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1 Introduction

The equilibrium manifold (E henceforth) is defined as the set of pairs of price
vectors and endowments such that the aggregate excess demand function is equal
to zero. The global and local topological structure of the set E has been deeply
investigated by Balasko (see [1] and his monograph [4]). One of the global topo-
logical properties of this set, which we are concerned with in our analysis, is the
arc-connectedness property. This property has a straightforward economic mean-
ing: let ω and ω′ be two m-tuples of initial endowments and let p and p′ be two
equilibrium price vectors associated with ω and ω′, respectively. Then there exists
a continuous modification (ω1(t), . . . , ωm(t)), t ∈ [0, 1], from the m-tuple of ini-
tial endowments ω to ω′ such that for every t there is an equilibrium price vector
p(t) associated with (ω1(t), . . . , ωm(t)) and p(t) is a continuous function, p(0) = p
and p(1) = p′. Observe that there exist infinite trajectories connecting two given
equilibria. Furthermore, the space E also enjoys the property of being simply con-
nected, i.e., it is always possible to deform continuously a continuous trajectory
linking two equilibria, (p, ω) and (p′, ω′), to another one linking the same equilibria
(see Section 4 in [1]) and still lying on E.

In his monograph ([4] p. 69) Balasko observed that, under the assumption
that the initial and final equilibria (p, ω) and (p′, ω′) are exogenously determined,
a continuous evolution path from the initial to the final state (p′, ω′) should be
considered preferable, from an economic point of view, to any discontinuous one,
being discontinuity synonymous of catastrophes. The motivation of our analysis
is based on the natural question raised by Balasko ([4] p.70) of choosing one path
to follow in the equilibrium manifold E to move from (p, ω) to (p′, ω′). In this
paper we tackle this question. As Balasko observed, one of the most natural
ideas would be to minimize length (i.e. to choose the shortest path). But then
a new problem arises: according to which metric can one define a distance on
the equilibrium manifold? In order to avoid the complication arising from the
definition of a metric economically meaningful (see [10, 9]), it can be observed
that the same argument which has led to prefer a continuous evolution path also
suggests us to choose “regular” paths, namely paths which “avoid” as much as
possible the set of critical equilibria. In fact we recall that only the set of regular
equilibria is characterized by the desirable economic properties of local uniqueness
of equilibria, of the continuity of the equilibrium price correspondence and of the
possibility of comparative statics analysis (see [6]). If the path should cross the set
of critical equilibria, all these properties could be lost giving rise to catastrophes

(see [2]). Therefore we can consider as a rough, but economically relevant, measure
of the length of a path the number of intersection points of the path with the set
of critical equilibria. We recall that the distance is defined as the infimum of the
length of all curves connecting two points. Therefore, the minimal path (i.e., which
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minimizes distance) is identified with the one less catastrophic.
This consideration also suggests us to be concerned with the codimension one

stratum of critical equilibria (S1 henceforth). The reason is that S1 is the only
stratum of critical equilibria which can disconnect E(r). This means that if the
evolution path should link two regular equilibria belonging to two disconnected
components of E(r) \ S1, it would cross S1. On the contrary, it is evident that
there always exists a path connecting two regular equilibria belonging to the same
connected component of E(r) \ S1 which does not intersect the set of critical
equilibria. A natural aspiration, when dealing with equilibria belonging to different
connected components, would be to find a path containing at most one critical
equilibrium. Unfortunately this event crucially depends on the structure of the set
of critical equilibria Ec(r) (see Theorem 2.1). In the more general case, being the
set S1 composed by a union of closed smooth manifolds, the equilibrium manifold is
divided into several connected components. According to our definition of length,
we can say that two equilibria belonging to the same connected component have
distance zero, two points separated by only one stratum of critical equilibria have
distance one, and so on...

In this paper we show that there exists a path connecting the equilibria which
realizes the distance (see Theorem 3.7). As we will see, the possibility of defining
the above distance deeply relies on the Jordan-Brouwer separation theorem (see
Theorem 3.2), a standard result in differential topology.

