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VALUING THE VISUAL DISAMENITY OF OFFSHORE WIND POWER 
PROJECTS AT VARYING DISTANCES FROM THE SHORE: AN 

APPLICATION ON THE DELAWARE SHORELINE 

 
 

Abstract 
 
Several offshore wind power projects are under consideration in the United States. A 
concern with any such project is the visual disamenity it may create.  Using a stated 
preference choice model, we estimated the external costs to residents of the State of 
Delaware for offshore wind turbines located at different distances from the coast.  The 
annual costs to inland residents was $19, $9, $1, and $0 (2006$) per household for 
turbines located at 0.9, 3.6, 6, and 9 miles offshore.  The cost to residents living near the 
ocean was $80, $69, $35, and $27 per household for the same increments.  
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I. INTORDUCTION  
 
 The United States derives about 70% of its energy for electricity from fossil fuel 

sources.i As regulators look to address climate change concerns and reduce dependence 

on foreign sources of oil, alternative energy sources appear increasingly attractive as a 

way to reduce global carbon dioxide (CO2) emissions and increase the domestic supply of 

energy. Currently, wind power is the only utility-scale, renewable, low-CO2 energy 

resource that is large enough to become a significant fraction of electric supply (Kempton 

et al., 2005).  Approximately 24,000 megawatts (MW) of new wind power capacity was 

installed over the past three years, breaking all previous records and increasing the 

nation’s total wind power generating capacity to over 35,000 MW in 36 states and 

making the U.S. the world leader in installed capacity. The American Wind Energy 

Association (AWEA, 2009) estimated that wind power generated about 1.5% of the U.S. 

electricity supply in 2008, powering the equivalent of 5.7 million homes.ii iii   The 

Department of Energy has set a goal of 20 percent wind generation by 2030, including 54 

gigawatts (GW) of offshore wind power (DOE (2008)). 

Although no wind turbines have been installed offshore in the U.S., there are a 

number of proposals under consideration. iv  States like Texas, Rhode Island, Delaware, 

Massachusetts, Michigan, Ohio, Wisconsin, Maine, Maryland, New York, New Jersey, 

Virginia, and North Carolina are all considering wind power development off their 

coastlines, with some issuing requests for proposals and sponsoring competitions to select 

preferred developers. The Minerals Management Service (MMS), the federal agency in 

charge of regulating offshore wind power, recently finished its final environmental 

impact statement for the Cape Wind Energy Project off of Cape Cod, Massachusetts, and 
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is poised to issue a decision on that project in the coming months. Additionally, the first 

power purchase agreement in the U.S. has been reached for a proposed wind power 

project off the Delaware coastline.  

The visual disamenity of and possible environmental impacts associated with 

wind power projects often raise concerns in local communities considering such 

developments. The well-publicized public opposition to the Cape Wind Energy Project 

off of Cape Cod, Massachusetts is perhaps the most recognized example of this concern 

(Firestone and Kempton, 2007).  

From an economic standpoint, as the benefits and costs of offshore wind power 

are considered, one should account for the potential visual disamenity of wind turbines 

located in seascapes valued for their natural beauty. Like pollutants from the burning of 

fossil fuels, or fear of accidents from the storage of nuclear wastes, visual disamenities 

associated with energy projects, including wind power, are externalities missed in the 

calculus of markets.  From an efficiency standpoint, these external effects should be 

brought into the social accounting.  Interestingly, the economics of offshore wind power 

is such that disamenity costs are almost certain to decline with increased distance from 

the coast in the near-shore environment, while transmission, construction, and 

maintenance costs typically rise with distance.     

 In this paper we present the results of a choice experiment designed to value the 

visual disamenty associated with wind turbines in the waters off the Delaware coast.  

This area of study is particularly interesting because it is favorable for wind power from a 

purely physical standpoint and has recently witnessed the first power purchase agreement 

for offshore wind power in the Americas. We conducted a mail survey over a stratified 
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random sample of Delaware residents in the Fall of 2006. We analyzed the choice data 

using random utility theory and found that disamentiy costs decline with distance from 

the coast, level off at approximately nine miles, and are significantly higher for people 

living nearer the coast.  A broader discussion of the survey results can be found in 

Firestone, Kempton, and Krueger (2008) and Krueger (2008). We begin with a brief 

review of valuation studies related to offshore wind power projects before presenting our 

model and results.  

  
 
II.  VALUATION STUDIES RELATED TO LOCATION OF OFFSHORE WIND 
POWER PROJECTS 
  

Ladenberg (2009) provides a nice review of the valuation literature, limited as it 

is, on the location of offshore wind power projects.  This section draws heavily from his 

review. Table 1 is a list of the relevant studies.  Three of these, Aravena et al. (2006) in 

Chile, Ek (2006) in Sweden, and McCartney (2006) in Australia, are concerned only with 

the value of the location of wind power projects in the broad sense of whether they are 

located offshore or onshore.  For example, in the context of choice experiments, Aravena 

et al. (2006) and Ek (2006) ask households to consider wind power projects in mountain 

versus inland versus offshore locations. Neither give respondents specific geographic 

areas nor specific distances that the wind power projects would be located offshore. Both 

find a preference, all else constant, for locating wind power projects offshore compared 

to onshore locations. McCartney’s (2006) study is different in that she gives respondents 

a specific geographic area, which happens to be a marine park.   Given that setting, she 

finds a preference for onshore versus offshore locations of wind power projects.  So, as 

one might expect, whether households prefer wind power projects onshore or offshore is 
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likely to depend on where onshore or offshore they are located.  While useful for broader 

policy deliberations, none of these studies helps along the lines of establishing the size of 

the disamenity effect at different distances offshore and hence the optimal siting for 

offshore wind power projects.  Ladenberg and Dubgaard (2007 and 2009) are the only 

studies to date that provided preference data on the value of that disamenity gradient.   

