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Abstract 
 
We study a general equilibrium model where agents’ preferences, productivity and labor endowments depend on 
their health status, and occupational choices affect individual health distributions. Efficiency typically requires 
agents of the same type to obtain different expected utilities if assigned to di¤erent occupations. Under mild 
assumptions, workers with riskier jobs must get higher expected utilities if health a¤ects production capabilities. 
The same holds if health affects preferences and health enhancing consumption activities are sufficiently 
effective, so that income and health are substitutes. The converse obtains when health a¤ects preferences, but 
health enhancing consumption activities are not very effective, and hence income and health are complements. 
Competitive equilibria are first-best if lottery contracts are enforceable, but typically not if only assets with 
deterministic payoffs are traded. Compensating wage differentials which equalize the utilities of workers in 
different jobs are incompatible with ex-ante efficiency. Finally, absent asymmetric information, there exist 
deterministic cross-jobs transfers leading to ex-ante efficiency. 
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Competitive Markets with Endogenous Health Risks�

Alberto Bennardoy and Salvatore Piccoloz

January 24, 2007

Abstract

We study a general equilibrium model where agents�preferences, productivity and labor endowments

depend on their health status, and occupational choices a¤ect individual health distributions. E¢ ciency

typically requires agents of the same type to obtain di¤erent expected utilities if assigned to di¤erent

occupations. Under mild assumptions, workers with riskier jobs must get higher expected utilities

if health a¤ects production capabilities. The same holds if health also a¤ects preferences and health

enhancing consumption activities are su¢ ciently e¤ective. The converse obtains if health mainly a¤ects

preferences and health enhancing consumption activities are not very e¤ective. Competitive equilibria

are �rst-best if lottery contracts are enforceable, but typically not if only assets with deterministic

payo¤s are traded. Compensating wage di¤erentials which equalize the utilities of workers in di¤erent

jobs are incompatible with ex-ante e¢ ciency. Finally, absent asymmetric information, there exist

deterministic cross-jobs transfers leading to ex ante e¢ ciency. We fully characterize a class of simple

policies implementing these transfers.

Keywords: compensating wage di¤erentials, competitive markets, individual health
risks, Pareto e¢ ciency.

JEL Classi�cation: D5, D61, D80, I18.

1 Introduction

The paper studies a simple competitive environment where the aggregate distribution of health is endoge-

nous, and is determined jointly with the allocation of labor and consumption goods. The model has the

following key features. First, health a¤ects agents�preferences, productivity and their labor endowments,

�We thank Pierre Andrè Chiappori, Dimitris Christellis, Jim Dana, Elena Del Mercato, David Levine, Annamaria Meni-
chini, Joe Ostroy, Marco Pagano, Grazia Romano, Duncan Thomas, Bill Rogerson, Antonio Villanacci, Bill Zame and Lucy
White for very useful discussions and comments. All remaining errors are ours.
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di Scienze Economiche e Statistiche, University of Salerno - via Ponte don Melillo I -84084, Fisciano (SA), Italy, email:
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namely their consumption and production capabilities. Second, the health distribution of each worker

depends on his occupational choice. Third, occupational choices are indivisible, that is each occupation is

de�ned by an indivisible set of tasks, and each worker can choose at most one occupation together with

the associated health distribution.1 These features capture some of the most signi�cant real-life e¤ects

of individual health status, and are intended to illustrate the determinants of occupational choices in the

presence of endogenous health risks. The e¤ects of health on workers�productivity, labor endowment,

and preferences are largely documented by the empirical literature (see Rosen, 1986, and Viscusi, 1993,

among others). Indeed, occupational choices generally have both direct and indirect e¤ects on individual

health prospects. By in�uencing the likelihood of work-related injuries and diseases, they directly a¤ect

the distribution of future health states. Moreover, they may also change workers�health risks indirectly

by determining their location choices, for instance by inducing them to locate in less safe areas (i.e., more

crime-ridden or with poorer health facilities). Finally, an important real-world feature of most health

risks associated to production activities is that they are diversi�able only to a limited extent. This is

due to a non-convexity associated to the specialization of labor, leading most workers to choose a single

occupation.

Our analysis encompasses both direct and indirect e¤ects of occupational choices on health risks.

Speci�cally, we consider a production economy with a continuum of agents, where di¤erent distributions

of health are associated to di¤erent occupations and health status a¤ects individual behavior. Workers can

also undertake loss-reduction activities (health enhancing consumption activities), and use competitive

markets to exchange goods and transfer income across individual states.

At a more abstract level, we analyze a set-up where agents (workers) choose among indivisible risky

assets (occupations) paying either monetary or non-pecuniary random returns (wages and health, re-

spectively), whereas the latter are only imperfectly transferable (health status cannot be separated from

individuals, and can be modi�ed only within certain limits).2 Hence, our conclusions have a broader

scope, and although for the sake of clarity throughout we shall interpret individual risks as health shocks,

they can shed light on the determinants of individual choices of indivisible risky assets, such as education,

clubs�memberships, entrepreneurial activities, to name only a few.3

By illustrating the speci�c e¢ ciency trade-o¤s generated by individual risks on preferences and pro-

ductivity in the presence of occupational indivisibilities, the paper provides a novel and fairly general

characterization of e¢ cient allocations. We demonstrate that cross-jobs transfers are typically necessary

for ex ante e¢ ciency, and identify the determinants of these transfers. We then show that the direction

of these transfers depends in a precise way on the relative magnitude of health e¤ects on consumption

1This assumption is imposed for simplicity; in our setting it is su¢ cient that a worker cannot choose an arbitrarily large
number of jobs and o¤er a small amount of labor in each of them.

2Noteworthy, individual risks and occupational indivisibilities are both key ingredients of our model. In a setting with
indivisibilities, but state independent preferences and production funcions, the problem at hand would become much more
standard and lose much of its appeal.

3Other examples of assets with these characteristics include occupations requiring human capital, jobs with unpleasant
characteristics, as well as memberships to clubs and organizations. Several of the results of our analysis hold in settings
where those assets are traded.
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choices, labor choices, and on the e¤ectiveness of available medical treatments. Finally, we investigate

either the e¢ ciency properties of alternative �nancial markets structures or the issue of implementation

of e¢ cient allocations through �simple policy schemes�.

The paper is related to a vast literature4 on work-related health risks and non pecuniary job at-

tributes, focusing on wage premia commanded by risky, or otherwise unpleasant, jobs.5 Such literature

characterizes and estimates competitive wage di¤erentials, under the �equilibrium condition�that work-

ers of the same type assigned to di¤erent occupations obtain equal utility. This condition is generally

derived through a partial equilibrium labor market analysis, or directly imposed as part of the de�nition

of equilibrium. Moreover, the conventional wisdom within the literature on non pecuniary job�s attributes

is that utility equalizing wage di¤erentials lead to market e¢ ciency.6 By contrast, we demonstrate that

Pareto optimality typically requires workers of the same type to obtain di¤erent (expected) utility levels

when assigned to di¤erent occupations. As a consequence, e¢ cient allocations are not budget balancing,

and require cross-jobs transfers; while wage di¤erentials equalizing utilities across occupations typically

do not implement �rst-best outcomes.

These �ndings hinge upon the imperfect transferability of health7, which makes consumption and

occupational (production) decisions interdependent. More precisely, they rely upon the following opti-

mality argument. Because health risks are speci�c to occupations, and both preferences and productivity

are state-dependent, ex-ante identical workers under di¤erent occupations will generally feature di¤erent

expected utility functions and budget constraints, and hence di¤erent indirect utility functions. For this

reason, the equalization of (expected) marginal (indirect) utilities of contingent goods (income) across

agents, which is a standard ex-ante e¢ ciency condition, typically prevents either interim e¢ ciency with

equal treatment (i.e., equalization of the utility of agents of the same type assigned to di¤erent jobs), or

budget balancing.

The inconsistency between ex ante e¢ ciency and budget balancing, besides being a novel theoretical

contribution, raises a number of important theoretical and policy issues, which concern the properties of

optimal cross-transfers and their implementation. Addressing these issues is one of our main goals.

The �rst part of the paper characterizes the Pareto frontier of the economy, and identi�es the main

determinants of cross-jobs transfers. By ordering the health risk of di¤erent occupations according to

�rst-order stochastic dominance, we �rst show that e¢ ciency requires either compensating wage di¤er-

entials (occupations associated to worse health distributions command higher wages) or cross-sectoral

transfers. Then, we demonstrate that the direction of optimal cross-transfers across occupations depends

4This literature goes back to Adam Smith (see Evans and Viscusi, 1993, Lucas, 1974, Rosen, 1986, Viscusi, 1990 and
1993, among many others).

5This literature formalizes the Smithian idea that �the whole of the advantages and disadvantages of the di¤erent employ-
ments of labour and stock must, in the same neighborhood, be either perfectly equal or continually tending toward equality�.

6See, for instance, the textbooks of Ehrenberg and Smith (2003) and Viscusi et al. (2000). In a general equilibrium
analysis, however, Cole and Prescott (1997), which study a moral hazard model, take a di¤erent perspective. The present
paper has several connections with this article and with the asymmetric information literature.

7This imperfect transferability invalidates the separability result between individual consumption and production choices
which is standard in welfare analysis (see Mas Colell et al., 1995).
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on the impact of health on production choices and health enhancing consumption activities. The formal

analysis relies upon supermodularity arguments, (i.e., upon the relationships of complementarity, resp.

substitutability, between health, labor and consumption goods).8

Speci�cally, e¢ ciency requires workers with riskier jobs to get higher expected utilities and positive

transfers under mild conditions, if negative health shocks have a relatively strong e¤ect on labor supply

choices (on individual productivity or disutility of labor). The same holds if health enhancing commodi-

ties are su¢ ciently valuable in reducing health losses, so that health shocks substantially in�uence loss

reduction investment activities. Conversely, workers with riskier jobs must obtain lower utilities and nega-

tive transfers if health mainly a¤ects preferences (i.e., marginal utility of consumption), and has relatively

negligible e¤ects either on production capabilities or on the value of loss-reduction consumption activities.

The second part of the paper develops the competitive analysis. We study two alternative contractual

regimes, one where lottery contracts (i.e., contracts with random payo¤s) are enforceable and the other

where they are unenforceable, possibly because of limited liability (debt) constraints. In the former, there

exist competitive insurance markets to cope with all idiosyncratic risks9 but only �nancial contracts with

deterministic returns are enforceable. In the latter regime, agents can also �trade�lottery contracts, i.e.,

assets with random payo¤s. The complete contracts�regime where lotteries are assumed to be enforceable

turns out to be the natural benchmark for understanding the welfare properties of complete competitive

markets. The analysis of the case of unenforceable lotteries, though, is warranted by both empirical

and theoretical reasons. First, in real markets the use of lottery contracts (or that of other �nancial

instruments making allocations obtainable through random contracts attainable) does not appear to be

very widespread.10 And, in line with real world circumstances, most of the literature on non-pecuniary job

attributes, which is a natural reference point for the problem at hand, has only considered contracts with

deterministic payo¤s. On a theoretical ground, the use of random contracts may result severely restricted

by moral hazard problems, driven by limited liability, or by the imperfect veri�ability of characteristics

and outcomes of the random devices needed for their implementation.

We show that an equilibrium exists in both contractual regimes. Moreover, equilibria are generically

e¢ cient if and only if lottery contracts are enforceable. E¢ ciency requires the expected marginal utility of

income to be the same for ex ante identical agents employed in di¤erent sectors. Satisfying this condition,

generically does call for an individual not to be indi¤erent over occupations to which he is assigned with

positive probability. In the absence of lottery contracts, competition does not deliver ex ante e¢ ciency.

Equalizing the expected utilities of workers of the same type employed in di¤erent sectors, indeed, creates

a wedge between marginal utilities.

Finally, we show that understanding the nature of the ine¢ ciencies determined by the missing market
8Testable implications of di¤erent assumptions on preferences for consumption and health are derived by Rey and Rochet

(2004), see also on this issue Evans and Viscusi (1990).
9See also Malinvaud (1973) and Cass, Chichilnisky and Wu (1996) among others.
10Kehoe, Levine and Prescott (2001) show that, if there exists a su¢ cient number of assets paying units of numeraire in

sunspot states of the world, competitive equilibria are �rst-best e¢ cient. In our setting, however, e¢ cient trades of �nancial
instruments leading to random allocations are typically such that workers must take possibly large short positions in the
asset markets. This is often impossible in real-life markets also because of incentive problems.
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problem at hand within our general equilibrium setting, permits to go considerably beyond the accom-

plishment of an e¢ ciency test of competitive equilibria. By relying upon our characterization of Pareto

optimal allocations, we demonstrate that, in the absence of asymmetric information, Pareto optima can

be implemented through simple deterministic cross-transfers policies. These policies display two key fea-

tures: They implement cross-subsidies among insurance contracts designed for workers choosing di¤erent

occupations, and impose minimal wages aimed at ensuring a natural non-manipulability requirement of

the policy scheme. The transfer received by a worker at the optimum is then determined by the di¤er-

ence between the (shadow) value of his consumption and that of his production and endowment, both

calculated at the optimal shadow prices.

2 Related Literature

Our results are related to the general equilibrium literature on indivisibilities, to the literature on optimal

taxation and to some important contributions of the literatures on asymmetric information and on clubs.

Rogerson (1988), who studies the general equilibrium e¤ects of production indivisibilities, is the con-

tribution to which our work is closest. This article, indeed, provides an example where random contracts

implement transfers across workers, which could be reinterpreted as a form of unemployment insurance.

Rogerson�s results are derived for a very speci�c class of preferences, and assuming that a completely

indivisible labor supply (agents can either work a �xed amount of time or remain unemployed) generates

a positive unemployment rate in equilibrium. In our environment, we prove that random contracts are

almost always necessary to achieve e¢ ciency through the market, even if the amount of labor a worker

must supply within an occupation is perfectly divisible. Moreover, di¤erently from Rogerson, lotteries

implement cross-transfers across occupations in our setting. And the determination of the sign of these

transfers is at the core of our paper.