Some features that characterize our analysis deserve a few comments. First,
total resources are assumed to be fixed. This means that

∑m

i=1 ωi = r, where
r ∈ Rl is a fixed vector. Then the equilibrium manifold is defined as

E(r) = {(p, ω) ∈ S × Ω(r)|
m∑

i=1

fi(p, p · ωi) = r},

where S is the set of normalized prices, Ω(r) is the space of economies and∑m

i=1 fi(p, p · ωi) is the aggregate demand function (see Section 2 below). Sec-
ond, in our construction we heavily rely on the very nice topological properties
enjoyed by the set of critical equilibria Ec(r), this set being a finite and disjoint
union of closed smooth submanifolds Si of E(r) (see [3, 4] or Theorem 2.1 below).

This paper is organized as follows. Section 2 recalls the economic setting.
Section 3 contains our definitions and main results.

2 The economic setting

We consider a pure exchange economy with l goods and m consumers. Let S =
{p = (p1, . . . pl) | pj > 0, j = 1, . . . l, pl = 1} be the set of normalized prices. Let
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Ω = (Rl)m denote the space of endowments ω = (ω1, . . . , ωm), ωi ∈ R
l. We assume

that the standard assumptions of smooth consumer’s theory are satisfied (see [4]
Chapter 2). The problem of maximizing the smooth utility function ui : R

l → R

subject to the budget constraint p · ωi = wi gives the unique solution fi(p, wi), i.e.
consumer’s i demand. Let E be the closed set consisting of pairs (p, ω) ∈ S × Ω
satisfying the following equations:

m∑

i=1

fi(p, p · ωi) =
m∑

i=1

ωi.

The set E is a smooth submanifold of S × Ω globally diffeomorphic to (Rl)m (see
[4]). Let π : E → Ω be the natural projection, i.e. the smooth map defined by the
restriction to E of (p, ω) 7→ ω. Let Ec be the set of critical equilibria, namely the
pairs (p, ω) ∈ E such that the derivative of π at (p, ω) is not onto. We now analyze
the fixed total resources setting. Let r ∈ R

l denote the vector representing the
total resources of the economy and Ω(r) denote the space of economies associated
with the fixed total resources, i.e., Ω(r) = {ω ∈ (Rl)m|

∑m

i=1 ωi = r}. Define

E(r) = {(p, ω) ∈ S × Ω(r)|
m∑

i=1

fi(p, p · ωi) = r},

denote by π : E(r) → Ω(r) the restriction of the natural projection to E(r) and
by Ec(r) the set of critical points of π. It can be shown (see [4]) that (p, ω) is a
critical equilibrium with respect to π : E(r) → Ω(r) if and only if it is a critical
equilibrium with respect to π : E → Ω. The set of critical equilibria when total
resources are fixed is denoted Ec(r). The structure of E(r) and Ec(r) is described
in the following theorem where we summarize some results due to Balasko (see [3]
and [4]).

Theorem 2.1 (Balasko) E(r) is a smooth manifold globally diffeomorphic to

R
l(m−1) and Ec(r) is a disjoint union of closed smooth submanifolds Si, i =

1, . . . , inf(l − 1, m − 1) of E(r). The manifold Si has dimension l(m − 1) − i2

and Si = ∅ for i > inf(l − 1, m − 1).

We will refer to the decomposition Ec(r) = ∪iSi, given by the previous theo-
rem, as Balasko’s stratification of the set of critical equilibria Ec(r). The closed
manifolds Si will be called the strata of this stratification. Observe that for a fixed
i the manifold Si could not be connected. Denote by Sji

i its connected compo-
nents, where the index ji is varying in a countable (possible infinite) set. It is
a challenging problem to study the topology of these strata. In particular, it is
still an open question to understand when the strata Si are a finite union of their
connected components (i.e. the index ji is varying in a finite set).
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3 Main results

In the sequel we identify, without further comments, the equilibrium manifold E(r)
with the Euclidean space R

n, n = l(m − 1), via Balasko’s theorem 2.1. Observe
also that the structure of Ec(r), as defined by the same Theorem 2.1, entitles us to
define a smooth path γ : [0, 1] → E(r), connecting two regular equilibria in E(r),
transversal to Ec(r) if it intersects each stratum Si transversally.