Ladenburg and Dubgaard (2007 and 2009) conducted a choice experiment in a 

mail survey of 362 Danish residents. They considered offshore wind projects only. Their 

experiment posed different sized wind projects at varying distances from shore (8, 12, 18, 

or 50 km) and at varying costs per-household (0, 12.5, 23, 40, 80, or 175 Euros). They 

found that residents were willing to pay approximately $58, $121, and $153 per 

household per year (2006$) to have a wind project located at 12, 18, and 50 km from the 

coast versus a baseline of 8 km.   Respondents living near the coast, having a summer 

home on the coast, or engaging in recreational activities on the coast reported 

significantly higher values.  Our analysis builds directly on this work. We consider a 

location in the United States, consider distances closer to the coast (as near as 0.9 miles 

(1.5 km)), use specific geographic areas, and use a more flexible econometric model. 

Before moving on to our analysis it is worth noting that there are some wind 

power valuation studies of onshore locations and some examining wind power in the 

broader context of its acceptability versus other renewable energy sources.  Some of these 

consider distance to residential areas and are of interest to our application. Meyeroff, Ohl, 

and Hartje (2009) in Germany, for example, consider distances of 750, 1000, and 1500 

meters from residential areas and find that people indeed prefer that wind power projects 

be located further from away from their homes. Fimereli, Mourato, and Pearson (2008) 
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have a similar finding in the UK.  A recent hedonic study examining the effect of wind 

projects on property values found no statistically significant difference in sales price 

among homes located less than 3000 feet, 3000-5000 feet, 1-3 miles or 3-5 miles from 

the project as compared to the reference case of greater than five miles (Hoen, et al., 

2009). 

Other studies that address preferences for wind power in various contexts, but do 

not get at the distance-value gradient or even onshore versus offshore value, include: 

Hanely and Nevin (1999), Alvarez-Farizo and Hanley (2002), Bergmann et al. (2006), 

Groothuis et al. (2008), Borchers et al. (2007), Navrud and Braten (2007), Bergmann et 

al. (2008), Dimitropoulos and Kontoleon (2009), and Koundouri et al. (2009).  As noted, 

most of these examine preferences for wind versus other sources of renewable energy. 

    
 
III. SURVEY 
 

Our survey began with twelve semi-structured interviews of Delaware residents to 

help us understand knowledge and perception of, and attitudes toward, energy issues. A 

pilot version of the mail survey was tested in person at the Department of Motor Vehicles 

(DMV) in Wilmington, Delaware on June 29 - 30, 2006. The pilot test was used to refine 

wording and survey format, to ensure that respondents understood the questions, to test 

the layout and usefulness of a map and photo prop, to gather information on whether 

respondents perceived the survey instrument to be biased, and to see if the survey was 

appropriate in length. In particular, the test was critical to ensure that the choice 

experiment section was understandable and realistic, that the attributes chosen and the 

range of their corresponding levels were appropriate, that the respondents could 



 8 

understand and properly complete the choice experiment questions, and that the questions 

were producing usable data. 

The final version of the survey has four sections. The first covers attitudes and 

opinions concerning wind power and the possibility of having offshore wind power in 

Delaware. The second contains the choice experiment in which respondents are asked to 

choose among two different offshore wind power scenarios and an opt-out fossil fuel 

power scenario.  The choice experiment is described in detail in the next section. The 

third and fourth sections cover beach use and demographics.  The protocol for survey 

construction, testing, and administration followed Dillman’s Tailored Design Method 

(Dillman (2000)) as closely as possible, given time and budget constraints.  

On September 9 - 20, 2006, we mailed 2,000 surveys to a stratified random 

sample of Delaware households.  The three strata are (i) households living in census 

block groups bordering the Atlantic Ocean, (ii) households living in census block groups 

bordering the Delaware Bay, and (iii) all other households in the state.  The initial sample 

from each of these strata was 400, 400, and 1200, respectively. Each mailing included (1) 

a cover letter describing the survey and why the addressee’s participation was important, 

(2) the survey booklet, (3) a map and photo simulations prop, and (4) a stamped return 

envelope. Three weeks after the initial mailing, reminder postcards were sent out to thank 

all respondents for their participation and to remind those respondents who had not yet 

completed their survey to promptly do so.  Following the postcard reminder, a second 

mailing of 1,250 surveys was sent October 28 - 30, 2006, to those individuals who had 

not yet returned their original completed surveys. These packets contained a modified 

cover letter reaffirming the importance of the study, reminding respondents of the 
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confidentiality of their answers, and asking respondents to take a few minutes to 

complete and mail back the survey. 

A total of 949 returned surveys were used in our final analysis. After accounting 

for bad addresses and for deceased and otherwise incapacitated respondents (based on 

statements made by relatives), the response rate was 52%.  Table 2 provides some 

descriptive data on the sample population.  Survey respondents were more likely to be 

male, older, and wealthier than the overall Delaware population. For additional detail on 

survey development see Firestone, Kempton & Krueger (2008 and 2009) or Krueger 

(2008).v  

  
 
IV. CHOICE EXPERIMENT 
 
 Each respondent faced three hypothetical referenda in our choice experiment.  