Our setting also shares some features with those analyzed in the literature on the optimal design of

public health and education policies. The welfare e¤ects of subsidies to education and health insurance are

two important issues in this literature. Henriet and Rochet (2004) illustrate, within an optimal taxation

framework, the role of public health insurance as a redistributive tool. In a close spirit, Diamond and

Sheshiniski (1995) analyze the e¤ects on labor supply of health disabilities and retirement bene�ts. They

focus on the optimal structure of disabilities bene�ts and consider the problem of optimal evaluations of

disabilities evidence in the presence of asymmetric information. De Fraja (2002) analyzes optimal educa-

tion policies and uses supermodularity arguments to show that missing capital markets and externalities

may lead to elitist (regressive) utilitarian cross-transfers policies. Similarly to De Fraja our work relies on

monotone comparative statics techniques to characterize cross transfers, and shows that optimal policy

may increase ex post inequality. However, there are two fundamental di¤erences, among others, between

De Fraja�s contribution and our work. First we focus on ex ante e¢ ciency instead of taking the utilitarian

viewpoint. Second, we show that, under mild conditions, optimal policies entail positive transfers to the

agents who are more likely to be ex post less productive (i.e., incurring in adverse health shocks with larger
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probabilities). Thus, on an applied ground, our results provide a new rationale for policy interventions in

the health insurance market, which has not been identi�ed by the previous literature and can be helpful

in evaluating actual health insurance markets policies.

The general equilibrium asymmetric information literature, starting with the seminal contribution of

Prescott and Townsend (1984) has focused on establishing appropriate versions of the classical Welfare

Theorems in the space of lottery contracts.11 Several examples have also been developed to show that

lotteries can be welfare bene�cial, either in the presence of adverse selection or moral hazard, because of

their convexifying e¤ects on incentive constraints.12 With the exception of Bennardo and Chiappori, and

Cole and Prescott, this literature however mainly focuses on ex post lotteries. More importantly, it is not

aimed at characterizing e¢ cient cross jobs transfers.13

Finally, the recent literature on clubs and �rms (Cole and Prescott, 1997, Ellickson, Grodal, Scothmer

and Zame, 1999, Makowski and Ostroy, 2005, Zame, 2005) deals with the complex issue of pricing insti-

tutions, �rms, and occupations in general equilibrium settings. An important connection of our paper

with this literature is that agents� occupational choices (choices of �rms�memberships) directly a¤ect

their utility and hence their consumption choices. In our setting, we assume away complementarities

between agents working in the same �rm, opportunistic behavior, and the related externality problems.

These simpli�cations allow to focus on the characterization of e¢ ciency trade-o¤s and on the bene�cial

role of cross-transfers across occupations, which are generated by idiosyncratic uncertainty and indivisible

occupations alone; two issues which are not addressed in the club literature. Our conjecture, based on the

analysis of the present paper, is that the generic inconsistency between ex ante and interim optimality

continues to hold in most of the settings studied in the clubs�and in the asymmetric information liter-

ature. A result in this spirit is obtained by Bennardo (2005), which characterizes optimal transfers in a

moral hazard set-up where health e¤ects are not considered, but occupations a¤ect agents�consumption

choices via incentive constraints.

3 The Economy

Demography, consumption goods and preferences: A continuum of measure 1 of consumers-workers
produce C consumption goods. There exists a �nite set, I = f1; :::; Ig, of agents�types, and �i is the total
fraction (measure) of type i agents. Agents face health risks that may a¤ect their preferences, endowments

and productivity. The set of possible health states, � = f�1; :::; �Ng, with �n+1 � �n for all n, is assumed

to be �nite, and � 2 � represents a typical health state. In the economy there are C + 1 consumption

goods, C produced goods and leisure. Type i agents have an endowment ei 2 <C+ of produced goods which
11For the analysis of competitive and e¢ cient random allocations see also Allen and Gale (2003), Bennardo and Chiappori

(2003), Bisin and Gottardi (2000), Kehoe, Levine and Prescott (2001), Rustichini and Siconol� (2003), and Bennardo (2005)
among others.
12See Arnott and Stiglitz (1986), Cole (1990), Garrett (1995), Kehoe, Levine and Prescott (2002).
13See however Bennardo (2005) for related results on cross-jobs transfers in a multicommodity production economy with

moral hazard.
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is constant across individual states, and an amount L of time which is allocated between work, l, and

leisure, xL. The maximal fraction of time that each agent can devote to work, L(�), may depend on his

health state; and L(�) is weakly increasing in �.14 Agents�preferences are assumed to be state (health)
dependent and are represented by the utility function Ui(x; �) : <C+ � [0; L] ! <. We shall assume that
Ui is n times di¤erentiable, strictly concave and weakly increasing for all �.

To clearly see that our utility representation allows for a subset of commodities to have health en-

hancing e¤ects, one can formally introduce a variable, �̂ representing actual health conditions; the impact

of consumption choices on health conditions can then be captured by the real valued function �̂ = �(x; �)

of consumption, x, and initial health, �. The utility representation of agents�preferences consistently

becomes Ui (x; �) � Ûi(x; �(x; �)). Throughout, we shall use such a representation whenever convenient.

Finally, let Ĉ(�) � C denote the subset of commodities whose consumption provides strictly positive

(marginal) utility in the state �. In proving existence, we shall assume that the indi¤erence surfaces

of Ui have no intersection with the axes of the Euclidean space <Ĉ(�)+ corresponding to the subset of

commodities Ĉ(�). We shall also occasionally impose DcUi(x; �) > K as xc ! 0; with K > 0 su¢ ciently

large, and DcUi(x; �) < k; as xc !1, with k > 0 and small, for c 2 Ĉ(�).

Technologies and uncertainty: Competitive �rms produce goods by employing workers, and labor is
the only production factor. Firms can hire positive measure of agents, while each worker can supply labor

in at most one �rm, as specialization prevents workers from performing di¤erent jobs. There are T = C

production sectors, and only one type of occupation within each sector. The productivity of each single

worker is measurable and may depend on his health. Precisely, a type i worker who is employed in sector

t and supplies lti units of labor produces y
t
i (�) = ati(�)l

t
i units of commodity t in the health state �, with

ati(:) weakly increasing in �.

The distribution of health of a type i agent working in sector t is


pti;�

�
, with pti = (p

t
i(�1); :::; p

t
i(�N )).

Finally, health shocks are identically and independently distributed across type i workers in the same

occupation, and independently distributed across sectors. The endogeneity of the health distribution can

be seen as a consequence of the direct e¤ects of labor activities on prospective workers�health; but it can

also result from localization choices induced by labor activities.

Timing: The economy lasts two periods, � = 0; 1; at � = 0, agents trade in �nancial and labor markets.
At � = 1, health shocks are realized; subsequently agents supply labor, and consumption goods are

traded and consumed. The space of enforceable contracts will be de�ned in Section 5. For notational

simplicity, we restrict attention to economies where all agents work in equilibrium, and use the following

notation: xti(�) is a generic state contingent consumption vector of a type i agent employed in sector t,

with xti = (xti(�))�2�, and x = (xt1 (�) ; :::; x
t
I (�))

t2T
�2�; l

t
i =

�
lti(�)

	
�2� is the vector of state contingent

14This assumption is intended to capture real-life situations where a worker can perform with an appropriate quality
standard a labor activity only for a limited amount of time. And the length of this time interval depends on his health
state. For instance aircraft pilots, in order to guarantee appropriate safety standards, cannot �y more than a pre-speci�ed
number of hours per week. Similarly, a driver, a sportsman or a miner, who typically su¤er of overuse syndromes cannot
safely perform certain risky activities more than a certain number of hours in a year.
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labor for a type i agent occupied in sector t. Finally, let �i = (�1i ; :::; �
T
i ), with

PT
t=1 �

t
i = 1, represent an

assignment of type i workers to production sectors, and � = (�i)I1=1.

4 Ex-ante and Interim Pareto Optimality

Ex-ante Pareto Optimality: Let uti(x
t
i) =

P
�2� p

t
i (�)Ui(x

t
i (�) ; �) and �x

t
ic =

P
�2� p

t
i(�)x

t
ic(�). By

the law of large numbers, a feasible allocation of consumption goods and workers, hx; �i ; is de�ned by
the following constraints:

(1)
X
i2I

�i
X
t2T

�ti�x
t
ic �

X
i2I

�i(eic + �
c
iy
c
i ); 8 c 2 C

(2) lti (�) + x
t
iL(�) = L; lti (�) � L(�), 8 � 2 �; t 2 T ;

X
t2T

�ti = 1; 8 i 2 I

where yti =
P

�2� p
t
i (�) a

t
i(�)l

t
i (�) for all t and i: Denote F the set of feasible allocations, and:

U =

(
�u = (�u2; :::; �uI) 2 <I�1 : 9 (x,�) 2 F; s:t:

X
t2T

�tiu
t
i(x

t
i) � �ui; 8 i = 2; ::; I

)

A (ex-ante) Pareto optimum maximizes
P

t2T �
t
1u
t
1(x

t
1); subject to hx; �i 2 F , and

P
t2T �

t
iu
t
i(x

t
i) � �ui for

i = 2; :::; I and �u 2 U .
According to this de�nition, all type i agents face the same probability of being assigned to each

occupation; however, they do not necessarily get the same expected utility if assigned to di¤erent oc-

cupations. Such a condition typically holds in the optima of convex economies; in our setting, though,

there is no reason to impose it as part of the de�nition of �rst-best allocations. Finally, the de�nition of

a Pareto optimum above rules out the possibility that an agent obtains a random consumption vector in

the optimum conditionally on being assigned to a given occupation. Risk-aversion makes this assumption

unrestrictive.

Interim Pareto Optimality: The following de�nition of interim Pareto optimality will play a central

role in the welfare analysis of equilibria with unenforceable lottery contracts.

An interim optimal allocation with equal treatment maximizes
P

t2T �
t
1u
t
1(x

t
1) subject to : hx; �i 2 F ,P

t2T �
t
iu
t
i(x

t
i) � �ui for i = 2; :::; I, �u 2 U; and to the additional set of constraints uti(xti) = ut

0
i (x

t0
i ) for all

pairs (t; t0), with t 6= t0; such that �ti > 0; �
t0
i > 0.

5 Competitive Equilibria

We shall now de�ne competitive equilibria by assuming that there exist markets for all consumption

goods, as well as �nancial markets for insuring all risks through assets with deterministic payo¤s. We
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study either the case where only deterministic contracts (assets with random payo¤s) are enforceable or

that in which agents can also sign lottery contracts. Considering both cases is useful to fully understand

either the bene�cial role that random contracts may play in our economy, or the e¤ects of a somewhat

natural market friction that may prevent their use.

5.1 Competitive Equilibrium with Deterministic Contracts

Following the approach taken in several contributions of the literature on individual risks (see Malinvaud,

1973, among others), we assume that competing, risk-neutral intermediaries o¤er securities paying in

individual states.15 Speci�cally, security payo¤s may be contingent on agents� type, occupations and

individual health. Let hti� be a security paying to a type i agent employed in the t-th sector one unit

of numeraire in his individual health state �, and zero otherwise. Denote zti� and ẑ
t
i� the units of h

t
i�

purchased by type i agents employed in sector t, and the per capita units of this security o¤ered in the

market, respectively. Finally, de�ne �ti (�) the unit price of h
t
i�. Production �rms and agents trade at

linear prices. Let wti(�) denote the state contingent wage of type i workers in the t-th occupation, with

wti = (w
t
i(�))�2�.

16 And denote q = (:::; qc; :::) 2 <C+ a generic vector of spot prices.17

Because of labor supply indivisibilities, it is expositionally convenient18 to consider the possibility that

workers choose their occupation by using mixed strategies. To this end, let 'i = ('
1
i ; ::; '

t
i; :::; '

T
i ) 2 �T

a generic probability vector according to which a type i worker mixes on occupations. Then, by the law

of large numbers, 'ti is also the fraction of type i agents who are employed in sector t in equilibrium.

A competitive equilibrium with deterministic contracts is an allocation (xt�i ; '
t�
i )

t2T
i2I , a collec-

tion of vectors (bzt�i ; zt�i )t2Ti2I and a vector of state contingent prices (q; �
t
i; w

t
i)
t2T
i2I satisfying the following

conditions.

(I) Type-i agents maximize utility:

(3)
�
xt�i ; '

t�
i ; z

t�
i

�
t2T 2 arg max

'i2�T :

X
t2T

uti(x
t
i)'

t
i

(4) s:t:
X
c2C

qc(x
t
ic(�)� eic) = wti (�) (L� xtiL (�)) + zti(�); 8 � 2 �; t 2 T

(5)
X
�2�

zti (�)�
t
i (�) � 0; lti (�) � L(�), 8 � 2 �; t 2 T:

15As it is conventional, intermediaries�risk-neutrality may be justi�ed by the law of large numbers.
16The introduction of individual risks in a competitive settings requires assets�payo¤s to be contingent either on individual

shocks or on types; this point has been clari�ed in the seminal contribution of Malinvaud (1973).
17 In the absence of aggregate uncertainty, spot market prices are independent from the realizations of individual shocks,

as these shocks wash-out in the aggregate.
18 It should be clear in the following that for any given equilibrium in mixed strategies, there exists a payo¤ equivalent

equilibrium with pure strategies.
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where (4) and (5) are the spot market and initial period budget constraints.

(II) Production �rms and intermediaries set:

(6) lt�i 2 argmax
X
�2�

pti (�)
�
qty

t
i (�)� wti (�) lti (�)

�
s.t. yti (�) � ati (�) l

t
i (�) ; 8 � 2 �; t 2 T

(7) bzt�i 2 argmaxX
�2�

(�ti (�)� pti (�))bzti (�) s.t.
X
�2�

pti (�) bzti (�) � 0; 8 t 2 T; i 2 I

(III) Consumption, labor and �nancial markets clear:

(8)
X
i2I

�i
X
t2T

't�i �x
t�
ic =

X
i2I

�i(eic + '
c�
i y

c
i ); 8 c 2 C

(9) xt�iL (�) = L� lt�i (�); zti (�) = bzt�i (�) ; 8 � 2 �; t 2 T and i 2 I

5.2 Competitive Equilibrium with Lottery Contracts

We now introduce lottery contracts. We shall assume that agents buy lotteries (assets with random

payo¤s) from �nancial intermediaries before making any other market trade. Following Arnott and

Stiglitz (1987), these lotteries will be referred to as ex-ante random contracts. Formally, a lottery contract,

C = ((;G); �(;G)), is: (i) a �nite distribution (;G) with probabilities  = (1; :::; M ) 2 �M and payo¤

support G = (g1; :::; gM ) 2 <M , with M �nite; and (ii) a price �(;G) 2 <. The interpretation is that an
agent signing C pays the price �(;G) to the intermediary, and obtains the right to receive the payo¤ gm

with probability m. A random devise, whose characteristics are publicly veri�able, is used to determine

the contractual obligations of the parties signing C. Such a device chooses an arti�cial state of the world
by selecting a positive integer m 2 f1; :::;Mg with probability m. Subsequently, the intermediary pays
(receives) gm to the agent whenever the integer m is selected. The expected pro�t an intermediary earns

from C is �(;G)�
P

m2M mgm.

