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Delayed Perfect Monitoring in Repeated Games

Markus Kinateder�

Universidad de Navarray

4 December 2009

Abstract

Delayed perfect monitoring in an in�nitely repeated discounted game is studied. A

player perfectly observes any other player�s action choice with a �xed, but �nite

delay. The observational delays between di¤erent pairs of players are heterogeneous

and asymmetric. The Folk Theorem extends to this setup, although for a range

of discount factors strictly below 1, the set of belief-free equilibria is reduced un-

der certain conditions. This model applies to any situation in which there is a

heterogeneous delay between information generation and the players�reaction to it.

JEL classi�cation numbers: C72, C73

Keywords: Repeated Game, Delayed Perfect Monitoring, Folk Theorem

1 Introduction

In�nitely repeated discounted games capture dynamic strategic interaction between im-

patient economic agents. Additional equilibria arise compared to one-shot games and
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Smorodinsky, Tristan Tomala, Marco van der Leij and Fernando Vega-Redondo, and from comments
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dapest, at the GAMES Conference in Chicago and at Universitat Autònoma de Barcelona (UAB). This
paper forms part of my PhD thesis defended at UAB in September 2008. I thank the committee members
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the associated payo¤ vectors can be Pareto superior to those achieved in any stage game

equilibrium. The well-known Folk Theorem states this result. For in�nitely repeated

discounted games, it is obtained by Fudenberg, Levine and Takahashi (2007), thereafter

FLT. Frequently, a player is assumed to observe his opponents�behavior immediately and

perfectly, referred to as perfect monitoring. This assumption is relaxed in the imperfect

monitoring literature, in which each player receives an imperfect private or public signal

of every action pro�le played.1

In this paper, monitoring is delayed since each player obtains a private signal about the

action chosen by another player with a �xed, but �nite delay. These signals are perfect,

and thus, a repeated game with delayed perfect monitoring is studied. Formally, for each

pair of players that participate in an in�nitely repeated discounted game there exists a

delay with which they observe each other�s action choice� this delay might be asymmetric

and is allowed to be heterogeneous for di¤erent pairs of players. In each period, a player

observes the actions chosen by a subset of players, including himself, at di¤erent points

of time in the past. The players take decisions under imperfect information in any but

the �rst period. However, since players do not take into account beliefs about unobserved

action choices in the past the concept of belief-free equilibrium, a sequential equilibrium

with a simple belief system, is used.

The Folk Theorem extends to the delayed perfect monitoring model, that is, any feasi-

ble and strictly individually rational payo¤vector is supported by a belief-free equilibrium

strategy pro�le when the players are su¢ ciently patient. Then, they do not mind to re-

ceive the repeated game�s history of action pro�les gradually over time. However, for

a range of discount factors strictly below 1, the delay in obtaining information, under

certain conditions, triggers a player�s deviation from some previously agreed sequence of

play. In this setup, for impatient players, the set of belief-free equilibria is reduced in

comparison to the perfect monitoring case under certain conditions.

The related literature considers di¤erent setups. In one, all players play the same

repeated game and a player observes an imperfect private or public signal of each action

pro�le (see footnote 1). Other models of imperfect monitoring are surveyed in Mailath

and Samuelson (2006).

The next section introduces notation and de�nitions. In section 3, the model is illus-

trated for the Prisoner�s Dilemma. In section 4, information spreading and punishment

reward are de�ned. Both are prerequisites for the Folk Theorem, which is stated in section

5, along with conditions under which impatient players deviate from a given sequence of

1Fudenberg, Levine and Maskin (1994), for example, obtain a Folk Theorem under imperfect public
monitoring, and Kandori (2002) surveys the imperfect private monitoring literature.
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action pro�les. Moreover, a comparative static result is provided. The model is presented

in unobservable mixed actions. Before concluding, possible extensions are discussed.

2 Preliminaries

2.1 Stage Game and Observation Structure

Each player i in the �nite set of players I = f1; :::; ng has a �nite set of pure actions
Ai: Pure action ai is an element of this set. The stage game�s pure action space is

A = �i2IAi; with generic element a; called pure action pro�le. To emphasize player i�s
role, it is written as (ai; a�i): For any subset of players S � I; let AS = �i2SAi; and
denote by aS an element of this set. Player i�s payo¤ function is a mapping hi : A ! R;
and the payo¤ function h : A ! Rn assigns a payo¤ vector to each pure action pro�le.
The stage game in normal form is then the tuple G � (I; (Ai)i2I ; (hi)i2I): De�ne the

convex hull of the �nite set of payo¤ vectors corresponding to pure action pro�les in G

as co(G) = cofx 2 Rn j 9 a 2 A : h(a) = xg: De�ne the mixed extension of G by

G� � (I; (�i)i2I ; (Hi)i2I); where �i = f�i : Ai ! [0; 1] j
P

ai2Ai �i(ai) = 1g is player i�s
mixed action space and Hi : � ! R his payo¤ function for � = �i2I�i: Let � 2 � be a
mixed action pro�le. To emphasize player i�s role, it is written as (�i; ��i): The function

H : � ! Rn assigns a payo¤ vector to each mixed action pro�le. Note that a mixed
action consists of a player�s randomization experiment and the pure action he chooses. It

is assumed that the randomization experiment is not observable, but only the pure action

chosen. This is referred to as unobservable mixed actions.