Figures 1a and 1b show the preamble and an example question.  Respondents were asked 

to consider a scenario in which Delaware would be expanding its power capacity to meet 

future energy needs. Respondents were then asked to consider three development 

scenarios – two offshore wind options and a status quo option of expanding natural gas or 

coal power. The attributes for the two wind options and their levels are shown in Table 3. 

These were selected based on a review of current regulatory policy and pertinent 

literature and from insight gained during semi-structured interviews.  People were told in 

the preamble leading up to the choice questions that 500 turbines would be placed 

offshore. This was held constant throughout the experiment and was consistent with the 

size of the wind power project actually being considered.  The project size is 450 MW.  
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The first attribute is the location of the wind power project. In Delaware, there are 

three logical areas: the Delaware Bay, the northern Atlantic coast (adjacent to the town of 

Rehoboth Beach), or the southern Atlantic coast (adjacent to the town of Fenwick Island).  

We used these three areas for candidate locations and provided respondents with the map 

shown in Figure 2.   

 The second attribute is distance from shore.  We provided a range of realistic 

distances based on current technological limitations and on existing proposals for 

offshore wind power projects off other parts of the U.S. Atlantic coast. A page with photo 

simulations was included to help respondents visualize changes that would occur to the 

seascape if wind turbines were to be placed at different distances from shore. The unusual 

increments (e.g. 0.9 instead of 1.0 miles) correspond to actual distances under 

consideration.  In all cases the wind turbines shown were 440 feet high.  The nacelle was 

258 feet high and the blades extended that to 440 feet.  These were also the turbines 

actually being considered for the Delaware project.   

The third and fourth attributes are the type of royalty fund and the amount of 

payment in the fund.  We used Delaware’s existing Green Energy Fund (which subsidizes 

home solar and wind power, among other things), the State General Fund, and a 

hypothetical Beach Nourishment Fund. We included the latter to test whether individuals 

living near the coastline would be more willing to accept a visual disamenity from wind 

turbines if a nearby beach benefits from the collected revenues. The range of royalty 

revenues to be collected by the State was based on low and high estimates of other 

onshore and offshore wind project royalty payments.  

 The final attribute is a renewable energy fee, which was used as the payment 
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vehicle. It was chosen because it is related to the delivery of the electricity, was 

believable in our pretests, and is easily understood. We used a monthly payment period of 

three years. The ranges were determined based on the pretest.  

 The five attributes and their corresponding levels, presented in Table 3, result in 

810 possible treatment combinations. We used an orthogonal main effects only design to 

generate twenty-five choice experiments for two of the three choice questions using 

standard SAS macros and following Hensher, Rose, and Greene (2005).  The other choice 

question was designed to focus specifically on the tradeoff between distance from shore 

and willingness to pay. In this question, the respondent was presented with two offshore 

wind power development options that were identical in every respect except that they 

were at two different distances from shore, with the further distance always having a 

higher fee. The level of the other attributes varied across respondents but was held 

constant in each choice experiment. We tailored one choice question in this way because 

of our focus on estimating the value of the distance gradient.  This question gave 

respondents a choice that focused on that trade off.  The question also did well in 

discussions with respondents following the pretests. The pairings used for our tailored 

question are shown in Table 4. While there is no doubt room for added statistical 

efficiency in the design, our format introduces no bias and given the standard errors on 

our estimates, which we discuss shortly, there appears to be adequate statistical 

efficiency.vi  

 
 
V.  RUM MODEL 
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 We modeled the choices made by respondents using a conventional random utility 

maximization (RUM) model.   In the model each individual n faces a decision among a 

set of three alternatives – two wind projects ( i = 1,2 ) and the status quo expansion of 

fossil fuel power ( i = 0 ). Random utilities are given as  

(1)        
Uni = !xni +"yn + #ni     (i = 1,2)
Un0 = #n0

  

                                                   

where the first expression is the utility for individual n for one of the two wind projects i, 

and the second is the utility for the status quo option (coal or natural gas). !  and !  are 

parameter vectors to be estimated, xni is a vector of project attributes, yn  is a vector of 

individual attributes, and εni is a random error term.  An individual is assumed to choose 

the alternative i that gives the highest utility.  In a RUM model that choice can be 

explained only up to the probability of alternative i being chosen. We used mixed logit in 

estimation to allow for a fairly general pattern of correlation among the error terms in 

equation (1). We considered normal and triangular mixing distributions over most 

parameters, but ended up employing normal distributions in all cases.  The results were 

not sensitive to this choice.  We used Halton draws in our simulation and found that the 

parameters stabilized around 500 draws. We allowed for correlation among each 

respondent’s error terms (one for each question) by making the Halton draws person-

specific instead of choice-specific.  Separate models were estimated for the inland, bay, 

and ocean populations.  The theory and approach are well known and fully developed in 

Train (2003) and Louviere, Hensher, and Swait (2000).  
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 In our application, the wind power project disamenity is measured using a set of 

four dummy variables representing the different distances offered in the choice 

experiment – 3.6 miles, 6 miles, 9 miles, and too far away to see under any lighting 

conditions (estimated at 20 miles).    Because the nearest distance offered (0.9 miles) is 

the excluded variable, these coefficients capture a utility increase for having the wind 

power project at each distance relative to that near-shore location.  