We refer the reader to Section 5 of Chapter 1 and to Chapter 2 in [7] for the
standard material about transversality theory. Actually, the only results about
this theory used in this paper are the following three facts and the Lemma 3.1
below.

(i) Two submanifolds X and Z of R
n are said to be transversal, if for every

point x ∈ X ∩ Z the following holds (see Section 5, Chapter 1, in [7]):

TxX + TxZ = TxR
n = R

n;

(ii) If X and Z are two transversal submanifolds of R
n, then X∩Z is a submani-

fold of R
n. Moreover the codimension of X∩Z in R

n equals the codimension
of X in R

n plus the codimension of Z in R
n (see theorem on page 30 in [7]);

(iii) (Transversality Theorem) Let X and Z be two closed submanifolds of R
n.

Then there exists an arbitrary small vector s ∈ R
n (i.e. the Euclidean norm

of s can be taken arbitrary small) such that the manifold

X + s = {y ∈ R
n| y = x + s, x ∈ X}

intersects Z transversally. In particular (by (ii)) (X +s)∩Z is a submanifold
of R

n (see Section 3, Chapter 2, and the discussion on page 69 in [7]).

In this paper we are only concerned with the intersection between a stratum Si

(i.e. a submanifold of E(r) of codimension i2) and the image Im γ = γ([0, 1]) of a
path γ : [0, 1] → E(r) (i.e. a submanifold of E(r) of codimension n − 1). With a
slight abuse of language, we will say that γ intersects (transversally) the stratum
Si if Im γ intersects (transversally) Si. By (i) above, γ is transversal to Si, for fixed
i, if for every intersection point x0 = γ(t0), t0 ∈ [0, 1], between Im γ and Si the
tangent vector γ

′

(t0) of γ(t) together with Tx0
Si generate a n-dimensional space,

being n = l(m − 1) the dimension of E(r). Hence a path γ is transversal to Si in
the following two cases:

1. the codimension of Si is greater or equal to 1 (i.e. i ≥ 1) and Im γ does not
intersect Si;

5



2. the codimension of Si is one, (i.e. i = 1), γ intersects S1 in a finite number
of points and for each of these points, say x0 = γ(t0), t0 ∈ [0, 1], the tangent
vector γ

′

(t0) does not belong to Tx0
S1. In this second case Im γ ∩S1 consists

of a finite number of points since, by (ii) above, Im γ∩S1 is a zero dimensional
compact manifold.

The following lemma applies the previous results of transversality theory to a
path joining two regular equilibria on the equilibrium manifold.

Lemma 3.1 Given two regular equilibria x, y ∈ E(r), there exists a smooth path

γ joining them and intersecting Ec(r) transversally. Such a path does not inter-

sect Si for i > 1 and intersects a finite number, say S1
1 , . . . ,S

k
1 , of the connected

components of S1, each one in a finite number of points.

Proof: Take any smooth path σ : [0, 1] → E(r) joining x with y (σ exists since
E(r) is connected) and let p = inf(l − 1, m − 1) (cf. Theorem 2.1). We will
prove the theorem by an induction argument on p. Let p = 1. By applying the
Transversality Theorem to X = Im σ and Z = S1 we can find a vector s in E(r)
such that Im σ + s intersects S1 transversally. By taking s sufficiently small, we
can assume that x + s and y + s are regular and there exist smooth paths σ1 and
σ2 joining x with x + s and y + s with y, respectively, which do not intersect S1.
The path γ is obtained by suitably smoothing the path σ1 ∪ (σ + s) ∪ σ2 around
the points x + s and y + s, where σ + s : [0, 1] → E(r) is the path defined as
(σ + s)(t) = σ(t)+ s. Assume by induction we have found a path γ̃ : [0, 1] → E(r)
joining x and y and intersecting each S1, . . .Sp−1 transversally (in a finite number
of points). Let x1 = γ̃(t1) (resp. x2 = γ̃(t2)) be the first point (resp. the last point)
where γ̃ intersects the stratum Sp. Since the strata of Balasko’s stratification are
disjoint and closed we can find a sufficiently small δ such that xδ = γ̃(t1 − δ) and
yδ = γ̃(t2 + δ) are regular and γ̃ restricted to [t1 − δ, t2 + δ] does not intersect
∪p−1