Denote the delay with which player i observes player j�s action choice by dij: It is

a �nite positive integer for all i; j 2 I: The maximal delay between player i and any

other player is de�ned by di = maxj2I dij; and the maximal delay between any pair of

players is de�ned as d = maxi2I di: For each player i; partition the set of players with

respect to the delay with which i observes their action choices: all players he immediately

observes including himself are in i(1) = fj 2 I j dij = 1g; and for any 2 � m � di; de�ne
i(m) = fj 2 I j dij = mg: Each of these sets might be empty, except of i(di); by de�nition,
and of i(1) since it contains at least i: Denote this observation structure by OS: It can

be represented in an n � n matrix: the ijth entry speci�es the delay with which player
i observes player j�s action choice. This matrix need not be symmetric, that is, for any

i 6= j; dij need not coincide with dji:
When the stage game is played repeatedly, in each period, a player �rst chooses an

action, in a way speci�ed below, and then makes observations. Since di is player i�s
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maximal delay, with a lag of di � 1 periods, he observes the repeated game�s entire
history.2 Additionally, a player has perfect recall. Hence, for any player i 2 I at any time
period t � 1; there is a set of observations, denoted by Obti; that includes all histories of
observations that i may have made at the end of period t: It is de�ned recursively as

Ob1i = Ai(1);

Ob2i = A2i(1) � Ai(2);
...
...
...

Obti = Ati(1) � A
t�1
i(2) � � � � � A

t�di+1
i(di)

for all t � di; where for any 1 � m � di and any t � 1; Ati(m) = (�j2i(m)Aj)t: Note
that Ati(m) = ; if, and only if, i(m) = ;; and that, by de�nition, only pure actions are
observable.

Player i�s observation at t is denoted by obti 2 Obti: Given G�; a sequence of mixed
action pro�les f�tg1t=1; where �t 2 � for all t � 1; generates a sequence of observations

for player i;

ob1i = (a1i ; a
1
i(1));

ob2i = (a1i ; a
1
i(1); a

1
i(2); a

2
i ; a

2
i(1));

...
...
...

obti = (fasigts=1; fasi(1)gts=1; fasi(2)g
t�1
s=1; :::; fasi(di)g

t�di+1
s=1 )

for all t � di: At any t < di; player i did not yet observe the behavior of at least one

other player in period 1. At t = di; ob
di
i contains the actions chosen by all players at

t = 1:3 Abusing notation, this is referred to as a1 2 obdii (since a1 belongs to A): At

any t > di; action pro�les a1; :::; at�di+1 are identi�ed by player i; and hence, in an abuse

of terminology, said to be elements of obti: Thus, at any t � 1; the sequence of mixed

action pro�les generates an observation pro�le obt 2 Obt; where Obt = �i2IObti: Given an
observation structure OS; the players play an in�nitely repeated discounted game.

2.2 Repeated Game with Delayed Perfect Monitoring

In the in�nitely repeated discounted game with delayed perfect monitoring, at each point

in discrete time, t = 1; 2; :::; stage game G� is played.

2At the end of any t � di; player i knows the actions played at t by all players in i(1); those played by
all players in i(1) and i(2) at t� 1; :::; and �nally the ones played by all players at t� di + 1 and before.

3This setup is equivalent to the following: each mixed action pro�le �t generates a public signal with
a delay of d� 1 periods and certain private signals in all periods s; where t � s < t+ d� 1:
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Let player i�s set of behavior strategies be Fi = fff ti g1t=1 j f 1i 2 �i; and for all t > 1;
f ti : Ob

t�1
i ! �ig: At any t � 1; player i�s behavior strategy fi = ff ti g1t=1 prescribes him

to choose a mixed action. For t > 1; it maps his set of observations to his mixed action

set. Let F = �i2IFi be the behavior strategy space of the repeated game with delayed
perfect monitoring and let behavior strategy pro�le f = (f1; :::; fn) be an element of F:

To emphasize player i�s role, it is written as (fi; f�i): At any t � 1; each f 2 F recursively
generates an action pro�le �t(f) = (�t1(f); :::; �

t
n(f)) and a corresponding observation

pro�le obt(f) = (obt1(f); :::; ob
t
n(f)):

4 Each f 2 F thus generates a sequence of action

pro�les f�t(f)g1t=1 and a sequence of observation pro�les fobt(f)g1t=1:
Given a common discount factor � 2 [0; 1);5 the function H� : F ! Rn assigns a payo¤

vector to each behavior strategy pro�le. Given f 2 F; player i�s payo¤, H�
i (f) = (1 �

�)
P1

t=1 �
t�1Hi(�

t(f)); is the (1��)-normalized discounted sum of stage game payo¤s. The
repeated game with delayed perfect monitoring associated with stage game G�; discount

factor � and observation structure OS is then de�ned as the normal form game GOS;� �
(I; (Fi)i2I ; (H

�
i )i2I); where the star superscript is suppressed.

If i(1) = I for all i 2 I; then GOS;� is identical to the in�nitely repeated discounted
game, referred to as G�: In this case fi simpli�es: at any t > 1 it maps At�1 = (�i2IAi)t�1

to �i; that is, each player conditions his action choice on the history of observable action

pro�les chosen by all players between periods 1 and t� 1:
Finally, the players commonly know the game played, the observation structure and

the strategy choices available to all players, and are assumed to observe their payo¤ with

a delay of d periods.6

2.3 Payo¤ vectors generated by Belief-free Equilibria

A player�s individually rational payo¤ is the lowest to which he can be forced in a stage

game. It obtains when he maximizes his payo¤ while all other players minimize it and is

called minmax payo¤. For any i 2 I; de�ne his minmax payo¤ in mixed actions by

�i � min
��i2��i

max
ai2Ai

Hi(ai; ��i): (1)

4For any player i; let �1i (f) = f
1
i and ob

1
i (f) = (a

1
i (f); a

1
i(1)(f)); and for t > 1; given ob

t�1
i (f) 2 Obt�1i ;

�ti(f) = f
t
i (ob

t�1
i (f)) and obti(f) is de�ned accordingly. If the prescribed mixed action at t is degenerate,

player i is asked to choose a pure action and this, abusing notation, is referred to as ati(f) = f
t
i (ob

t�1
i (f)):

5It may be interpreted as the probability with which the game is played again in the next period. The
probability that the repeated game ended by period T then converges to 1 as T goes to in�nity.