The external cost of wind turbines at any location d versus having them out of 

sight is  

 

     (2)      vd =
1
R

!TFTS
r " !d

r

"! feer=1

R

#  

     

where !TFTS
r  is the coefficient on the distance at “too far to see” and!d

r is a coefficient on 

a distance dummy variable (d = 0.9,  3.6,  6,  9 ) in the xni  vector; !0.9
r = 0  since it is the 

excluded variable in estimation. ! fee is the estimated coefficient on the fee variable, 

which is fixed in estimation and is a measure marginal utility of income.   Because the 

distance coefficients are estimated as random parameters, the ratios also are random and 

are thus calculated as simulated means.  The superscript r on !TFTS
r  and !d

r  signifies that 

the coefficient is one of R draws from the estimated distribution of!TFTS
r  and !d

r .  We use 

R = 5000 in our application.  

    
 
VI. ESTIMTION RESULTS 
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  Estimation results are shown in Table 5. As noted earlier, separate models were 

estimated for the inland, bay and ocean populations.vii The results are more or less as 

expected.  The coefficient on fee is negative and statistically significant in all three 

models, so the likelihood of choosing one of the wind alternatives declines as the fee 

increases.  There also is a clear preference for the wind power project being located 

further from the coast.  The coefficients on all of the distance variables are positive and 

statistically significant.  Generally, the sizes of the coefficients rise at a declining rate as 

you move away from the coast in all three models, although the distance coefficient in the 

inland model peaks at 9 miles and then drops somewhat at ‘too far to see’.  The relative 

size of these coefficients is significantly larger in the bay and ocean models, implying, as 

expected, greater disutility for those living near the coast. We discuss implicit values 

from these coefficients in the next section.   

Model results indicate no clear preference for the location of a wind power project 

at the two ocean and one bay locations offered.  The coefficients on Rehoboth Beach, 

Fenwick Island, and Delaware Bay are not statistically significantly different from one 

another in any of the models.  In one section of the survey, respondents were asked 

directly to choose whether they preferred a certain location for offshore wind 

development. Descriptive statistics show that significantly more respondents prefer wind 

power development in the ocean (40%) than in Delaware Bay (16%); although a plurality 

(45%) expresses no preference (Firestone, Kempton & Krueger 2008). 

Respondents prefer that royalty funds from wind power go to targeted funds 

rather than to general revenues – the coefficients on the beach nourishment and green 

energy funds are positive in all three models (the general state fund being the excluded 
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category).   The coefficients only show significance in the inland model.  The implied 

willingness to pay by inland residents to have funds distributed to the beach nourishment 

and green energy funds versus the State’s general fund is about $7 and $5 per month for 

three years.  At the same time, the variables for the amount of the royalties give 

counterintuitive results -- negative and significant coefficients in the inland model and 

negative but insignificant coefficients in the other models in three of the possible four 

cases.  Because a $1 million royalty is the excluded category, the $2 million and $8 

million royalty variables represent higher payments and would presumably be utility-

enhancing.  The insignificant results in the bay and ocean models suggest that the amount 

of royalties collected is not important to individuals.  For the inland model, the negative 

coefficients suggest a dislike for royalty payments to the State. Perhaps respondents 

perceive that royalty payments might increase the actual cost of delivered energy, or that 

such payments might hamper development of offshore wind power, or they distrust the 

State with such funds.    

We estimated all of the parameters on the individual characteristics as fixed.  

Initially we experimented by interacting individual characteristics with the distance 

variables to see if there might be preference variation along these lines, but detected 

none. Even as simple shifters of preferences for wind over fossil fuel power, which the 

parameters in Table 5 show, the demographic variables have only modest explanatory 

power.   

Consider the variables that show some statistical significance.  The distance one 

lives from the coast is the only variable that is significant or borderline significant in all 

three models, but the results across models are inconsistent.  The probability of choosing 



 16 

offshore wind over fossil fuel power sources increases with the distance one lives from 

the coast for the inland and ocean samples, but decreases for the bay sample. Distance 

away from the beach in the ocean sample is a large predictor of voting in favor of wind 

power.  With each additional quarter mile away from the coast that a household is, we 

find that willingness to pay increases by about $12. Although significant for the inland 

sample as well, that value is only about 90 cents per ten miles.  For these models, then, 

value increases by either moving the turbines away from people or moving people away 

from turbines.  The bay sample willingness to pay decreases with distance from the coast 

by about $1 per mile with statistical significance.  

 We also wanted to test whether preferences differed between households that 

had an ocean or bay view and those that did not. One might expect the parameter (See 

ocean) to be negative and statistically significant, but such was not the case in our results. 

Indeed, for the small population of residents living inland but having a view (7%) of the 

ocean or bay, they showed a preference in favor of wind.  

Having seen a wind turbine at some time in one’s life increases the probability of 

voting for an offshore wind option in all three models and with significance in the bay 

and ocean models. Braunholtz (2003) found that those who most frequently saw wind 

power projects on their day-to-day routine were most favorable toward them.  Our results 

may imply that those who have not seen turbines before may envision a far more 

objectionable visual impact than is actually the case.  Or, they may imply that those who 

favor this type of technology are more likely to have made an effort to view turbines in 

some setting. 
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Finally, over the inland sample, whose numbers dominate Delaware’s population, 

the probability of favoring wind over fossil fuel sources of power decreases with 

education and age. The education result holds weakly in the bay and ocean models, and 

the age result does not hold.   For the most part, then, our results show only modest 

observed heterogeneity along the lines noted above and suggest that people’s preferences 

for offshore wind versus fossil fuel sources are not easily classified demographically. 