A general formulation of the competitive equilibrium in the space of random allocations would require

all possible lottery contracts (an in�nite set) to be priced in equilibrium (see Rustichini and Siconol�,

2003) and should take into account the possibility that an agent signs several lottery contracts. In order

to avoid the technical di¢ culties arising in working with an in�nite dimensional commodity space, as well

as a more complex notation, we impose the following unrestrictive assumptions: (i) only the set of fair

lottery contracts with payo¤ support of dimension M = T are o¤ered in the market19; (ii) each agent can

sign at most one lottery contract; and (iii) will o¤er labor in sector t if and only if he receives the t-th

payo¤ of his lottery contract.

19Consistently with the de�nition of lottery contracts, some or even all of its payo¤s may be zero.
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A standard arbitrage argument justi�es (i). Assumption (ii) is unrestrictive since any �nite distribution

of net payo¤s obtainable by means of N fair lottery contracts can also be achieved through a single fair

contract;20and moreover, by risk aversion, it is always individually optimal to choose a contract with at

most M = T payo¤s, di¤erent from zero. Intuitively, this is because a risk averse agent, conditionally on

being assigned to a given production sector, will always prefer a certain payo¤, ĝ, to a non-degenerate

lottery, (;G), with an expected payo¤ equal to ĝ.21 Finally, (iii) amounts to be a convenient notational

convention once (ii) is imposed.

A competitive (Walrasian) equilibrium with lottery contracts is then an allocation (~xti)
t2T
i2I , a

collection of vectors (bzti ; ~zti)t2Ti2I ; a vector of lottery contracts (Ci)i2I , and a vector of prices (~q; ~�
t
i; ~w

t
i)
t2T
i2I

satisfying the following conditions:

(I) Type-i agents maximize utility:

(10) (~xti; ~z
t
i ; C)t2T 2 argmax

Ci2�

X
t2T

tuti(x
t
i)

(11) s:t:
X
c2C

qc(x
t
ic(�)� eic) = wti (�) (L� xtiL (�)) + zti(�) + gt � �(;G); 8 � 2 �; t 2 T

(12)
X
�2�

zti (�)�
t
i (�) � 0; 8 t 2 T

where (11)-(12) are the �rst and second period budget constraints, and

� =

(
((;G); �(;G)) : �(;G) =

X
t2T

tgt

)

is the set of all fair lottery contracts.

(II) Production �rms and intermediaries solve programs (6) -(7), respectively.22

(III) Consumption, �nancial and labor markets clear:

(13)
X
i2I

�i
X
t2T
ete�xticpti(�) =X

i2I
�i(eic + eceyci ); 8 c 2 C

20Precisely, such a contract is de�ned by a vector of probabilities and a vector of payo¤s which are linear combinations of
the probabilities and the payo¤s of the N fair lottery contracts.
21More precisely, it is never optimal for a risk averse agent to choose a lottery contract such that: (i) he receives the payo¤s

gm and gm
0
, with gm 6= gm

0
, with positive probabilities m and m

0
respectively, and (ii) he chooses to work in sector t either

when he receives gm or gm
0
. By convexity, indeed, there exists another fair contract, say C0; which pays mgm + m

0
gm

0

with probability m + m
0
; which, conditionally on working in sector t, is strictly preferred to C.

22This is exactly as in the competitive equilibrium with deterministic contracts.
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(14) ~xtiL (�) = L� ~lti(�); ~zti (�) = bzti (�) ; 8 � 2 �; t 2 T and i 2 I

6 Pareto Optimal Allocations

This section characterizes �rst-best allocations. Let � = (�2; :::; �I) and � = (�1; :::; �C) be the vectors of

Lagrange multipliers associated to the utility constraints,
P

t2T �
t
iu
t
i(x

t
i) � �ui for i = 2; :::; I, and the feasi-

bility constraints, respectively. Setting �1 = 1, the �rst-order conditions with respect to (xti(�); x
t
iL(�); �

t
i)

of the (ex-ante) Pareto program are:

(15) �iDcUi(x
t
i(�); �)� �c�i � 0; 8 c 2 C; � 2 �; t 2 T and i 2 I

(16) �iUixL(x
t
i(�); �)� �tati(�)�i � 0; 8 � 2 �; t 2 T and i 2 I

(17) �i(u
t
i(x

t
i)� ut

0
i (x

t0
i ))� �i(Zti � Zt

0
i ) = 0; 8 (t; t0) such that (�ti; �t

0
i ) > 0 and i 2 I

where (15) and (16) hold with equality whenever xtic(�) > 0 and x
t
iL(�) > 0

23; and where:

Zti =
X

c2C;�2�
�c
�
pti(�)x

t
ic(�)� eic

�
� �t

X
�2�

pti(�)a
t
i (�) (L� xtiL (�)); 8 t 2 T; i 2 I

is the di¤erence between the value of the consumption of a type i worker employed in sector t and that of

the sum of his endowment and his production, both evaluated at the vector of shadow prices �. In other

words, Zti represents the value of the net transfer received in the optimum by a type i agent assigned to

sector t.

As standard, (15) and (16) imply the equality of marginal rates of substitution between state contingent

commodities across types. The �rst-order conditions with respect to � in equation (17) are less standard,

and play a crucial role in our analysis. They indicate that the di¤erences in expected utilities across

occupations, �ui(t; t0) = uti(x
t
i) � ut

0
i (x

t0
i ), are proportional to �Zi(t; t

0) = Zti � Zt
0
i . Noteworthy, only if

�Zi(t; t
0) = 0 for all i; all workers assigned to the occupations t and t0, respectively, will get the same

utility, and ex-ante and interim optima coincide.

Let F(:) = 0 denote the system of equations (15)-(17). The next proposition shows that �ui(t; t0) typi-
cally di¤ers from zero at the solution of F(:) = 0, implying that interim e¢ ciency is generally incompatible
with ex ante e¢ ciency. This is, indeed, the distinguishing feature of our environment.

In order to prove the result, we need to introduce some notation. Let ti=
�

pti;�

�
; Ati
�
t2T , with A

t
i =�

ati(�1); :::; a
t
i(�N )

	
, be the sector t technology available to type i workers. And let " = he; t; Ui represent

23For simplicity we neglect the case where xtiL(�) = L in stating the �rst-order conditions. Implicitly, we assumed DxLUi
su¢ ciently small at xtiL(�) = L.
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a speci�c economy de�ned by an aggregate endowment e 2 <C++, a vector of production technologies
t = (t1; :::; tI) and a pro�le of utility functions U = (Ui; :::; UI). The set of possible economies is then

de�ned as E = <C++ � T � U , where T is the set of all possible technologies, and U =
QI
i=1 Ui, where Ui

is the set of type i admissible utility functions, which will be precisely de�ned in the Appendix.

Proposition 1 A unique Pareto optimum is associated to each vector of reservation utilities, �u. More-

over, the subset of economies S � E such that ex ante and interim Pareto optima are disjoint is generic

in E, if the number of produced goods is larger than the number of agents�types and pti(�) 6= pt
0
i (�) for at

least a type i worker, an health state � and a pair (t; t0).

The proof of this result as well as all the subsequent ones are provided in the Appendix. It uses a

transversality argument in order to prove that the set of solutions of F(:) typically does not satisfy the
interim e¢ ciency constraints.24

Intuitively, ex ante e¢ ciency mandates the equalization of marginal rates of substitution across all

workers. Typically, however, any pair of ex-ante identical workers with di¤erent occupations generally

feature di¤erent expected utility functions and technological constraints, since health distributions are

occupation speci�c. As a consequence, for agents of the same type assigned to di¤erent jobs, the equaliza-

tion of the marginal utilities of contingent goods (margins) prevents that of the that of expected utilities

(levels).

Proposition 1 has two simple but very important corollaries. First, ex ante e¢ ciency typically requires

transfers of resources across workers assigned to di¤erent occupations, since the �rst order conditions of the

Pareto programs imply that budget balancing obtains only when utility levels are equalized. Moreover,

theses transfers are implemented through a random allocation of workers across occupations. Second,

compensating wage di¤erentials which equate (expected) utilities of workers assigned to di¤erent sectors

are typically incompatible with �rst-best e¢ ciency.

The next proposition shows that the Pareto shadow wages, �Pt a
t
i(�), associated to technologies inducing

riskier health distributions, in the sense of First-Order Stochastic Dominance (FOSD), are relatively higher

in the optimum. This an important result since it unveils that e¢ ciency still commands higher wages to

be paid in riskier occupations, even though wage di¤erentials do not equalize utilities.

De�nition For any pair of health distributions,


pti;�

�
and

D
pt
0
i ;�

E
, we shall say that



pti;�

�
FOSDD

pt
0
i ;�

E
if
P

���n p
t
i(�) �

P
���n p

t0
i (�);8 �n 2 �, with at least one strict inequality.

Proposition 2 If


pti;�

�
FOSD

D
pt
0
i ;�

E
, then �Pt < �Pt0 for all Pareto optima such that �

tP
i > 0 and

�t
0P
i > 0 for at least one type i 2 I.

While its proof is not immediate, the proposition has a clear intuition. Were shadow wages, and thus

Lagrange multipliers, equal across two sectors whose associated health distribution are ordered according
24Notice that the inconsistency between ex ante and interim e¢ ciency stated in Proposition 1 holds only under the

assumption that health distributions are endogenous.
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to FOSD, the marginal utilities of consuming the goods produced in those sectors would also be equal for

all agents in all states. It would then be welfare enhancing to move a fraction of workers from the riskier

to safer sector, and to marginally increase (resp. decrease) the consumption of the good produced in the

safer (resp. riskier) sector for all agents. Roughly, this would leave unaltered the utility agents can get

from consumption but would increase their ex ante expected health.

Finally, Proposition 3 below, which is a direct corollary of Charateodory Theorem, states that all

e¢ ciency gains obtainable by random assignments of workers to occupations can also be achieved through

a randomization involving only two occupations for each worker. This �nding allows to simplify the

e¢ ciency analysis performed in the next section.

Proposition 3 Given any Pareto optimal allocation


xP ; �P

�
such that

P
t2T �

tP
i u

t
i(x

tP
i ) = ui, there

exists a pair (t; t0) such that �̂t;t
0

i uti(x
t
i) + (1� �̂

t;t0

i )ut
0
i (x

t0
i ) = ui, with �̂

t;t0

i = �ti=(�
t
i + �

t0
i ):

Proposition 3 permits to restrict attention without loss of generality to two-sectors economies in the

analysis of the determinants of wage and utility di¤erentials across sectors, and of Pareto optimal cross-

jobs transfers. This is because, for each worker, the �rst-order optimality condition �i(uti(x
t
i)�ut

0
i (x

t0
i ))�

�i(Z
t
i � Zt

0
i ) = 0 imposes restrictions on �ui(t; t

0) and �Zi(t; t0) for at most a pair (t; t0).

6.1 Ex-Ante E¢ ciency and Optimal Cross-Jobs Transfers

In this section we study how the e¤ects of health shocks on preferences, endowments, and productivity

contribute to determine optimal cross-jobs transfers, as well as the di¤erences between the utilities ob-

tained by workers of the same type assigned to di¤erent technologies. For this purpose, we shall assume

that occupations di¤er in their health riskiness, and impose that the health distributions associated to

di¤erent occupations are ordered by the FOSD criterion. Moreover, merely for expositional purposes, we

shall study a simpli�ed setting where two goods are produced by a representative agent. Accordingly, we

assume that occupation 1 is safer than occupation 2 in the sense that


p1;�

�
FOSD



p2;�

�
, meaning

that the likelihood of better health states is higher in occupation 1 relative to occupation 2.25 Finally, in

order to distinguish the e¤ects of health status on the utility of produced consumption goods from that

on the disutility of labor, we shall use the following separable utility representation:26

U(x; �) = Û(x; �(x; �)) = f (x1; x2; �)�  (l; �) ;

where U(x; �) satis�es all the assumptions in Section 2, and where f(x1; x2; �) and  (l; �) represent the

utility of consumption commodities and the disutility of labor, l = L � xL, respectively. According
25Focusing on an economy with only two occupations and a representative agent is without loss of generality for the purpose

of investigating the determinants of cross transfers and utility di¤erentials across jobs. Indeed, as proved in Proposition 3, all
e¢ ciency gains obtainable by random assignments of workers to occupations can also be achieved through a randomization
involving only two occupations for each worker.
26Separability is imposed only for the sake of tractability. Most of our results extend immediately to the case where

consumption goods a¤ect the labor disutility  , and these e¤ects are bounded relatively to the health e¤ects on marginal
utility of consumption goods and leisure.
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to this formulation, both f and  may possibly depend on �. Moreover, in order to derive a sharper

characterization of Pareto optima we also impose the following restrictions:

(A1) All derivatives of U(:) are bounded.

(A2) at(�) = a(�) for all t.

(A3) U(:; �) is supermodular in x for all �, and  l� � 0 for all (x; �).

A1 is actually almost unrestrictive since the bounds on the derivatives of U are allowed to be arbitrarily
large. Assuming that at(�) is invariant across sectors is an innocuous normalization whenever at(�1) =

0 for all t (i.e., whenever workers are unproductive in the worst health state). Supermodularity is a

simplifying assumption.27 Finally, as health is typically an input for production, imposing  l� � 0 seems
a really sensible restriction.