6After di � 1 periods, player i observed the action pro�les played between periods 1 and t � di + 1;
and can calculate or equivalently observe his payo¤ for all these periods; and d = maxi2I di:
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The minmax payo¤ is a player�s individually rational payo¤ in any repeated game, in

which the dimension of the payo¤ space is equal to the number of players.7 Denote the

vector of minmax payo¤s in mixed actions by �; and the mixed action pro�le forcing

player i to his minmax payo¤ by ��i: It is one solution to the optimization problem on

the right-hand-side of (1), on which the players agreed. Without loss of generality any

player�s minmax payo¤ is normalized to 0, that is, for all i 2 I; Hi(��i) � 0:
The set of feasible payo¤ vectors of the repeated game with delayed perfect monitoring

is de�ned as8

F = fx 2 Rn j 9 fatg1t=1 : 8 t � 1; at 2 A; and 8 i 2 I; xi = (1� �)
1P
t=1

�t�1hi(a
t)g:

Any feasible payo¤ vector is achievable by a sequence of pure action pro�les. Mixed

actions need not be used, apart from the minmax punishment of a deviator.

The set of feasible and strictly individually rational payo¤ vectors is denoted by F�:

It contains all feasible payo¤ vectors that are larger than � = (0; :::; 0) and is de�ned as

F� = fx 2 F j x > �g:

Any payo¤ vector in this set is a candidate to be supported by a belief-free equilibrium.

In a belief-free equilibrium, each player conditions his action choices only on his ob-

servations and a strategy pro�le is sequentially rational for any consistent belief a player

may have about the yet unobserved actions chosen by all other players (in the most recent

periods).9 Hence, beliefs are not modelled formally.

De�nition 1. A behavior strategy pro�le f � 2 F is a belief-free equilibrium (BFE) of

GOS;�; if for all t � 1 and given any obt 2 Obt; ff �� (ob��1)g1�=t+1 is such that for all i 2 I
and all fi 2 Fi;

(1� �)
1P

s=t+1

�s�1Hi(�
s(f �)) � (1� �)

1P
s=t+1

�s�1Hi(�
s(fi; f

�
�i)):

When i(1) = I for all i; then this de�nition includes G� and the concepts of belief-free

and subgame-perfect equilibrium coincide. However, equilibria of GOS;� and G� are called

belief-free when De�nition 1 is satis�ed, and the corresponding sets of BFE strategy

7The repeated game with delayed perfect monitoring extends to stage games with less than full-
dimensional payo¤ space as is remarked in the conclusion.

8Any payo¤ vector in co(G) is feasible for � 2 (1� 1
z ; 1); where z is the number of vertices of co(G): For

any discount factor in this range, sets F and co(G) coincide; see Fudenberg, Levine and Maskin (1994).
9A player�s belief for all observed action choices is uniquely determined. His strategy is only condi-

tioned on observed actions, while his belief about unobserved actions is irrelevant for his choices.
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pro�les are denoted by BFE(GOS;�) and BFE(G�); respectively. A behavior strategy

pro�le is a BFE if, and only if, no player�s �nite unilateral deviation is pro�table at any

point in time.10

3 The Observation Structure makes a di¤erence

The following example illustrates how imposing an observation structure on a repeated

game a¤ects its set of BFE: Let Ĝ = (I; A; h) be a generalized Prisoner�s Dilemma game,

where n > 2: At each point in time, a player chooses either C (cooperate) or D (defect).

The payo¤ function of any player i 2 I is de�ned as follows: for each a 2 A;

hi(a) =

8>>>>>><>>>>>>:

3 if aj = C; 8 j 2 I
0 if ai = C and 9 j 2 I n fig s.t. aj = D
4 if ai = D and aj = C; 8 j 2 I n fig
2 if ai = D; 9 j 2 I n fig s.t. aj = D and 9 l 2 I n fi; jg s.t. al = C
1 if aj = D; 8 j 2 I:

In the unique Nash Equilibrium of stage game Ĝ all players choose D; since it is

a strictly dominant action. In the repeated Prisoner�s Dilemma, strategy pro�les that

yield all players a higher payo¤ are sustained as BFE under certain conditions, such as

the trigger strategy pro�le. It prescribes each player to cooperate as long as all players

cooperate and to defect forever if any player defected. Player i�s trigger strategy, denoted

by f̂i 2 Fi; is de�ned as follows: f̂ 1i = C; and for t � 1; given obti 2 Obti;

f̂ t+1i (obti) =

(
D if 9 1 � � � t such that for a� 2 obti; a�j = D; while a��j = C
C otherwise.