j=1Sj . Call this restriction β. By applying again the Transversality Theorem,
to Im β and Sp we can find a vector s ∈ R

n such that Im β + s is transversal to
Sp. By taking this vector sufficiently small, we can assume that Im β + s does not
intersect ∪p−1

j=1Sj and we can find smooth paths β1 and β2 joining xδ with xδ + s
and yδ + s with yδ, respectively, which do not intersect Ec(r) = ∪p

j=1Sj . Consider
the continuous path γ̃1 ∪ β1 ∪ (β + s) ∪ β2 ∪ γ̃2, where β + s : [0, 1] → E(r) is the
path defined as (β + s)(t) = β(t) + s and γ̃1 and γ̃2 denote the restriction of γ̃
to the interval [0, t1 − δ] and [t2 + δ, 1]. Finally, by suitably smoothing this path
around the points xδ, xδ + s, yδ + s, yδ, we get the desired path γ. The last part of
the lemma follows by 2.) above. �

Our analysis deeply relies on the Jordan-Brouwer separation theorem that we
recall.
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Theorem 3.2 (Jordan-Brouwer) Let S be a closed, connected, codimension

one submanifold of R
n. Then R

n \ S consists of two disjoint connected open sets,

R1 and R2, which have S as common boundary.

The proof of the previous theorem can be found in Section 5 of Chapter 2 in
[7] under the stronger assumption that the manifold S is compact. The proof of
Theorem 3.2, namely when S ⊂ R

n is only assumed to be closed (not necessarily
bounded), is available in Lima’s paper [8] (the authors do not know any text-book
where this standard differential topology theorem is proved in the closed case).
Actually Lima first proved the Jordan–Brouwer separation theorem for compact
manifolds S ⊂ R

n but in the concluding remark on page 41 of [8], he indicates a
way to prove this theorem under the weaker assumption that S is closed in R

n.
Let S ⊂ R

n be as in the previous theorem and let γ : I → R
n be a smooth

curve connecting x and y in R
n \ S, namely γ(0) = x and γ(1) = y. Assume that

γ intersects S transversally. Then Im γ ∩S is a (possibly empty) zero dimensional
manifold and hence it consists of isolated points which are forced to be finite
for the compactness of Im γ ∩ S. Observe, by Theorem 3.2, that the parity of
Im γ∩S depends on the location of x and y. More precisely, we have the following
straightforward corollary of Theorem 3.2.

Corollary 3.3 Let S ⊂ R
n, R1 and R2 be as in Theorem 3.2 and let γ : [0, 1] →

R
n be a smooth path joining x and y in R

n \ S and intersecting S transversally.

Then the parity of Im γ∩S is even if and only if x and y both belong to R1 or they

both belong to R2. In particular, if such a path intersects S in a single point, then

x and y belong to different connected components of R
n \ S.

S

x

y

Figure 1: Violation of the transversality property

Figure 1 depicts a situation in which the transversality assumption is violated. In
this case, the parity of Im γ ∩ S does not give any information on the location of
the points x and y.
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A tool used in the following lemma, which represents a technical result needed
to prove our main theorem, is the existence of a smooth unitary normal vector
field n : S → R

n on a closed and connected codimension one submanifold S ⊂ R
n,

namely a smooth R
n-valued function on S such that n(s) is perpendicular to TsS

and |n(s)| = 1, ∀s ∈ S. It can be proved that the existence of n is equivalent to the
orientability of S (see Section 2, Chapter 3, in [7]). Observe that, once a smooth
unitary vector field n on S is given, then −n : S → R

n defines another unitary
smooth vector field on S and, by Jordan-Brouwer separation theorem, the vectors
n(s)(resp. −n(s)) point towards either R1 (resp. R2) or R2 (resp. R1), where R1

and R2 are the connected components of R
n \ S as in Theorem 3.2. When S is

compact, the proof of its orientability can be found in [7], Ex. 13 and 18, on page
104 and 106, respectively. We refer the reader to [11] for an elegant and concise
proof of the orientability of S in the closed case.