For the sake of readability, in the next sections we shall consider separately how health e¤ects on

pure consumption choices, treatments�decisions and labor choices determine the properties of optimal

allocations and transfers. We study �rst a pure consumption economy where neither health nor consump-

tion goods can be �produced�, so that adverse health shocks only a¤ect preferences by reducing their

marginal utility of consumption. We then turn to the case where agents can undertake health enhancing

consumption activities (i.e., can �produce health�). Finally, we consider the case where agents produce

consumption goods and analyze the health e¤ects on agents�labor choices, including the e¤ects of health

on disutility of labor, labor endowment, and productivity.

Distinguishing these three cases allows us to illustrate what �transfers�across occupations one should

actually observe in e¢ cient, possibly regulated, competitive markets. In the real world, indeed one

observes either situations where the e¤ects of treatments and other consumption activities may a¤ect

substantially agents health conditions or cases where these e¤ects are relatively negligible. Moreover, it

is also possible to distinguish occupations for which physical or mental health are important prerequisites

for productive activities, from jobs requiring only a minimal level of health to be performed satisfactorily.

Intuitively, health e¤ects on production should determine the sign of cross transfers for jobs of the former

type; while health e¤ects on consumption decisions should be more important otherwise.

The super (sub) modularity properties of utility and production functions, as determined by com-

plementarity (substitutability) relationships between health consumption goods and labor, will be the

fundamental ingredients of our analysis. In this respect, it is worthy to note that A1-A3 do not impose
any restriction on the sign of the cross-derivatives Uc�. The reason is that the sign of Uc� depends on

the relative magnitude of two e¤ects, which may generally go in opposite directions given the speci�c

nature of health services. First, the marginal utility of most consumption activities increases (at least

weakly) in better health status, since health can be used as an input for these consumption activities. At

worst, a better health should not reduce the marginal utility of consuming any good. Were this the only
27This assumption can be easily relaxed. In order to derive our characterization results, we only need UcxL to be not too

negative for all c.
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channel through which health impacts consumption choices, one should have Uc� > 0 for all c. However,

whenever health �can be produced" by the agents or, more precisely, whenever agents can in�uence their

health by devoting resources to medical treatments or health enhancing consumption activities, a possibly

counterbalancing e¤ect may arise. In the next section we will in fact show that in this case the agents�

marginal utility of medical treatments or health enhancing consumption activities may well be larger in

bad health states and hence one may have Uc� < 0 at least for some consumption goods.

6.1.1 Health E¤ects on Pure Consumption Choices

This section studies how the properties of Pareto optima are in�uenced by the impact of their health

status on agents�preferences for consumption goods. To this end, we begin by focusing on a consumption

economy where agents cannot modify their health conditions by devoting resources to treatments or

other consumption activities, i.e., �(x; �) = �.28 Moreover, to concentrate on the impact of health on

pure consumption choices, we shall assume for the time being that workers supply labor inelastically,

while either productivity or labor endowments are independent from health status, i.e., a(�) = a and

lt(�) = L(�) = L for all � and t = 1; 2. As we explained above, under these assumptions health can

simply be seen as an input for consumption activities, for this reason it is natural to assume Uc�(x; �) > 0

for all c. The next proposition illustrates that the (positive) e¤ect of health on the (marginal) utility of

consumption and the direct health e¤ect on well being, measured by U�(x; �), determine optimal cross

transfers and the sign of (expected) utility di¤erential.

Let �uP =
P

�2� p
1(�)U(x1P (�); �)�

P
�2� p

2(�)U(x2P (�); �) and �ZP = Z1P � Z2P be di¤erences

in expected utilities and transfers, respectively, received by the agents assigned to the two sectors. Since

the �rst-order conditions with respect to � of the Pareto program imply �uP � 0 (resp. <) if and only
if �ZP � 0 (resp. <), from hereafter we shall only study the sign of �uP .

Proposition 4 If U has increasing di¤erences in (x; �) then �uP > 0.

In the optimum, risk-averse workers assigned to di¤erent occupations must get the same consumption

in each individual health state (i.e., x1(�) = x2(�) = xP (�) for all �). As consumption goods and health

are complements, optimality also imposes agents�consumption to be larger in better health states; and

for this reason U
�
xP (�); �

�
is increasing in �. Furthermore, since workers using less risky technologies are

more likely to experience better health states, they obtain larger utility levels with larger probabilities.

Thus, they also obtain a larger expected utility level.

6.1.2 Health E¤ects on Loss Reduction Activities

We now characterize Pareto optima in environments where agents can produce health by devoting resources

to medical treatments or health-enhancing consumption activities. Again, we assume that agents supply

28These assumptions allow to characterize optimal allocations and transfers for situations where the productivity of health
henancing activities is relatively low and health shocks play a relatively minor role in production decisions.
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labor inelastically and that their labor endowment is not a¤ected by the health status. This is done in

order to isolate the e¤ects of health enhancing consumption activities on utility di¤erentials and cross-jobs

transfers.

To begin with, consider the utility representation U(x; �) = Û(x; �(x; �)) where �(:) satis�es ��(x; �) >

0 and �c(x; �) � 0. By di¤erentiating Û one has:

Ûc� = Ûc��� + Û��c� + Û���c��;

hence Uc� is negative for �c� < 0 and su¢ ciently small (i.e., large in absolute value).
29 In fact, assuming

�c� < 0 seems completely natural in most real-world situations involving health enhancing consumption

activities, and in particular medical treatments. Consider, for instance a generic treatment c; by its

own nature, the treatment is bene�cial only in relatively bad health states, hence �c� must be negative

for at least a subset of �. Moreover, �c� must also be small (large in absolute value) if the treatment is

(marginally) very e¤ective in that subset of �. Finally, assuming that �c� does not change sign, hence that

Uc� is negative for those goods whose consumption contributes substantially to increase health conditions,

seems a sensible assumption in many real-life cases. It becomes even more appropriate whenever, as it

is often convenient for both theoretical and practical purposes, c can be interpreted as a total amount of

certain types of medical expenses, i.e., a composite good.

Similar considerations hold with regard to health enhancing consumption activities, ranging from

those aimed at satisfying nutritional and housing needs to physical activities. To provide an example,

consider workers who spend a signi�cant fraction of their income for nutritional and housing needs. It

is very sensible to assume that higher levels of consumption improve their health conditions especially in

lower health states. This again amounts to impose �c� < 0.
30

For the sake of clarity, we consider �rst the simplest situation where both consumption goods are

substitutes with health, turning, subsequently to the more general case where one good is complement

with health while the other one (i.e., the treatment) is substitute.

Proposition 5 If U has decreasing di¤erences in (x; �) there exist a pair of real numbers (k;K) with

k < K < 0 such that:

(i) �uP < 0 whenever Uc�=U� < k for at least one good c;

(ii) �uP > 0 whenever Uc�=U� > K for all c = 1; 2.

29The �rst term of this sum represents the e¤ect of � on the marginal utility of consumption activities, which should be
positive as discussed before; the second term represents the e¤ect of health-enhancing consumption activities on �̂; while the
third addendum captures a second-order e¤ect which reinforces that of health-enhancing consumption activities.
30As an example, consider the case of a worker, living in a low-income country which experiences high di¤usion rates of a

contagious disease. Contracting the disease generally impairs his consumption and working aptitudes and reduces his utility.
However, the more adequately this worker can satisfy his basic consumption and housing needs the smaller should be the
e¤ects of the disease on his health conditions. Making this assumption amounts imposing �c� < 0.
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The economic intuition behind this result is that the optimal consumption allocation xP (�) is smaller

in better health states, where consumption goods and health are substitutes. If such an e¤ect is su¢ ciently

large to compensate the impact of U�, the function U
�
xP (�); �

�
is decreasing in �. Thus, workers using

riskier technologies obtain a larger utility at the optimum. The converse is true otherwise.

Consider now the case where, besides consuming a treatment (or devoting resources to an health

enhancing activity), agents can also consume another good whose impact on health is negligible, which is

Uc� > 0 and Uc0� < 0 for c 6= c0. In this situation, a careful continuity argument permits to derive the sign

of optimal transfers and utility di¤erentials as an extension of the results stated in Propositions 4 and 5.

It then remains uncovered the case where one good is substitute with health, the other is complement,

and none of these e¤ects is negligible relatively to the other. In such a case, one can easily verify that

the direction of optimal transfers depends not only on the magnitude of second cross derivatives, but also

on the marginal utility of consumption commodities (which, in turn, is a¤ected by initial endowments).

The main issue then becomes whether there exists a synthetic measure having empirical correlates, that

one can use to determine which one of the two e¤ects prevails. We conclude the analysis of this section

by showing that the cross derivative of the indirect utility with respect to income and health is, indeed,

the appropriate measure. Consider an economy where health is complement with good c, Uc� > 0; and

substitute with good c0; Uc0� < 0. De�ne V (q; I(q); �) � maxx2<+ fU(x; �) s:t:; qx � I(q)g the state
dependent indirect utility associated to the vector of prices q and total wealth I(q). Corollary 6 below is

a direct implication of Propositions 4 and 5; it shows that the sign of �uP is determined by the sign and

the magnitude of VI�(q; I(q); �).

Corollary 6 Assume VI� has constant sign for all q; I; and �. Then, the following properties hold:

(i) if VI� > �k with k positive and su¢ ciently small, �uP > 0;

(ii) if VI� < �K with K positive and su¢ ciently large, �uP < 0.

The proof follows from straightforward comparative statics and it is left to the reader.31 It simply

consists in verifying that U
�
xP (�); �

�
is increasing (resp. decreasing) whenever VI� is su¢ ciently large

and positive (resp. negative), thereby health and income are strong complements (resp. substitutes). By

FOSD the slope U
�
xP (�); �

�
implies, as for previous propositions, the sign of �uP .

Summarizing, Corollary 6 states that e¢ ciency requires workers assigned to riskier jobs to get lower

expected utilities if health enhancing consumption activities have relatively negligible e¤ects on health,

while the converse will often be true otherwise.32

31Note that Uc� (x; �) > 0 (resp. < 0) for all c implies VI� > 0 (resp. < 0), hence Proposition 6 generalizes the results
stated in Propositions 4 and 5.
32Note, however, that if one restricts attention to the case where no health henancing activity provides utility directly (as

it is the case for medical treatments) �uP is negative only if �
�
xP (�); �

�
is decreasing at least in some subset of �. This is

not anymore true, tough, as soon as some health enhancing consumption activities increase directly agents utility.
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6.1.3 Health E¤ects on Labor Choices

This section illustrates the health e¤ects on labor choices. We begin by considering the case where health

conditions a¤ect labor endowment. This case is the simplest to analyze and permits to illustrates a key

e¤ect for the determination of optimal cross-jobs transfers. We shall turn subsequently to study the basic

trade-o¤ which arises whenever health a¤ects labor supply indirectly by in�uencing also agents�disutility

of labor and productivity and hence optimal labor choices.

Health E¤ects on Labor Endowment: In order to focus on the e¤ects of health risks on labor

endowment, we now assume that health does not a¤ect neither utility nor productivity (formally, U�(:) = 0

for c = 1; 2,  � = 0; a(�) = a for all �). Moreover, as before it is also convenient to impose that labor

supply is completely inelastic (i.e., the marginal disutility of labor is su¢ ciently low) so that lt(�) =

L (�) for all � and t. Under this assumption, the e¤ects of labor endowment�s shocks (due to health

realizations) result magni�ed, since labor supply is completely una¤ected by state contingent shadow

prices and wages. The next proposition demonstrates that agents employed in the sector yielding the

worst health distribution (i.e., in sector 2) obtain a larger utility (and a positive transfer) in the optimum.

Proposition 7 Assume L(�n) � L(�n�1) with strict inequality for at least one n, then �uP < 0.

Either the proof, which is left to the reader, or the intuition for the result of Proposition 7 are similar

to those of Propositions 4 and 5. More precisely, in the optimum agents work more and obtain a lower

utility in better health states, where their labor endowment, and hence their labor supply, are larger. As

a consequence, workers in safer occupations, who supply more labor on average, obtain a lower expected

utility.

Health E¤ects on the Disutility of Labor and Individual Productivity: We now study the more
general case where labor supply is not inelastic and health risks mainly a¤ect agents�disutility of labor and

their individual productivity.33 In such a case, health a¤ects labor choices both directly, by in�uencing

the disutility of labor and the productivity or indirectly by a¤ecting shadow prices (wages). These two

e¤ects may in�uence the sign of optimal utility di¤erentials and transfers in opposite directions. This

is for the following reasons. Analogously to the previous case, e¢ ciency requires agents in each sector

to work more in better health states, where the disutility of labor is lower or individual productivity is

higher. This may lead to positive utility di¤erentials in favor of workers using less safe technologies since

better health is more likely in the safer sector. However, now labor supply in the two sectors is also

in�uenced by shadow prices, and Pareto optimality imposes compensating wage di¤erentials in favor of

the riskier occupation, as established in Proposition 2. Optimality then imposes that in each individual

state agents assigned to this occupation, obtain larger shadow wages, and for this reason work more in

the optimum. The next proposition makes a �rst step toward the analysis of this trade-o¤, by showing

33As we shall formally show, this direct e¤ect is qualitatively analogous to the e¤ects of health on endowments. For the
sake of readability, throughout we shall then assume that the Pareto program has only internal solutions and labor contingent
endowments are health independent, i.e., L(�) = L for all �, so that the health e¤ect on endowment does not appear.
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that workers in the riskier sector obtain positive transfers and utility di¤erentials whenever health has

a su¢ ciently strong impact either on productivity, or on marginal disutility of labor, and the marginal

disutility of labor is su¢ ciently increasing. Let � =  ll= l.

Proposition 8 Assume L(�) = L, @a(�)=@� � 0 for all �, the following properties hold:

(i) if j l�j+(@a(�)=@�)=a(�) is su¢ ciently large relatively to j �j for all (l; �), then �uP < 0 whenever
� > K, with K su¢ ciently large for all (l; �);

(ii) if j �j is su¢ ciently large relatively to j l�j+ (@a(�)=@�)=a(�) for all (l; �) then �uP > 0.