Given f̂ 2 F; observe that for all i 2 I and all t � 1; �rst ati(f̂) = C; and second,

obti(f̂) is such that for all a
�
j 2 obti(f̂); a�j = C as well for all 1 � � � t and all j 2 I:

Hence, for all i 2 I; H�
i (f̂) = (1� �)

P1
t=1 �

t�13 = 3:

3.1 A one-period delay between two players

Consider a generalized Prisoner�s Dilemma game with n = 3; as represented in Figure 1,

where player 1 chooses rows, player 2 columns and player 3 matrices. Let the following

10Since � < 1; a player�s gain from an in�nite deviation can be approximated by that of a �nite one.
Thus, unilateral deviations of �nite length from a behavior strategy pro�le are not pro�table if, and only
if, it is a BFE of the repeated game with delayed perfect monitoring; see Mailath and Samuelson (2006).
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3

C D

1-2 C D
C 3, 3, 3 0, 4, 0
D 4, 0, 0 2, 2, 0

1-2 C D
C 0, 0, 4 0, 2, 2
D 2, 0, 2 1, 1, 1

Figure 1: Prisoner�s Dilemma for three players

symmetric observation structure OS be given: player 2 observes players 1 and 3, and both

of them player 2 perfectly. However, players 1 and 3 observe each other�s action choice

with a delay of one period. The trigger strategy pro�le is a BFE of ĜOS;� if, and only

if, all players are patient enough, that is, � is higher than some threshold value. Then,

none of them ever deviates. Corresponding conditions on � must hold for the truncation

of the repeated Prisoner�s Dilemma with delayed perfect monitoring at any point in time,

that is, given any observation pro�le. A BFE does not impose restrictions on play after

a multilateral deviation by two or more players. Any unilateral deviation that may arise

can be uniquely allocated to one of the following three classes:

1) initial unilateral deviations,

2) subsequent unilateral deviations (before the initial is known by all players), and

3) unilateral deviations while the punishment takes place.

Obviously, unilateral deviations during the punishment are not pro�table since all

players choose D: This action pro�le is the stage game Nash Equilibrium in strictly domi-

nant actions. Hence, every player best-replies independently of �: For the same reason, no

player can deviate pro�tably from the trigger strategy pro�le in class 2. After a player�s

initial deviation, he and any player who knows about it are best-o¤ to play D forever

(rather than to deviate and to choose C at any point in time).

It remains to show that no player can pro�tably deviate from the trigger strategy

pro�le when all players should play C: Given �; player 2 (who is perfectly observed by 1

and 3) does not deviate in any period � if, and only if,

(1� �)
1P
t=1

3�t�1 � (1� �)
��1P
t=1

3�t�1 + 4(1� �)���1 + (1� �)
1P

t=�+1

1�t�1;

(1� �)
1P

t=�+1

2�t�1 � (1� �)���1;
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2��+1 � (1� �)�� ;

� � 1
3
:

The value of 1
3
is not only the threshold value for player 2 in this example but also

that for all players in a repeated Prisoner�s Dilemma with perfect monitoring. The obser-

vation structure a¤ects, however, the threshold value of the remaining two players in this

example. Given �; player 1 (and similarly 3) does not deviate from the trigger strategy

pro�le in any period � if, and only if,

(1� �)
1P
t=1

3�t�1 � (1� �)
��1P
t=1

3�t�1 + 4(1� �)���1 + 2(1� �)�� + (1� �)
1P

t=�+2

1�t�1;

(1� �)�� + (1� �)
1P

t=�+2

2�t�1 � (1� �)���1;

which can be simpli�ed to 2� + �2 � 1 � 0: The only positive solution to this quadratic
equation is � � 0:414: Hence, in class 1 of the BFE conditions the requirement on �; or

the players�patience, is higher in this example than in a perfect monitoring model, due

to the one period lag with which players 1 and 3 observe each other�s action choice.

This example extends to any set of players where n > 3 as long as every player is

observed by at least one other player immediately.

3.2 The Prisoner�s Dilemma with any Observation Structure

A similar result holds for any observation structure in the repeated Prisoner�s Dilemma

in which all players follow the trigger strategy and every player is observed by at least one

other player immediately. In the above example it takes 2 periods until full punishment

sets in. Given any observation structure, it takes di periods until all other players punish

player i: Until then the deviator�s payo¤ is 2 since at least one player still chooses C:

Thereafter, it is 1 forever.

Since d is the maximal delay between any pair of players, there is a discount factor ��

that solves 2��+��d�1 � 0 such that no player deviates from the trigger strategy pro�le.
Hence, for this strategy pro�le all repeated Prisoner�s Dilemma games can be classi�ed

according to their observation structure. The threshold value of the discount factor ��;

for which no player deviates from the trigger strategy pro�le, that is, the level of patience

required to sustain cooperation is non-decreasing in d; since a higher delay implies that

at least one pair of players observes each other after a larger time lag.

9



Although the expression 2�� + ��d � 1 � 0 depends on d; even for very large values

of d the threshold value for �� is bounded above by 1
2
: To see this, take the limit of the

inequality when d converges to in�nity. Since � < 1; the term ��d converges to 0 and the

inequality simpli�es to 2���1 � 0 or �� � 1
2
: Hence, for "moderately patient" players, the

trigger strategy pro�le is a BFE in any repeated Prisoner�s Dilemma with delayed perfect

monitoring as long as every player is observed by at least one other player immediately.

The observation structure may thus reduce the set of discount factors for which a

strategy pro�le is a BFE: Moreover, for a given discount factor, the set of BFE strategy

pro�les and the corresponding set of payo¤vectors may be strictly smaller in the repeated

game with delayed perfect monitoring than in the version with perfect monitoring.11

4 Information Spreading and Punishment Reward

The general conditions for a BFE are not as simple as in the previous section since the

minmax action pro�le in most stage games is no Nash Equilibrium in strictly dominant

and pure actions. Hence, punishment is asymmetric and costly at least for some players.

The part of the Folk Theorem behavior strategy pro�le after a deviation is outlined next.