Lemma 3.4 Let S ⊂ R
n be a closed and connected codimension one submanifold

of R
n, let C be a closed set such that S ∩ C = ∅ and let σ be a smooth curve

joining two points in the complement of S ∪ C which does not intersect C and

which intersects S transversally. Then there exists a smooth curve γ joining the

given points which does not intersect C and which intersects S transversally in at

most one point.

Proof: Let x1 = σ(t1), . . . , xk = σ(tk), with t1 < . . . < tk, be the intersection
points of σ with S. Assume k ≥ 2, otherwise there is nothing to prove. We will
show that there exists a smooth curve, σ̃, joining x and y, disjoint from C, and
intersecting S transversally in x3, . . . , xk (actually σ̃ will be constructed in such a
way to coincide with σ in [0, t1 − δ] and [t2 + δ, 1], for a suitable chosen δ). By
iterating this procedure, this yields the existence of the desired path γ and, hence,
the proof of the lemma. In order to construct σ̃, let β : [0, 1] → S be any smooth
curve on S joining x1 = β(0) and x2 = β(1) (β exists since S is connected). Take
a smooth unitary normal vector field n : S → R

n on S pointing toward R1, where
R1 is the connected component of R

n \ S where x belongs to. Take a positive
real number λ, 0 < λ < r, where r denotes the distance between Im β and C.
Then the curve λn(β(t)) is a smooth curve on R1 not intersecting C such that
λn(β(0)) = λn(x1) and λn(β(1)) = λn(x2). For δ and ǫ sufficiently small positive
real numbers, the distance between xδ = σ(t1−δ) and ǫλn(x1) (resp. yδ = σ(t2+δ)
and ǫλn(x2)) is arbitrary small (indeed, these distances go to zero as δ, ǫ → 0).
Hence we can connect xδ with ǫλn(x1) and ǫλn(x2) with yδ with line segments β1

and β2, respectively, in such way that Im β1 and Im β2 belong to R1 and do not
intersect C. Then the continuous path α = σ1 ∪ β1 ∪ (ǫλn(β)) ∪ β2 ∪ σ2, where
σ1 and σ2 are the restrictions of σ to the intervals [0, t1 − δ] and [t2 + δ, 1], does
not intersect C and intersects S transversally in x3, . . . , xk. Finally, by suitably
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smoothing the path α around the points xδ, ǫλn(x1), ǫλn(x2), yδ, we get the desired
path σ̃. �

In our economic setting, let γ : [0, 1] → E(r) be a smooth path joining two
regular equilibria x and y in E(r) \ Ec(r). The length of γ, denoted by ℓ(γ), is
defined as the number of intersection points of Im γ with Ec(r). Observe that if γ
intersects Ec(r) transversally, then ℓ(γ) is a non negative integer which is zero iff
Im γ ∩ Ec(r) = ∅.
We define the distance, d(x, y), between two regular equilibria x, y ∈ E(r) \ Ec(r)
as the infimum of ℓ(γ), when γ is varying amongst all the smooth curves joining x
and y. We define a path γ minimal if ℓ(γ) = d(x, y). By the above considerations,
d(x, y) is always a nonnegative integer.

Remark 3.5 It is worth pointing out that d(x, y) does not define a metric space
structure on E(r)\Ec(r). The distance between two regular equilibria x, y belong-
ing to the same connected component of E(r) \ Ec(r) is zero even if x 6= y. On
the other hand, one can define an equivalence relation ∼ on X = E(r) \ Ec(r),
by defining x ∼ y iff x and y belong to the same connected component of X. We
denote with X/∼ the quotient space and with [x] the equivalence class of x. The
function

d̃ : X/∼ × X/∼ → N ⊂ R,

defined by d̃([x], [y]) = d(x0, y0), where x0 and y0 are any two regular equilibria in
the class of [x] and [y], respectively, is well defined, namely it does not depend on

the choice of x0 ∈ [x] and y0 ∈ [y]. Moreover it is immediate to verify that (X, d̃)
is a metric space.