The economic intuition rests upon recognizing the determinants of the magnitude of the price e¤ects

on labor supply. Speci�cally, since the elasticity of labor with respect to shadow wages is smaller for

larger values of � 34, assuming that the marginal disutility of labor is su¢ ciently increasing amounts to

impose that labor supply is not very responsive to shadow wages. As a consequence, for any given �,

�lP (�) = l1P (�) � l2P (�) cannot be too large. This implies, in turn, that the magnitude of the price

e¤ect is relatively small when health a¤ects substantially either productivity or the marginal disutility of

labor. Hence, workers in the riskier sector must obtain a higher utility if the direct e¤ect of health on

productivity and marginal disutility of labor is su¢ ciently large.

Finally, it is worth to notice that � large is a necessary condition for the elasticity of labor with respect

to the wage to be small. There exists a quite large empirical literature (see the seminal contribution of

Abowd and Card 1989, among others) indicating that this elasticity is not large in actual labor markets,

and may even be quite close to zero.

We conclude the section by showing that the assumption imposing a lower bound on � in Proposition

8 can be relaxed under mild assumptions which are often used in the applied literature. In particular, if

one restricts to the case where the impact of health on the marginal disutility of labor is su¢ ciently large

(in Proposition 8 this was not guaranteed by the assumptions), the next proposition holds. For the sake

of simplicity, in proving the result we shall impose the standard Inada condition  l(0; �) = 0 for all �.

Proposition 9 Assume  lll(l; �) > 0 for all (l; �), then �uP < 0 if  l� is su¢ ciently large relatively to

 � for all (l; �).

Imposing  lll > 0 is common in most applications of the principal-agent literature, and in the (theoret-

ical and applied) literatures studying the e¤ects of multiple risks. Intuitively, this assumption guarantees

that the labor schedules are strictly concave in the shadow wage, while  l� large ensures that the disu-

tility of labor becomes relatively small for su¢ ciently good health states. These e¤ects again imply that

�lP (�) = l1P (�)� l2P (�) cannot be too large neither under bad health states, where the disutility of labor
is large and hence actual labor supply is mall, nor in favorable health state, where agents labor supply

become less responsive to the wage, as the marginal disutility of labor is large. As a consequence, workers

34This immediately follows from optimality conditions with respect to labor.
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in the riskier sector must obtain a higher utility if the direct e¤ect of health on the marginal disutility of

labor is su¢ ciently large.

Finally, the assumption imposing a lower bound on � can also be relaxed in the case where health

only a¤ects productivity, i.e.,  �(l; �) = 0 for all (l; �), and the distribution of health in the safer sector

is concentrated around the healthier state �N . The next proposition shows that in this case, which is

often studied in the applied labor literature, optimal transfers and utility di¤erentials can be derived by

imposing very mild conditions on the sensitivity of labor with respect to the shadow wage.

Denote w� = a(�)� and let l(w�; �) be the contingent labor supply schedule implicitly de�ned by

optimality conditions; �nally, de�ne � l;w = dl(w�; �)=dw�)=(l(w�; �)=w�) the measure of the sensitivity of

the optimal labor schedule with respect to the shadow wage, the following result holds:

Proposition 10 Assume p1(�N ) = 1, then �uP < 0 (resp. �) if @� l;w=@w� < 0 (resp. �) for all �.

This result indicates that e¢ ciency requires agents using riskier technologies to get an higher utility

in the optimum whenever � l;w is non-decreasing in the shadow wage. Again, this assumption is in line

with the empirical �ndings of the labor supply literature; its interpretation is indeed that agents who are

already �working a lot�react less to wage increases.

7 Characterization of Competitive Equilibria

In this section, we characterize competitive equilibria for economies with enforceable and unenforceable

lottery contracts. We begin by proving the existence of a competitive equilibrium. The proof exploits the

convexifying e¤ect of large numbers.

Proposition 11 A competitive equilibrium exists either under enforceable or under unenforceable lottery

contracts.

Next proposition states the First Welfare Theorem for economies where lottery contracts are enforce-

able.

Proposition 12 Under enforceability of lottery contracts, competitive equilibria are �rst-best.

The proof is standard and is omitted.

The logic of the First Welfare Theorem is also used to show that competitive equilibria are interim

e¢ cient allocations with equal treatment if only deterministic contracts are enforceable.

Proposition 13 Under unenforceability of lottery contracts, competitive equilibria are interim e¢ cient

allocations with equal treatment.

This result together with Proposition 1 has the following important corollary.
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Corollary 14 Competitive equilibria with deterministic contracts are generically not �rst-best.

Next proposition states that agents trade individual securities at fair prices in both contractual regimes,

and that state-contingent wages equal the value of state-contingent labor productivity for each type of

worker. Furthermore, occupations associated to riskier health distributions command relatively higher

contingent wages. Finally, when lotteries are enforceable, the value of consumption for agents of the same

type assigned to di¤erent occupations typically di¤ers from the sum of the values of their endowment

and production. By using lottery contracts, indeed, wealth is optimally transferred across occupations in

such a way that agents obtaining the higher (resp. lower) expected utility get a positive (resp. negative)

transfer.
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strictly positive measures of type i agents are assigned to sectors t and t0 under both contractual regimes;

(iii) in any equilibrium with lottery contracts such that positive measures of type i agents are employed in

sectors t and t0, then uti(x
t
i)� ut

0
i (x

t0
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0
i � 0 (resp. <):

Part (i) of Proposition 15 follows from the linearity of the intermediaries and production �rms maxi-

mization programs; (ii) indicates that compensating wage di¤erentials are paid to riskier occupations and

it follows from �rst-order conditions; (iii) is a corollary of the optimality analysis performed in Section 5.

8 Second Welfare Theorem and Decentralization

This section focuses on the implementation of competitive equilibria with transfers. As unenforceabil-

ity prevents competitive markets from achieving e¢ ciency35 we shall consider a situation where lottery

contracts are unenforceable and a policy authority can implement cross-jobs transfers.

In the real-world, transfers across workers with di¤erent health prospects are implemented through

a variety of institutions and policy schemes. Transfers� systems across health insurance policies and

occupations on the one hand, and subsidies to health enhancing activities, such as medical treatments,

health care etc. on the other hand, are in particular largely di¤used. In our set-up, these two types of

policy instruments play similar roles. For the sake of brevity, we shall study the e¤ects of cross-subsidies

across insurance policies, and discuss only brie�y and informally the welfare e¤ects of subsidies to health

enhancing consumption activities.

Accordingly, we introduce a class of policy instruments based on deterministic transfers across insur-

ance contracts and on minimal wages. To simplify the de�nition of transfers policy, in the following we

35The proof that the Second Welfare Theorem holds, under standard assumptions, when random contracts are enforceable
may be showed to follow standard arguments.
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shall assume, without loss of generality, that in equilibrium each agent trades with only one intermediary.

Under this assumption an individual vector of assets�trades can be interpreted as an insurance contract.

Let sti the (possibly negative) monetary transfer
36 received by a type i agent who signs a health

insurance contract designed for sector t workers; and denote f ti (�) the monetary transfer received by a

sector t �rm for each type i worker in state � which it employes. Finally, let ŵti(�) the minimal state

contingent wage that �rms must pay to type i workers employed in sector t who experiences the health

state �.

A transfers�policy, } = (s; f; ŵ), is a vector s = (sti)
t2T
i2I of subsidies to the workers; a vector f =

(f ti (�))
t2T
i2I;�2� of transfers to production �rms and a vector w = (ŵ

t
i(�))

t2T
i2I; �2� of state contingent minimal

wages.

Feasible policies must be budget-balancing. Hence,
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where 'ti represents the measure of type i workers who are e¤ectively assigned to sector t in an equilibrium

with transfers.

Minimal wages may well induce rationing, and for this reason market clearing rules must now be

carefully speci�ed. Throughout we assume that, in any equilibrium with transfers, all commodity as well

as asset markets clear at �walrasian�prices without rationing (i.e., exactly as in the absence of transfers),

and that �rms� labor demand is not rationed as well. Di¤erently, as transfers and minimal wages can

generally make some occupations more attractive than others, a rule according to which workers are

assigned to each occupation must be speci�ed. We shall assume that whenever type i agents receive a

larger utility in sector t than in sector t0, for some t0 6= t, the probability that a type i agent is assigned to

sector t in equilibrium, is equal to �ti, which is precisely the measure of type i workers assigned to sector

t. The motivation for the clearing rule of consumption and assets markets is the usual one: namely, were

�rms or agents rationed, they would have an incentive to manipulate prevailing prices.37The same type

of argument justi�es the assumption that labor demand is never rationed in the equilibrium. Di¤erently,

our workers� assignment rule can be seen as the outcome of a decentralized job search process where:

in a �rst stage, workers simultaneously apply for occupations; subsequently, applications are randomly

selected whenever the number of workers applying for a job is larger than the number of posted vacancies,

and �rms o¤er jobs to the workers; �nally, in a third stage, workers, who have possibly received more

than one o¤er, pick an o¤er in the set containing their most preferred ones. Noteworthy, while this type

of assignment mechanism introduces a randomization on agents�labor demand, the transfers policies we

consider are completely deterministic, and hence their implementation does not rely on random devices.

36We will use monetary transfer as a synonimus of �transfer in units of numeraire�.
37See, for instance, Mas Colell and others (pp. 315, 1995) for a justi�cation of the walrasian equilibrium notion along these

lines.
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Consistently with the above de�nition of the policy scheme and with the description of market clearing

rules, a rational expectation equilibrium with transfers, f'; x; �; z; p; w; �; }g, is formally de�ned by the
following conditions:

(I) type i consumers�choose
�
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t
i; z

t
i

�t2T
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t
i(x

t
i)'

t
i subject to the budget con-

straints X
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t
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and to a set of rationing constraint of the type

'ti � �ti 8 t 2 T

indicating that a type i agent who o¤ers labor in sector t will be assigned to that sector with probability

lower or equal to �ti; which the measure of type i workers e¤ectively assigned to sector t in the equilibrium;

(II) production �rms�labor demand, lti, and intermediaries assets�supply, bzti , satisfy the same con-
ditions as in the competitive equilibrium with deterministic contracts (i.e., conditions (6) and (7)) ex-

cept that, because of the presence of transfers, the sector t production �rms�objective function is nowP
�2� p

t
i (�) l

t
i (�) (qty

t
i (�)� wti (�) + f ti (�));

(III) the minimal wages�constraints, wti (�) � ŵti(�) for all �, are satis�ed;

(IV) all feasibility conditions hold.

The next proposition shows that all Pareto optimal allocations can be implemented as equilibria with

transfers provided that agents�types are public information. Optimal policy schemes generally hinge on

state and sector contingent minimal wages, but do not require transfers across �rms. However, in the

case of inelastic labor supply, uniform minimal wages su¢ ce to implement Pareto optima, if appropriate

transfers across sectors are also implemented.

Proposition 16 All Pareto optimal allocations can be implemented as equilibria with transfers by policy
schemes such that f ti (�) = 0 for all �; i and t. Moreover, if workers� labor supply is inelastic for any

positive wage, Pareto optima are implementable through policy schemes such that ŵti(�) = ŵi and f ti (�) =

ŵi � �Pt ati(�) for all �, t and i.

Intuitively, the proposition shows that contingent monetary transfers allow to equalize, at the Pareto

optimal shadow prices, the marginal utilities of contingent goods and wealth across occupations. Minimal

wages prevent �rms from manipulating the transfers�scheme by undercutting wages in the sectors where,

at the Pareto shadow prices, workers obtains higher utility levels and labor supply is rationed.
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As a remark, note also that, by continuity, Pareto improving policy schemes relying only on uniform

minimal wages exist whenever the elasticity of labor supply is su¢ ciently small.38

A decentralization result similar to the one stated in the previous proposition can be proved if one

considers alternative policy schemes based on (possibly negative) non-linear subsidies to health-enhancing

consumption activities. The logic of the proof remains the same as the one of the previous proposition

since non-linear subsidies to the purchase of health services turn out to be substantially equivalent to

cross subsidies.39 However, it is noteworthy that non-linear consumption subsidies are necessary for the

implementation of Pareto optima. This is because linear consumption subsidies would distort individ-

ual consumption choices, thereby preventing the equalization of marginal rates of substitution to relative

prices.40 Finally, it is worthwhile mentioning that robust examples can be constructed where simple deter-

ministic cross-transfers policies, that do not discriminate across types, allow to improve upon competitive

allocations (see Bennardo and Piccolo, 2005). It may be showed that these policies are based on: (i) a

uniform, public or regulated insurance scheme implementing cross transfers; and (ii) an opt-out clause

allowing agents who prefer to buy insurance at market rates to exit the regulated insurance scheme.

9 Extensions

In the previous sections we made two simplifying assumptions: we assumed away prevention activities

and aggregate uncertainty. As we now explain, both these restrictions can be removed.

Introducing aggregate uncertainty does not involve any analytical complication. All the results of the

paper, as well as the analytical arguments extend to the more general case, provided that the number of

aggregate states is �nite.

Introducing prevention behavior requires some carefulness. Prevention is naturally described as work-

ers� investments which allow obtaining, at a positive cost, a �rst-order stochastic shift of the health

distributions associated to his occupations. If a pair of health distributions are initially ordered by the

FOSD criterion, prevention activities may determine three possible scenarios. In the �rst, prevention

technologies are such that the ordering of the two health distributions is preserved after prevention is un-

dertaken. This is the case, for instance, whenever prevention activities are very costly, or have a similar

impact on the two health distributions. In the second scenario, the ordering of the two distributions is

reversed after prevention activities are performed. This may happen whenever prevention is relatively

much more e¤ective under the riskier health distribution. Finally, there also exists a third possible sce-

nario where, once prevention activities are undertaken, health distributions cannot be anymore ordered

by the FOSD criterion. As for the �rst case, introducing prevention leaves unaltered the results derived

in the paper. In the second case, all our analysis still applies but must be appropriately reinterpreted.

38Uniform minimal wages and sector dependent minimal wages are both observed in developed countries.
39The formal proof of this claim are available upon request .
40Similarly, policies that do not discriminate across types (either cross subsidies on insurance or subsidies to health services

purchases), generally do not allow to equalize, for all possible types, the marginal utility of expected wealth of agents assigned
to di¤erent occupations.