Until all players know about a deviation, they follow the originally prescribed sequence

of action pro�les. While in the Prisoner�s Dilemma for the trigger strategy pro�le all

players punish player i from di periods after his deviation on, in general, all players start

to punish simultaneously any unilateral deviator after d periods. Only then the deviation

is commonly known. The phase during which the information about a deviation spreads

throughout the set of players is called Information Spreading Process (ISP ): Note that

the ISP -payo¤ is not normalized by (1� �):

De�nition 2. Given f 2 F; the Information Spreading Process payo¤ of player i following
an initial deviation in period t0 only is de�ned as

ISP t
0
i = Hi(�

t0+1(f)) + ::: + �d�2Hi(�
t0+d�1(f)):

The ISP extends easily to any player�s deviation of �nite length. Any subsequent

deviator starts a new ISP which may overlap with the ongoing one. Once every player

identi�ed the last deviator, he is forced to his minmax payo¤ at least until his entire

gain from deviating is taken away or another subsequent deviator is punished. During

11The reduction in the equilibrium payo¤ space for � 2 [ 13 ;
1
2 ); for example, is the point (3; 3; 3); since

the trigger strategy pro�le is no BFE if at least one pair of players obtains information about each other
with a delay, and no other BFE strategy pro�le supports this payo¤ vector.
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punishment some players incur a loss in their payo¤. Hence, punishment starts once

all players know about the deviation and is restricted to a minimal amount of time.

Thereafter, a punishment reward phase is played in order to induce the punishers to

randomize over the pure actions in the support of the mixed minmax action and to

reward them for their temporary payo¤ loss, obviously, without bene�ting the deviator.

Given any feasible and strictly individually rational target payo¤ vector x 2 F�;

there are player-speci�c punishment reward payo¤ vectors denoted by !1; :::; !n: They

are achieved by sequences of pure action pro�les and have the following properties. For

any player i; xi > !ii > 0; and for two distinct players i 6= j; !ii < !ji ; that is, the i-th

component of vector i is strictly smaller than that of any other one. In this way the

punishers are rewarded but not the punished player i:

In order to induce the players to randomize in their punishment against some deviator

i; who deviated at t0; the sequence of pure action pro�les that yields !i depends on the

realized action pro�les during punishment. Formally, de�ne by

dif i ;t
0

j � (1� �)[
t0+d+ �TP
t=t0+d

�t�t
0�d(hj(a

t)�Hj(��i))]

the di¤erence between any player j�s realized payo¤during the punishment against player

i and his expected payo¤ given the mixed action pro�le ��i that yields �i; where �T is the

endogenously determined last time period of i�s punishment which is a positive integer.

At period �T + 1 player i�s punishment reward phase starts. Denote the sequence of pure

action pro�les that is played during this phase by fcsg1s=1: It is determined together with
a positive integer ~T such that for every player j 2 I;

!ij = (1� �)[
~TP

t= �T+1

�t�1hj(~c
t) +

1P
t= ~T+1

�t�1hj(c
t)] + dif i ;t

0

j :

Intuitively, d periods after the end of player i�s minmax punishment, the realizations

of all mixed actions chosen by the players during punishment are commonly known. The

action pro�les played during the periods after i�s punishment are made conditional on

these realizations such that each player j receives exactly !ij in the punishment reward

phase. Hence, a player whose randomization made him obtain a lower payo¤ during the

punishment phase than his expected payo¤ from action pro�le ��i receives a compensation

while a player whose payo¤ during this phase is larger than the expected one from ��i

receives a penalty. The existence of this conditional punishment reward phase for high

discount factors and given any x 2 F� follows, for example, from FLT. They show that

this compensation phase ends in �nite time. Its last time period is denoted by ~T : From

11



~T +1 on, the sequence of action pro�les played depends only on the name of the deviator,

but not on his punishment phase. Together with the one played from �T + 1 until ~T this

yields fcsg1s=1: In this way, all players are made indi¤erent between randomizing over the
pure actions in the support of the mixed minmax action since their payo¤ is the same

independently of the realized action, and they actually randomize, although deviations

within the support of the mixed minmax action would not be observable.

5 The Results

A behavior strategy pro�le can be constructed for which, given any observation pro�le, no

player�s unilateral deviation is pro�table, provided that the players are patient enough.

It is a BFE of the repeated game with delayed perfect monitoring and a Folk Theorem

obtains. The proof of the Folk Theorem is relegated to Appendix A. Its basic idea is in

line with Abreu, Dutta and Smith (1994).

Theorem 1. Let G� and OS be given. Then, for all x 2 F�; there is ~� < 1 such that for

each � 2 (~�; 1); there is a corresponding ~f 2 F such that ~f 2 BFE(GOS;�) and H�( ~f) = x:

Various sequences of pure action pro�les yield the same payo¤vector x 2 F�: Behavior

strategy pro�le ~f gives the structure to support any of them. It prescribes the players to

follow a given sequence of pure action pro�les and to punish any unilateral deviator from

d periods after his deviation on until his entire gain is taken away or some other player

is punished. Thereafter, his punishment reward phase is played. Mixed actions are only

used for punishment. Each observation pro�le that may arise belongs to one of a small

number of classes of observation pro�les. For each it is shown that no player can deviate

pro�tably. The objective of the Folk Theorem is not to �nd the most e¢ cient strategy

pro�le and it obtains as well for other possibly more e¢ cient strategy pro�les.

Patient enough players do not mind to receive the repeated game�s history gradually

over time. That punishment is not immediate but sets in after a �nite delay is strong

enough a threat for them. In the limit, the e¤ects of the delay in observations disappear

and the same set of payo¤ vectors is generated by BFE in the repeated game and in its

version with delayed perfect monitoring.