Perhaps most interesting among the variables with little significance is the coefficient on 

number of days an individual spent at the beach over the last year. It is positive but 

insignificant in all models, suggesting the impact on in-state visitors to the shore may not 

be significantly larger than on the general population. 

While there is limited observed heterogeneity, there is a reasonable degree of 

unobserved heterogeneity realized through the dispersion measures on the random 

parameters. This is most evident in the inland model, as one might expect, since this is 

the most diverse of the sampled populations. Eight of the eleven estimated standard errors 

are significant for this model.  There is strong evidence of variation in the preferences of 

inland residents for the view disamentiy, the allocation of royal funds, and the size of the 

royalty funds.  The sizes of the standard errors, relative to their means, on the royalty 

funds and the royalty amounts suggest particularly wide variation in preferences for these 

attributes with some residents favoring, and some opposing, targeted funds.  And finally, 

the size of the dispersion terms for the location variables in the bay and ocean models 

stand out, showing strong variability in the wind power preference and for the location of 

turbines among the coastal samples.  
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VII. THE EXTERNAL COST OF TURBINES AT DIFFERENT DISTANCES 
OFFSHORE 
 
 Table 6 shows the estimated external cost of wind turbines located at different 

distances from the coastline.  The values are shown separately for the inland, bay, and 

ocean samples.  All estimates are per household in 2006$ and are shown in annual values 

in perpetuity and monthly values for three years. The estimates were calculated using 

Equation 2. The annual values in perpetuity were converted from the three-year monthly 

values using a discount rate of 3%.  

 The external cost for each of the three population groups decreases with distance 

from the coast.  The further a wind project is located from the shore, the lower the 

disamenty effect. The values for the ocean sample are largest, followed by the bay and 

inland samples. The external costs per household per year for the inland population are 

$19, $9, $1, and $0 at 0.9, 3.6, 6, and 9 miles. The external costs for the bay residents for 

the same distances are $34, $11, $6, and $2, and the values for the ocean residents are 

highest at $80, $69, $35, and $27.  The external costs captured in our estimates may 

include more than visual disamenity.  In some cases people may be expressing, for 

example, a concern over the conflict of turbines with recreational boaters and fishers in 

the near shore area.  

As we noted earlier, Ladenburg and Dubgaard (2007 and 2009) provide the only 

other published estimate of willingness to pay to move wind turbines further offshore. 

Figure 3 overlays their estimated values with ours.  Their values are higher and persist at 

greater distances from shore.  One explanation might be the size of the wind turbines. We 

use simulations of wind turbines with the nacelle at 258 feet, and blades extending to 440 

feet above the ocean; they use larger, next generation wind turbines, with the nacelle at 
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328 feet, and blades extending to 520 feet.viii  At the same time, the differences may be 

due simply to differences in the Danish and U.S. populations, differences in the timing of 

the studies relative to development (their study occurred after the installation of a large 

offshore wind power project of approximately 70 wind turbines), or due to differences in 

study design.  On the last point, for example, we use a monthly payment period over 3 

years and they use an annual payment that continues indefinitely. Also, we include an 

opt-out alternative that allows a respondent to choose neither wind project; their design 

includes no opt-out alternative.    

One caveat worth noting in our findings is that the maximum monthly fee offered 

in our choice experiment ($30) was well below our predicted values in monthly terms for 

the ocean population.  While our parameter estimates on the distance variable are 

significant in the ocean model and the stepwise values have the order one would expect, 

we are predicting values outside the range of our data and hence have somewhat lower 

confidence in these numbers.  All of our pretests were done on inland populations, which 

led us to a range of prices that worked in the bay and inland samples but were on the low 

side for the ocean population. This was simply a mistake in our pretest design.  

Aggregate values for the State of Delaware at 0.9, 3.6, 6, and 9 miles are $7.6 

million, $4.2 million, $1.1 million, and $870 thousand annually in perpetuity.  This is the 

external cost to all Delaware residents at each distance.  The number of households for 

each area (inland 282,691, ocean 22,579, and bay 12,369) was obtained using 2007 U.S 

Census Bureau statistics. 

 The estimated values, of course, ignore the effects on visitors to the shore, many 

of who are out of state visitors from New Jersey, Maryland, Virginia, Pennsylvania, and 
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the Washington, D.C. area (Lilley, Firestone and Kempton, 2010).  Because there are 

about 1.3 million out-of-state visitors each year to the Delaware shore (DEDO (2007)), 

this value is potentially large.  Ladenberg and Dubgaard (2009), for example, find that 

recreational boaters and anglers have higher external costs than other populations.  But, 

there is also evidence that wind turbines may attract more tourists than they dissuade, so 

there may be positive amenity effects to account for as well (Lilley, Firestone, and 

Kempton (2010) and Krueger, Firestone, and Kempton (2009)).  

 
 
VII. CONCLUSIONS 
 
 Offshore wind power is a promising alternative energy source that has gained 

considerable attention recently given the size of the resource, concern over climate 

change, health impacts of air pollutants from conventional energy sources, and degree of 

domestic control over global fossil fuel stocks. While nearly free of the textbook external 

effects of pollution (NAS (2010)), offshore wind power, like any other energy facility or 

transmission line, has external effects in the form of a visual disamenity.  