25



Precisely, the ordering of the distributions determining optimal cross transfers and utility di¤erentials is

the ex-post one (i.e., the one emerging in equilibrium as a result of prevention activities), and not that

holding ex ante. Only in the third case our characterization, which relies on the FOSD criterion, does not

anymore apply.41

10 Concluding Remarks

The endogeneity of individual health distributions generates speci�c �cost-bene�t trade-o¤s� involving

agents�occupational choices and their consumption and production capabilities. We studied how these

trade-o¤s shape either the Pareto frontier of the economy or agents� competitive choices. We showed

that the relative magnitude of health e¤ects on production and consumption choices determines the

sign of Pareto optimal utility di¤erentials across workers who use di¤erent technologies as well as that

of optimal cross-jobs transfers. Moreover, we proved that competitive equilibria are ex-ante e¢ cient if

lottery contracts are enforceable, but not otherwise. As a consequence, the unenforceability of lotteries

may justify the introduction of policy schemes implementing cross-transfers across occupations.

From a theoretical perspective, our results suggest that cross-jobs transfers may result necessary for

e¢ ciency, in any setting where consumption and production choices are interdependent because of comple-

mentarities between consumption and production activities, or asymmetric information. Our conjecture,

based on the analysis of the present paper, is that the generic inconsistency between ex ante and interim

optimality, determining the need for cross-transfers, continues to hold in most of the settings studied in

the general equilibrium literature on clubs and in the asymmetric information literature. A result in this

spirit is obtained by Bennardo (2005), which characterizes optimal transfers in a moral hazard set-up

where health e¤ects are not considered, but occupations a¤ect agents�consumption choices via incentive

constraints.

From an applied perspective these results raise doubts about the conventional evaluation of the empir-

ical evidence that wage di¤erentials usually appear too small within the class of low skill jobs (i.e., those

performed by �uneducated people�), which include some of the dirtiest and riskiest occupations. While

the standard interpretation is that this seeming failure of wages to compensate re�ects some omitted vari-

ables, determining for example the extent to which certain occupations are more dangerous than others,

our analysis suggests that too small wage di¤erentials can be the natural consequence of speci�c market

imperfections, such as missing markets, driving competitive allocations to be ine¢ cient. Finally, another

reason why our results are interesting from a policy perspective is that real-life insurance markets for

work-related health risks are often heavily regulated, and health insurance policy highly debated, albeit

the rationales for policy interventions (speci�c insurance markets failure) do not seem to be satisfactorily

�gured out.
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Proof of Proposition 1
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The proof of the uniqueness part relies on a standard convexity argument. In order to prove the

genericity result, we need to formally de�ne the utility space Ui. Following the literature42 assume

that, beyond all assumptions stated in Section 2, agents�preferences satisfy the following property: a

sequence Uik(xi; �) in Ui converges to Ui(xi; �) 2 Ui if and only if Uik(xi; �); DUik(xi; �) and D2Uik(xi; �)

uniformly converge to Ui(xi; �); DUi(xi; �) and D2Ui(xi; �), respectively, for all �, on any compact subset

of <C+ � [0; L].43

Let � = (x; �; �; �) de�ne the vector of variables in the Pareto program. We consider �rst the case

where the solution of the Pareto program is internal, that is DcUi(x; �) > 0 for all i; c and � and �ti 2 (0; 1)
for all i and t. A Pareto optimum solves:

F(�; "; �u) =

0BBBBBB@
�iDcUi(x

t
i; �)� �c�i 8 c 2 C

��iUixL(xti; �) + �tati(�)�i
�i(u

t
i(x

t
i)� uTi (xTi ))� �i(Zti � ZTi ) 8 t 6= TP

i2I �i (xi � ei)�
P

i2I �iyiP
t2T �

t
iu
t
i(x

t
i)� �ui 8 i 6= 1

1CCCCCCA
�2�;t2T;i2I

= 0

for some vector of Pareto weights, �u = (�ui)
I
i=2: Now for any arbitrary economy " 2 E , de�ne the

extended system of equations G(�; "; �u) � (F(�; "; �u); (u11(x11) � uT1 (x
T
1 ))) = 0, which is obtained by

adding one interim e¢ ciency condition to F(:) = 0. Finally, let S�u = f" 2 E : G(�; "; �u) = 0g be the
subset of economies where a solution �("; �u) of G(:) exists for a given �u. We will show that the sets of
ex ante and interim Pareto optima are generically disjoint, by proving the equivalent statement that the

complement of S�u is open and dense. The space, E , of economies is in�nite dimensional. However, as
density is a local property, one may restrict attention to a properly de�ned subset of E . Speci�cally,
we will consider the linear subspace of U de�ned as follows. Given an utility pro�le Û 2 U , we shall
consider the perturbed utility functions Ui(xi; �) = Ûi(xi; �) + �i(�) + �i (�) (xi � xPi (�j�"; �u)) where, for
all � and i, �i(�) is a scalar and �i (�) denotes a (C + 1) dimensional vector. Assume j�i(�n)j, k�i(�n)k,
j�i(�n+1)� �i(�n)j and k�i(�n+1)� �i(�n)k su¢ ciently small for all (i; n). This class of utility functions
clearly satis�es all the assumptions stated in Section 2 and de�nes a �nite dimensional, linear subspace

of U . We shall prove density on bE = E � T � bU .
Let D(�;")F(�P (�u); "(�u)) and D(�;")G(�P (�u); "(�u)), the matrices associated to the Jacobian of G(:) and

F(:) evaluated at (�P (�u); "(�u)), respectively. In proving the density result one could proceed in two steps
by proving �rst that F(:) is di¤erentiable in a neighborhood of the Pareto optimum. For the sake of
brevity we shall skip this step; it will be straightforward in the following that if D(�;")G(�P (�u); "(�u)) has
full rank, then also D(�;")F(�P (�u); "(�u)) has full rank.

(i) Density
De�ne bS�u = n

" 2 bE : G(�; "; �u) = 0o and let (�P (�u); "(�u)) a generic point such that G(.) = 0. We

42See Geanakoplos and Polemarchakis (1986) and Citanna, et al. (1994) for a detailed discussion.
43 In words, we assume that Ui is endowed with the subspace topology of the C2 uniform convergence topology on compact

sets. Notice also that U =
QI
i=1 Ui is endowed with product topology.
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will show that the complement of bS�u is dense by proving that D(�;")G(�P (�u); "(�u)) has full row rank (i.e.,
G(.) is transversal to zero). Let ec =

P
i2I �ieic for all c, and e = (:::; ec; :::) 2 <C ; moreover, de�ne

ai = (a
1
i (�ni); ::; a

T�1
i (�ni)) 2 <T�1+ for a generic �ni 2 �.

As a preliminary step we show that the rank of D(�;")G(�P (�u); "(�u)) is equal to the rank of the following
matrix:

A =

0BBBBBBBBBBBBBBBBBBBBB@

equat.nvariab. x1 a1 �1(�1) �1xL(�n1) x2 a2 �2(�2) �2xL(�n2) ::: e

FOCs(x1) H1 C1 0 D1 0 0 0 0 0 0

FOCs(�1) 0 B1 � 0 0 0 0 0 0 0

u11(x
1
1)� uT1 (xT1 ) = 0 � 0 �1 0 0 0 0 0 0 0

FOCs(x2) 0 0 0 0 H2 C2 0 D2 0 0

FOCs(�2) 0 0 0 0 0 B2 � 0 0 0

PC2 0 0 0 0 � 0 �2 0 0 0

: 0 0 0 0 0 0 0 0 ::: 0

: 0 0 0 0 0 0 0 0 ::: 0

: 0 0 0 0 0 0 0 0 ::: 0

FEAS 0 0 0 0 0 0 0 0 0 I

1CCCCCCCCCCCCCCCCCCCCCA
Where A is a T (I + 1) + I(C + 1)N dimensional square matrix which is obtained by di¤erentiating

the extended system G(�; "; �u) with respect to (xi; ai; �i(�i); �ixL(�ni); e)
I
i=1.

44 Hi denotes the agent-i�s

Hessian submatrix for all i = 1; ::; I; Ci is a (T � 1) dimensional square matrix having all entries equal
to zero, except for the ones corresponding to the �rst-order conditions (FOCs) with respect to xtiL(�ni)

which are equal to �t�i for all i = 1; ::; I and t = 1; ::; T ; Bi is a (T � 1) dimensional square matrix with
all null entries, but the ones of the principal diagonal which are equal to pti(�ni)l

t
i(�ni) for all i and t;

Di has all null entries except for the elements corresponding to FOCs with respect to xtiL(�i), which are

equal to 1 for all i and t. Moreover, �i =
P

t2T �
t
ip
t
i(�i) for all i 6= 1, �1 = p11(�1)� pT1 (�1) and the symbol

���denotes all submatrices whose rank does not in�uence the rank of A.
Indeed, simple elementary operations allow to obtain A from D(�;")G(�P (�u); "(�u)). First, one obtains

the null matrices appearing in the rows corresponding to FEAs by summing the columns corresponding

to e (multiplied by appropriate scalars) to the ones corresponding to ai and �i(�i) for all i, respectively.

Second, by using the �rst-order conditions with respect to xi of the Pareto program one shows that the

elements corresponding to FOCs(�i) and xi are zero for all i. Now we shall prove that A has full rank.

44Note that in the matrix A the equations associated to FOCs(xi) indicate the �rst-order conditions of the Pareto program
with respect to xi for each i, those associated to FOCs(�i) indicate the �rst-order conditions with respect to �i for each i,
PCi indicates the participation constraint

P
t2T �

t
iu
t
i(x

t
i) � �ui for each agent i = 2; ::; I, and the equations corresponding to

FEAs are the feasibility conditions.
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To this end, de�ne

Ai =

0BBBB@
equat./variab. xi ai �i(�i) �ixL(�ni)

FOCs(xi) Hi Bi 0 Di

FOCs(�i) 0 Ci � 0

�ui-CONS. � 0 �i 0

1CCCCA ;

for all i = 2; ::; I; and:

A1 =

0BBBBBB@
equat.nvariab. x1 a1 e �1(�1) �1xL(�n1)

FOCs(x1) H1 C1 0 0 D1

FOCs(�1) 0 B1 0 � 0

FEAs 0 0 I 0 0

u11(x
1
1)� uT1 (xT1 ) = 0 � 0 0 �1 0

1CCCCCCA :

One can easily check that if all submatrices Ai have full rank so does A, and thus D(�;")G(�P (�u); "(�u))
has full rank.

To begin with we show that A1 is nonsingular. Using the columns corresponding to �1xL(�n1) and

those corresponding to a1 (multiplied by appropriate scalars) simple elementary operations allow to obtain

the matrix A01 from A:

A01 =

0BBBBBB@
equat.nvariab. x1 a1 e k1(�1) �1xL(�n1)

FOCs(x1) H1 0 0 0 D1

FOCs(�1) 0 I 0 0 0

FEAs 0 0 I 0 0

u11(x
1
1)� uT1 (xT1 ) = 0 � � 0 �1 0

1CCCCCCA
where �1 6= 0 pti(�) 6= pt

0
i (�) for at least a type i worker with health status �, and a pair (t; t

0) with t 6= t0.

Hence, as the Hessian Hi has full rank for all i = 1; ::I because preferences are strictly convex, it follows

immediately that A01 has full rank, and so does A1. Showing that Ai has also full rank follows exactly

the same kind of logic and thus it is omitted. Hence the matrix A has full rank. Thus G(.) is transversal
to zero and bS�u is dense whenever the solution of the Pareto program is internal.

Finally, the proof extends to the case where in the optimum there are corner solutions such that

�tPi 2 f0; 1g for some (i; t). Suppose, for instance, that �t0Pi = 1 for some t0 2 T and i = 1. Let t
0P
1

be the multiplier associated to the constraint �t
0
1 � 1. In order to prove density we must consider either

the case where Pt
0

i > 0 or that where Pt
0

i = 0. When Pt
0

i > 0, the proof follows exactly the same

kind of logic used for the case of interior solutions. Indeed, one only needs to add the equation �1P1 = 1

to the system G(�; "; �u) = 0, and then di¤erentiate the extended system G0(�; "; �u) = (G(�; "; �u) = 0;

�1P1 = 1) also with respect to �t
0
1 to show that D(�;")G0(�P (�u); "(�u)) has full rank. When Pt

0
i = 0, the

proof is done in two steps whose details are left to the reader for the sake of brevity. The argument is
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as follows: �rst, one shows that the extended system F 0(.) = (F(:); �t0Pi = 1; Pt
0

i = 0) has generically no

solutions as the matrix D(�;")F 0(�P (�u); "(�u)) has full rank. Then it follows that in an optimum where

�tPi = 1 typically Pt
0

i > 0. The same kind of strategy can be immediately used to show the result in the

case where �tPi 2 f0; 1g for more than one agent. �

(ii) Openness
Let P�u = f(�; ") : F(�; "; �u) = 0g denote the Pareto optimal manifold for u = �u, and consider the

natural projection � : P�u! E , �(�; "; �u) = ". As proper mappings take closed sets into closed sets, S�u is
open if the natural projection is proper. Hence we need to prove that for any sequence (�k(�u); "k(�u))

1
k=1

such that F(�k; "k; �u) = 0 for all k, and "k ! " as k ! 1, there exists a converging subsequence of
(�k(�u))

1
k=1 with limit �(�u) such that F(�; "; �u) = 0. To this end, note �rst that f�k(�u)g

1
k=1 must converge,

say to �, as it belongs to the compact set [0; 1]T�I . Moreover, DcUi(x; �) > K for all c 2 Ĉ(�) as

xc ! 0;with K large, imply fxik(�u)g1k=1 � 0 for all i; while since DcUi(x; �) < k, with k small, as

xc ! 1, there exists a positive vector G such that xik(�u) < G , hence fxk(�u)g1k=1 must converge, say
to x. Given the assumptions on Ui; Uik(xi; �)! Ui(xi; �) implies DUik(xi; �)! DUi(xi; �) uniformly on

compact sets for all (xi; �); then this must also hold at xi = xik(�u) for all i. Finally, from (15)-(17) one

gets (�k(�u); �k(�u))! (�(�u); �(�u)). �

Proof of Proposition 2
For the sake of brevity we provide the proof only for the case where U� > 0 at least in some interval

d�. The proof for the case where U� = 0 for all � and @L(�)=@� > 0 in some interval d� follows exactly the

same logic; while the result for the case where U� = 0, @L(�)=@� = 0 and @ati(�)=@� > 0 can be obtained

through simple algebraic manipulations of �rst-order conditions of the Pareto program.

