, we have

θN = E0[rN (Yn)]

=
1

2

∫ ∫ ∫ ∫
1

h2

[
wnK

(
bn − bñ

h

)
+ wñK

(
bñ − bn

h

)]
φ0(bñ, wñ)φ0(bn, wn)dbñdwñdbndwn

=
1

2

∫ ∫ ∫ ∫
[wnK(−u) + wñK(u)]φ0(bn, wn)φ0(bn + uh, wñ)dudwñdbndwn.

While using a Taylor expansion for φ0(bn + uh, wñ) around bn, the terms involving the

derivatives of φ0(·, ·) up to R disappear. It remains

θN =
1

2

∫ ∫ ∫
wnφ0(bn, wn)φ0(bn, wñ)dbndwndwñ
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+
1

2

∫ ∫ ∫
wñφ0(bn, wn)φ0(bn, wñ)dbndwndwñ + O(hR+1),

since the last two terms involving the (R+1) derivatives of the Taylor expansion are some

O(hR+1). Thus, by using the Bayes rule, θN =
∫ ∫ ∫

wnφ0(wn|bn)g0(bn)φ0(bn, wñ)dbndwndwñ

= E0{E0[wn|bn]g0(bn)}+ O(hR+1) = E0{wng0(bn)} = θ0 +O(hR+1). Thus
√

N(θN − θ0) =

O(
√

NhR+1) = o(1) since Nh2(R+1) → 0 by A1-(iii).

Step 4: Thus

√
N(θN − θ0) =

√
NRN +

N(N + 1)

N2

{√
N(UN − ÛN ) +

√
N(UN − θN) +

√
N(θN − θ0)

}

−
√

Nθ0 +
N(N + 1)

N2

√
Nθ0.

Using the results of Steps 1–3, we obtained the desired result.2
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