Using stated preference data over households in the State of Delaware, we 

estimated the economic value associated with the visual disamenity from wind turbines at 

various distances off the coast.  Our results pertain to a wind power project with 500 

turbines each 440 feet high (about 450 MW).  The results are shown in Figure 3. We 

estimate that inland residents have an external cost of $19, $9, $1, and $0 annually in 

perpetuity (2006 US$) for wind turbines located at 0.9, 3.6, 6, and 9 miles offshore.  

Respondents living on the ocean have external costs of $80, $69, $35, and $27 at the 

same distances.   Aggregated statewide, the external costs at these distances are $7.6, 
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$4.2, $1.1, and $0.9 million per year. Keep in mind that these costs exclude the 

disamenty (and amenity) effects on out-of-state visitors to the Delaware coast and 

residents from nearby states likely Maryland.   

Looking back at Figure 3, perhaps the most striking finding of this study is the 

descent of disamenity values after 6 to 9 miles offshore.  The conventional wisdom, 

without much information on external costs, has been that turbines should be located 

outside the viewshed.  Given the sizable cost savings associated with moving turbines 

closer to shore, our results may call this conventional wisdom into question. For example, 

based on rough estimates for other projects in the U.S., the cost savings of moving the 

wind project currently under consideration in Delaware from outside the viewshed to 9 

miles is likely to range between $7 to $20 million per mile. By comparison the external 

costs of moving the project over the same range is about $8 to $10 million per mile.  So, 

the numbers are close.  The external costs exclude tourists and residents in nearby states, 

so these numbers will be larger.  At the same time, our estimates for the cost of moving 

turbines closer are based on projections for past projects and may decline with 

technological advancement. Taken together these adjustments would lower transmission 

cost and raise visibility costs suggesting that moving turbines outside the viewshed or 

perhaps nearer the proposed distance of 13 miles may make sense. But again, these 

numbers are rough and getting sharper estimates on both sides would be useful for 

policy.ix   
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      Table 1: Stated preference studies addressing location of wind power projects 
offshore 

Author(s) 

 
Year Resource 

Studied 

 
Number of 

Respondents 

 
Method 

 
How offshore 

distance gradient 
was valued? 

 
Aravena, 

Martinsson, 
and Scarpa 

(2006) 
 

 
 
 
 
 

2005 

Wind 
Power 

projects in 
Chile  

 
 

N = 300  
 

Random Draw 
of Residents 

from 
metropolitan 

area of 
Concepcion 

 

 
Choice 

Experiment, 
Pictures Not 

Shown, 
Payment w/ 

Cost of 
Electricity 

 

 
 

Compared wind 
power projects in 
mountains, along 
coast, inland, and 

offshore 
 

Ek (2006) 
 

 
2002 

Wind 
Power 

projects in 
Sweden  

 
N = 547 

 
Random Draw 

of Swedish 
Population 

 
Choice 

Experiment, 
Mail Survey, 

Pictures 
Shown, 

Payment w/ 
Electricity 

Bill 
 

 
 

Compared wind 
power projects in 
mountains, inland, 

and offshore 
 

McCartney 
(2006) 

 
2004 

Wind 
Power 

project in 
Jurien Bay 

Marine 
Park, 

Australia 

 
N = 96  

 
Local Residents 

and Tourists 
On-Site During 

Holiday 
Weekend 

 
Contingent 
Valuation, 
In-Person 
Survey, 
Pictures 
Shown, 

Payment w/ 
Electricity 

Bill  
 

 
 
 

Compared wind 
power projects 

inland, on beach, 
and offshore 

 

 
Ladenburg and 

Dubgaard 
(2007, 2009) 

 

 
 
 

2003-
5 Wind 

Power 
projects in 
Denmark  

 
N = 362  

 
Stratified 
Random 

Sample of 
Danish 

Population 
(with Targeting 
of Areas with 

Offshore Wind 
Power Projects) 

 

 
 

Choice 
Experiment, 
Mail Survey, 

Pictures 
Shown, 

Payment w/ 
Electricity 

Bill 
 

 
 

Compared wind 
power projects 

located at 12, 18, 
and 50 km 
offshore  

(with 8 km as 
baseline) 
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Table 2. Sample means over key respondent characteristics 

 Inland Bay Ocean 
Sample Size 564 203 182 

Age 57 61 61 
Percent retired 33.7 42.4 48.4 

Household 
income* 

$50,000-
$75,000 

$50,000-
$75,000 

$100,000-
$150,000 

Gender  
(percent male) 68.1 69.5 69.7 

Mean distance 
from nearest 

beach 
35 miles 4 miles 0.6 miles 

Average 
number of 

days/year spent 
at the beach  

14 76 104 

Percent who 
have seen a 
wind turbine 

54.3 59.4 72.9 

   *Median values   
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Figure 1a. Preamble to choice experiment section  
“Offshore Wind Power in Delaware” 

 
 Assume Delaware needs to increase its energy supply by 20% and that you have the opportunity to 
vote on energy development options.  One way to meet the energy demand would be to place a 500 turbine 
wind farm offshore.  Another option would be to continue Delaware’s current energy policy and obtain 
additional energy from a new plant that burns coal or natural gas.  
 