Corollary 1. Let G� and OS be given. Then, there is �� < 1 such that for all � 2 (��; 1)
and all x 2 F�; there are f 2 BFE(GOS;�) and �f 2 BFE(G�) such that fat(f)g1t=1 �
fat( �f)g1t=1; and H�(f) = H�( �f) = x:
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For impatient players, or in other words, for a range of discount factors strictly below 1,

the delay in observation makes a di¤erence, as already shown for the Prisoner�s Dilemma

in section 3. A similar result can be derived for any stage game.

A lower bound of the discount factor � is identi�ed such that for all � 2 [0; �]; only
sequences of action pro�les that prescribe the in�nite repetition of stage game Nash

Equilibria are supported byBFE in both games. Together with Corollary 1, the reduction

in the set of sequences of action pro�les that are supported by BFE in a repeated game

with perfect monitoring but not with delayed perfect monitoring is then stated formally.

Corollary 2. Let G� and OS be given. Then, there are 0 < � � �� < 1 such that for all
� 2 (�; ��]; ffat(f)g1t=1 j f 2 BFE(GOS;�)g � ffat( �f)g1t=1 j �f 2 BFE(G�)g:

For a range of intermediate discount factors, the observation structure reduces the set

of sequences of action pro�les that are generated by BFE strategy pro�les. In special

cases, the lower and upper bound of � coincide and the corollary is trivially true.12

Finally, formal conditions are given under which an observation structure reduces the

set of BFE strategy pro�les for impatient players. Given G�; OS and �; assume that
�f 2 BFE(G�) and let f _atg1t=1 � fat( �f)g1t=1: Say that the delay in observations has an
impact with respect to ~f; as de�ned in Theorem 1, if ~f does not support f _atg1t=1 as a BFE
of GOS;�:13 Suppose that player i gains

��i �
�+d�1P
t=�

�t�� [maxai2Ai hi(ai; _a
t
�i)� hi( _at)]

by a deviation of length d� 1 from f _atg1t=1 that starts at � : Let

��i (T ) �
1P

t=�+d

�t���1hi( _a
t)� (1� �)�1�T!ii

for T � 2d�2: It takes d�1 periods until all players know about i�s deviation, and 2d�2
periods after it, all of them know if i deviated again one period before his punishment

started. Then, Proposition 1 identi�es conditions under which the delay in observations

has an impact with respect to ~f .

Proposition 1. Let G�; OS and � < 1 be given. Suppose there is �f 2 BFE(G�); i 2 I
and � � 1; such that for all positive integers T � 2d� 2; ��i > ��i (T ): Then, the delay in
observations has an impact with respect to ~f:

12It is taken into account that other behavior strategy pro�les than ~f may yield the Folk Theorem for
discount factors below ~�; identi�ed in Theorem 1.
13Note, however, that this does not rule out that there is some other behavior strategy pro�le f 6= ~f

such that f 2 BFE(GOS;�) and fat(f)g1t=1 = f _atg1t=1:
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Appendix B contains the proof of Proposition 1. Intuitively, player i deviates from

f _atg1t=1; if the punishment threat of behavior strategy pro�le ~f is discounted by too much,
and hence, is not strong enough to prevent i�s deviation. Whereas the initially prescribed

sequences of action pro�les under �f and ~f are identical, punishment is immediate under
�f but sets in after a lag of d periods under ~f: Thus, the behavior strategy pro�le de�ned

in Theorem 1 does not support the sequence of action pro�les f _atg1t=1 as a BFE of GOS;�;
and the delay in observations has an impact with respect to ~f:

Another comparative static result is straightforward given the previous statements.

To simplify notation, given some observation structure OS; denote the maximal delay

among any pair of players by d(OS):

Corollary 3. Let G�; OS and f 2 F with the same structure as ~f be given. Assume

that f 2 BFE(GOS;�) for all � 2 (�̂; 1): Then, for any other observation structure OS 0

represented by d(OS 0) and all � 2 (�̂; 1); f 2 BFE(GOS0;�) and H�(f) > 0; if, and only

if, d(OS 0) � d(OS):

This result requires that punishment starts d periods after a unilateral deviation, that

is, it holds for a behavior strategy pro�le of the same structure as ~f:

6 Final Remarks

6.1 Less than full-dimensional payo¤ space and network

In Kinateder (2008), it is shown how this model extends to repeated games with any

dimension of the payo¤ space. The proof of the Folk Theorem and several other results

obtain, though the model is signi�cantly more complex. Therefore, it is presented in pure

actions. The setup identi�ed there, however, can be extended to mixed actions using the

same idea as in FLT.

Kinateder (2008) also identi�es a possible application of the model. Suppose that all

players that play a repeated game are allocated to a connected network. The distance

between any pair of players along shortest paths gives the delay with which both of them

observe each other. Then, a Folk Theorem obtains though the network reduces the set of

BFE for a certain range of discount factors and under certain conditions.

One way to interpret the network is as a communication network. This is done in

Kinateder (2009) who studies the repeated Prisoner�s Dilemma in a network. Two players

that are linked communicate with each other. Strategic communication is studied and it is

shown that for a range of discount factors the set of BFE in this setup does intersect but
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not coincide with the one in a perfect monitoring repeated Prisoner�s Dilemma in which

truthful communication is imposed exogenously. New BFE with richer than truthful

communication arise while other strategy pro�les fail to remain BFE since some player�s

lie is pro�table.