Assume without loss of generality that


p1i ;�

�
FOSD



p2i ;�

�
and that �1i > 0, �

2
i > 0 and let



xP ; �P

�
a generic Pareto optimal allocation. Let� be an N�N matrix, and denote ~�(x2Pi (�n); �m) be the element

in the n-th row and the m-th column of � satisfying the following conditions: (i) ~�(x2Pi (�n); �m) = 0 for

all pairs (n;m) such that n > m; (ii) ~�(x2Pi (�n); �m) = p1i (�m)�
Pn�1

l=1 ~�(x
2P
i (�l); �m) for all pairs (n;m)

with n = m, and (iii)

~�(x2Pi (�n); �m) = min

(
p1i (�m)�

n�1X
l=1

~�(x2Pi (�l); �m); p
2
i (�n)�

m�1X
k=1

~�(x2Pi (�n); �k)

)

for all (n;m) with n < m. As a preliminary step, we show that � is a stochastic matrix satisfying the

following properties:

(I) ~�(x2Pi (�n); �m) � 0 and
PN

n=1 ~�(x
2P
i (�n); �m) = p1i (�m);

(II) ~�(x2Pi (�n); �m) � p2i (�n) for n = m;

(III)
PN

m=1 ~�(x
2P
i (�n); �m) = p2i (�n);

(IV) u2i (x
2P
i ) <

PN
m=1

PN
n=1 ~�(x

2P
i (�n); �m)Ui(x

2P
i (�n); �m).
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Part (I) By construction ~�(x2Pi (�n); �m) � 0, for all (n;m). By (i) one has

NX
l=1

~�(x2Pi (�l); �m) =

n�1X
l=1

~�(x2Pi (�l); �m) + ~�(x
2P
i (�n); �m);

thus, (ii) in turn implies

NX
l=1

~�(x2Pi (�l); �m) =
n�1X
l=1

~�(x2Pi (�l); �m) + p
1
i (�m)�

n�1X
l=1

~�(x2Pi (�l); �m) = p1i (�m):

Part (II) We can restrict attention to the case of ~�(x2Pi (�n); �m) > 0 for n = m: By construction,

in this case ~�(x2Pi (�l); �m) = p2i (�l) �
Pm�1

k=1 ~�(x
2P
i (�l); �k) for all l < n. Indeed, were ~�(x2Pi (�l̂); �m) =

p1i (�m) �
Pn�1

l=1 ~�(x
2P
i (�l); �m) for some l̂ < n, it would follow from part (I) that ~�(x2Pi (�l̂+t); �m) = 0

for all t > 0; contradicting ~�(x2Pi (�n); �m) > 0 for n = m. Therefore, for all (n;m) such that n =

m one must have ~�(x2Pi (�n); �m) = p1i (�m) �
Pn�1

l=1

�
p2i (�l)�

Pm�1
k=1 ~�(x

2P
i (�l); �k)

�
. As for n = m,Pm�1

k=1

Pn�1
l=1 ~�(x

2P
i (�l); �k) =

Pm�1
k=1 p

1
i (�k) by part (I), we obtain ~�(x

2P
i (�l̂); �m) = p

1
i (�m)�

Pn�1
l=1 p

2
i (�l)+Pm�1

k=1 p
1
i (�k), which implies ~�(x

2P
i (�n); �m) < p2i (�n) by FOSD.

Part (III) The proof is by induction. We �rst prove that the equality holds for n = 1. SincePn�1
l=1 ~�(x

2P
i (�l); �m) = 0 for n = 1, by (iii) this amounts to show that p

1
i (�m)> p2i (�1)�

Pm�1
k=1 ~�(x

2P
i (�1); �k)

for some m < N . If this were not true, one should have p1i (�m) � p2i (�1) �
Pm�1

k=1 ~�(x
2P
i (�1); �k) for all

m � N . However, for m = N this is impossible; indeed by condition (iii)
PN�1

k=1 ~�(x
2P
i (�1); �k) =PN�1

k=1 p
1
i (�k) whenever p

1
i (�m) � p2i (�1) �

Pm�1
k=1 ~�(x

2P
i (�1); �k) for all m � N . Suppose now thatPN

k=1 ~�(x
2P
i (�n); �k) = p2i (�n) for n = 1; 2; :::�n; but

PN
k=1 ~�(x

2P
i (��n+1); �k) < p2i (��n+1). In this case,Pm

k=1 ~�(x
2P
i (��n+1); �k) < p2i (��n+1) for all m � N so that by condition (iii) ~�(x2Pi (��n+1); �m) = p1i (�m)

�
P�n

l=1 ~�(x
2P
i (�l); �m) 8 m > n. By summing over m it follows:

NX
m=�n+1

~�(x2Pi (��n+1); �m) =
NX

m=�n+1

 
p1i (�m)�

�nX
l=1

~�(x2Pi (�l); �m)

!
;

which, in turn, implies:

NX
m=�n+1

~�(x2Pi (��n+1); �m) = 1�
�nX

m=1

p1i (�m)�
NX
m=1

�nX
l=1

~�(x2Pi (�l); �m) +

�nX
m=1

�nX
l=1

~�(x2Pi (�l); �m).

As we are assuming for n = 1; 2; :::�n,
PN

m=1 ~�(x
2P
i (�n); �m) = p2i (�n), the right-hand-side of this expres-

sion is equal to 1�
P�n

m=1 p
1
i (�m)�

P�n
n=1 p

2
i (�n) +

P�n
m=1 p

1
i (�m) = 1�

Pn
n=1 p

2
i (�n). This proves the claim,

since
PN

m=�n+1 ~�(x
2P
i (��n+1); �m) = 1�

Pn
n=1 p

2
i (�n) > p2i (��n+1) contradicts

PN
m=�n+1 ~�(x

2P
i (��n+1); �m) �

p2i (�n).
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Part (IV) As ~�(x2Pi (�n); �m) = 0 for all (n;m) with n > m and Ui� > 0, for all n; we have:

NX
m=1

~�(x2Pi (�n); �m)Ui(x
2P
i (�n); �m) >

NX
m=1

~�(x2Pi (�n); �m)Ui(x
2P
i (�n); �n) = p2i (�n)Ui(x

2P
i (�n); �n)

by summing up over n one obtains (IV).
We can now prove that �P1 < �P2 . The proof is again by contradiction. Assume �rst that �

P
1 > �P2 and

that, at least for one type, say type i, 0 < �2Pi � �i (i.e., some type i workers are assigned to sector 2 in

the optimum). Consider an allocation having the following features. A measure �1i = �1Pi +d�i of the set

of type i workers is assigned to sector 1 while a measure �2i = �2Pi � d�i is assigned to sector 2, with d�i
su¢ ciently small. All type i0 agents for i0 6= i receive (xPi0 ; �

P
i0 ). All type i workers in sector 2 and a measure

�1Pi � d�i of type i workers in sector 1 obtain x2Pi and x1Pi , respectively; a set of measure d�i of type i

workers in sector 1 obtain ~x1i = (:::; ~x
1
i (�m); :::), with ~x

1
i (�m) =

P
n ~�(x

2P
i (�n); �m)x

2P
i (�n), while another

set of measure d�i of type i workers in sector 1, obtain the allocation x1Pi + " = (:::; x1Pi (�n) + "(�n); :::)

where, for all n, "(�n) is such that "1(�n) = ", "2(�n) = �"; with " > 0 and su¢ ciently small, and

"c(�n) = 0 for all c > 2. By construction, this allocation is feasible; moreover the result proved in Part
(IV) and strict convexity of preferences imply ~x1i �i x2Pi , while �P1 > �P2 implies x

1P
i + " �i x1Pi . This

contradicts the optimality of


xP ; �P

�
; thus, �P1 � �P2 : Finally, a standard continuity argument implies

�P1 6= �P2 . �

Proof of Proposition 4
As a preliminarily step we state, without proving it, the following well known lemma, that we shall

use several times subsequently. Let P t (�n) =
P

���n p
t(�n) for n 2 N and t = 1; 2,

Lemma 17 For any map g : � ! <+; � ! g(�); with dg(�n+1) = g (�n+1) � g (�n), the following

identity holds: X
�2�

�
p1 (�)� p2 (�)

�
g(�) :=

X
n2N

�
P 2 (�n)� P 1(�n)

�
dg(�n+1):

We can now prove the statement of the proposition. The �rst-order conditions with respect to x of

the Pareto program, together with strict concavity of U(x; �) in x imply x1P (�) = x2P (�) = xP (�) for

all �. Let xP : � ! <2+, � ! xP (�), be the map associating to each � 2 � the optimal consumption

vector xP (�). Assume �n+1 � �n = d� for all n, with d� su¢ ciently small, and let dU
�
xP (�n+1); �n+1

�
=

U
�
xP (�n+1); �n+1

�
� U

�
xP (�n); �n

�
; one then obtains:

(18) dU
�
xP (�n+1); �n+1

�
�
X
c=1;2

dxPc (�n+1)�
P
c + U�

�
xP (�n+1); �n+1

�
d�:

By Lemma (17), u1(x1P ) T u2(x2P ) if dU
�
xP (�); �

�
T 0; hence (18) implies u1(x1P ) T u2(x2P ) ifP

c=1;2 dx
P (�n+1)�

P
c + U�

�
xP (�n+1); �n+1

�
d� T 0. For d� small, the �rst-order conditions of the Pareto

program with respect to x imply dxP1 (�n+1) � (U1�
jU22 j + U

2�
U21)=�)d� and dx

P
2 (�n+1) � (U2�

jU11 j +
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U
1�
U12)=�)d�, where from strict concavity of U(x; �) in x we have � = U11U22 � (U12)

2 > 0. Summing

up, we obtain:

(19)
X
c=1;2

dxPc (�n+1)�
P
c � U1

U
1�
jU22 j+ U2�

U12

�
d� + U2

U
2�
jU11 j+ U1�

U12

�
d�;

(18) and (19) then imply that dU
�
xP (�n+1); �n+1

�
T 0 if:

(20)
U1�
�
(U1jU22j+ U2U12) +

U2�
�
(U2jU11j+ U1U12) + U� T 0;

equation (20) together with supermodularity in x (i.e., U12 � 0), increasing di¤erences in (x; �) (i.e.,

Uc� � 0 for c = 1; 2) and U� > 0, imply the result. �

Proof of Proposition 5
As showed in Proposition 4, dU

�
xP (�n+1); �n+1

�
T 0 if:

U1�
�
(U1jU22j+ U2U12) +

U2�
�
(U2jU11j+ U1U12) + U� T 0:

Since we have assumed decreasing di¤erences of U in (x; �) (i.e., Uc� � 0 for c = 1; 2), one can check
that the �rst two terms in the above equation are negative, while the third term is positive. It is easy to

show then that if jUc�j=U� is large enough for at least one c one must have dU
�
xP (�n+1); �n+1

�
< 0 and

hence �uP < 0, which proves part (i). Similarly, when jUc�j=U� is small enough for each c = 1; 2 then

dU
�
xP (�n+1); �n+1

�
> 0 so to have �uP > 0, thereby proving part (ii). �

Proof of Proposition 8
Part (i) Let�uP =

P
�2� p

2(�) (l2P (�); �)�
P

�2� p
1(�) (l1P (�); �) and de�ne � (l; �) �  ll(l; �)= l(l; �).

Summing by parts,

�uP = �
X
�2�

(p1(�)� p2(�)) (l1P (�); �) +
X
�2�

p2(�)( (l2P (�); �)�  (l1P (�); �)):

Now, let �Pt the value of the Lagrange multiplier, calculated in the optimum, and denote lt(�) be the

function implicitly de�ned by  l(l(�); �) = a(�)�Pt for t = 1; 2; and l(�; �) that de�ned by  l(l(�); �) =

a(�)�: Let �P (�n) = P 1(�n)� P 2(�n), we then have:

�uP �
X
n2N

�P (�n)

Z �n+��

�n

�
d (l1(�); �)

d�

�
d� +

X
�2�

p2(�)a(�)

Z �P2

�P1

1

� (l(�; �); �)
d�:

Let �(lt(�); �) = j l�(lt(�); �)j+  l(lt(�); �)((@a(�)=@�)=a(�)) for t = 1; 2, one can easily check that

(21) �uP � �P
1 +�

P
2 ;
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with

�P
1 =

X
n2N

�P (�n)

Z �n+��

�n

�
�(l1(�); �)

� (l1(�); �)
+  �(l1(�); �)

�
d�;

and

�P
2 =

X
�2�

p2(�)a(�)

Z �P2

�P1

1

� (l(�; �); �)
d�;

where �P
2 > 0 since �

P
2 > �P1 by Proposition 2, and � � 0.

Observe that from A1 � must be �nite. This together with Lemma 17, and the continuity of

preferences, imply that there exists d 2 <++ such that if dlP (�) = lP2 (�) � lP1 (�) � d for all �,

�uP < 0. It then remains to prove that �uP < 0 whenever dl(�) > d for some �. From (21) we

have
P

n2N �P (�n)
R �n+��
�n

(d (l1(�); �)=d�)d� < 0 for  � su¢ ciently large. Since from A1 �=� > 0 and
we assumed � large, �uP < 0 if there exists a strictly positive h such that ��P = �P2 � �P1 < h. In

the following, we use an optimality argument to prove the existence of an upper bound on ��P . To this

purpose, let

EU(x; �) =
X
t=1;2

�t
X
�2�

pt(�)U(xt; �);

by de�nition EU(xP ; �P ) � EU(x
0
; �

0
), for all feasible (x

0
; �

0
). In particular, consider the consumption

allocation �x such that �xtc = xtPc for c = 1; 2; �l = �l1P + (1 � �)l2P , with � 2 (0; 1). Since l1P < l2P by

Proposition 2, a continuity argument implies that for any � su¢ ciently small there exists a real number

k such that 0 < �� = �P + k < 1, and (�x; ��) satis�es the feasibility constraints (possibly as inequality).