 Because wind energy uses no fuel, your electric bill would not increase over time due to higher 
fuel cost; however, like other sources of electricity, it could increase for other reasons. To offset the initial 
costs of providing wind energy to Delaware residents, assume that there would be a “Renewable Energy 
Fee” added each month to your electric bill, for the first three years only.  
 
 
 We are now going to ask you three questions where you get to vote on wind power development. 
For each question, assume the option that receives the most votes will be carried out.  
 
  
      Continue on and vote→→→ 
 
 

Figure 1b. Sample choice experiment question 

 
18) Now for which option would you vote? 
Refer to the Delaware map insert for the “wind farm location.” Refer to the  
ocean photo insert for simulated views of the wind farm at different distances. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    I would vote for… 
 
    □  Option A 
    □  Option B 
    □  Option C 

 Option A Option B Option C 
 

Wind farm 
location 

 

Ocean (South) Ocean (North) 

No Wind power 
 
 
 
 

Expansion  
of  coal  

or natural gas 
power 

 

Distance from 
shore 0.9 miles 6 miles 

 
 

Annual 
rent/royalty  

 
 

$1 million to Beach 
Nourishment Fund 

$8 million to  
Beach 

Nourishment Fund 

 
Renewable energy 

fee on your  
monthly electricity 

bill for 3 years 
 

$1 $20 
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Figure 2. Delaware map depicting hypothetical offshore wind development areas 

 
 
 
 
 
Table 3: Attributes and levels for the choice experiment  

Attribute Levels 
 

Location of wind farm Delaware Bay; Rehoboth Beach; Fenwick Island 

 
Distance from shore (miles) 0.9; 3.6; 6; 9; too far out to see 

 
Royalty fund 

Beach nourishment fund; Delaware green energy fund; 
Delaware general fund 

 
Renewable payment $1 million; $2 million; $8 million 

 
Renewable energy fee $0; $1; $5; $10; $20; $30 
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Table 4 Twenty five choice combinations used in the ‘tailored’ choice question 

Survey 
Version  

 
“Option A”  

 
    “Option B”                  Royalty  

 
Fund  

Distance  Fee  Distance  Fee  
1  0.9 miles  $0  TF  $5  Green  $2 M  
2  0.9 miles  $1  9 miles  $10  Beach  $8 M  
3  0.9 miles  $5  6 miles  $20  Green  $8 M  
4  0.9 miles  $10  3.6 miles  $30  Beach  $2 M  
5  0.9 miles  $20  TF  $30  General  $1 M  
6  3.6 miles  $0  6 miles  $10  Green  $1 M  
7  3.6 miles  $1  9 miles  $20  Beach  $1 M  
8  3.6 miles  $5  TF  $10  General  $8 M  
9  3.6 miles  $10  6 miles  $20  General  $2 M  

10  3.6 miles  $20  9 miles  $30  Green  $2 M  
11  6 miles  $0  9 miles  $1  Beach  $8 M  
12  6 miles  $1  TF  $30  Green  $1 M  
13  6 miles  $5  9 miles  $30  Green  $8 M  
14  6 miles  $10  TF  $30  Beach  $1 M  
15  6 miles  $20  9 miles  $30  Beach  $2 M  
16  9 miles  $0  TF  $20  General  $1 M  
17  9 miles  $1  TF  $5  General  $2 M  
18  9 miles  $5  TF  $20  General  $8 M  
19  9 miles  $10  TF  $20  Beach  $2 M  
20  9 miles  $20  TF  $30  Beach  $8 M  
21  0.9 miles  $5  3.6 miles  $10  Green  $8 M  
22  3.6 miles  $10  6 miles  $30  Beach  $1 M  
23  6 miles  $5  9 miles  $20  Green  $1 M  
24  0.9 miles  $10  TF  $20  General  $2 M  
25  3.6 miles  $1  9 miles  $10  Green  $2 M  
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Table 5: Mixed logit estimation results 
Variable Inland Bay Ocean 