6.2 Conclusion

In this paper, delayed perfect monitoring in an in�nitely repeated discounted game is

modelled. Each player receives a perfect signal of every other player�s action choice with

a �xed and �nite delay. Two players may observe each other with an asymmetric delay

and the delay among di¤erent pairs of players is heterogeneous. A Folk Theorem obtains

since patient players do not mind to receive the repeated game�s history gradually over

time. For impatient players the observation structure makes a di¤erence, as shown for

the Prisoner�s Dilemma. Due to the observation structure, the set of equilibrium payo¤

vectors is reduced for a range of discount factors and a behavior strategy pro�le is a BFE

over a smaller range of discount factors, both compared with a repeated game with perfect

and immediate monitoring.

There are several possibilities to extend the results obtained here, as for example in

Kinateder (2008 and 2009). Other extension are extremely involved and therefore left for

future research. To identify e¢ cient strategy pro�les requires to pick the most e¢ cient one

from an in�nite number of possible ones. To show the results presented here for a �xed

payo¤ vector requires a similar exercise since frequently an in�nite number of sequences

of pure action pro�les yields the same payo¤ vector.
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Appendix A Proof of Theorem 1

Given G� and OS; �x x 2 F� such that x is feasible (see footnote 8). Behavior strategy

pro�le ~f 2 F; which after being de�ned is shown to be a BFE of GOS;� for any � 2 (~�; 1);
prescribes a di¤erent sequence of pure action pro�les fatg1t=1 to yield x for each �; although
its structure is unchanged. For any j 2 I; de�ne ~fj 2 Fj as follows:
~f 1j = a

1
j ; and for t > 1; given ob

t�1
j 2 Obt�1j ; in a slight abuse of notation, let ~f tj (ob

t�1
j ) =

1) atj; unless there is 1 � t0 < t such that for ât
0 2 obt�1j ; ât

0
i 6= at

0
i ; while â

t0
�i = a

t0
�i:

In this case, switch to phase 2 at t0 + dj and let ~�tj = a
t
j; for all t � 1:

2) ~�tj; if t
0 + dj � t < t0 + d; unless player l; where l 6= i deviates at any t00; where

t0 < t00 < t0 + d: Then, restart phase 2, set t0 = t00 and choose ~�tj accordingly.

Otherwise, switch to phase 3 at t0 + d:

3) ��ij; if t
0 + d � t � t0 + T; where T is determined below. If any player l devi-

ates at any �t; where t0 + T � �t � t0 + d; restart phase 2, set t0 = �t and choose
~�tj accordingly. Otherwise, switch to phase 4 at t

0 + T + 1:

4) csj ; if t � t0 + T + s; where fcsg1s=1 is the sequence of action pro�les that yields
!i: If any player l deviates at any � > t0 + T; restart phase 2, set t0 = � and

choose ~�tj accordingly.

Phase 2 corresponds to the ISP; phase 3 to the minmax punishment of the last

deviator, and phase 4 to the punishment reward phase. After any subsequent unilateral

deviation, the phase in which the game is at the time of the deviation prescribes the play

of the following d � 1 periods� in general, phase 2 is restarted. Then, the new deviator
is punished. If the same player deviates again in phase 2 (and no other does), however,

phase 2 is not restarted, but his punishment begins d periods after his �rst deviation. He

is forced to his minmax payo¤ for at least d � 1 periods. Then, all players know if he
deviated again in the period before punishment started, and hence, for how long it has to

last in order to eliminate his entire gain.
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By construction, the players can ignore multilateral deviations from ~f: Given any

observation pro�le, behavior strategy pro�le ~f prescribes a continuation play from which

no player can deviate pro�tably for large enough �: The result for phase 2 is shown

�rst since it introduces arguments used thereafter to prove the results of phases 4, 1 and 3.

PHASE 2

Figure 2 illustrates the order of time periods in phase 2. Suppose player i deviates at t0:

During the ISP player j 6= i receives ISP t0j : By deviating at t00; where t0 < t00 < t0 + d;
he can maximally gain bj = max�2�[maxaj2Aj Hj(aj; ��j) � Hj(�)]; since his remaining
ISP -payo¤ is unchanged. However, from period t00 + d on, he is forced to his minmax

payo¤ of 0, and then, his punishment reward phase is played. Player j�s deviation at t00

is not pro�table if for some positive integer T̂2; where t00 + d � t0 + T̂2;

(1� �)bj + �T̂2!jj � (1� �)
t0+T̂2P
t=t00+d

�t�t
00�1Hj(��

i)� �t0+T̂2�t00!ij < 0;

(1� �)bj � (1� �)
t0+T̂2P
t=t00+d

�t�t
00�1Hj(��

i) < �t
0+T̂2�t00!ij � �T̂2!

j
j: (2)

Substituting �t
0+T̂2�t00 with �T̂2 makes the right-hand-side of (2) smaller (since t00 > t0;

�t
0+T̂2�t00 > �T̂2 holds for all � < 1:) Hence, (3) implies (2) and it su¢ ces to show (3).

(1� �)bj � (1� �)
t0+T̂2P
t=t00+d

�t�t
00�1Hj(��

i) < �T̂2 [!ij � !
j
j] (3)

As � converges to 1, (3) is ful�lled: its left-hand-side converges to zero while its right-

hand-side is strictly positive since !ij > !jj: This may hold for several distinct pairs of

discount factor and strictly positive integer. (The last inequality is ful�lled trivially when

player j�s gain from punishing player i is larger than bj:) The case t00 + d > t0 + T̂2 is

simpler since the sum on the left-hand-side of (3) and j�s payo¤ in the �rst period(s) of

i�s punishment reward phase both drop out, which for � close to 1 is negligible.