Let �EU = EU(xP ; �P ) � EU(�x; ��) � 0. By adding and subtracting EU(�x; �P ) to �EU , and

then using the �rst-order conditions of the Pareto program one gets �EU = ~AP + ~BP where ~AP =P
t2T;�2� �

P
t p

t(�)� (lt(�)), with � (lt(�)) = ( (�l(�); �)�  (ltP (�); �)), and where

~BP � ���
X
n2N

�P (�n)

Z �n+��

�n

�
 l(
�l(�); �)

�(l1(�); �)

 ll(l1(�); �)

�
d�+

+(1� �)��
X
n2N

�P (�n)

Z �n+��

�n

�
 l(
�l(�); �)

�(l2(�); �)

 ll(l2(�); �)

�
d�+

+��
X
n2N

�P (�n)

Z �n+��

�n

 �(
�l(�); �)d�;

with �� = (��� �P ). For � su¢ ciently close to 0;

~BP � ��
X
n2N

�P (�n)

Z �n+��

�n

�
 l(
�l(�); �)

�(l2(�); �)

 ll(l2(�); �)
+  �(

�l(�); �)

�
d� �
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��
X
n2N

�P (�n)

Z �n+��

�n

�
�(l2(�); �)

� (l2(�); �)
+  �(

�l(�); �)

�
d�;

since �l(�) � l2(�) for all � and  ll > 0:
~BP is bounded above as all derivatives of  are bounded by A1. Moreover, from the �rst-order condi-

tions of the Pareto program and the convexity of  it follows ~AP < A0 =
P

t2T �
P
t �

P
t

P
�2� a(�)p

t(�)�lt(�)

where �lt(�) = (�l(�)� ltP (�)). Using the de�nition of l̂(�) we then get:

A0 = �P1 �
P
1 (1� �)

X
�2�

p1(�)a(�)(l2P (�)� l1P (�))� �P2 �P2 �
X
�2�

p2(�)a(�)(l2P (�)� l1P (�)):

As (l2P (�)� l1P (�)) > d, the above expression implies ~AP ! �1 as �P2 ��P1 ! +1. We can conclude
that �EU = ~AP + ~BP � 0 implies �P2 � �P1 < h for some positive h. Therefore, since  l is bounded from

A1 it follows that �uP < 0 if j l�j+ (@a(�)=@�)=a(�) is su¢ ciently large relative to j �j for all (l; �).
Part (ii) The proof is straightforward and follows directly from equation (21). �

Proof of Proposition 9
Let l(�; �) be the function implicitly de�ned by  l(l(�); �) = �, and let T (�; �) := ��1 (l(�; �); �)�l(�; �),

then  l(0; �) = 0 for all � together with  ll(l; �) > 0 imply T (0; �) = 0 for all �. As it can be easily

checked that  lll(l; �) > 0 implies @T (�; �)=@� � 0, it follows that l(�; �) � ��1 (l(�; �); �) for all (�; �).

Moreover, consistently with the notation introduced before, let l2(�) denote the function implicitly de�ned

by  l(l2(�); �) = �P2 . Given the de�nition of �u
P in equation (21) (appearing in the proof of Proposition

8), the inequality l(�; �) � ��1 (l(�; �); �) implies:

(22) �uP �
X
n2N

�P (�n)

Z �n+1

�n

�
j l�(l2(�); �)j
� (l2(�); �)

+  �(l2(�); �)

�
d� +

X
�2�

p1(�)

 Z �P2

�P1

l(�; �)d�

!
:

As we want to study the sign of �uP , by using the �rst-order conditions of the Pareto program with

respect to � we will rewrite the second addendum of the right hand side of (22) in such a way to compare

it with the �rst addendum. This will allow us to sign the upper-bound of �uP de�ned in (22). To this

end, let h(l; �) :=  l(l; �)l, by adding and subtracting
P

�2� p
1(�) (l2P (�); �) to the left-hand-side andP

�2� p
1(�)h(l2P (�); �) to the right-hand-side of (17), and using Lemma 17 one gets:

X
n2N

�P (�n)

Z �n+1

�n

�
d (l2(�); �)

d�

�
d� +

X
�2�

p1(�)

Z �P2

�P1

�
 l(l(�; �); �)

@l(�; �)

@�

�
d� =

X
�2�

p1(�)

Z �P2

�P1

�
hl(l(�; �); �)

@l(�; �)

@�

�
d� +

X
n2N

�P (�n)

Z �n+1

�n

�
dh(l2(�) �)

d�

�
d�:
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Simple algebraic manipulations allow to rewrite the above equality as:

(23)
X
n2N

�P (�n)

Z �n+1

�n

 �(l2(�); �)d� =
X
�2�

p1(�)

Z �P2

�P1

l(�; �)d�;

Equations (22) and (23) then imply:

�uP �
X
n2N

�P (�n)

Z �n+1

�n

�
j l�(l2(�); �)j
� (l2(�); �)

+ 2 �(l2(�); �)

�
d�:

Then since by FOSD �P (�n) � 0 with at least one strict inequality, it follows that �uP � 0 if

j l�j � 2� j �j for all (l; �). �

Proof of Proposition 10
To begin with, we show the following preliminary lemma which will be useful in proving the proposition.

Let h(l) =  0(l)l, �h(l) = h00(l)=h0(l), �h =
P

�2� p
2(�)h

�
l2(�)

�
� h(l1(�N )), and �� = (� � �h).

Lemma 18 (i) @� l;w=@w� T 0 for all (l; �) if and only if � (l) T �h(l) for all l; (ii) �uP = 0 implies

sign�h = �sign��.

Proof The proof of part (i) follows from straightforward manipulations of the FOCs of the Pareto

program, and is omitted. In order to prove part (ii) denote l2 (h) =
P

�2� p
2(�)h

�
l2(�)

�
the cer-

tainty equivalent under h of the distribution


p2; (l2(�))�2�

�
. Since x̂1P = x̂2P , �uP = 0 implies

 
�
l1(�N )

�
=
P

�2� p
2(�) 

�
l2(�)

�
; therefore, l1(�N ) is the certainty equivalent, under  , of the distri-

bution


p2; (l2(�))�2�

�
. Since h(l) is an increasing function, and l1(�N ) T l2(h) whenever �� T 0; it

follows that �h S 0 if �� T 0: �
We shall now prove the claim of the proposition beginning with the case � < �h. To this end, we

introduce an auxiliary program which maximizes
P

t=1;2 �
tut(xt) under the feasibility constraints and the

additional constraint:

(24) �u =
X
�2�

p2(�) (l2(�))�  (l1(�N )) � 0:

The FOCs with respect to lt(�), t = 1; 2, and � of this program are:

(25)  0(l1(�N )) = �̂1a(�N ) +
{
�
 0(l1(�N ));

(26)  0(l2(�)) = �̂2a(�)�
{

1� � 
0(l2(�)); 8 � 2 �
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(27)
X
�2�

p2(�) (l2(�))�  (l1(�N )) = �̂2
X
�2�

p2(�)a(�)l2(�)� �̂1a(�N )l1(�N );

where �̂t for t = 1; 2 are the Lagrangian multipliers associated to the feasibility constraints of the auxiliary

program, and { is the multiplier associated with (24). Substituting (25) and (26) into (27) one gets:

(28) �u = �h+ {
�P

�2� p
2(�)h(l2(�))

1� � +
h(l1(�N ))

�

�
:

We can now verify that { = 0 and (24) holds as inequality whenever �� < 0. This immediately

implies that �uP < 0 for �� < 0.

First we must have { = 0; indeed { > 0 and �u = 0 would imply (28) �h < 0; but this is impossible,
as we showed above that �h > 0 whenever �u = 0 and �� < 0: Moreover, (24) must hold as inequality.

Otherwise, one would have �u = 0, and hence �h > 0 whenever �� < 0; which contradicts (28).

The proof that �� > 0 implies �uP > 0 and that �� = 0 implies �uP = 0, requires exactly the same

type of argument developed above and is left to the reader. �

Proof of Proposition 11
We begin with the case where lottery contracts are unenforceable. Consider the auxiliary program

which maximizes
P

t2T u
t
i(x

t
i)'

t
i within the compact set de�ned by the agents�budget constraints (4-5)

and the additional constraints xti(�) 2 �X � <C�[0; L], zti(�) 2 �Z with �X and �Z �nite but su¢ ciently large.

A standard risk aversion argument implies that the set of solutions of program (3)-(5) and that of the

auxiliary program coincide for �X su¢ ciently large. As both production and intermediation technologies

are linear, equilibrium prices must satisfy: �ti (�) = gtip
t
i (�) for some g

t
i 2 <+, and wti(�) = qta

t
i(�) for

i 2 I, t 2 T and � 2 �. At these prices assets�supply and labor demands are indeterminate. By using
these conditions and normalizing prices appropriately, the budget correspondence can be rewritten as:

Bt
i(q) =

8<:(xti; 'ti) : X
�2�;c2C

pti (�) qc(x
t
ic(�)� eic)� qt

X
�2�

pti (�) a
t
i(�)(L� xtiL (�)) � 0; 'ti 2 �

9=;
Bt
i(q) is continuous for all q � 0. Let �ti(q) and '

t
i(q) be respectively the individual demand correspon-

dences for commodities and occupations. The continuity of Bt
i(q) implies that both �

t
i(q) and '

t
i(q) are

upper- hemicontinous for all q � 0. Only 'ti(q) but not �
t
i(q), though, is convex valued. By construction,

however, the per capita demand correspondence �ti(q) =
P

t2T '
t
i(q)�

t
i(q) is upper-hemicontinuous and

convex valued. Hence, a standard application of the Kakutani Fixed Point Theorem in the commodity

space <L implies the existence result.

The existence proof for the case of enforceable lottery contracts is completely analogous. It only

requires more carefulness in proving that the solution of standard argument to prove that the feasible

set de�ned by the constraint of program (10)-(12) can be bounded without loss of generality. To show
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this, suppose by contrary that the auxiliary program de�ned by (10)-(12) and the additional constraints

xti(�) 2 �X � <C � [0; L], zti(�) 2 �Z; g 2 �G, with �X, �Z, and �G su¢ ciently large, have a boundary solution

such that, for some pair (�0; t0), x̂t
0
i (�) belongs to the boundary of �X. Since  belongs to the t-dimensional

simplex, for (10) to be satis�ed there must necessarily exist at least one t such that x̂ti(�) belongs to

the interior of �X, for all �. But then the multiplier associated to the initial period budget constraints

must necessarily be positive and equal to Dx1Ui(x̂
t
i(�); �) after prices�normalization. As a consequence,

from the �rst order optimality conditions one obtains DxcUi(x̂
t0
i (�

0); �0) � kDx1Ui(x̂
t
i(�); �) for some �nite

number k. But, for this inequality to be satis�ed, x̂ti(�
0) = (:::; x̂t

0
ci(�

0); :::) must be contained in the interior

of �X, for �X su¢ ciently large, since all derivatives of Ui(x; �) are assumed to be �nite. This proves that

the auxiliary, bounded program and program (10)-(12) have the same set of solutions (for all positive

price vectors) for �X su¢ ciently large. The rest of the proof follows exactly the same lines as the one for

the deterministic case. �

Proof of Proposition 13
Competitive equilibria satisfy the fair treatment condition, so that if ('ti; '

t0
i ) >> 0; then uti(x

t
i) =

ut
0
i (x

t0
i ). Indeed, if u

t
i(x

t
i) > ut

0
i (x

t0
i ), '

t0
i > 0 would not be optimal.

Now, let (x�; '�; q�; z�; ��) be a competitive equilibrium such that ('�ti ; '
�t0
i ) >> 0. Suppose it is not

interim e¢ cient, there must exist a feasible allocation (bx; b') 6= (x�; '�) such that uti(bxti) = ut
0
i (bxt0i ) for all

i; t and t0 with (b'ti; b't0i ) >> 0, and (bxi; b'i) �i (x�i ; '�i ) with (bxi; b'i) �i (x�i ; '�i ) for at least one i. Then:X
t2T

b'tiX
�2�

pti(�)
X
c2C

q�c (bxtic(�)� eic) �X
t2T

b'tiX
�2�

pti(�)q
�
t a
t
i(�)(L� bxtLi (�)); 8 i 2 I

where the inequality must be strict for at least one i. Multiplying both sides by �i and summing up with

respect to i, one obtains:

X
c2C

q�c

0@X
i2I

�i

0@ X
t2T;�2�

b'tipti(�)X
c2C

bxtic(�)� eic � X
t2T;�2�

b'tipti(�)ati(�)(L� bxtLi (�))
1A1A > 0;

which immediately implies that the allocation (bxi; b'i) violates feasibility. �
Proof of Proposition 16

Let


�P (�u); xP (�u)

�
be the Pareto optimal allocation associated to vector of Pareto weights, �u =

(�ui)
I
i=2. We show that there exists an equilibrium with transfer policy ~} with wti = ŵti = �Pt a

t
i, f

t
i = 0

and:

sti =
X

�2�;c2C
pti(�)(�

P
c (x

tP
ic (�)� eic)� �Pt

X
�2�

pti(�)a
t
i(�)l

tP
i (�) ;

such that 'ti = �tPi ; xi = xPi , qc=q1 = �Pc =�
P
1 ; �

t
i = pti; for c 2 C; t 2 T and i 2 I.

First, ~} is budget balancing by construction. Moreover,


�P (�u); xP (�u)

�
satis�es as equality all the

budget constraints at the prices, wages and subsidies vectors de�ned above. Hence (�Pi (�u); x
P
i (�u)) must
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solve the type i agents�maximization program. Finally, all the market clearing conditions are satis�ed at

�ti = pti and w
t
i = ŵti = �Pt a

t
i for all t 2 T . Indeed, at these prices the supply of all state contingent assets,

as well as labor demand, are indeterminate.

Consider now an economy where xtiL (�) = L �L(�) for all wti (�) > 0, with � 2 �, t 2 T and i 2 I:
Take a Pareto optimum



�P (�u); xP (�u)

�
of this economy and consider a policy ~} such that: ŵti (�) = ŵi =

maxt2T
�
�Pt a

t
i(�N )

	
; sti =

P
c2C;�2� p

t
i(�)�

P
c (x

tP
ic (�)� eic)� ŵti

P
�2� p

t
i(�)L(�); and f

t
i (�) = ŵi � �Pt ati(�)

for all �. By using the same argument developed above, one veri�es that (�Pi (�u); x
P
i (�u)) solves the type i

agents�maximization program for �ti = pti given the transfer policy just de�ned, that the market clearing

conditions are satis�ed, and that ~} is budget balancing. �
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