The following proposition describes a sufficient condition for a path γ in E(r) to
be minimal. Let γ : [0, 1] → E(r) be a smooth curve joining two regular equilibria
x, y ∈ E(r)\Ec(r) and assume that γ is transversal to Ec(r), namely Im γ does not
intersect the codimension > 1 strata and intersects transversally a finite number
of the connected components of S1, say Sj

1, j = 1, . . . k, in a finite number of points
(see Lemma 3.1).

Proposition 3.6 Take γ as above and assume it intersects transversally each

Sj
1, j = 1, . . . k, in at most one point. Then γ is a minimal path.

Proof: If ℓ(γ) = 0 there is nothing to prove. Let l = ℓ(γ) > 0 and let Sj1
1 , . . . ,Sjl

1

be the connected submanifolds of S1 intersected transversally exactly in one point
by γ. Assume by contradiction that there exists another path in E(r), say σ,
joining x and y and such that ℓ(σ) < ℓ(γ). Then it must exist an index j0, 1 ≤ j0 ≤
l, such that Im σ does not intersect Sj0

1 . This implies that x and y belong to the
same connected components of E(r) \ Sj0

1 . On the other hand γ is a curve joining
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x and y and intersecting Sj0
1 transversally only in one point. Hence, Corollary

3.3, applied to the closed and connected codimension one submanifold S = Sj0
1 ⊂

E(r) = R
n, implies that x and y belong to the two different connected components

of E(r) \ Sj0
1 , which is the desired contradiction. �

Our main result is the following theorem which asserts the existence of a min-
imal path joining two given regular equilibria.

Theorem 3.7 Given two regular equilibria x and y, there exists a smooth curve

γ : [0, 1] → E(r), γ(0) = x and γ(1) = y, such that ℓ(γ) = d(x, y).

Proof: Take any curve σ̃ joining x and y and intersecting Ec(r) transversally,
whose existence is guaranteed by Lemma 3.1, and let S1

1 , . . . , S
k
1 be the number of

connected components of S1 intersected by Im σ̃ (observe that Im σ̃ ∩ Si is empty
for i > 1). From Proposition 3.6 the theorem will be proved if there exists a path
γ which intersects each of the manifolds S1

1 , . . . , S
k
1 transversally in at most one

point and does not intersect Ec(r) in any other point. We construct such a path
by an induction argument on the number k of the previous submanifolds. The case
k = 1 follows by applying Lemma 3.4 to S = S1

1 and to the closed set C = Ec(r) \
S1

1 . Assume by induction we have found a path σ which intersects S1
1 , . . . , S

k−1
1

transversally in at most one point. If Im σ does not intersect S1
1 ∪ . . . ∪ Sk−1

1 , the
proof of the theorem follows by applying again Lemma 3.4 to the path σ̃, S = Sk

1

and C = Ec(r) \ Sk
1 . Otherwise, let Sj

1, j ≤ k − 1, be the last manifold intersected
transversally exactly in one point, say x̄ = σ(t̄), by Im σ. For small δ ∈ R, the
point x̄δ = σ(t̄ + δ) is regular. By applying Lemma 3.4 to the path σ restricted
to [t̄ + δ, 1], C = Ec(r) \ Sk

1 , S = Sk
1 , we get a path γ̄ which does not intersect C,

which intersects Sk
1 transversally in at most one point and which connects xδ with

y. Consider the continuous path σ̄ ∪ γ̄, where σ̄ is the restriction of σ to [0, t̄ + δ].
This path intersects Ec(r) only in the submanifolds S1

1 , . . . , S
k
1 and each of them

transversally in at most one point. By suitably smoothing this path around the
point xδ, we get the desired path γ. �
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