For j = i after player i�s deviation at any t00; where t0 < t00 < t0 + d; the ISP about

i�s �rst deviation continues. Once all players know about i�s deviation, ��i is played for at

least d� 1 periods, that is, at least until period t0 + 2d� 2; and at most until his entire
gain from all his deviations is eliminated. Thereafter, player i�s punishment reward phase

is played. Finally, select a large enough, strictly positive integer T2 such that no player

can deviate pro�tably in phase 2.
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tt’
player i deviates

t’’
player j deviates

t’ + d
player i s punish-

ment starts

t’’ + d

player j s punish-
ment starts

t’ + T2 + 1^

player i s punish-
ment reward starts

t’’ + T2 + 1^

player j s punish-
ment reward starts

Figure 2: Order of time periods in phase 2

PHASE 4 and PHASE 1

The result for phase 4 is stated �rst since it implies the result for phase 1. Suppose that

player j 6= i; and that i is the last deviator. Player j does not deviate at � ; the �rst period
of i�s punishment reward phase, if for some positive integer T̂4;

(1� �)maxaj2Aj hj(aj; c1�j) + �(1� �)ISP �j + �T̂4!
j
j � !ij < 0;

(1� �)maxaj2Aj hj(aj; c1�j) + �(1� �)ISP �j < !ij � �T̂4!
j
j:

When � converges to 1, the left-hand-side of the last inequality converges to zero

whereas the right-hand-side is strictly positive (since !ij > !
j
j; and for any � < 1; �

T̂4 < 1):

The same argument holds when player j deviates in any other than the �rst period of

player i�s punishment reward phase since for � close to 1, the payo¤ obtained at the

beginning of any punishment reward phase is negligible.

If j = i; player i cannot deviate pro�tably in the �rst period of his own punishment

reward phase, if there is a positive integer _T4 such that

(1� �)bi + �(1� �)ISP �i + �
_T4!ii � !ii < 0;

where � � t0 + _T4 + 1: This simpli�es to

(1� �)bi + �(1� �)ISP �i < !ii � �
_T4!ii ;

bi + �ISP
�
i < (1�� _T4 )

(1��) !
i
i : (4)

When � converges to 1, the left-hand-side of (4) is bounded above by a positive number

and the right-hand-side, by l�Hospital, converges to _T4!
i
i > 0: The same argument holds
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when player i deviates in any other than the �rst period of his own punishment reward

phase since for � close to 1, the payo¤obtained at the beginning of any punishment reward

phase is negligible. For _T4 large enough, (4) holds. Hence, no player�s unilateral deviation

of �nite length is pro�table in phase 4. Finally, let T4 be the smallest positive integer

such that no player can deviate pro�tably in phase 4.

The result of phase 4 extends to phase 1 since by assumption any player�s target

payo¤ is strictly larger than his punishment reward payo¤. Hence, neither any player�s

�nite deviation nor subsequent ones by any player are pro�table in phase 1. Again a

discount factor � < 1 and a positive integer T1 exist such that no player can deviate

pro�tably from behavior strategy pro�le ~f in phase 1.

PHASE 3

Suppose player i is forced to his minmax payo¤ because he deviated at t0: By de�nition,

player i cannot deviate pro�tably in this phase. Neither can any player j 6= i deviate

pro�tably within the support of the mixed minmax action. Player j does not deviate by

choosing any action outside of the support of the mixed minmax action at any �t; where

t0 + d � �t � t0 + T3; if

(1� �)bj + �(1� �)ISP �tj + �T3!
j
j � (1� �)

T3P
t=�t

�t�
�tHj(��

i)� �t0+T3��t!ij < 0;

(1� �)bj + �(1� �)ISP �tj � (1� �)
T3P
t=�t

�t�
�tHj(��

i) < �t
0+T3��t!ij � �T3!

j
j: (5)

Proceeding as in phase 2, that is, substituting on (5)�s right-hand-side �t
0+T3��t with

�T3 (for any � < 1; �T3�(�t�t
0) > �T3 since �t > t0) and taking the limit of � converging to

1, ful�lls (5) for at least one pair of discount factor � < 1 and strictly positive integer

T3: An analogous argument holds for deviations, or a sequence of deviations by di¤erent

players. Choose T3 large enough to prevent any such deviation.

Let T = maxfT1; T2; T3; T4g; and let ~� be the lowest discount factor, for which,
given T; no player can deviate pro�tably in any phase. (If there are several pairs of T

and � for which the proof holds, the pair with the lowest discount factor is selected.)

Then, for any � 2 (~�; 1); ~f is a BFE strategy pro�le of GOS;� and H�( ~f) = x:
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Appendix B Proof of Proposition 1

LetG�; OS and � < 1 be given. Select �f 2 BFE(G�) that generates the sequence of action
pro�les fat( �f)g1t=1 � f _atg1t=1: Take a behavior strategy pro�le with the same structure as
~f; de�ned in Theorem 1, to support this sequence of action pro�les as a BFE of GOS;�:

Then, the delay in observations has an impact with respect to ~f if some player can deviate

pro�tably. Suppose that for some player i 2 I; some � � 1; and all positive integers

T � 2d� 2;

(1� �)
�+d�1P
t=�

�t�� maxai2Ai hi(ai; _a
t
�i) + �

T!ii > (1� �)
1P
t=�

�t��hi( _a
t);

�+d�1P
t=�

�t�� [maxai2Ai hi(ai; _a
t
�i)� hi( _at)] + (1� �)�1�T!ii >

1P
t=�+d

�t���1hi( _a
t):

Subtracting (1 � �)�1�T!ii from both sides yields ��i > �
�
i (T ) and the delay in obser-

vations has an impact with respect to ~f:
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