 Parameter p-value Parameter P-value Parameter p-value 
Random Parameters (Means) 
Bay 6.25a 0.000 5.60 0.112 -3.91c 0.050 
Rehoboth Beach 6.22a 0.000 6.57d 0.080 -4.64c 0.024 
Fenwick Island 6.37a 0.000 7.17d 0.066 -4.78c 0.019 
Distance 3.6 1.05a 0.000 2.58b 0.006 0.62 0.780 
Distance 6 1.90a 0.000 3.28c 0.010 2.29a 0.000 
Distance 9 2.39a 0.000 3.60b 0.004 2.72a 0.000 
Distance Too Far To See 1.93a 0.000 4.00b 0.009 4.14a 0.000 
Green Energy Fund 0.53c 0.024 1.35 0.166 0.12 0.835 
Beach Nourishment Fund 0.78b 0.001 0.22 0.729 0.76 0.106 
Royalty $2 million -0.54b 0.010 -0.21 0.754 0.26 0.560 
Royalty $8 million -0.57c 0.030 -0.12 0.856 -0.56 0.295 
Fixed Parameters 
Fee -0.11a 0.000 -0.12b 0.005 -0.05b 0.005 
Income 0.002 0.492 -0.01 0.110 0.002 0.495 
Some college education 0.59 0.193 -1.31 0.503 0.36 0.765 
4-year college degree -0.60 0.139 -5.51c 0.021 -0.19 0.858 
Post grad degree -1.93a 0.000 -2.79 0.180 -0.44 0.678 
Age -0.07a 0.000 -0.04 0.423 0.03 0.258 
Male -0.14 0.640 0.26 0.799 -0.78d 0.089 
Retired 0.52 0.246 0.92 0.520 0.72 0.200 
Delmarva -0.45 0.172 4.96c 0.019 NA NA 
See ocean 3.39b 0.007 -0.24 0.884 0.56 0.459 
Distance from beach 0.01c 0.046 -0.11d 0.069 2.49b 0.001 
Beach days 0.003 0.650 0.001 0.833 0.003 0.150 
Seen a turbine 0.46 0.130 3.05c 0.034 1.48b 0.007 
Beach house -0.47 0.443 NA NA NA NA 
Random Parameters (Dispersion)  
Bay 1.85c 0.010 0.25 0.872 5.14◊ 0.057 
Rehoboth Beach 0.76 0.373 6.89c 0.011 3.85b 0.0010 
Fenwick Island 1.14c 0.046 4.45c 0.015 0.04 0.975 
Distance 3.6 1.66c 0.044 0.26 0.840 10.35 0.283 
Distance 6 2.19b 0.002 5.26 0.101 0.33 0.899 
Distance 9 1.49c 0.024 1.26 0.461 0.81 0.554 
Distance Too Far To See 0.01 0.994 5.41c 0.043 1.99 0.189 
Green Energy Fund 1.25d 0.098 3.44 0.226 1.13 0.340 
Beach Nourishment Fund 1.65b 0.001 2.08 0.176 0.01 0.985 
Royalty $2 million 0.78 0.202 0.17 0.921 0.09 0.947 
Royalty $8 million 1.58b 0.004 0.78 0.626 0.05 0.953 
Number of observations 
(respondents) 1692 (564) 609 (203) 546 (182) 
Log likelihood value -1401.152 -454.8983 -442.3946 

a Significant at the α=0.001 level of confidence 
b Significant at the α=0.01 level of confidence. 
c Significant at the α=0.05 level of confidence.  
d Significant at the α=0.1 level of confidence. 
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Table 6: External Cost Per Household for Wind Turbines Located a Different Distance 
Offshore 

 External Costs Annually 
in Perpetuity 

External Costs Monthly 
for Three Years 

Distance Inland Bay Ocean Inland Bay Ocean 

0.9 $18.86 $34.39 $80.03 
 

$17.99 
 

$32.78 
 

$76.30 

3.6 8.74 11.17 68.79 
 

8.34 
 

10.64 
 

65.59 

6 .78 5.83 35.10 
 

.75 
 

5.55 
 

33.47 

9 0* 2.06 26.65 
 

0* 
 

1.96 
 

25.41 
*Value is slightly negative in estimation.  

 
Figure 3. External Cost Per Household for Wind Turbines Located at Different Distances 

Offshore with Ladenburg and Dubgaard (L&D) results overlaid, 2006$ 
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*The value for Inland sample at 9 miles actually goes slightly negative in estimation. The distance “too far to see” is 
shown at 20 miles, which seems to be the greatest distances at which a modern offshore wind turbine could be 
visible from shore under even the clearest of conditions. Our project has 500 turbines each 440 feet high and is 
located in Delaware. Ladenberg and Dubgaard’s project has approximately 700 turbines each 520 feet high and is 
located in Denmark. Ladenberg and Dubgaard’s estimates are for a random sample of all residents (after adjusted for 
stratification), including some with and some without a view of the coast. Also, the closest view in our experimental 
design was 0.9 miles, Ladenberg and Dubgaard’s was 8 km (about 5 miles).     
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i Nuclear accounts for 20%, hydro 6.5%, and renewables 3.5%. See the U.S. Energy Information 
Administration at http://www.eia.doe.gov/. 
ii See the American Wind Energy Association (AWEA) Reports for data on the United States at 
http://www.awea.org/publications/reports. An additional 10,000 MW was added in 2009, enough 
generation capacity for an additional 2.4 million homes, bringing US generation to 35,000MW (AWEA, 
2010). 
 
iii By comparison, in 2008 wind power in the EU accounted for about 4.2% of all electricity, and there was 
approximately 65,000 MW of capacity installed. Germany at 24,000 MW and Spain at 17,000 MW 
accounted for most of this capacity. See the European Wind and Energy Association (EWEA) at 
http://www.ewea.org/. 
iv It is a different story in Europe where as of the end of 2009 there are thirty offshore wind projects 
accounting for more than 2,000 MW of installed capacity, with an additional 1,000 MW of capacity 
expected to be installed in 2010 (EWEA, 2010). 
v The entire survey including the wind turbine visual is available at 
http://www.ceoe.udel.edu/windpower/docs/FinalDNRECOpinionReport.pdf. 
vi See Ferrini and Scarpa (2007) for more on design strategies that might be used in further research along 
these lines. 
vii When tested against a pooled model that constrained parameters to be constant across these three groups, 
the pooled model was easily rejected in favor of the split models.  
viii They also use a larger wind project -- 700 versus 500 wind turbines -- but each simulated project is very 
large, so large in fact that they are each significantly larger than any project now in existence.  We do not 
feel this difference explains the disparity in results. 
ix The cost estimates are derived from Wright, Rogers, Manwell, and Ellis (2002) who reported costs for 
projects in Rhode Island and Maine. Their numbers are per MW. Our estimates for disamentiy values 
convert annual losses to assets values (to be compared with Wright et al’s numbers) using a 3% discount 
rate.     


